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Abstract

Bias mitigation of Language Models has been001
the topic of many studies with a recent focus002
on learning separate modules like adapters for003
on-demand debiasing. Besides optimizing for004
a modularized debiased model, it is often crit-005
ical in practice to control the degree of bias006
reduction at inference time, e.g., in order to007
tune for a desired performance-fairness trade-008
off in search results or to control the strength009
of debiasing in classification tasks. In this pa-010
per, we introduce Controllable Gate Adapter011
(CONGATER), a novel modular gating mech-012
anism with adjustable sensitivity parameters,013
which allows for a gradual transition from the014
biased state of the model to the fully debiased015
version at inference time. We demonstrate016
CONGATER performance by (1) conducting017
adversarial debiasing experiments with three018
different models on three classification tasks019
with four protected attributes, and (2) reduc-020
ing the bias of search results through fairness021
list-wise regularization to enable adjusting a022
trade-off between performance and fairness023
metrics. Our experiments on the classification024
tasks show that compared to baselines of the025
same caliber, CONGATER can maintain higher026
task performance while containing less infor-027
mation regarding the attributes. Our results on028
the retrieval task show that the fully debiased029
CONGATER can achieve the same fairness per-030
formance while maintaining more than twice031
as high task performance than recent strong032
baselines. Overall, besides strong performance033
CONGATER enables the continuous transition-034
ing between biased and debiased states of mod-035
els, enhancing personalization of use and inter-036
pretability through controllability.037

1 Introduction038

Pre-trained Language models (LMs) have shown039

impressive ability in learning effective representa-040

tions and diverse aspects of language, including041

harmful biases and stereotypes (Zhao et al., 2019;042

Sheng et al., 2019; Blodgett et al., 2020; Rekabsaz 043

and Schedl, 2020; Stanovsky et al., 2019). A com- 044

mon bias mitigation category, referred to as repre- 045

sentational fairness (Elazar and Goldberg, 2018), 046

aims at minimizing the information regarding a 047

specific attribute in order to make the models’ de- 048

cision blind to the attribute. This is realized in 049

various classification scenarios to make the model 050

invariant to given protected attributes, and also in 051

information retrieval (IR) tasks to opt for the neu- 052

trality/balancedness of search results. Common in- 053

processing approaches to mitigate these biases are 054

to extend model optimization with various bias mit- 055

igation criteria (e.g., through adversarial optimiza- 056

tion or regularization terms) and update the whole 057

model’s parameters to a debiased state (Elazar and 058

Goldberg, 2018; Colombo et al., 2021; Zerveas 059

et al., 2022b). New studies focus on modularizing 060

this process by introducing new modules such as 061

adapters (Pfeiffer et al., 2021; Houlsby et al., 2019), 062

and sparse masking networks (Zhang et al., 2021; 063

Hauzenberger et al., 2023; Zhao et al., 2020). 064

Besides effectiveness in reducing bias, it is of- 065

ten important in practice to be able to control the 066

degree of imposing the debiasing criteria at infer- 067

ence time. This is beneficial particularly to apply 068

possible fairness-performance trade-offs, specific 069

preferences of each user, or the particular needs in 070

processing each given input.1 Debiasing control- 071

lability enables to set the desired degree of a bias 072

constraint’s contribution at inference time, while in 073

the current paradigm, one needs to train and deploy 074

multiple parallel models or modules with various 075

mitigation degrees (Kumar et al., 2023; Hauzen- 076

berger et al., 2023; Zerveas et al., 2022b), imposing 077

an untenable burden in practice. 078

1Regarding the last point, see for instance Krieg et al.
(2023) and Hauzenberger et al. (2023) about the need to
control for the gender information in the processing of bias-
sensitive inputs (like how to become CEO?) versus the “nor-
mal” ones (like earliest pregnancy symptoms).
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In this paper, we address debiasing controlla-079

bility by introducing Controllable Gate Adapter080

(CONGATER). The proposed module is based on a081

novel gating mechanism, that learns to reduce pro-082

tected attribute information from the embedding083

while allowing information necessary for the task084

to pass through the model. The CONGATER is085

equipped with a novel activation function Trajec-086

tory Sigmoid (t-sigmoid), used to form the gate087

vectors. CONGATER is agnostic to the debiasing088

optimization, and can be trained with any gradient089

descent-based signal which removes attributes or090

increases fairness. During training, t-sigmoid has091

the same shape as a (standard) sigmoid function.092

At inference time, however, the form of t-sigmoid093

can flatten by decreasing the sensitivity parameter,094

transitioning from the sigmoid function (full gate095

intervention) to the constant function (no influence)096

creating a nonlinear interpolation effect. This tran-097

sition can be viewed as traversing the trajectory of098

embeddings from the state of the original (biased)099

model to its fully debiased version, resulting in ad-100

justable attribute removal qualities in the model’s101

outputs and internal embeddings (§3).102

We demonstrate the functionality of CONGATER103

by doing two sets of experiments: (1) adversarial104

bias mitigation with three models on three real-105

world classification datasets namely, occupation106

prediction from biographies with gender as pro-107

tected attribute (De-Arteaga et al., 2019), hate108

speech detection with dialect-based race as pro-109

tected attribute (Founta et al., 2018a), and mention110

prediction with two attributes: gender and age of111

authors (Rangel et al., 2016). In this experiment,112

we show that CONGATER is able to reduce infor-113

mation about the attribute in the embeddings better114

than baselines while mostly preserving task perfor-115

mance. We also show that attribute information re-116

duction in the embeddings of the model is continu-117

ous. This continuous control results in higher inter-118

pretability through controllability about model be-119

havior at inference time. (2) Fairness/Neutrality of120

search results with gender as a protected attribute.121

We conduct the experiments on a recent IR bench-122

mark (Rekabsaz et al., 2021; Nguyen et al., 2016),123

optimizing CONGATER with a recently-introduced124

list-wise neutrality regularization term (Zerveas125

et al., 2022b). We demonstrate that the fully de-126

biased CONGATER is able to preserve task perfor-127

mance more than twice as high as the baselines with128

the same fairness performance, and CONGATER is129

able to control the trade-off between the biased and130

debiased model in a continuous and linear fashion 131

(details in §4 and §5). 132

2 Related Work 133

Efficient modular training introduces an alternative 134

to fine-tuning, where a (small) network is trained 135

for a specific objective while the core model’s pa- 136

rameters remain unchanged (Pfeiffer et al., 2023). 137

Adapters realize modular training with a non-linear 138

feed-forward network added to each layer (Rebuffi 139

et al., 2017; Houlsby et al., 2019; Stickland and 140

Murray, 2019) of transformers. Several works 141

study the various aspects of adapters, such as pa- 142

rameter efficiency (Rücklé et al., 2021; Han et al., 143

2021a), architectural variations (Mahabadi et al., 144

2021), and transfer learning capacity (Pfeiffer et al., 145

2021). Recently, Lian et al. (2022) show that scale 146

and shifting of embedding is sufficient for effec- 147

tively learning the task. 148

Bias mitigation. Mitigating societal bias in LMs 149

is explored particularly in the context of attribute 150

erasure. The aim of this task is to reduce the en- 151

coded information of a specific attribute from the 152

latent embeddings and is particularly utilized in 153

the context of mitigating empirical societal biases 154

in LMs (Mehrabi et al., 2022; Shen et al., 2022). 155

Bias mitigation is approached by methods such as 156

linearly projecting embeddings into the space with 157

minimum correlations to protected attributes (Rav- 158

fogel et al., 2020; Kaneko and Bollegala, 2021), 159

to achieve empirical fairness, through using a dis- 160

tribution alignment loss (Guo et al., 2022), or by 161

applying adversarial training to learn representa- 162

tions agnostic to protected attributes (Elazar and 163

Goldberg, 2018; Barrett et al., 2019; Han et al., 164

2021b; Wang et al., 2021; Rekabsaz et al., 2021; 165

Ganhör et al., 2022). 166

Controllability. Decoder LMs have been ex- 167

tensively studied for controllability. Researchers 168

mostly cover tasks such as attribute manipulation 169

(like positive/negative sentiment), and imposing 170

predefined syntactic/semantic structure to text gen- 171

eration (Zhang et al., 2022; Ross et al., 2022; Ku- 172

mar et al., 2022; Qin et al., 2022; Shen et al., 2020). 173

As examples, Subramani et al. (2022) introduces 174

steering vectors as a way of changing the seman- 175

tics of text generation, while Yu et al. (2021) learn 176

an alignment function to force the text generation 177

in the direction of a specific target concept. More 178

recently, Hallinan et al. (2023) used likelihood be- 179

tween expert and anti-expert models to detoxify 180

text generation. 181
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Information Retrieval. In IR tasks, many bias182

mitigation methods have been proposed. These183

methods mostly use list-wise optimization (Oost-184

erhuis, 2022; Morik et al., 2021). Rekabsaz et al.185

(2021) proposed integrating adversarial training in186

deep-ranking models to improve bias mitigation.187

Zerveas et al. (2022b) introduced bias-aware op-188

timization method using CODER (Zerveas et al.,189

2021) with TAS-B (Hofstätter et al., 2021). We190

will use their method as the training strategy for191

our IR fairness task 3.2.192

Few recent studies explore modularized adver-193

sarial bias mitigation of encoder language models.194

Lauscher et al. (2021) use a stack of adapters, while195

Kumar et al. (2023) first learns separate adapters196

for tasks and debiasing attributes and then combine197

them on-demand using the fusion network. Utiliz-198

ing masking methods, Zhang et al. (2021) learns199

binary masks applied to the initial network to erase200

the concept of interest, and Hauzenberger et al.201

(2023) train sparse weight-difference subnetworks,202

one for each attribute, which can be added to the203

core model on-demand. Our work extends this line204

of research by introducing a modularized, graded205

(non-binary), and controllable approach evaluated206

on continuous concept erasure.207

Finally, the gating mechanism has been used in208

various architectures to learn via scaling. As ex-209

amples, Ramachandran et al. (2017) propose the210

self-gate activation function with trainable param-211

eters, while Papernot et al. (2021) introduce the212

tempered sigmoid activation with a bias and scaling213

factor. Hu et al. (2018) introduced Squeeze and Ex-214

citation networks which use bottle-neck networks215

added after each convolutional layer followed by a216

sigmoid activation function. Compared to Squeeze217

and excitation which captures global attention to218

the channels, our model uses a second training sig-219

nal to isolate and filter out protected attributes. An-220

other difference between our method and Squeeze221

and Excitation is the usage of a new activation func-222

tion instead of a sigmoid activation function which223

gives us the benefit of controllability at inference.224

3 Model and Training225

In this section, we first introduce the proposed226

Controllable Gate Adapter (CONGATER) and227

trajectory-sigmoid (t-sigmoid) activation func-228

tion. We then explain the parallel and post-hoc229

training regimes, and how the gating sensitivity pa-230

rameter of t-sigmoid can be adjusted at inference231

time to control the effectiveness of the gates.232
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Figure 1: (a) The overall architecture of CONGATER as
an adjustable self-gate adapter network. (b) Effect of
ω parameter on t-sigmoid. Increasing ω results in a
transition from the constant function y = 1 (open gate)
to the sigmoid function (full functional gate).

3.1 CONGATER Architecture 233

The CONGATER module follows the principle 234

of adapters (Houlsby et al., 2019) by dedicating 235

a small network, added after each transformer 236

block (Vaswani et al., 2017) of an LM. Figure 1a 237

depicts the architecture of a CONGATER module 238

inside a transformer block, responsible for control- 239

ling one attribute. In short, CONGATER applies a 240

gating mechanism for each layer, where the gate 241

vector is defined via bottleneck followed by the 242

t-sigmoid activation function. Concretely, for the 243

i
th target attribute, we first define the gate vector gi 244

formulated as: 245

gi = t-sigmoidωi
(vi) (1) 246

247
vi = W

2
i tanh(W 1

i h + b
1
i ) + b

2
i (2) 248

where h is the input vector (output of the trans- 249

former block), and Wi and bi are weight and bias 250

parameters, respectively. t-sigmoid is a general- 251

ized form of the sigmoid function, enhanced with 252
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the gating sensitivity variable ωi. This gating sensi-253

tivity parameter can be set to values in the range of254

[0, 1], which changes the shape of t-sigmoid, as255

illustrated for several values of ω in Figure 1b. In256

particular when ωi = 1, t-sigmoid is equivalent to257

the sigmoid function σ and hence: gi = σ(vi). On258

the other end, setting ωi = 0 changes t-sigmoid to259

the constant function y = 1 resulting in gi = 1. Re-260

gardless of the ωi’s value, the output of t-sigmoid261

and hence each value of gating vector gi is bounded262

to [0, 1], indicating the range of the gate mecha-263

nism from fully closed to the fully open (more264

details below).265

The transformation of the CONGATER module is266

defined as the self-gate of the input using element-267

wise multiplication, defined below:268

output = h⊙ gi (3)269

This transformation downscales each value of270

h by its corresponding gate value, except for the271

cases with a corresponding open gate (gating value272

of 1), to which no change is made. Overall, a273

CONGATER has the same number of parameters as274

a standard adapter network (Pfeiffer et al., 2021)275

with the negligible computation overheads of Eq. 1276

and 3.277

We now formulate the t-sigmoid activation278

function and discuss how it can be used to con-279

trol the behavior of the model. The t-sigmoid280

function is formulated below:281

t-sigmoidω(x) = 1−
log2 (ω + 1)

1 + ex
, ω ∈ [0, 1]

(4)282

The gate sensitivity parameter ω is not train-283

able and can be set manually to change the284

shape of the activation function. If ω = 0,285

the t-sigmoid becomes the constant function286

t-sigmoid(vi) = 1, meaning that the whole287

CONGATER module turns into an identity function288

that simply outputs the given input. By increasing289

the value of ω, t-sigmoid gradually transforms290

to the shape of a sigmoid function. The grad-291

ual transformation of t-sigmoid has the follow-292

ing characteristics: (1) For a specific value of ω,293

the output of t-sigmoid monotonically increases294

with increasing input value x; (2) Given ω2 > ω1,295

the resulting outputs of the same input value x296

is t-sigmoidω2
(x) ≤ t-sigmoidω1

(x) (stronger297

gate); (3) Throughout the spectrum of ω, the shape298

of t-sigmoid gradually changes, avoiding drastic299

alterations. These characteristics allow a smooth300

Algorithm 1 CONGATER Training

1: Input: Task-related parameters Θ, parameters
of ith CONGATER θi

2: if Parallel-Training then
3: while training do
4: Set ωi = 0
5: Update Θ using Ltask

6: Set ωi = 1 and freeze Θ
7: Update θi using Ltask + Lρi

8: else if Posthoc-Training then
9: Set ωi = 0

10: while training do
11: Update Θ using Ltask

12: Set ωi = 1 and freeze Θ
13: while training do
14: Update θi with Ltask + Lρi

change in the effect of the gating mechanism, non- 301

linear interpolation, and hence continuous control- 302

lability of the information flow for the respective 303

attribute.2 304

3.2 Training and Inference 305

Training CONGATER an attribute requires two dis- 306

tinct training signals. The first training signal 307

comes from the loss function of the main task, de- 308

noted by Ltask. Th second loss is dedicated to each 309

attribute i, denoted by Lρi . CONGATER is agnostic 310

to the choice of the training signal for Ltask and 311

Lρi as we show by deliberately choosing different 312

training signals for our experiments. Depending 313

on the task and dataset, common approaches to re- 314

alizing a defined signal are through utilizing the 315

provided labels in a dataset, or by leveraging the 316

indicators specific to an attribute, particularly in the 317

case of lack of reliable supervised data (Lauscher 318

et al., 2021; Romanov et al., 2019). Equation 5 319

shows the overall loss of each attribute where λ 320

is the scaling factor to influence the strength of 321

attribute loss. 322

Ltotali = Ltask + λLρi (5) 323

324Depending on the task and mitigation objective, 325

these loss terms can be defined differently. We ex- 326

plain two realizations of these loss functions later 327

2While we discuss removing only one attribute with CON-
GATER, this definition can be extended to multiple attributes
as well. We propose one possible multi-attribute CONGATER
architecture in Appendix A by element-wise multiplication of
gates, and report preliminary results using this two-attribute
setting in Appendix C.2.
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in this section, which we later utilize in our clas-328

sification and IR experiments. Regardless of the329

choice of the loss, we first define training proce-330

dures for CONGATER as follows. For parallel train-331

ing, the CONGATER modules are trained simul-332

taneously with the task, and in post-hoc training,333

CONGATER is added to a fully-trained model in334

order to learn attribute-specific information. Al-335

gorithm 1 shows the pseudocode of these training336

strategies. The task-related parameters are denoted337

with Θ, which can be the whole parameters of an338

LM, or the ones of an additional task-specific mod-339

ular network such as a task adapter. In each training340

cycle, regardless of the loss function, we first de-341

activate the CONGATER by setting ωi = 0 and use342

the task loss (Ltask) to train Θ. We then activate343

the CONGATER module by setting ωi = 1, and344

update its parameters using equation 5 to encapsu-345

late the information of the target attribute into the346

respective CONGATER while maintaining task per-347

formance. While parallel training enables higher348

flexibility in optimization and exposes the task head349

indirectly to bias mitigation loss, post-hoc training350

offers the practical benefits of adding controllable351

gates to an existing trained model. As described,352

the CONGATER’s parameters are trained only with353

full engagement (ωi = 1), and the model is never354

exposed to the settings with partial engagement355

(0 < ωi < 1). This makes the training of CON-356

GATER efficient and comparable to the training357

model for each attribute individually (e.g., using358

adapters).359

At inference time, t-sigmoid reshaping char-360

acteristics indicate how much the target attribute361

should affect the embeddings, by setting ωi to any362

value in [0, 1]. In particular, when ωi = 0, the363

model works at its original (initial) state with no364

effect from the CONGATER module. By increasing365

ωi and changing the shape of the t-sigmoid, the366

effect of the gate increases, and a stronger transfor-367

mation is applied to the embeddings. With ωi = 1,368

CONGATER reaches its full transformation capac-369

ity by applying the sigmoid activation function. We370

examine this continuous controllability in the fol-371

lowing sections.372

In what follows, we explain the realizations of373

the Ltask and Lρi in the classification and and374

search bias mitigation scenarios.375

Classification loss uses cross-entropy loss be-376

tween task labels y and model’s output f(z):377

Ltask = CE(f(z), y)378

where z is the encoded output embedding, and f 379

the classification head. The disentanglement loss 380

Lρi can be realized by various methods such as 381

mutual information reduction methods (Colombo 382

et al., 2021), adversarial training (Elazar and Gold- 383

berg, 2018) or any other loss related to representa- 384

tional fairness or empirical fairness (Ravfogel et al., 385

2020). We use adversarial loss (Kumar et al., 2023; 386

Lauscher et al., 2021; Zhang et al., 2021; Hauzen- 387

berger et al., 2023) by defining the classification 388

head hρi for the target attribute i to predict the 389

corresponding label yρi . The adversarial loss fol- 390

lows a min-max optimization, aiming to decrease 391

the predictability of the protected attribute while 392

increasing task performance. Following previous 393

studies, we utilize the gradient reversal layer to 394

turn this min-max optimization into a minimization 395

problem, formulated below. 396

Lρi = CE(hρi(z), yρi) 397

398
Search bias regularization loss Following 399

Zerveas et al. (2022b), we utilize the CODER 400

framework (Zerveas et al., 2022a) to optimize both 401

task and bias mitigation in a list-wise fashion us- 402

ing the ListNet loss (Cao et al., 2007). For the 403

main task, Ltask is the KL-divergence between the 404

distributions of ground-truth relevance labels (y) 405

and the predicted scores (ŝ), defined over N candi- 406

date documents. Denoting ground-truth labels and 407

predicted scores as y and ŝ, accordingly, Ltask is 408

formulated as: 409

Ltask = DKL(ϕ(y)∣∣ϕ(ŝ)) = −
N

∑
j=1

ϕ(y)j log
ϕ(ŝ)j
ϕ(y)j

410

where ϕ refers to the softmax function applied to 411

the values. We enforce the neutrality of retrieved 412

documents, with a list-wise regularization term 413

added to the task loss. The fairness term is similarly 414

formulated with KL-divergence, namely between 415

the distribution of the neutrality scores of the target 416

labels (yρi), and the one of the predicted scores ŝ, 417

formulated below: 418

Lρi = DKL(ϕ(ŝ)∣∣ϕ(ρ)) = −
C

∑
j=1

ϕ(ŝ)j log
ϕ(yρi)j
ϕ(ŝ)j

419

As indicated in Eq. 5, in both classification and 420

IR scenarios the bias mitigation loss is scaled with 421

hyperparameter λ and added to the corresponding 422

task loss. 423
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4 Experiment Setup424

Datasets We conduct our classification experi-425

ments on three datasets: The BIOS (De-Arteaga426

et al., 2019) dataset which contains short biogra-427

phies used to predict a person’s job. The name428

and any indication of the person’s gender in the bi-429

ography are omitted. The dataset labels are 28430

occupations for the task, and two protected at-431

tribute classes (female/male). The second dataset432

is FDCL18 (Founta et al., 2018b) for hate speech433

detection, containing a set of tweets each classi-434

fied as hateful, abusive, spam, or none. Following435

previous studies (Sap et al., 2019; Ravfogel et al.,436

2020), we assign race dialect labels of African437

American and White American to FDCL18 using438

the probabilistic model developed by Blodgett et al.439

(2016). The third dataset is PAN16 (Rangel et al.,440

2016) containing a set of tweets accompanied by441

the labels of gender and age of the authors. The442

task’s objective is to predict whether another user443

is mentioned in a tweet. PAN16 provides the bi-444

nary task classes of mention, and no mention, two445

gender labels, and five age groups. For the IR task,446

we use the fairness-sensitive queries dataset MS-447

MARCOFair (Rekabsaz et al., 2021). The queries448

are from the MSMARCO Passage Retrieval col-449

lection (Nguyen et al., 2016), which contains 215450

queries and 8,841,822 passages. We use 158 words451

related to each of the two protected attribute classes452

(female/male) following (Zerveas et al., 2022b), to453

calculate the neutrality of each document follow-454

ing (Rekabsaz et al., 2021). The details of the455

neutrality criteria can be found in appendix D.456

LMs and Training. For the classification bench-457

marks, we conduct the experiments on three LMs458

namely, BERT-Base (Devlin et al., 2018), BERT-459

Mini(Turc et al., 2019) and RoBERTa (Liu et al.,460

2019). In all experiments, Ltask is realized by461

cross-entropy and binary cross-entropy loss for bi-462

nary classes and adversarial training to remove463

attributes. We train our models with a parallel464

strategy. The adversarial head consists of an en-465

semble of 5 networks for each attribute, and each466

network consists of two fully connected layers with467

Tanh activation in between. The overall loss of the468

adversarial is scaled by λ = 1. For the IR task,469

following Zerveas et al. (2021) we conduct the the470

experiments on DistilBERT (Sanh et al., 2019). As471

explained in Section 3.2, The loss function (Ltask)472

is realized by ListNet (Cao et al., 2007), and fair-473

ness is achieved through the fairness regularization474

loss (λLρ) (Zerveas et al., 2022b). Each baseline 475

model is trained with several values of the regular- 476

ization terms λ, while CONGATER is trained only 477

once with λ = 20. 478

Models Considering that parameter-wise CON- 479

GATER is the same as adapters we choose our base- 480

lines as follows: FT finetunes all parameters of 481

the LM on the task with no debiasing objective 482

for classification. FTADV. ADP uses a standard 483

adapter network and trains the adapter only on the 484

task. ADPADV uses the same adapter architecture 485

but trains it with task and attribute removal objec- 486

tives simultaneously. The complete details of our 487

hyperparameters setting and training procedure are 488

explained in Appendix B 489

Metrics We evaluate the performance of the clas- 490

sification models on the core task using the accu- 491

racy metric. Following the previous works of Ku- 492

mar et al. (2023) and Hauzenberger et al. (2023) we 493

measure attribute information using strong probing 494

networks. For each model, we train 5 indepen- 495

dent classification heads (two-layer feed-forward 496

layer with a Tanh activation) for 30 epochs to ex- 497

tract and predict the target attribute. We report the 498

average performance of the probes in terms of bal- 499

anced/macro accuracy (average of per-class accu- 500

racy scores). This evaluation measures how much 501

information about a given attribute still exist in the 502

model and can be recovered. Balanced accuracy 503

has the benefit of better reflecting the performance 504

of the methods when considering minority groups, 505

particularly given the unbalanced distributions over 506

protected labels in the datasets. For the IR task, 507

we use the Mean Reciprocal Rank (MRR@10) of 508

the top 10 retrieved documents as a metric for the 509

core task evaluation and Normalized Fairness of 510

Retrieval Results (NFaiRR@10) from the top 10 511

retrieved documents as the fairness metric of the 512

model (Rekabsaz et al., 2021). NFaiRR metric nor- 513

malizes the pre-query FaiRR score over the ideal 514

FaiRR achieved from a background set of docu- 515

ments allowing comparable results across queries 516

(detail in appendix D). To account for possible vari- 517

ations, we report our results as the average of 3 518

independently-trained models, and the report mean 519

and standard deviation of the results. 520

5 Results and Discussion 521

We start with the results on the classification tasks, 522

and continue with discussing our observations on 523

the IR benchmark. 524
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Model Type BIOS FDCL18 PAN16-Gender PAN16-Age
Task↑ Probe↓ Task↑ Probe↓ Task↑ Probe↓ Task↑ Probe↓

BERT-BASE

FT 84.60.4 67.30.8 81.01.0 92.91.8 93.61.8 69.60.8 93.61.8 42.30.9
ADP 84.30.1 67.00.1 80.00.1 93.30.4 92.40.1 70.70.1 92.40.1 42.40.
FTADV 84.00.3 60.80.2 81.01.0 84.44.0 92.40.8 59.80.7 92.40.8 31.31.1
ADPADV 84.20.1 61.90.5 79.80.3 75.60.5 92.20.1 54.20.4 92.10.1 21.70.1
CONGATER 85.00.1 58.70.4 81.00.2 67.50.6 93.80.1 55.30.5 93.80.1 21.30.6

ROBERTA-BASE

FT 84.50.4 66.20.7 80.60.4 93.21.2 98.50.1 63.60.4 98.50.1 22.70.8
ADP 84.30.1 67.30.7 80.00.6 94.00.6 98.20.1 62.80.4 98.10.1 31.90.1
FTADV 84.10.3 61.60.3 80.51.0 83.61.9 98.20.1 52.00.9 98.20.1 24.11.4
ADPADV 84.00.1 62.90.1 80.00.5 79.70.3 98.10.1 53.70.7 98.00.1 22.31.0
CONGATER 84.80.1 61.41.0 81.40.2 73.90.8 98.40.1 55.40.8 98.40.1 22.20.1

BERT-MINI

FT 82.40.1 65.70.2 79.91.0 92.40.6 91.50.1 65.40.8 91.50.1 40.90.4
ADP 82.10.1 65.20.4 81.30.1 93.50.8 81.50.1 65.50.4 81.60.1 37.41.4
FTADV 81.70.1 60.40.4 79.30.8 81.42.1 90.30.4 58.60.8 90.30.4 27.91.8
ADPADV 82.10.2 61.40.6 80.70.1 75.91.2 81.30.1 53.10.1 81.10.1 21.70.3

CONGATER 81.70.4 59.20.1 81.90.1 62.50.5 90.20.1 56.40.1 89.90.2 21.80.2

Table 1: Results of BERT-Base, RoBERTa-Base and BERT-Mini models on three datasets and four attributes. The
CONGATER sensitivity parameter is set to fully debiasing (ω = 1) to have comparable results with the baselines
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Figure 2: Results of the CONGATER models using BERT-Base when increasing the gating sensitivity ω from 0
(no effect) to 1 (full effect). Each trained model is evaluated multiple times on the various ω values adjusted at
inference time. The left/right y-axis corresponds to the task performance and attribute probing results, respectively.
The results show the continuous reduction in the information presence of the target concept, as ω increases.

5.1 Classification Tasks525

Table 1 reports the results of the baselines, as526

well as CONGATER at full bias mitigation power527

(ω = 1). As shown, the fully activated CONGATER528

models contain less information about the attribute529

in comparison to all fine-tuned baselines (FT*) on530

all datasets across all models while having lower531

task performance on Pan16 and Bios for BERT-532

Mini model and slightly worse on ROBERTA-Base533

and Pan16 dataset. In comparison to adapter-based534

models, CONGATER on all models (except for535

BERT-mini and BIOS dataset) performs on par536

or better on the main task and removes more in-537

formation on 3 out of 4 attribute removal tasks.538

On the BERT-mini and Pan16 dataset we observed539

that adapter-based models are superior to CON-540

GATER in terms of attribute information removal541

but (ADP*) are not able to achieve satisfactory task542

performance which we assume is due to lack of543

enough learning capacity of adapters for this partic-544

ular task. Overall our experiments and observations545

indicate that CONGATER is able to perform the task546

better than baselines while enhancing information547

removal from the embeddings of the network.548

We also investigate how much information about549
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manipulative medicine 
addiction medicine and 
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Figure 3: Prediction probabilities of CONGATER when
gradually increasing ω, for a female physician’s biogra-
phy, incorrectly classified as a nurse in the initial state.
The figure illustrates how changing the strength of gen-
der removal affects the model’s decision, providing a
higher degree of interpretability through controllability.

each attribute exists in the model when changing 550

ω and its influence on the task performance. We 551

investigate by changing the ω and retraining the 552

probes. Figure 2 shows the task performance and 553

probing results for the CONGATER for the BERT- 554

Base model when increasing ω parameters. The 555

reported result for each probing (each attribute with 556

a specific ω) is the mean and standard deviation of 557

the 5 probes applied to 3 independently trained 558

models. The task performance and probing results 559

are shown in orange (left y-axis) and blue (right 560

y-axis), respectively. The results of the RoBERTa 561

and BERT-Mini are reported in Appendix C.1. 562
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Type λ
MSMARCO

MRR@10↑ NFaiRR@10↑

FT

0.0 0.2340.002 0.9040.001

5.0 0.1830.003 0.9430.002

10 0.1420.002 0.9550.001

20 0.0790.003 0.9720.000

ADP

0.0 0.2300.002 0.8980.001

5.0 0.1470.003 0.9330.000

10 0.0820.000 0.9490.001

20 0.0230.002 0.9650.001

CONGATER
ω = 0.0 0.0 0.2340.003 0.9030.001

ω = 0.4 - 0.2270.002 0.9170.000

ω = 0.8 - 0.2080.001 0.9420.000

ω = 1.0 20.0 0.1680.007 0.9700.000

Table 2: Results of DistilBERT-Base on MS-
MARCOFair benchmark.

Consistent across all datasets and attributes, we563

observe that increasing ω leads to a continuous564

decrease in the presence of the corresponding at-565

tribute, until reaching the lowest probing balanced566

accuracy at ω = 1. This continuous attribute re-567

moval is achieved while maintaining task perfor-568

mance. On the whole, our results points to the569

ability of CONGATER to impose graded control570

over an attribute at inference time.571

As an example of how continuous controllability572

at inference time can enhance interpretability, and573

provide a higher level of model transparency to574

end-users, figure 3 depicts how changes in ωgender575

can influence models’ decision probability about576

a female physician who is labeled as nurse by the577

biased model ω = 0. Figures 15-19 in Appendix C578

provide more examples of such positive/negative579

effects from the studied datasets.580

In Appendix C.2, we investigate the simultane-581

ous bias control of the gender and age attributes of582

PAN16 using the multi-concept CONGATER and583

the changes in the behavior of the model by in-584

vestigating the alterations in uncertainty (C.4) and585

prediction labels (C.5). We also study the effect of586

CONGATER adversarial bias mitigation effect on587

empirical fairness metrics in Appendix C.3.588

5.2 Search Result Bias Mitigation Benchmark589

Table 2 shows the performance and search results590

fairness results of the baseline models trained with591

different regularization coefficients (λ), as well as592

the CONGATER model trained once with λ = 0593

and λ = 20 according to the post-hoc strategy. The594

same results with more data points are illustrated595

in Figure 4. To achieve a higher degree of fairness596

in baseline models, we increase λ and retrain the597

models, while in CONGATER, we simply increase598

the value of ω at test time.599
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M
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Figure 4: Fairness-performance trade-off between FT,
ADP, and CONGATER. For baselines, each point refer
to a new model training with color intensities indicating
the degree of the regularization coefficient λ. CON-
GATER is trained only once, and each point indicates
the evaluation according to an ω value.

Consistent with previous studies Zerveas et al. 600

(2022b); Rekabsaz et al. (2021), increasing λ 601

leads to a decrease in task performance (fairness- 602

performance trade-off) in all models. However, in- 603

terestingly the CONGATER with highest degree of 604

fairness (ω = 1) achieves MRR@10 = 0.168 per- 605

formance, which is around 2.1 times higher than 606

the FT with the same level of fairness (at λ = 20). 607

It is noticeable that the performance of ADP– as the 608

modularized approach – radically deteriorates for 609

high values of λ. In addition to higher performance 610

perseverance, CONGATER is able to monotonically 611

navigate between the states (from the one with the 612

least to the most fairness scores), enabling an effec- 613

tive control over the fairness-performance trade-off 614

at inference time. This functionality of CONGATER 615

can be leveraged in practice by designing a person- 616

alized control knob in the hands of the end-users 617

and practitioners, which empowers them to adjust 618

the level of fairness/neutrality in search results. 619

6 Conclusion 620

We introduce CONGATER, a gated module en- 621

hanced with a novel controllable activation func- 622

tion, which enables continuous adjustment of the 623

information flow of an attribute at inference time. 624

We conduct two sets of experiments on the classifi- 625

cation task to remove attribute information, and on 626

an IR benchmark to increase neutrality of retrieved 627

documents. Our results show that in both experi- 628

ments CONGATER successfully isolates and filters 629

out attribute information with the least harm to task 630

performance. In addition, we showed that CON- 631

GATER is able to continuously traverse between 632

the biased and debiased states, enhancing personal- 633

ization and interpretability through controllability. 634
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7 Ethical Considerations and Limitations635

A limitation of our work concerns the lack of com-636

pleteness in the definition of the concept and at-637

tributes provided by the datasets. In particular,638

gender in all datasets including BIOS, PAN16, and639

MSMARCO is limited to the binary female/male,640

lacking an inclusive and nuanced definition of gen-641

der. Similarly in FDCL18, we consider only two642

dialects of African American and White American,643

while clearly this definition is limited and non-644

inclusive. Furthermore, as in previous work (Sap645

et al., 2019; Ravfogel et al., 2020; Zhang et al.,646

2021; Kumar et al., 2023), the labels of this pro-647

tected attribute are assigned through a probabilistic648

model, and hence the dataset might not represent649

the nuances and traits of the real-world.650

The second limitation regards the degree of the651

generalization of our method with respect to vari-652

ous deep learning architectures (such as CNNs), as653

our definition and experiments are constrained to654

the use of transformer-based models.655

The Third limitation regarding the generaliza-656

tion of the method is the multi-attribute setting for657

CONGATER over any possible number of concepts658

or a subset of them. We conduct our experiments659

with a focus on only one attribute and introduce660

a possible fusion method and a preliminary result.661

Our multi-attribute experiment is only conducted662

on one dataset with two attributes of gender and663

age, particularly due to the lack of availability of664

suitable datasets. We note that the conclusion pro-665

vided in the paper should be viewed to the extent666

of these experiments, and further studies (as well667

as more suitable datasets) are required to achieve a668

more comprehensive picture of this topic.669

As a general limitation shared with the other re-670

lated studies on in this domain, we should note671

that the aim of representation disentanglement op-672

timizations is to reduce the information about a673

particular concept inside model embeddings with674

attributes based on the observed data. These data-675

oriented approaches might lack effective general-676

ization, particularly when the model is evaluated677

on other domains or out-of-distribution data.678

What we are proposing is a single model ca-679

pable of handling both biased decisions, partially680

debiased decisions, and unbiased decisions which681

creates much more flexibility for the end user. Any682

misuse of the proposed method in tasks where fair-683

ness for the users are high priority such as job684

recommendations is not the intention of the au-685

thors and is considered one of the dangers of the 686

proposed model. 687
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Edoardo Maria Ponti. 2023. Modular deep learning. 926
arXiv preprint arXiv:2302.11529. 927

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin 928
Choi. 2022. Cold decoding: Energy-based con- 929
strained text generation with langevin dynamics. In 930
Advances in Neural Information Processing Systems. 931

Prajit Ramachandran, Barret Zoph, and Quoc V Le. 932
2017. Searching for activation functions. arXiv 933
preprint arXiv:1710.05941. 934

Francisco Rangel, Paolo Rosso, Ben Verhoeven, Walter 935
Daelemans, Martin Potthast, and Benno Stein. 2016. 936
Overview of the 4th author profiling task at pan 2016: 937
cross-genre evaluations. In Working Notes Papers of 938
the CLEF 2016 Evaluation Labs. CEUR Workshop 939
Proceedings/Balog, Krisztian [edit.]; et al., pages 940
750–784. 941

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael 942
Twiton, and Yoav Goldberg. 2020. Null it out: Guard- 943
ing protected attributes by iterative nullspace projec- 944
tion. In Proceedings of the 58th Annual Meeting of 945
the Association for Computational Linguistics, pages 946
7237–7256. 947

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea 948
Vedaldi. 2017. Learning multiple visual domains 949
with residual adapters. In Advances in Neural Infor- 950
mation Processing Systems (NeurIPS), volume 30. 951

Navid Rekabsaz, Simone Kopeinik, and Markus Schedl. 952
2021. Societal biases in retrieved contents: Measure- 953
ment framework and adversarial mitigation of BERT 954
rankers. In Proceedings of the 44th International 955
ACM SIGIR Conference on Research and Develop- 956
ment in Information Retrieval, pages 306–316. 957

Navid Rekabsaz and Markus Schedl. 2020. Do neural 958
ranking models intensify gender bias? In Proceed- 959
ings of the 43rd International ACM SIGIR Confer- 960
ence on Research and Development in Information 961
Retrieval, pages 2065–2068. 962

11

https://aclanthology.org/2022.emnlp-main.144
https://aclanthology.org/2022.emnlp-main.144
https://aclanthology.org/2022.emnlp-main.144
https://doi.org/10.18653/v1/2021.findings-emnlp.411
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/00bb4e415ef117f2dee2fc3b778d806d-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.24963/ijcai.2021/655
https://doi.org/10.24963/ijcai.2021/655
https://doi.org/10.24963/ijcai.2021/655
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.24963/ijcai.2022/743
https://doi.org/10.24963/ijcai.2022/743
https://doi.org/10.24963/ijcai.2022/743
https://doi.org/10.24963/ijcai.2022/743
https://doi.org/10.24963/ijcai.2022/743


Alexey Romanov, Maria De-Arteaga, Hanna Wal-963
lach, Jennifer Chayes, Christian Borgs, Alexandra964
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,965
Anna Rumshisky, and Adam Kalai. 2019. What’s966
in a name? reducing bias in bios without access967
to protected attributes. In Proceedings of the 2019968
Conference of the North American Chapter of the969
Association for Computational Linguistics: Human970
Language Technologies, Volume 1 (Long and Short971
Papers), pages 4187–4195.972

Alexis Ross, Tongshuang Wu, Hao Peng, Matthew E.973
Peters, and Matt Gardner. 2022. Tailor: Generat-974
ing and perturbing text with semantic controls. In975
Proceedings of the 60th Annual Meeting of the As-976
sociation for Computational Linguistics (Volume 1:977
Long Papers), ACL 2022, Dublin, Ireland, May 22-27,978
2022, pages 3194–3213. Association for Computa-979
tional Linguistics.980

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman981
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna982
Gurevych. 2021. AdapterDrop: On the efficiency983
of adapters in transformers. In Proceedings of the984
2021 Conference on Empirical Methods in Natural985
Language Processing, pages 7930–7946.986

Victor Sanh, Lysandre Debut, Julien Chaumond, and987
Thomas Wolf. 2019. Distilbert, a distilled version988
of bert: smaller, faster, cheaper and lighter. arXiv989
preprint arXiv:1910.01108.990

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,991
and Noah A. Smith. 2019. The risk of racial bias992
in hate speech detection. In Proceedings of the 57th993
Annual Meeting of the Association for Computational994
Linguistics, pages 1668–1678, Florence, Italy. Asso-995
ciation for Computational Linguistics.996

Aili Shen, Xudong Han, Trevor Cohn, Timothy Bald-997
win, and Lea Frermann. 2022. Does representational998
fairness imply empirical fairness? In Findings of the999
Association for Computational Linguistics: AACL-1000
IJCNLP 2022, pages 81–95, Online only. Association1001
for Computational Linguistics.1002

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and1003
Tommi S. Jaakkola. 2020. Educating text autoen-1004
coders: Latent representation guidance via denoising.1005
In Proceedings of the 37th International Conference1006
on Machine Learning, ICML 2020, 13-18 July 2020,1007
Virtual Event, volume 119 of Proceedings of Machine1008
Learning Research, pages 8719–8729. PMLR.1009

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and1010
Nanyun Peng. 2019. The woman worked as a babysit-1011
ter: On biases in language generation. In Proceed-1012
ings of the 2019 Conference on Empirical Methods1013
in Natural Language Processing and the 9th Inter-1014
national Joint Conference on Natural Language Pro-1015
cessing (EMNLP-IJCNLP), pages 3398–3403.1016

Gabriel Stanovsky, Noah A Smith, and Luke Zettle-1017
moyer. 2019. Evaluating gender bias in machine1018

translation. In Proceedings of the 57th Annual Meet- 1019
ing of the Association for Computational Linguistics, 1020
pages 1679–1684. 1021

Asa Cooper Stickland and Iain Murray. 2019. BERT 1022
and PALs: Projected attention layers for efficient 1023
adaptation in multi-task learning. In Proceedings of 1024
the 36th International Conference on Machine Learn- 1025
ing, volume 97 of Proceedings of Machine Learning 1026
Research, pages 5986–5995. PMLR. 1027

Nishant Subramani, Nivedita Suresh, and Matthew E. 1028
Peters. 2022. Extracting latent steering vectors from 1029
pretrained language models. In Findings of the As- 1030
sociation for Computational Linguistics: ACL 2022, 1031
Dublin, Ireland, May 22-27, 2022, pages 566–581. 1032
Association for Computational Linguistics. 1033

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina 1034
Toutanova. 2019. Well-read students learn better: 1035
On the importance of pre-training compact models. 1036
arXiv preprint arXiv:1908.08962v2. 1037

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 1038
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 1039
Kaiser, and Illia Polosukhin. 2017. Attention is all 1040
you need. In Advances in Neural Information Pro- 1041
cessing Systems, volume 30, pages 6000––6010. Cur- 1042
ran Associates, Inc. 1043

Liwen Wang, Yuanmeng Yan, Keqing He, Yanan Wu, 1044
and Weiran Xu. 2021. Dynamically disentangling 1045
social bias from task-oriented representations with 1046
adversarial attack. In Proceedings of the 2021 Con- 1047
ference of the North American Chapter of the Asso- 1048
ciation for Computational Linguistics: Human Lan- 1049
guage Technologies, pages 3740–3750. 1050

Jiacheng Xu, Shrey Desai, and Greg Durrett. 2020. Un- 1051
derstanding neural abstractive summarization models 1052
via uncertainty. In Proceedings of the 2020 Con- 1053
ference on Empirical Methods in Natural Language 1054
Processing (EMNLP), pages 6275–6281. 1055

Dian Yu, Zhou Yu, and Kenji Sagae. 2021. Attribute 1056
alignment: Controlling text generation from pre- 1057
trained language models. In Findings of the Associ- 1058
ation for Computational Linguistics: EMNLP 2021, 1059
pages 2251–2268. 1060

George Zerveas, Navid Rekabsaz, Daniel Cohen, and 1061
Carsten Eickhoff. 2021. Coder: An efficient frame- 1062
work for improving retrieval through contextual doc- 1063
ument embedding reranking. 1064

George Zerveas, Navid Rekabsaz, Daniel Cohen, and 1065
Carsten Eickhoff. 2022a. Coder: An efficient frame- 1066
work for improving retrieval through contextual doc- 1067
ument embedding reranking. In Proceedings of the 1068
2022 Conference on Empirical Methods in Natural 1069
Language Processing, pages 10626–10644. 1070

George Zerveas, Navid Rekabsaz, Daniel Cohen, and 1071
Carsten Eickhoff. 2022b. Mitigating bias in search 1072
results through contextual document reranking and 1073
neutrality regularization. In Proceedings of the 45th 1074

12

https://doi.org/10.18653/v1/2022.acl-long.228
https://doi.org/10.18653/v1/2022.acl-long.228
https://doi.org/10.18653/v1/2022.acl-long.228
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://aclanthology.org/2022.findings-aacl.8
https://aclanthology.org/2022.findings-aacl.8
https://aclanthology.org/2022.findings-aacl.8
http://proceedings.mlr.press/v119/shen20c.html
http://proceedings.mlr.press/v119/shen20c.html
http://proceedings.mlr.press/v119/shen20c.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://proceedings.mlr.press/v97/stickland19a.html
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2112.08766
http://arxiv.org/abs/2112.08766
http://arxiv.org/abs/2112.08766
http://arxiv.org/abs/2112.08766
http://arxiv.org/abs/2112.08766
https://doi.org/10.1145/3477495.3531891
https://doi.org/10.1145/3477495.3531891
https://doi.org/10.1145/3477495.3531891
https://doi.org/10.1145/3477495.3531891
https://doi.org/10.1145/3477495.3531891


International ACM SIGIR Conference on Research1075
and Development in Information Retrieval, SIGIR1076
’22, page 2532–2538, New York, NY, USA. Associa-1077
tion for Computing Machinery.1078

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,1079
and Dawei Song. 2022. A survey of controllable1080
text generation using transformer-based pre-trained1081
language models. arXiv preprint arXiv:2201.05337.1082

Xiongyi Zhang, Jan-Willem van de Meent, and Byron1083
Wallace. 2021. Disentangling representations of text1084
by masking transformers. In Proceedings of the 20211085
Conference on Empirical Methods in Natural Lan-1086
guage Processing, pages 778–791, Online and Punta1087
Cana, Dominican Republic. Association for Compu-1088
tational Linguistics.1089

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,1090
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender1091
bias in contextualized word embeddings. In Proceed-1092
ings of the Conference of the North American Chap-1093
ter of the Association for Computational Linguistics:1094
Human Language Technologies, pages 629–634.1095

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-1096
rich Schütze. 2020. Masking as an efficient alterna-1097
tive to finetuning for pretrained language models. In1098
Empirical Methods in Natural Language Processing,1099
pages 2226–2241. Association for Computational1100
Linguistics.1101

13

https://doi.org/10.18653/v1/2021.emnlp-main.60
https://doi.org/10.18653/v1/2021.emnlp-main.60
https://doi.org/10.18653/v1/2021.emnlp-main.60
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174


⊙

…

Feed Forward

Add & Norm

Add & Norm

Multi-Head Attention

⊙
ConGater

Feed Forward

t−sigmoid⍵$

Feed Forward

t−sigmoid⍵%

Feed Forward

t−sigmoid⍵&

Figure 5: The simple proposed CONGATER for multi-
attributes. The fusion gate is defined as the element-wise
multiplication of the individual gates

A Multi-Concept CONGATER1102

In this section, we investigate a version of CON-1103

GATER with multi-attribute. Figure 5 depicts this1104

variation, where the individual gates are combined1105

with element-wise multiplication to form a multi-1106

attribute gating vector. This vector is then used1107

for the self-gating mechanism of CONGATER in1108

Eq. 3. The training procedure of the multi-attribute1109

setting is exactly the same as the single-attribute1110

one. During inference, the gating sensitivity of1111

each attribute can be changed independently. Our1112

experiment results on a two-attribute setting are1113

provided in Appendix C.2.1114

B Additional Experiment Setup1115

In the FDCL18 dataset, we use the TwitterAAE1116

model (Blodgett et al., 2016) to assign racial dialect1117

classes. The TwitterAAE model predicts four racial1118

classes, African American, White American, His-1119

panic, and Others. We labeled a tweet as African1120

American or White American if the prediction score1121

was greater than 0.5. For the PAN16 dataset, fol-1122

lowing (Sap et al., 2019) we balanced the task la-1123

bels and sampled 200K data. The age groups of1124

this dataset are 18-24, 25-34, 35-49, 50-64, and1125

65+. Table 3 gives a summary of the whole dataset,1126

training, validation and test data which was used1127

during the training and evaluation of the network.1128

We select train, validation, and test sets ran-1129

domly from the pool of data with the proportions1130

63:12:15 for BIOS, 63:12:15 for FDCL18, and1131

80:5:15 for PAN16. We use the validation set for1132

hyperparameter tuning, and the best result on the 1133

validation set is evaluated on the test set for the 1134

final results. The validation and test sets in all 1135

datasets follow the same distribution as the whole 1136

dataset. To address the unbalanced dataset and the 1137

potential problems in adversarial training, we apply 1138

upsampling only on the training sets of BIOS and 1139

FDCL18 datasets, to balance the protected attribute 1140

labels within each task label. For instance, genders 1141

are balanced in the dentist class by repeating the 1142

data items of the minority subgroup. 1143

Models are trained on the task for 15 epochs and 1144

for the post-hoc models an additional 15 epochs of 1145

adversarial training. Details of hyperparameters are 1146

reported in Table 4 and the number of parameters 1147

of the models is reported in Table 5. 1148

Each layer that is mentioned in the hyperparam- 1149

eter section has the same width as the original Bert- 1150

Base model which in our experiment is (768). In 1151

our experiment we trained all of the transformer 1152

blocks but in general, any training method on the 1153

task completely depends on the designer’s will and 1154

what CONGATER offers is an extension to the orig- 1155

inal model with additional training which leads to 1156

controllability. 1157

C Additional Results 1158

C.1 Other LMs 1159

Figures 6 and 7 show the results using BERT- 1160

Mini and RoBERTa-Base LMs, respectively. We 1161

observe the same control capability of attribute as 1162

we discussed in the main paper for the other to LMs 1163

as well. 1164

C.2 Multi-Attribute Results 1165

To examine the ability of multi-concept CON- 1166

GATER (introduced in Appendix A), we train the 1167

model on the two attributes of PAN16, where 1168

each concept has its gating sensitivity parameter 1169

(ωgender and ωage). The evaluation results on task 1170

performance, gender probing, and age probing are 1171

reported in Figure 8 for a specific combination of 1172

ωgender and ωage. As shown, the multi-concept 1173

CONGATER model can maintain the task perfor- 1174

mance, as ω values change, while the presence of 1175

concept information gradually decreases. We also 1176

observe that changing one ω has an influence on 1177

the probing results of the other concept, indicating 1178

the probable correlations between the concepts. By 1179

simultaneously increasing both ω there exist com- 1180

binations where information about both gender and 1181
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Dataset Classes Attribute Train Validation Test

FCDL18 4 Dialect 52,352 4,736 5,888
BIOS 28 Gender 294,784 38,016 88,640
PAN16 2 Gender&age 160,000 10,048 30,016

Table 3: Summary of the datasets and their protected attribute(s)

Dataset

FCDL18 PAN16 BIOS MSMARCO

Embedding

batch size 64 64 64 64
number of workers 8 8 8 5
Max document/query length 40 40 120 32
Padding max length max length max length max length

Model & Training

Model Type Base/Mini/Roberta Base/Mini/Roberta Base/Mini/Roberta DistillBERT
CONGATER Bottleneck factor 8 12 2 4
λ 1 1 1 max = 20
λ warm-up scheduler 3 3 3 -
loss function Cross Entropy Cross Entropy Cross Entropy ListNet loss
Optimizer AdamW AdamW AdamW RAdam
task lr 2 × 10

−5
2 × 10

−5
2 × 10

−5
1.7 × 10

−6

weight decay 0.01 0.01 0.01
adv lr 1 × 10

−4
1 × 10

−4
1 × 10

−4 -
probe lr 1 × 10

−4
1 × 10

−4
1 × 10

−4 -
task/adv dropout 0.1 0.1 0.1 0.0
lr scheduler Cosine Decay Cosine Decay Cosine Decay -
train epochs 15 15 15 10
adv epochs 15 15 15 10
probe epochs 30 30 30 -
task head layer 1 1 1 -
adv head layer 2 2 2 -
probe head 2 2 2 -
adv/probe activation Tanh Tanh Tanh -

Table 4: ADP and CONGATER Hyperparameters used to fine tune and remove information from the network on
different datasets

Parameter Count FT ADP CONGATER

Total Number of Parameter 109,485,316 116,577,028 116,577,028
Attribute(single) Parameters 109,485,316 7,094,788 7,094,788
Adversarial Training Module (%) 100 6.0 6.0

Table 5: BERT-base number of parameters specification for each method

age has the minimum value (e.g., ωage = 1 and1182

ωgender = 0.1). This initial experiment shows the1183

benefits of CONGATER for multi-attribute control,1184

as well as the challenges in this area, suggesting1185

further investigations for future work.1186

C.3 Study of Fairness1187

removing attributes has been the focus of studies1188

for several purposes such as bias mitigation, pri-1189

vacy preservation, and fairness improvement. Re-1190

searchers focused on removing harmful informa-1191

tion such as gender or race from the network as the1192

main cause of societal biases to improve fairness 1193

with regard to minority groups (Han et al., 2021c; 1194

Mehrabi et al., 2022; Shen et al., 2022). In this sec- 1195

tion, we investigate the effect of CONGATER with 1196

regard to empirical fairness metrics. In particular, 1197

we utilize GAP (Shen et al., 2022) as the evaluation 1198

metric of empirical fairness. The GAP metric for a 1199

binary attribute is defined as: 1200

GAP =

√
√√√√√⎷

1

∣Y ∣ ∑
y∈Y

(GAP TPR
a,y )2 (6) 1201
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Figure 6: Results of the CONGATER models using BERT-Mini. See Figure 2 for full explanation.
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Figure 7: Results of the CONGATER models using RoBERTa-Base. See Figure 2 for full explanation.

where GAP
TPR
a,y is the difference between the True1202

Positive Rate (TPR) for each class a, and GAP1203

is the normalized difference between binary sub-1204

populations Y .1205

Figure 9 shows the mean and standard devi-1206

ation of the GAP results for three independent-1207

trained runs of the CONGATER models using the1208

BERT-Base. The results are overall consistent with1209

the core message in previous studies (Shen et al.,1210

2022), indicating that removing concept informa-1211

tion (known as representational fairness) is not nec-1212

essarily correlated with GAP (empirical fairness).1213

We however observe that the average GAP for1214

BIOS and FCDL18 slightly decrease, where similar1215

to the probing results, the changes appear continu-1216

ously between the initial to the target state. Overall,1217

the continuous controllability of CONGATER al-1218

lows for the choice of the state with the desired1219

representational or empirical fairness, given the1220

context of the task and/or a user’s preference.1221

C.4 Shift in Model Uncertainty1222

Model uncertainty is another core aspect in models,1223

providing additional information about the model’s1224

decision behavior during prediction. We investi-1225

gate how uncertainty changes during changing ω.1226

Following previous studies (Lesota et al., 2021; Xu1227

et al., 2020), we measure model/prediction uncer-1228

tainty as the entropy of the predicted probability1229

distribution, namely:1230

Uncertainty(X) = −
∣X∣
∑
j=1

p(Xj) log p(Xj) (7)1231

where X is the predicted probability distribution 1232

of a single data point provided by a model, and 1233

defined over the categorical space of ∣X∣ classes. 1234

For each state of the CONGATER models, we cal- 1235

culate this measure of uncertainty over the task’s 1236

predictions for each data point in the respective test 1237

set and average over the results. 1238

As depicted in Figure 10, the overall uncertainty 1239

of the BERT-Base model constantly changes (in- 1240

creases). We observe the same pattern in the uncer- 1241

tainty values when calculated on sub-populations 1242

of each dataset. Looking at the result of BIOS, we 1243

can see that the models behave more deterministic 1244

(less uncertainty) when it comes to Males and this 1245

uncertainty increases as we increase the sensitivity 1246

parameter. As for the FCDL18, we can see that 1247

for African American sub-population the model 1248

has much lower uncertainty at ω = 0 compare to 1249

ω = 1 where the uncertainty of African American is 1250

much closer to White. On the other hand in PAN16, 1251

we observe that model uncertainty is lower for the 1252

Female sub-population and at the beginning, the 1253

uncertainty for gender decreases then increases for 1254

higher values of ω. As for the age, we observe the 1255

same pattern as we increased the ω value of age but 1256

the ωgender = 0 1257

C.5 Prediction Flips 1258

Despite the fact that average classification accu- 1259

racy – as shown in the previous experiments – only 1260

marginally fluctuates during (binary or continuous) 1261

concept erasure, we observe that the behavior of 1262

the model in terms of the predicted probabilities 1263

considerably changes among data points. In some 1264
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Figure 8: Results of the multi-concept CONGATER on the two attributes of PAN16 task using BERT-Mini, as
changing the gender and age ω simultaneously. (a) Task performance with accuracy. (b) Balanced accuracy of
gender probes. (c) Balanced accuracy of age probes.
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Figure 9: Mean and standard deviation of Gap metric for Three independent BERT-base models with parallel
training method

cases, the changes in predicted probabilities be-1265

come so pronounced that, changing a concept’s1266

degree of presence completely alters the model’s1267

decision (predicted class). In what follows, we in-1268

vestigate the effect of partial concept erasure on the1269

prediction behavior of the model as we change the1270

gating sensitivity parameter ω.1271

Figure 11 shows the statistics of the changes1272

in the predicted classes by the CONGATER model1273

when increasing the corresponding ω parameter(s).1274

Figure 11a tracks the percentage of the predicted1275

labels for the data points in the BIOS test set, pre-1276

dicted as Nurse by the base model (ω = 0). Fig-1277

ure 11b reports the same on FCDL18 for the Abu-1278

sive predictions. Figures 12, 13 14 depict the re-1279

sults for more labels on these datasets, as well as1280

the ones for PAN16. As shown, the changes in1281

the predicted labels continuously increase as we in-1282

crease the ω value, indicating that the decision mak-1283

ing of the model continuously changes and more1284

predicted labels from the initial state flip. This con-1285

tinuous change is consistent with concept removal1286

results across the three datasets, demonstrating the1287

capability of CONGATER in gradually changing its1288

predictions when moving from the initial state to1289

the target state. To gain a more fine-grained view1290

of this topic, we further investigate the changes in1291

model uncertainty in Appendix C.4. 1292

D NFaiRR 1293

we use Normalized Fairness of Retrieval Results 1294

(NFaiRR) to calculate the neutrality score which is 1295

fomulated in equation 8. In equation 8 FaiRR is the 1296

fairness metric similar to other studies (Kulshrestha 1297

et al., 2017; Fabris et al., 2020) is calculated by 1298

finding the importance of attribute in relation to its 1299

retrieved position. Also Ideal FaiRR is used to nor- 1300

malized the score which is considered as the best 1301

possible fairness result one can get by reordering 1302

the documents. For more details of the score please 1303

refer to (Rekabsaz et al., 2021). 1304

NFaiRR(L, ŝ) = ∑
q∈Q

FaiRRq(L)
IFaiRRq(ŝ)

(8) 1305
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Figure 10: Mean of the test data points’ uncertainty values, defined as the entropy of the predicted probability
distributions provided by the CONGATER models. Increasing sensitivity parameter(s) results in continuous changes
in model uncertainties.
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(b) Abusive in FCDL18

Figure 11: Percentage of the data points with the predicted label in the original (ω = 0) model that remain on the
prediction, when increasing ω.
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Figure 12: percentage of the predicted labels among the data points that are initially predicted as the mentioned
label by the initial model during the partial concept removal of the BIOS dataset using CONGATER.
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Figure 13: percentage of the predicted labels among the data points that are initially predicted as the mentioned
label by the initial model during the partial concept removal of the FDCL18 dataset using CONGATER.
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Figure 14: Changes in the Mention prediction as we change ω of the gender or age concept in the respective model.
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Figure 15: Figures show the positive effect of CONGATER on the prediction probability for the labels as we increase
ω value and remove information about gender in BIOS dataset (a) A male attorney predicted wrongly with the
initial model (ω = 0) and switches to the attorney as we increase omega value. Bio: “[he] has been stated previously
senator conrad has complete confidence in s ability to enforce the law and serve the people of north dakota conrad
wrote” (b) A female professor predicted teacher with initial model and switches to correct label as we remove
information about gender. Bio: [she] has twelve years of teaching experience for the undergraduate students and
postgraduate supervised many undergraduate projects and several master theses in aastmt and other universities also
supervised several phd students in cooperation with ein shams university egypt
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(a) Female Physician
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Figure 16: Figures show the negative effect of CONGATER on the prediction probability for the labels as we
increase ω value and remove information about gender in BIOS dataset (a) A female physician predicted correctly
with initial model switches to nurse as we increase omega value. Bio: “[she] has worked in both hospital and
outpatient clinical settings has experience in internal medicine preventative medicine and urgent care specializes in
botox treatments that help people to look their very best without invasive cosmetic surgery” (b) A male professor
predicted correctly by the initial model misclassified as we increase ω value. Bio: “has been an active member of
nacta since serves on the nacta journal editorial review board and has reviewed numerous conference oral and poster
presentation abstracts has submitted teaching tips and received the bob gough outstanding teaching tip award and
the nacta educator award has made both oral and poster presentations at nacta conferences”
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(a) African American Normal tweet
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Figure 17: Figures show positive effect of CONGATER on the prediction probability for the labels as we increase ω
value and remove information about gender in FCDL18 dataset (a) African American tweet labeled abusive at by the
initial model, as we increase ω and remove dialect information labels flips to normal. Tweet: why is mother nature
mad? somebody must have pissed her off! its rainingg hard af! (b) White person hateful tweet predicted normal
by the initial model switches to the correct label as we increase ω value. Tweet: us is already doing something by
backing some of the rebel groups. this is a proxy war afte. . .
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Figure 18: Figures show negative effect of CONGATER on the prediction probability for the labels as we increase ω
value and remove information about gender in the FCDL18 dataset (a) White normal tweet is correctly labels by the
initial model. By increasing ω value and removing dialect information model predicts the tweet as hateful. Tweet:
“yes because the person we voted for is keeping his promises, in spite of the lefts resistance! maga. today and” (b)
African American hateful speech negatively switches to normal as we remove dialect information from the model.
Tweet: “y’all be wanting gifts from y’all [curse word] when y’all mad just get me food ; ”
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Figure 19: Figures show the prediction probability for the labels as we increase ω value and remove information
about gender and age separately in PAN16 dataset. (a) Female Mentioning someone in the tweet but tagged as-not
mentioned by the initial model positively switches to mention as we remove gender and age information separately.
Removing any of the attributes alone results in the correct class of the prediction of this sample. Tweet: “happy
charlie. stolen from #cats #tuxedokitty #blackandwhite” (b) Male mentioning someone was correctly labeled by the
initial model with gender and age information. increasing ωgender negatively influences model until predicts the
label wrongly but ωage also influences negatively, but not to the extent of label flip. Tweet: “(snort) yes. there it is,
and there it is”
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