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Abstract
Knowledge-based visual question answering001
(KVQA) has been extensively studied to an-002
swer visual questions with external knowledge,003
e.g., knowledge graphs (KGs). While several004
attempts have been proposed to leverage large005
language models (LLMs) as an implicit knowl-006
edge source, it remains challenging since LLMs007
may generate hallucinations. Moreover, mul-008
tiple knowledge sources, e.g., images, KGs009
and LLMs, cannot be readily aligned for com-010
plex scenarios. To tackle these, we present a011
novel modality-aware integration with LLMs012
for KVQA (MAIL). It carefully leverages multi-013
modal knowledge for both image understand-014
ing and knowledge reasoning. Specifically,015
(i) we propose a two-stage prompting strategy016
with LLMs to densely embody the image into a017
scene graph with detailed visual features; (ii)018
We construct a coupled concept graph by link-019
ing the mentioned entities with external facts.020
(iii) A tailored pseudo-siamese graph medium021
fusion is designed for sufficient multimodal fu-022
sion. We utilize the shared mentioned entities023
in two graphs as mediums to bridge a tight inter-024
modal exchange, while maximally preserving025
insightful intra-modal learning by constraining026
the fusion within mediums. Extensive exper-027
iments on two benchmark datasets show the028
superiority of MAIL with 24× less resources.029

1 Introduction030

Knowledge-based visual question answering031

(KVQA) aims to provide appropriate answers for032

questions about images based on external knowl-033

edge (Wang et al., 2017), such as knowledge graphs034

(KGs) (Marino et al., 2019). It has various applica-035

tions, especially for assisting the visually impaired036

users (Gurari et al., 2018), yet still, a challenging037

task that requires complex reasoning across differ-038

ent data modalities (Yu et al., 2020, 2017).039

Recently, several studies have explored using040

large language models (LLMs) as supplemen-041

tary knowledge bases and reasoning tools for042

pipeline

(a) Direct Prompting

(b) Modality-agnostic fusion
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Figure 1: A sketched comparison on employing LLMs for
KVQA between existing learning paradigms and ours.

KVQA (Yang et al., 2022; Gui et al., 2022; 043

Lin et al., 2022); according to how they fuse 044

the knowledge, they can be broadly categorized 045

into direct prompting and modality-agnostic ap- 046

proaches, shown in Figure 1 (a) and (b), respec- 047

tively. The former directly prompts the question 048

and the corresponding image caption to LLMs for 049

answers (Yang et al., 2022). The latter leverages 050

LLMs to generate candidate answers with support- 051

ing evidence and simply combines both question 052

and the external knowledge embedding, e.g., Wiki- 053

data (Vrandečić and Krötzsch, 2014), for reasoning 054

at the final stage (Gui et al., 2022; Lin et al., 2022). 055

While the above methods have employed LLMs 056

in various ways for KVQA, we argue that they have 057

not fully leveraged the knowledge from LLMs and 058

lack the cross-modal reasoning ability, potentially 059

resulting in sub-optimal performance for complex 060

VQA scenarios. (i) LLMs could incorrectly an- 061

swer questions or provide unreliable evidence for 062

reasoning. On the one hand, direct prompting to 063

LLMs may struggle to identify the right answer 064

for many complex or domain-specific questions, 065

due to the lack of domain knowledge (Amaro et al., 066

2023; Shen et al., 2023). On the other hand, LLMs 067

may be prone to generating hallucination (Gravel 068

et al., 2023; Bang et al., 2023) and producing 069

misleading evidence in support of candidate an- 070
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swers. (ii) Integrating multimodal knowledge in071

a modality-agnostic manner can be sub-optimal.072

Specifically, existing methods simply concatenate073

different modal representations, e.g., questions,074

captions, tags, and external knowledge, for reason-075

ing. This design lacks the necessary cross-modal076

exchange to enrich the semantics of entities, limit-077

ing the final reasoning performance. For example,078

to correctly answer the question in Figure 1, the079

model is required to infer the season based on a080

cross-modal understanding of the inputs, such as081

the “keep warm” purpose of “coat” and the “spring082

blooming” feature of “sakura”.083

In this work, we study the following research084

question: How can we effectively leverage the085

knowledge from LLMs to enhance the comprehen-086

sive understanding and reasoning of the images087

and questions in KVQA? Answering this question088

is nontrivial due to the following challenges. (i) It089

is hard to properly incorporate the knowledge from090

LLMs. LLMs may generate hallucinations when091

dealing with requests that are not covered in their092

training corpus. Simply prompting them may gen-093

erate noisy and irrelevant responses. (ii) Semantic094

alignment of multiple knowledge sources is chal-095

lenging. Given image captions, object/region fea-096

tures, external knowledge from KGs, and implicit097

knowledge from LLMs, appropriately aligning rel-098

evant semantic information in different modalities099

cannot be readily achieved.100

To tackle these challenges, we present a novel101

modality-aware framework to effectively integrate102

LLMs for KVQA in Figure 1 (c), dubbed MAIL.103

Specifically, (i) we propose a two-stage prompt-104

ing strategy to maximally leverage the knowledge105

from LLMs for image understanding. We initialize106

a dense caption by prompting a visual LLM, e.g.,107

Visual ChatGPT (Wu et al., 2023) and MiniGPT-108

4 (Zhu et al., 2023). To depict the detailed vi-109

sual scenes in the caption, we construct a scene110

graph by defining twelve condensed relations and111

prompting the LLM to extract spatial and object112

features accordingly in the form of triples, e.g.,113

(sakura, at_location, tree). (ii) We integrate the ex-114

ternal knowledge from KGs to form a coupled con-115

cept graph, where the mentioned entities in scene116

graphs are linked with real-world assertions and117

facts to facilitate knowledgeable reasoning, such as118

(coat, used_for, keep warm) and (sakura, typle_of,119

spring blooming). (iii) A tailored pseudo-siamese120

graph medium fusion is designed for effective mul-121

timodal graph fusion. Inspired by the success of122

pseudo-siamese network in measuring the simi- 123

larity of two correlative inputs (Xia et al., 2021; 124

Gupta et al., 2023), we extend it to graphs to pro- 125

cess intra-modal information. It consists of two 126

graph attention networks with the same architec- 127

ture but different weights. In each sub-encoder, 128

we concentrate on one modality and design a tai- 129

lored context-aware propagation. This guides our 130

model to attentively prioritize the most valuable 131

entities subject to the particular question. Then we 132

leverage the shared mentioned entities in both cou- 133

pled graphs as mediums to bridge the cross-modal 134

interaction. The model continuously exchanges 135

their embeddings between two modalities, bringing 136

sufficient complementary knowledge to the other 137

modality respectively. It merely allows inter-modal 138

exchanging by constraining it within the mediums. 139

In general, MAIL effectively enhances a tight inter- 140

modal fusion while maximally preserving the in- 141

sightful intra-modal information for each modality. 142

Our major contributions are summarized below: 143

• We formally define a novel learning paradigm, 144

modality-aware integration with LLMs for 145

knowledge-based visual question answering. 146

• The implicit knowledge in LLMs is carefully 147

leveraged via an effective prompting strategy for 148

coupled scene/concept graph construction. 149

• We further propose a tailored pseudo-siamese 150

graph medium fusion to integrate multimodal 151

knowledge sources. It balances both intra-modal 152

processing and inter-modal exchange. 153

• Extensive experiments are conducted on two 154

benchmark datasets. MAIL significantly achieves 155

superior performance over a variety of state-of- 156

the-art baselines with 24× less computational 157

resources and 2 ∼ 4× faster inferential time. 158

2 Problem Statement 159

KVQA requires the model to provide answers to 160

the question Q of the corresponding image I based 161

on external knowledge G. In this paper, we propose 162

a novel learning paradigm for leveraging LLMs 163

f(·) for comprehensive knowledge-based VQA. 164

Given an image I, a relevant question Q and ex-
ternal knowledge G, we aim to integrate a visual
LLM f(·) and fuse {f(I),Q,G} for prediction.
The overall performance is evaluated by the accu-
racy of returned answers with the ground truths.

165
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Figure 2: Our proposed framework MAIL, a novel modality-aware integration for knowledge-based VQA with LLMs.
Nodes in blue stand for external knowledge, while red is for visual objects and yellow shows the topic entities from
questions. Blue nodes with red dashed borders indicate the extracted mediums in concept graph. MAIL is trained to
integrate multimodal information for comprehensive cross-modal reasoning with a tailored PS-GMF.

3 Methodology166

In this section, we introduce the detailed rationale167

of our proposed framework. An illustration of MAIL168

is shown in Figure 2. We first carefully leverage the169

knowledge from LLMs for coupled graph construc-170

tion. Then, we formulate the pseudo-siamese graph171

medium fusion (PS-GMF). Through an effective172

integration of two tailored training objectives, we173

jointly optimize the model for accurate prediction.174

3.1 Scene Graph Construction175

Dense Caption Generation We carefully design176

a hard prompt that requires a visual LLM f(·) to177

depict the detailed appearance of all the objects in178

the image and the spatial relations between them.179

We obtain the generated caption through180

D = f(I, P rompt). (1)181

We consider the identified visual entities in the im-182

age as key mentioned entities appearing in the cap-183

tion, denoted as M = [m1,m2...mn] ∈ D. They184

significantly dominate the multimodal information185

of both visual features and external knowledge re-186

quired to answer the questions.187

Prompt-enhanced Triple Extraction188

Given the extracted mentioned entities, we employ189

LLMs to extract triples. To fully leverage LLMs’190

comprehension of image captions and prioritize191

the important visual features, we pre-define 12 re-192

lations R = [r1, r2, ...r12] from two aspects: (i)193

Spatial features. We constrain the description with194

at_location, next_to, in_front_of, surrounded_by,195

covered_by, includes and holds. (ii) Object fea-196

tures are preserved with not only visual outlooks,197

i.e., has_property, has_color, made_of and wears,198

but also the intentions of the object if he/she is a199

human, i.e., intends_to. We design a hard template200

to prompt LLMs for scene graph construction as,201

GS = f(Prompt,D,M,R). (2) 202

We show the detailed statistics and beautiful distri- 203

butions of all twelve condensed relations in both 204

benchmarks OK-VQA (Marino et al., 2019) and 205

FVQA (Wang et al., 2017) in Appendix Table 9. 206

3.2 Concept Graph Construction 207

In parallel, we incorporate ConceptNet (Speer et al., 208

2018) for external commonsense knowledge to con- 209

struct a concept graph. It is one of the largest 210

knowledge graphs that provides a myriad of struc- 211

tured triples and contains more than eight million 212

real-world entities. We link each mentioned entity 213

m and the topic entity in the question with Con- 214

ceptNet, and denote the constructed graph as GC 215

with sufficient textual descriptions, attributes, cate- 216

gories, and properties of M, that are not present in 217

the image so as to facilitate a more knowledgeable 218

reasoning background for various questions. 219

3.3 Pseudo-siamese Graph Medium Fusion 220

Typical pseudo-siamese networks (PSNs) could ef- 221

fectively measure the similarity between two in- 222

puts (Gupta et al., 2023; Xia et al., 2021). We 223

extend it to graphs, which naturally fit the require- 224

ment of learning coupled graphs for intra-modal 225

processing, leading to pseudo-siamese graph neural 226

networks (PSGs). However, PSG is incapable of 227

cross-modal fusion. Particularly equipped for PSG 228

to enable inter-modal learning, we further design a 229

graph medium fusion (GMF) algorithm. 230

Pseudo-siamese Graph Neural Network 231

Locating valuable entities in different modalities 232

is essential for KVQA. Here, we instantiate PSG 233

with a novel context-aware message propagation 234

scheme to prioritize the most important knowledge 235

in each modality subject to the question context. 236

Definition. [Pseudo-siamese GNN] We refer to 237

3



PSG Architecture Formulated Definition

Context-aware Attention Φ (mt∥c)
Aggregation Function

∑
t∈Nh

αmt ×mt

Combination Function J(eℓ
Nh

) + eℓ
h

Activation Function

{
eh, if eh ≥ 0,

(1e− 2)× eh, otherwise.

Table 1: Formulated definitions of the shared archi-
tectures for two sub-networks in the proposed Pseudo-
Siamese Graph Neural Network.

a pseudo-siamese graph neural network that con-238

sists of two identical graph neural networks for239

two relevant inputs. They share the same architec-240

ture, i.e., attention mechanism, aggregation func-241

tion, combination function and activation function,242

but different weights.243

As two sub-networks in PSG share the same ar-244

chitecture, we uniformly provide formulations for245

the intra-modality processing. For each head entity246

h, we aggregate all the messages from its neigh-247

bor tail entities, this set of neighbors is denoted248

as Nh and t ∈ Nh. Since relations in multimodal249

graphs contain indispensable information for rea-250

soning various real-world questions, we establish251

the message passing at the triple level, i.e., (h, r, t)252

to capture abundant semantics as follows.253

mt∈Nh
= W (eh, er, et), (3)254

where (eh, er, et) is the triple embedding associ-255

ated with (h, r, t), and W is a learnable matrix256

for linear transformation. We initialize the entity257

and relation embedding with a pre-trained language258

model RoBERTa-large (Liu et al., 2019).259

While multimodal graphs always contain desper-260

ate information with each other, uniformly training261

each subnetwork in PSG based on the final predic-262

tion lacks awareness of the multimodal characteris-263

tics. To this end, we design tailored graph attention264

networks (Veličković et al., 2017) that allocate a265

context-aware weight â to each message, only pri-266

oritizing the multimodal messages in both coupled267

graphs that are highly related to the question. The268

context-aware weight âmt for each message mt is269

correspondingly computed as:270

â(h,r,t) = Φ (mt∥c) , (4)271

where Φ is the adopted activation function, i.e.,272

LeakyReLU. We endow the attention mechanism273

to be context-aware by concatenating the ques-274

tion context embedding c, expressed as ∥. No-275

tably, we fix the question context embedding c with276

RoBERTa and only allow it to participate during 277

the attention allocation process. 278

By normalizing the attention scores obtained pre- 279

viously, we further assign normative values α to 280

each message mt of (h, r, t): 281

αmt =
â(h,r,t)∑

(h,r′,t′)∈Nh
â(h,r′,t′)

. (5) 282

To this end, with a weighted sum aggregation 283

operator, we are able to acquire the aggregated 284

representation for entity h in the current layer from 285

its neighbors as eℓNh
=

∑
(h,r,t)∈Nh

α(h,r,t)) ×mℓ
t , 286

where the layer number in PSG is denoted as ℓ. 287

We summarize the major functions in Table 1. We 288

finalize the overall architecture of PSG for both 289

inputs from scene graph GS and concept graph GC . 290

e
S(ℓ+1)
h = J(

∑
(h,r,t)∈Nh

α(h,r,t)) ×mt) + e
S(ℓ)
h ,

e
C(ℓ+1)

ĥ
= J(

∑
(ĥ,r̂,t̂)∈N

ĥ

α(ĥ,r̂,t̂) ×mt̂) + e
C(ℓ)

ĥ
,

(6) 291

where J is a multi-layer perception. The model 292

effectively combines the learned neighbor informa- 293

tion eℓNh
and itself eℓh in current layer. We obtain 294

final representations of all the entities when the 295

layer number ℓ reaches the pre-defined target. 296

Graph Medium Fusion 297

In this subsection, we aim to fill the gaps of 298

the aforementioned PSG on inter-modal learning. 299

However, there is a challenging dilemma centered 300

around striking the right balance between two cru- 301

cial aspects. On one hand, we want to maximize the 302

inter-modal fusion, where multimodal information 303

could collaborate to yield a more insightful and nu- 304

anced understanding of the underlying knowledge 305

subject to answering the question. On the other 306

hand, we recognize the necessity of preserving the 307

integrity of intra-modal processing. Considering 308

excessive inter-modal fusion could introduce noise 309

from each other, we aim to maintain the distinc- 310

tive characteristics and valuable insights that each 311

modality inherently holds. 312

Since the mentioned entities M = 313

[m1,m2...mn] are shared by GS and GC , 314

we consider these entities existing in both coupled 315

graphs as mediums that possess similar embed- 316

dings, since they represent the same real-world 317

object though appearing in different modalities. 318

Motivated by this, we design a novel graph 319

medium fusion algorithm that leverages the 320

medium to bridge two modalities. To get rid of 321

the dilemma, we (i) exchange the representations 322
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of mediums em within their respective graphs.323

This allows the model to delicately introduce324

cross-modal information with their neighbor325

entities in the respective graphs, i.e., eNm ; (ii)326

We strictly impose restrictions on the cross-modal327

exchange to be within the mediums. This gently328

brings two modalities closer to each other, while329

maximally maintaining their individualities. The330

formulated graph medium fusion process between331

the coupled graphs is written below.332

eSm =

{
eS
m, if ℓ = 0,

eC
m, otherwise.

eCm =

{
eC
m, if ℓ = 0,

eS
m, otherwise.

(7)333

Specifically, we froze the medium embeddings334

in the first layer to ensure they have initially aggre-335

gated important 1-hop neighbor information. Af-336

terward, the embeddings for the same medium are337

automatically exchanged after message-passing in338

the current layer. This sequential approach ensures339

a high-quality exchange of information between340

modalities, i.e., visual features and external knowl-341

edge, while initially preserving the local context342

within each modality before they engage in cross-343

modal interactions during the following layers.344

3.4 Training Objective345

Answer-targeted Inferential Loss346

The primary target of our model is to accurately347

predict the final answer subject to the particular348

image and question context. We adopt the binary349

cross-entropy loss to optimize the inferential per-350

formance:351

LInference = −log
MLP (ea + c)∑

a′∈GC MLP (ea′ + c)
, (8)352

where a is the correct answer and a′ is one of353

all the candidate answers from GC . We employ354

MLP (ea + c) to compute the probability of all355

the candidate entities in GC and prioritize the high-356

est one as the final answer.357

Maximum Mean Discrepancy loss358

Based on the assumption that one medium in two359

modalities should be similar to the maximum ex-360

tent, we approximate their similarity by adopting361

an auxiliary loss, i.e., Maximum Mean Discrep-362

ancy (MMD) loss. The basic kernel function is363

formulated as follows:364

K(eS
m, eC

m) = exp

(
−||eS

m − eC
m||2

2σ2

)
, (9)365

where K represents the kernel function and σ is366

a hyperparameter controlling the width of the ker-367

nel (Steinwart and Scovel, 2012). Given a valid368

kernel function where K(eSm, eCm) = (ϕ(eSm) − 369

ϕ(eCm)), we denote the corresponding feature map- 370

ping function as ϕ. The final MMD loss for cross- 371

modal alignment is demonstrated hereunder, 372

LMedium = || 1
n

∑
m∈M

ϕ(eS
m)− 1

n

∑
m∈M

ϕ(eC
m)||2. (10) 373

We aim to minimize this loss to encourage the 374

learned representations for the same medium from 375

two modalities to be similar in the shared PSG ar- 376

chitecture. This effectively guides the process of 377

graph medium fusion by constraining the similarity 378

of mediums in different modalities with each other. 379

3.4.1 Joint Optimization 380

The overall framework is jointly optimized accord- 381

ing to training objectives as aforementioned. De- 382

spite the effectiveness of LMedium, it may intro- 383

duce inevitable noise by irrespectively forcing the 384

mediums from two modalities to be exactly aligned, 385

which ignores the nature of different modalities. To 386

alleviate this problem, we introduce a hyperparame- 387

ter λ to control the contribution from LMedium. To 388

this end, the final training loss is calculated below: 389

LJoint = LInference + λLMedium. (11) 390

4 Experiments 391

In this section, we conduct a variety of experiments 392

to demonstrate the effectiveness of our proposed 393

MAIL. We aim to answer four research questions: 394

• RQ1 (Main Results): How does MAIL perform 395

compared with different types of SOTA models? 396

• RQ2 (Hyperparameter analysis): How do hy- 397

perparameters influence the performance? 398

• RQ3 (Ablation studies): Does each component 399

eventually contribute to the overall performance? 400

• RQ4 (Case study): How effectively does MAIL 401

work in real-world VQA tasks? 402

4.1 Experimental Setup 403

Datasets 404

Following the previous work (Marino et al., 2021; 405

Yang et al., 2022; Gui et al., 2022; Wu et al., 2022; 406

Lin et al., 2022), we mainly conduct our experi- 407

ments on OK-VQA (Marino et al., 2019), which is 408

currently the largest and most challenging bench- 409

mark, consisting of 14,055 image-question pairs. 410

To further demonstrate the generalization, we also 411

experimentalize on FVQA dataset (Wang et al., 412

2017), which was the first exploration of KVQA. 413
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Method Model Inputs External Knowledge Fusion Strategy Acc. (%)

Q Only Question + Image - - 14.93

Traditional End-to-end Baselines

BAN Question + Image - - 25.17
BAN +AN Question + Image Wikipedia Modality-agnostic 25.61
MUTAN Question + Image - - 26.41

MUTAN +AN Question + Image Wikipedia Modality-agnostic 27.84
ConceptBERT Question + Image ConceptNet Modality-agnostic 33.66

HCNMN Question + Image WordNet Modality-agnostic 36.74
Krisp Question + Image Wikipedia + ConceptNet Modality-agnostic 38.90

MAVEx Question + Image Wikipedia + ConceptNet + Google Images Modality-agnostic 41.37
VLC-BERT Question + Image COMET + ConceptNet Modality-agnostic 43.14

MCAN Question + Image - - 44.65

Large Language Model-enhanced Baselines

PICa-Base Question + Caption + Object Tags Frozen GPT-3 (175B) - 43.30
Pica-Full Question + Caption + Object Tags Frozen GPT-3 (175B) - 48.00

KAT (Single) Question + Caption + Object Tags Frozen GPT-3 (175B) + Wikidata Modality-agnostic 53.09
KAT (Ensemble) Question + Caption + Object Tags Frozen GPT-3 (175B) + Wikidata Modality-agnostic 54.41

REVIVE Question + Caption + Region Tags Frozen GPT-3 (175B) + Wikidata Modality-agnostic 53.83

MAIL (ours) Question + Image Frozen MiniGPT-4 (7B)∗ + ConceptNet Modality-aware 56.69

Table 2: The overall performance comparison on benchmark dataset OK-VQA. We also elaborate on the detailed
comparison with a variety of baselines on the knowledge sources that support their inference, i.e., model inputs,
external knowledge, as well as how they fuse multiple modalities.
∗ We merely leverage it for caption and scene graph construction, with no extra information that is not present in the images.

Method Fusion Strategy Acc. (%)

XNM Modality-agnostic 63.74
KI-Net Modality-agnostic 63.78
UnifER Modality-agnostic 66.83
MCAN - 64.47

HCNMN Modality-agnostic 69.43

MAIL (ours) Modality-aware 73.95

Table 3: Performance comparison on FVQA.

Baselines414

We adopt two pipelines of off-the-shelf methods for415

performance comparison. Details are demonstrated416

in the Appendix A.3. (i) Traditional end-to-end417

baselines that design various multimodal learning418

algorithms for final reasoning over the posed ques-419

tions. (ii) LLM-enhanced baselines that leverage420

LLMs, i.e., GPT-3, for direct answer prediction or421

relevant supporting evidence generation.422

4.2 Main Results423

To answer RQ1, in Table 2 & 3, we summarize424

the comparisons with all the important baselines.425

The performance is evaluated by the soft accuracy426

following previous research (Hu et al., 2023). MAIL427

outperforms all the traditional baselines regardless428

of their various knowledge sources and the advan-429

tages of leveraging a feature-level image represen-430

tation. MAIL achieves 12.04% improvements over431

the best traditional baseline, i.e., MCAN, on OK-432

VQA and 14.7% on FVQA. For LLM-enhanced433

ACC.% ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

MAIL 56.41 56.69 55.45 54.11 52.80

Table 4: Evaluation on the influences of graph layers in
pseudo-siamese graph medium fusion.

ACC.% λ = 0 1e− 5 1e− 4 1e− 3 1e− 2 1e− 1

MAIL 53.34 54.18 55.31 56.69 54.30 55.82

Table 5: Exploring the control over the impacts from
LMedium to preserve insightful intra-modal learning.

baselines, it is worth mentioning that they have uti- 434

lized the generative ability from (Lin et al., 2022; 435

Brown et al., 2020), which makes them especially 436

advantageous in answering subjective questions, 437

for instance, ‘Can people travel on the freeway’ 438

or ‘Is it illegal?’. Despite this, MAIL still outper- 439

forms the best LLM-enhanced baseline with 2.28% 440

increases in general, let alone 13.39% over PICa. 441

Moreover, MAIL is resource-efficient, requiring 442

the smallest number of parameters among all the 443

LLM-enhanced baselines, shown in Table 6. We 444

have used significantly far fewer parameters than 445

any other LLM-enhanced models, i.e., 7.13 B, for 446

answer prediction. As a result, the inferential time 447

of MAIL for one test question is 0.661s (when batch 448

size = 1). Generally, existing LLM-enhanced base- 449

lines commonly utilize over 24 times more param- 450

eters and 2∼4 times of inferential time than MAIL. 451
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What is this street made of?

(street, made_of, bricks)

Ours: bricks

Visual Feature

What animal do you have to watch out 
for when doing this sport?

What type of temperature is this?

(man, holds, surfboard)
(sakura, at_location, tree)

(woman, wears, coat)

(Sakura, related_to, cherry tree) 
(cherry tree, type_of, spring blooming)

(spring, related_to, cold spring)
(coat, used_for, keep warm in winter)

(winter, property, cold)

Ours: cold
Ours: shark

Visual Feature
Visual Feature

When was this type of transportation invented?

What position is behind the batter?  

(steam-powered tram, at_location, rail)

(A man, intends_to, hit the ball)

(B man, behind, A man)

(B man, intends_to, catch the ball)

(batter, capable_of, hit the bal)
(catcher, capable_of, catch the ball)

Ours: Catcher

Ours: 1804

Visual Feature

Visual Feature

External Knowledge

External Knowledge

External Knowledge

External Knowledge

(street, used_for, automobile)

(surfboard, related_to, sea)

(shark, is_a, animal)
(shark, at_location, seawater)

(steam-powered tram, invented in, 1804)

(a) (b) (c)

(d) (e) (f)

What type of emergencies do 
these group of people respond to?  

(firetruck, at_location, street) 

(firetruck, related_to, fire)

Ours: fire

Visual Feature

External Knowledge

External Knowledge

Prediction Results

Prediction Results
Prediction Results

Prediction Results

Prediction Results

Prediction Results

Figure 3: Case studies with both single-hop and multi-hop reasoning examples in OK-VQA.

Models ∼Param Size Training Time Inference Time

PICa ∼175.00 B / 1.547 s
KAT ∼175.80 B 3.025 s 1.292 s

REVIVE ∼175.80 B 4.500 s 2.644 s
MAIL(Ours) ∼7.13 B 2.699 s 0.661 s

Table 6: Comparisons on the computational costs and
inferential time with LLM-enhanced baselines.

Reasoning Module Accuracy (%)

PSG (w/o GMF) 55.53
PS-GMF 56.69

Table 7: Verification of the importance of inter-modality
fusion by removing GMF with PSG only.

4.3 Hyperparameter Analysis452

Search of Graph layers453

The main architecture of PS-GMF naturally com-454

prises the discussion of the impacts from graph455

layers ℓ. We empirically hypothesize that augment-456

ing the depth of the ℓ could facilitate both a deeper457

understanding of single modalities (i.e., PSG) and458

a more profound exchange of information between459

modalities (i.e., GMF). However, it remains unclear460

about when to reach the plateau. Simply adding461

more layers may over-fuse two modalities and lose462

the ability of intra-modal processing, while reduc-463

ing layers may lead to an adverse situation with464

inadequate inter-modal fusion. To this end, we465

vary the layer number and show the performance466

changes in Table 4. The final prediction perfor-467

mance of MAIL is reported when ℓ = 3.468

Investigation on hyperparameter λ469

While an excessively strict alignment of mediums470

may homogenize the intra-modal information, we471

Pure LLMs Multimodal Understanding Acc.(%)

Large Language Models

Llama (7B) Dense Caption 39.27
Llama2 (7B) Dense Caption 45.35

ChatGPT (GPT3.5) Dense Caption 40.26
GPT-4 Dense Caption 54.33

Visual Large Language Models

Visual ChatGPT BLIP-VQA-Base + GPT3.5 38.70
MiniGPT-4 (7B) ViT + Vicuna 51.26

Ours Dense Caption + PS-GMF 56.69

Table 8: Ablation studies on comparing with pure LLMs
by directly feeding the questions and (i) corresponding
image caption to LLMs or (ii) the raw images to visual
LLMs for answers in a zero-shot setting.

aim to find a suitable λ that constrains the im- 472

pacts of LMedium. This could significantly encour- 473

age harmonious inter-modal fusion from multiple 474

modalities while retaining the richness and speci- 475

ficity inherent to each modality. The experimen- 476

tation process involves a systematic adjustment of 477

λ across a range of values, specifically within the 478

interval [0, 1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1]. 479

We showcase the results in Table 5. Upon careful 480

examination of the performance trends, we employ 481

λ = 1e− 3 for a balanced trade-off. 482

4.4 Ablation Studies 483

Empirical comparison with LLMs 484

In this ablation study, we further demonstrate our 485

tailored multimodal learning module PS-GMF, and 486

delineate the specific contributions by comparing it 487

against frozen LLMs. Specifically, we adopt both 488

pure LLMs, i.e., Llama (Touvron et al., 2023a) and 489

Llama2 (Touvron et al., 2023b), as well as visual 490
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LLMs with Visual ChatGPT (Wu et al., 2023) and491

MiniGPT-4 (Zhu et al., 2023). We exclusively con-492

strain the inputs in a zero-shot setting with only493

dense captions and questions for LLMs, while raw494

images and questions for frozen visual LLMs. The495

results are summarized in Table 8. MAIL outper-496

forms the best LLM GPT-4 with 2.36% improve-497

ments, attributed to the effective graph medium498

fusion that integrates external knowledge. MAIL499

also significantly outperforms Visual ChatGPT and500

MiniGPT-4 with 17.99% and 5.43% higher accu-501

racy. The results shed light on the cross-modal502

reasoning ability of MAIL.503

Reasoning with PSG Only504

In this subsection, we explore the importance of505

inter-modality interaction by removing the graph506

medium fusion and only relying on PSG for infer-507

ence. We list the performance of ‘PSG w/o (GMF)’508

in Table 7. The complete multimodal reasoning509

with PS-GMF outperforms the version with only510

intra-modal learning with 1.16% improvements.511

Under this PSG-only setting, we seek to grasp in-512

sights into the necessity of graph medium fusion513

for fostering effective inter-modality interaction.514

Understanding the performance impact of omit-515

ting this fusion mechanism supports the value of516

shared entities and medium exchange in bridging517

the cross-modal interaction and facilitates our pro-518

posed modality-aware integration with LLMs.519

4.5 Case Studies520

In this section, we answer RQ4 with six real-world521

examples from OK-VQA in Figure 3 to shed light522

on our effectiveness. Single-hop questions can523

be directly inferred with easily accessible infor-524

mation from either the visual content or external525

knowledge sources, while multi-hop questions526

pose more challenges for accurately locating an-527

swers several hops away from mentioned entities.528

These cases show the adeptness of MAIL in529

handling a spectrum of questions, requiring both530

straightforward inferences from explicit informa-531

tion and complex multi-hop reasoning ability by in-532

tegrating implicit knowledge sources. For example,533

Figure 3 (a) can be answered based on the visual534

information captured by the scene graph without535

external knowledge, while the answer of (e) needs536

to be artfully inferred from two different angles,537

i.e., both the blossom season of sakura and the538

warmth of people’s clothes. These can be attributed539

to (i) the coupled graph construction that contains540

abundant modality-aware knowledge to ground the541

reasoning, as well as (ii) the effective design of our 542

pseudo-siamese graph neural network. It benefits 543

sufficient preservation of intra-modal information 544

and adequate cross-modal fusion, resulting in a 545

powerful multi-hop reasoning ability over both in- 546

herent visual features and external knowledge. 547

5 Related Work 548

KVQA with KGs. Early studies either dedicated 549

to integrating different knowledge sources (Wang 550

et al., 2017) or proposed various fusion algorithms 551

for multimodal information (Marino et al., 2021). 552

ConceptBERT (Gardères et al., 2020) constrains 553

the multimodal information with question embed- 554

ding and fuses embeddings of each modality for 555

prediction. MAVEx (Wu et al., 2022) aims to dis- 556

cern the corresponding knowledge source for each 557

candidate answer to reduce noise. KRISP (Marino 558

et al., 2021) captures both implicit information in 559

both questions, images and knowledge graphs. 560

KVQA with LLMs. Recently, large language mod- 561

els (LLMs) have surprised the community with 562

their superior understanding of texts. PICa (Yang 563

et al., 2022) first leverages GPT3 (Brown et al., 564

2020) as an implicit knowledge source for reason- 565

ing by prompting the image captions and in-context 566

examples. Another pipeline of studies employs 567

LLMs to generate candidates or supporting evi- 568

dence for particular captions, e.g., KAT (Gui et al., 569

2022) and REVIVE (Lin et al., 2022). While they 570

do not fully leverage the multiple sources of knowl- 571

edge, we break the limitation of complex reasoning 572

by developing a tailored multimodal fusion algo- 573

rithm that balances intra- and inter-modal learning. 574

6 Conclusions 575

We present MAIL, a modality-aware integration with 576

large language models for knowledge-based visual 577

question answering. We formally define a novel 578

multimodal learning paradigm for comprehensive 579

cross-modal reasoning among multiple knowledge 580

sources. The knowledge from LLMs is effectively 581

leveraged via a carefully designed coupled graph 582

construction, i.e., scene graph and concept graph. 583

Then we integrate various multimodal information 584

with a tailored pseudo-siamese graph medium fu- 585

sion. It effectively enhances a tight inter-modal in- 586

teraction and maximally preserves insightful intra- 587

modal processing. MAIL achieves superiority on 588

two benchmark datasets while possessing 24× less 589

computational resources and 2∼ 4× faster inferen- 590

tial time than the existing state-of-the-art baselines. 591
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Limitations592

We adopt the popular visual LLM, i.e., MiniGPT-4593

(7B) as the knowledge source for image caption594

generation and scene graph construction. While595

more advanced visual LLMs have emerged recently,596

e.g., GPT-4, Gemini Vision Pro, etc, we will fur-597

ther enrich our experiments and comparisons with598

updated captions and scene graphs as future work.599

Ethics Statement600

We confirm that we have fully complied with the601

ACL Ethics Policy in this study. We conduct ex-602

periments with widely adopted publicly available603

datasets. The generated image captions, processed604

scene graphs and concept graphs will be open-605

sourced for other researchers’ fair reproduction and606

further study in the active KVQA community.607
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A Appendix759

A.1 Prompt Templates for Coupled Graph760

Construction761

Prompt for Scene Graph Construction762

‘Describe the image with as many details as possi-763

ble. Generally, identify the objects and their spatial764

relations with each other. Specifically, include the765

visual outlook of different objects, e.g., color, style766

as well as the appearance for human beings.’767

Prompt for Concept Graph Construction768

‘Given the image caption, based on your compre-769

hensive understanding, construct a high-quality770

scene graph with as many meaningful details of771

the mentioned entities as possible in the form of a772

triple (head entity, relation, tail entity). \n Strictly773

use the twelve predefined relations from: R, e.g.,774

(woman, in_front_of, car), (car, has_color, blue),775

only return the triples with no other content. \n776

Caption: D \n Mentioned Entities: M.’777

A.2 Detailed Statistics of the Scene Graphs778

We showcase the beautiful distribution of the pre-779

defined condensed relations in the constructed780

scene graphs for OK-VQA and FVQA in Table 9.781

A.3 Experiments782

Implementation Details We generate dense image783

captions with MiniGPT-4 (7B) (Zhu et al., 2023),784

and adopt ConceptNet (Speer et al., 2018) for exter-785

nal knowledge, one of the largest real-world com-786

monsense KGs. We apply MiniGPT-4 with one787

Tesla V100. The entire processing of OK-VQA and788

the corresponding Microsoft COCO images (Lin789

et al., 2014) including image-to-text and data clean-790

ing takes about 4 rounds. We adopt ℓ = 3 and791

λ = 1e − 3 after hyperparameter tuning. The792

generated caption is stored for further multimodal793

learning. Our codes and processed graphs will be794

open-sourced and publicly available.795

For the results of baseline LLMs, since they796

could occasionally refuse to answer with responses797

like either ‘As a language model, I am not capa-798

ble of understanding images’ or ‘Sorry, there is no799

related information in the provided caption.’, we re-800

port the average accuracy over 2 rounds. Baselines801

Specifically, for traditional end-to-end baselines,802

we pick the representative state-of-the-art methods,803

i.e., a direct answering based on questions only804

(Q Only) (Marino et al., 2019),BAN (Kim et al.,805

2018), MUTAN (Ben-Younes et al., 2017), Con-806

ceptBERT (Gardères et al., 2020), KRISP (Marino807

Categories Relation
OK-VQA FVQA

Tain Test Tain Test

Spatial
Features

at_location 10,562 10,118 3,466 3,107
next_to 3,948 3,772 2,533 2,289

in_front_of 2,239 2,244 759 687
surrounded_by 2,004 2,026 699 549

covered_by 180 191 9 7
includes 12,402 12,390 1,811 1,630

holds 3,344 3,090 965 794

Object
Features

has_property 16,685 17,032 1,301 1,297
has_color 9,191 8,836 3,653 3,258
made_of 3,388 3,310 978 948

wears 5,172 5,049 1,504 1,449
intends_to 1,599 1,655 9 8

Table 9: The overall statistics of the pre-defined con-
dense relations for OK-VQA and FVQA datasets. They
depict the spatial features and object features in images.

et al., 2021), MAVEx (Wu et al., 2022), VLC- 808

BERT (Ravi et al., 2023), HCNMN (Zhang et al., 809

2023) and MCAN (Yu et al., 2019). Moreover, as 810

BAN and MUTAN merely learn the uni-modal vi- 811

sual features, they are augmented with ArticleNet 812

(AN) (Marino et al., 2019) that is trained to re- 813

trieve knowledge from Wikipedia for correspond- 814

ing question-image pair to facilitate the reasoning 815

with external knowledge, denoted as ‘BAN + AN’ 816

and ‘MUTAN + AN’ (Marino et al., 2019). 817

While for LLM-enhanced baselines, we adopt 818

PICa (Yang et al., 2022), KAT (Gui et al., 2022), 819

and REVIVE (Lin et al., 2022). 820

A.4 Generalization on FVQA Dataset 821

To further demonstrate the generalization abil- 822

ity of our proposed MAIL, we compare it with 823

the widely adopted baselines on the first KVQA 824

dataset FVQA, i.e., XNM (Shi et al., 2019), KI- 825

Net (Zhang et al., 2021), UnifER (Guo et al., 2022), 826

MCAN (Yu et al., 2019) and HCNMN (Zhang 827

et al., 2023). For external knowledge, KI-Net uses 828

ConceptNet and Wordnet; UnifER uses Visual- 829

Bert, LXMERT and ViLT; HCNMN uses WordNet, 830

WikiText, ConceptNet and Visual Genome. 831
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