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Abstract

Fine-tuning of large pre-trained image and language models on small customized
datasets has become increasingly popular for improved prediction and efficient
use of limited resources. Fine-tuning requires identification of best models to
transfer-learn from and quantifying transferability prevents expensive re-training
on all of the candidate models/tasks pairs. In this paper, we show that the statistical
problems with covariance estimation drive the poor performance of H-score [1] —
a common baseline for newer metrics — and propose shrinkage-based estimator.
This results in up to 80% absolute gain in H-score correlation performance, making
it competitive with the state-of-the-art LogME measure by [26]. Our shrinkage-
based H-score is 3 − 55 times faster than LogME. Additionally, we look into a
less common setting of target (as opposed to source) task selection. We highlight
previously overlooked problems in such settings with different number of labels,
class-imbalance ratios etc. for some recent metrics e.g., NCE [24], LEEP [18] that
misrepresented them as leading measures. We propose a correction and recommend
measuring correlation performance against relative accuracy in such settings. We
support our findings with ∼ 65,000 (fine-tuning trials) experiments.

1 Introduction

Transfer learning (TL) is a set of techniques of using abundant somewhat related source data
p(X(s), Y (s)) to ensure that a model can generalize well to the target domain, defined as either little
amount of labelled data p(X,Y ) (supervised), and/or a lot of unlabelled data p(X) (unsupervised
TL). TL is most commonly achieved via fine-tuning. Fine-tuning (FT) is a process of adapting a
model trained on source data by using target data to do several optimization steps (for example, SGD)
that update the model parameters. FT is becoming increasing popular because large models like
ImageNet [12], Bert [5] etc. are released by companies and are easily modifiable. Training such large
models from scratch is often prohibitively expensive for the end user. In this paper, we are primarily
interested in effectively measuring transferability before training of the final model begins. Given
a source data/model, a transferability measure (TM) quantifies how much knowledge of source
domain/model is transferable to the target model. If a measure is capable of efficiently and accurately
measuring transferability across arbitrary tasks, the problem of transfer learning is greatly simplified
by using the measure to search over candidate sources and targets.

Related Work Negative Conditional Entropy (NCE) [24] uses pre-trained source model and evaluates
conditional entropy between target pseudo labels (source models’ assigned labels) and real target
labels. Log Expected Empirical Predictor (LEEP) [18] modifies NCE by using soft predictions from
the source model. [3] propose representing each output class by the mean of all images from that class
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and computing Earth Mover’s distance between the centroids of the source classes and target classes.
[15] proposed NLEEP that fits a Gaussian mixture model on the target feature embeddings and
computes the LEEP score between the probabalistic assignment of target features to different clusters
and the target labels. [10] proposed TransRate — a computationally-friendly surrogate of mutual
information (using coding rate) between the target feature embeddings and the target labels. [1]
introduced H-score that takes into account inter-class feature variance and feature redundancy. [26]
proposed LogME that considers an optimization problem rooted in Bayesian statistics to maximize the
marginal likelihood. [4] introduced LFC to measure in-class similarity of target feature embeddings.

Transferability setup We consider two FT scenarios based on existing literature. (i) Source Model
Selection (SMS): For a particular target data/task, this regime aims to select the “optimal" source
model (or data) to transfer-learn from, from a collection of candidate models/data. (ii) Target Task
Selection (TTS): For a particular (source) model, this regime aims to find the most related target
data/task. In addition, we consider two FT strategies: (a) Linear FT: All layers except for the
penultimate layer are frozen. Only the weights of the head classifier are re-trained while fine-tuning.
(b) Nonlinear FT: Any arbitrary layer can be designated as a feature extractor, up to which all the
layers are frozen; all subsequent (nonlinear) layers along with head are re-trained.

Contributions Our contributions are three-fold: (i) We show that H-score, a baseline for newer
measures, suffers from instability due to poor covariance estimation. We propose shrinkage-based
estimation of H-score with regularized covariance estimation techniques. We show 80% absolute
increase over the original H-score and show superior performance in 9/15 cases against all newer
TMs across various FT scenarios. (ii) We present a fast implementation of our estimator that is 3− 55
times faster than state-of-the-art LogME measure. Unlike LogME, our estimator is tractable even for
really high-dimensional feature embeddings ∼ 105. (iii) We identify problems with 3 other measures
(NCE, LEEP and NLEEP) in target task selection when either the number of classes or the class
imbalance varies across candidate target tasks. We propose measuring correlation against relative
target accuracy (instead of vanilla accuracy) in such scenarios. 65,000 FT experiments with ImageNet
models and different regimes constructed from CIFAR-100/CIFAR-10 validates our proposals.
This paper is organized as follows. Section 2 addresses shortcomings of the pioneer TM (H-Score)
that arise due to limited target data. Section 3 identifies problems with recent NCE, LEEP and
NLEEP metrics and proposes corrections. Finally, Section 4 presents a meta study of all metrics.

2 Improved estimation of H-score for limited target data

H-score [1] is the pioneer measure, often used as a baseline for newer measures that often demon-
strate the improved performance. It characterizes discriminatory strength of feature embedding for
classification: H(f) = tr(Σf−1Σz), where d is the embedding dimension, f i = h(xi) ∈ Rd is the
target feature embeddings when the feature extractor h(.) from the source model is applied to the
target sample xi, F ∈ Rnt×d denotes the target feature matrix, Y ∈ {1, · · · , C} are the target labels,
Σf ∈ Rd×d denotes the sample feature covariance matrix of f , z = E [f |Y ] ∈ Rd and Z ∈ Rnt×d
denotes the target conditioned feature matrix, Σz ∈ Rd×d denotes the sample covariance of z.

We hypothesize that the sub-optimal performance of H-Score (compared to that of more recent
metrics) for measuring transferability in many of the evaluation cases, e.g., in [18], is due to lack of
robust estimation of H-Score — see Fig. 1 for a synthetic example showing the non-reliability of
empirical H-score over various sample sizes when compared with its population version. Given that
many of the deep learning models in the context of TL have high-dimensional feature embedding
space — typically larger than the number of target samples — the estimation of the two covariance
matrices in H-score becomes challenging: the sample covariance matrix of the feature embedding has
a large condition number1 in small data regimes. In many cases, it cannot even be inverted. [1] used a
pseudo-inverse of the covariance matrix Σf . However, this method of estimating a precision matrix
can be sub-optimal as inversion can amplify estimation error [13]. We propose to use well-conditioned
shrinkage estimators from rich literature in statistics on the estimation of high-dimensional covariance
matrices [20]. Such shrinkage estimators can offer significant gain in the performance of H-score in
predicting transferability, making it a leading TM.

1Condition number of a positive semidefinite matrix A, is the ratio of its largest and smallest eigenvalues.
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Proposed Transferability Measure We propose the following shrinkage based H-score:

Hα(f) = tr
(
Σf−1

α · (1− α)Σz
)
, (1)

Estimating Σf
α: While there are several possibilities to obtain a regularized covariance matrix [20],

we present an approach that considers a linear operation on the eigenvalues of the sample version of
the feature embedding covariance matrix. Similar ideas of using well-conditioned plug-in covariance
matrices are used in the context of discriminant analysis [8]. In particular, we improve the conditioning
of the covariance matrix by considering its weighted convex combination with a scalar multiple of
the identity matrix: Σf

α = (1− α)Σf + ασId, where α ∈ [0, 1] is the shrinkage parameter and σ is
the average variance computed as tr(Σf )/d. Note that the inverse of Σf

α can be computed for every
α, by using the eigen-decomposition of Σf . The shrinkage parameter controls the bias and variance
trade-off; the optimal α needs to be selected. This distribution-free estimator is well-suited for our
application as the explicit convex linear combination is easy to compute and makes the covariance
estimates well-conditioned and more accurate [13, 2, 21].
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Figure 1: Stability of original H(f) and
the shrinkage-based Hα(f) with respect
to number of samples. The original H-
Score is∼ 75 times larger than the popu-
lation version of the H-Score (estimated
with a sample size of 106). In contrast,
the shrinkage-based H-Score is signifi-
cantly more reliable.

Understanding (1 − α)Σz: The scaling factor (1 − α)
can be understood in terms of ridge-regularized covariance
estimation:

1/(1 + λ) ·Σz = argminΣ̂ ||Σ̂−Σz||22 + λ||Σ̂||22,
(2)

where λ ≥ 0 is the ridge penalty. Choosing λ = α/(1−
α), it becomes clear that (1 − α)Σz is the regularized
covariance.

Choice of α [13] proposed a covariance matrix estima-
tor that minimizes mean squared error loss between the
shrinkage based covariance estimator and the true covari-
ance matrix. The optimization with respect to α considers
the following objective:

minα,v E[||Σ∗ −Σ||2]

s.t. Σ∗ = (1− α)Σf + αvI, E[Σf ] = Σ. (3)

where ‖A‖2 = tr(AAT )/d. This optimization problem
permits a closed-form solution for the optimal shrinkage parameter, which is given by:

α∗ = E[||Σf −Σ||2]
/

E[||Σf − (tr(Σ)/d) · Id||2] (4)

' min{(1/n2t )
∑

i∈[nt]
||f if

T
i −Σf ||2

/
||Σf − (tr(Σf )/d) · Id||2, 1}. (5)

where (5) defines a valid estimator (not dependent on true covariance matrix) for practical use. For
proof, we refer the readers to Section 2.1 and 3.3 in [13].

Additional Discussion The covariance Σz can not be shrunk independently of Σf in the estimation
of Hα(f)— the two covariances are coupled by the law of total covariance:

Σf = E[ΣfY ] + Σz. (6)

where fY denotes the feature embedding of target samples that belong to class Y ∈ Y and ΣfY =
Cov(f |Y ) denotes the class-conditioned covariances. We can write

(1− α)Σf = (1− α)E[ΣfY ] + (1− α)Σz,

Σf
α = (1− α)Σf + α

tr(Σf )

d
Id = (1− α)E[ΣfY ] + α

tr(Σf )

d
Id + (1− α)Σz. (7)

Comparing (7) with (6), we see that the same shrinkage parameter α should be used when using
shrinkage estimators, to preserve law of total covariance. The first two terms on the right side in (7)
can be understood as shrinkage of class-conditioned covariances to the average (global) variance.
The third term in (7) (e.g. (1− α)Σz) can then be understood as ridge shrinkage as in (2).
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We first provide validation of shrinkage-based estimation of H-Score on synthetic classification data.
We generated 1 million 1000-dimensional features with 10 classes using Sklearn multi-class dataset
generation function [19]. Number of informative features is set to 500 with rest filled with random
noise. We visualize the original and the population version of the H-score and the shrinkage-based
H-Score for different sample sizes in Fig. 1. We observe that the original H-Score becomes highly
unreliable as the number of samples decreases. In contrast, the shrunken estimation of H-Score is
highly stable and has a small error when compared with the population H-Score.

We provide an efficient implementation for small target data (C ≤ nt < d) in Supplement Section
S2.1 that leads to 3 − 55 times faster computation than the state-of-the-art LogME measure (see
Table S2 in Supplement Section S2.1.2).

3 A closer look at NCE, LEEP and NLEEP measures
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Figure 2: Relation of NCE, LEEP & NLEEP to
[Left] number of classes (log-scale) and [Right]
class imbalance, max(n1, n2)/min(n1, n2), for
VGG19 on CIFAR100. For [Left], we randomly
select 2-100 classes. For [Right], we randomly
select 2 classes and vary the class imbalances.

We pursue a deeper investigation of some of
the newer metrics (reported to be superior to
H-Score) and bring to light what appear to be
some overlooked issues with these metrics in
Target Task Selection (TTS) scenario. TTS
has received less attention than Source Model
Selection (SMS). We are the first to highlight
these problematic aspects with NCE, LEEP and
NLEEP, which can potentially lead to the mis-
use of these metrics in measuring transferability.
These measures are sensitive to the number of
target classes (C) and tend to be smaller when
C is larger (see Fig. 2[Left]). Therefore, use
of these measures for target tasks with different
C will most likely select the task with a smaller
C. However, in practice, transferring to a task with a smaller C is not always easier; for example,
reframing a multiclass classification into a set of binary tasks can create more difficult to learn
boundaries [6]. Furthermore, the measures are also problematic if two candidate target tasks have
different imbalances in their classes even if C is the same. The measures would predict higher
transferability for imbalanced data regimes over balanced settings (see Fig. 2[Right]). However,
imbalanced datasets are typically harder to learn. If these measures are correlated against vanilla
accuracy, which tends to be higher as the imbalance increases e.g. for binary classification, the
measures would falsely suggest they are good indicators of performance. Earlier work erroneously
showed good correlation of these metrics against vanilla accuracy to show dominance of such metrics
in TTS with different C [18, 23] and imbalance [23].

Here, we propose a method to ameliorate the shortcomings of NCE, LEEP and NLEEP to prevent
misuse of these measures, so that they lead to more reliable conclusions. We propose to standardize
the metrics by the entropy of the target label priors, leading to the following definitions:

n-NCE = 1 + NCE/H(Y ), n-LEEP = 1 + LEEP/H(Y ), n-NLEEP = 1 +NLEEP/H(Y ).
We provide additional motivation (and proof) for these definitions in Supplement Section S3. For
scenarios where candidate target tasks have different C, we propose an alternative evaluation criteria
(relative accuracy) instead of vanilla accuracy — see Section 4 for more details. We provide empirical
validation of the proposed normalization to these measures in Table 2 in Section 4. We also show that
our proposed Hα(f) is the leading metric even in these scenarios.

4 Empirical Evaluation & Conclusion

We evaluate existing TMs and our proposed modifications in various FT regimes and data settings.
We are inspired by [18] who consider TTS and SMS. The regimes highlight important aspects of
TMs, e.g., dataset size, number of target classes, and feature dimension etc. Some of these aspects
have been overlooked when evaluating TMs, leading to improper conclusions.

Evaluation criteria TMs are often evaluated by how well they correlate with the test accuracy after
FT the model on target data. Following [24, 18, 10], we used Pearson correlation. We include
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additional results with rank correlations (e.g., Spearman) in Supplement Section S7. We argue that
considering correlation with vanilla accuracy is flawed in some scenarios. In particular, for TTS,
it is wrong to compare target tasks based on accuracy when C is different e.g 5 vs 10 classes. In
such a case, task with 10 classes will more likely have lower test accuracy compared to that for
task with 5 classes. It is more appropriate to consider the gain in accuracy achieved by the model
over it’s random baseline. Hence we propose relative accuracy (for balanced classes): Accuracy−1/C

1/C .
This measure is more effective in capturing the performance gain achieved by the same model in
transferring to two domains with different C. This also highlights the limitation of NCE, LEEP and
NLEEP which are sensitive to C and tend to have smaller values with higher C; these measures do
not provide useful information about how hard these different tasks when evaluated on the original
accuracy scale. Correlations marked with asterisks (*) in Tables 1, 2, 3 are not statistically significant
(p-value > 0.05). Hyphen (-) indicates the computation ran out of memory or was really slow.

Target Task Selection We consider Small balanced (S-B) target data, small imbalanced (S-IB) and
Large Balance (L-B). See additional details in Supplement Section S6. We compare our proposed
Hα(f) against the original H-Score by [1]. Table 1 demonstrates 80% absolute gains in correlation
performance of Hα(f) over H(f), making it a leading metric in many cases in small target data
regimes. Table 2 shows how various supervised TMs perform in TTS when the number of target
classes varies. Hα(f) dominates the performance in both cases, surpassing all supervised TMs.

Table 1: Correlation comparison of our proposed Hα(f) with supervised TMs against FT accuracy.
Fine-tuning Target Data Model Regime H(f) Hα(f) NCE LEEP NLEEP TransRate LFC LogME

Linear

CIFAR-100
VGG19 S-B -0.138* 0.807 0.656 0.647 0.809 0.564 0.759 0.848

S-IB 0.030* 0.771 0.573 0.625 0.703 0.462 0.473 0.748

ResNet50 S-B 0.034* 0.865 0.663 0.684 0.807 0.273 0.773 0.833
S-IB -0.103 0.785 0.560 0.569 0.699 0.437 0.518 0.819

CIFAR-10
VGG19 S-B 0.004* 0.671 0.523 0.596 0.612 0.415 0.437 0.735

S-IB 0.091* 0.808 0.746 0.817 0.830 0.287 0.320 0.886

ResNet50 S-B -0.291 0.733 0.427 0.444 0.611 -0.019* 0.565 0.705
S-IB 0.170* 0.893 0.656 0.708 0.752 0.279 0.005* 0.832

Nonlinear CIFAR-100 VGG19 S-B 0.165* 0.729 0.575 0.589 0.674 -0.029* 0.700 -
S-IB 0.032* 0.487 0.487 0.542 0.551 0.480 0.173 -

Table 2: Correlation against relative accuracy for L-B case with different C across target tasks.
Model H(f) Hα(f) NCE n-NCE LEEP n-LEEP NLEEP n-NLEEP TransRate LogME
VGG19 0.876 0.971 -0.949 0.655 -0.947 0.661 -0.932 0.945 0.681 0.968
ResNet50 0.950 0.979 -0.950 -0.736 -0.950 -0.728 -0.936 -0.626 0.562 0.959

Source Model Selection We select 9 small to large ImageNet models. We evaluate SMS for FT
under small sample setting. We sample 50 images per class from all classes available in the original
train split of CIFAR-100/CIFAR-10. We designate 10 samples per class for hyperparameter tuning.

Table 3: Correlation of proposed Hα(f) without/with Random Projection (RP) for FT in SMS.
Regime Target H(f) Hα(f)[No RP] Hα(f)[RP] NCE LEEP NLEEP TransRate LogME

Linear CIFAR-100 -0.190* 0.024* 0.859 0.825 0.839 0.852 -0.204* 0.705
CIFAR-10 0.276* 0.277* 0.939 0.938 0.936 0.938 0.311* 0.923

Nonlinear CIFAR-100 -0.108* 0.125* 0.879 0.967 0.976 0.977 - -

For SMS, the feature dimensions vary significantly across source models (see Table S3 in Supplement
Section S5). In such scenarios, dimensionality reduction is useful for H-score for more meaningful
comparison across different models. We apply random projection (RP) on target feature embeddings
to project to 128-dimensional space. This provides the gains of proposed Hα(f) in SMS as well for
small samples as given in Table 3, making it again a leading metric in SMS.

Conclusion To summarize, regularized covariance estimation in H-Score (pioneer TM) makes it a
leading metric (9/15 cases) against newer measures across various FT scenarios and data settings.
With fast implementation, our estimator can be 3− 55 times quicker than state-of-the-art LogME
measure. Standardization of NCE, LEEP and NLEEP and correlation against relative accuracy in
target selection can provide for more conclusive evaluation about performance of such measures.
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Supplementary Material

S1 Acronyms

Table S1: List of acronyms used in the paper.
Terms Acronyms
Transferability Measure TM
Target Task Selection TTS
Source Model Selection SMS
Fine-tuning FT
Dimensionality Reduction DR
Principal Component Analysis PCA
Random Projection RP
Small-Balanced S-B
Small-Imbalanced S-IB
Large-Balanced L-B

S2 Supervised Transferability metrics

S2.1 Efficient Computation for small target data

For small target data (C ≤ nt < d), the naive implementation of Hα(f) can be very slow. We
propose an optimized implementation for our shrinkage-based H-Score that exploits diagonal plus
low-rank structure of Σf

α for efficient matrix inversion and the low-rank structure of Σz for faster
matrix-matrix multiplications. We assume F (and correspondingly Z) are centered. The optimized
computation of Hα(f) is given by:

Hα(f) = (1− α)/(ntασ) ·
(
‖R‖2F − (1− α) · vec (G)T vec

(
W−1G

))
, (S1)

whereR =
[√
n1f̄Y=1, · · · ,

√
nC f̄Y=C

]
∈ Rd×C ,G = FR ∈ Rnt×C ,W = ntασIn+FF T ∈

Rnt×nt . The derivation is provided in the Supplement Section S2.1.1. We make a timing comparison
of our optimized implementation of Hα(f) against the computational times of the state-of-the-art
LogME measure and demonstrate 3 − 55 times faster computation (see Table S2 in Supplement
Section S2.1.2).

S2.1.1 Derivation of optimized implementation for Hα(f)

We derive an optimized computation for our proposed shrinkage-based H-score Hα(f) for small
target data (C ≤ nt < d) as follows:

Hα(f) = tr
(
Σf−1

α · (1− α)Σz
)

=
(1− α)

nt
· tr

((
ασId +

(1− α)

nt
F TF

)−1
ZTZ

)
,

=
(1− α)

ntασ
· tr

((
Id +

(1− α)

ntασ
F TF

)−1
RRT

)
,

=
(1− α)

ntασ
· tr
((
Id − (1− α) · F T

(
ntασIn + FF T

)−1
F

)
RRT

)
, (S2)

=
(1− α)

ntασ
·
(

tr
(
RTR

)
− (1− α) · tr

(
GTW−1G

))
, (S3)

=
(1− α)

ntασ
·
(
‖R‖2F − (1− α) · vec (G)

T vec
(
W−1G

))
, (S4)

whereR =
[√
n1f̄Y=1, · · · ,

√
nC f̄Y=C

]
∈ Rd×C ,G = FR ∈ Rnt×C ,W = ntασIn+FF T ∈

Rnt×nt , (S2) follows by Woodbury matrix identity ((I +UV )−1 = I −U(I + V U)−1V ) [17]
and (S3) and (S4) follow by trace properties.
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S2.1.2 Timing comparison between LogME and Hα(f)

We empirically investigate the computational times of Hα(f) when computed via our optimized
implementation in (S1). For this exercise, we generate synthetic multi-class classification data using
Sklearn [19] multi-class dataset generation function that is adapted from [7]. We investigate different
values for number of samples (nt), feature dimension (d) and number of classes (C). For data
generation, we set number of informative features to be 100 with the rest of the features filled with
random noise. Table S2 demonstrates a significant computational advantage ofHα(f) over LogME.
We observe 3− 55 times faster computational times. LogME seems intractable both with respect to
memory and time for d ∼ 105 as exposed by the nonlinear settings in Table 1 and 3.

Table S2: Timing comparison of LogME and our shrinkage-based H-score. All times are in ms.
nt d |Y| = C LogME H(f) Hα(f)

500 500 50 150 95 20
500 1000 50 300 200 66
500 5000 50 39100 9680 1400
500 10000 50 296000 80000 5280
500 1000 10 252 170 63
500 1000 100 358 202 69
100 1000 50 305 248 19

1000 1000 50 333 173 116

S3 Normalization of NCE, LEEP and NLEEP

Our proposed definition for normalized NCE in Section 3 ensures the normalized NCE is bounded
between [0, 1]. For proof, see Section S3.1. n-NCE is in fact equivalent to normalized mutual informa-
tion and has been extensively used to measure correlation between two different labelings/clustering
of samples [25]. Given the similar behavior of LEEP and NLEEP different C and class imbalance as
that for NCE (shown in Fig. 2), we suggest similar normalization. However, this normalization does
not ensure boundedness of n-LEEP score (and by extension n-NLEEP) in the range [0, 1] as in the
case of n-NCE.

S3.1 Normalization of NCE

NCE [24] evaluates conditional entropy between target pseudo labels Z(t) (source model’s assigned
labels) and actual target labels, as given by:

NCE(Y (t)|Z(t)) =
1

nt

nt∑
i=1

log pY (t)|Z(t)(yi|zi) (S5)

The conditional entropy of the target labels conditioned on the dummy labels (source model’ labels
on target data) is:

H(Y |Z) = −
∑

y∈Y,z∈Z
pY,Z(y, z) log pY |Z(y|z) (S6)

It holds that 0 ≤ H(Y |Z) ≤ H(Y ) (see appendix S3.1.1). Negative Conditional Entropy (NCE)
is given by NCE = −H(Y |Z) and it holds that 0 ≤ −NCE ≤ H(Y ). We normalize the NCE as
follows:

0 ≥ NCE
H(Y )

≥ −1 (S7)

0 ≤ 1 +
NCE
H(Y )

≤ 1 (S8)

where in (S7) we use the fact that entropy is greater than 0 for any practical classification task.
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S3.1.1 Proof of bounds on conditional entropy

H(Y |Z) = −
∑

y∈Y,z∈Z
pY,Z(y, z) log pY |Z(y|z) (S9)

=
∑
z∈Z

pZ(z)

−∑
y∈Y

pY |Z(y|z) log pY |Z(y|z)

 (S10)

=
∑
z∈Z

pZ(z)H(Y |Z = z) (S11)

≥ 0 (S12)

where (S12) holds because H(Y |Z = z) ≥ 0 and holds with equality if and only if Y is a determin-
istic function of Z.

H(Y |Z) = −
∑

y∈Y,z∈Z
pY,Z(y, z) log pY |Z(y|z) (S13)

= −
∑

y∈Y,z∈Z
pY,Z(y, z) log

pY,Z(y, z)

pZ(z)
(S14)

=
∑

y∈Y,z∈Z
pY (y)

pY,Z(y, z)

pY (y)
log

pZ(z)

pY,Z(y, z)
(S15)

≤
∑
y∈Y

pY (y) log
∑
z∈Z

pY,Z(y, z)

pY (y)

pZ(z)

pY,Z(y, z)
(S16)

= −
∑
y∈Y

pY (y) log pY (y) (S17)

= H(Y ) (S18)

where (S16) holds by Jensen inequality.

S4 Fine-tuning with hyperparameter optimization

Current practices for FT typically involve a selection of values for hyperparameters when retraining
the model on target data. Given that the target datasets are typically small in the transfer learning
scenarios, the typical strategy is to adopt the default hyperparameters for training large models
while using smaller initial learning rate and fewer epochs for FT. It has been believed that adhering
to the original hyperparameters for FT with small learning rate prevents catastrophic forgetting
of the originally learned knowledge or features. Many studies have used fixed hyperparameters
(e.g. learning rate, momentum and weight decay, number of epochs) for FT. However, the choice
of hyperparameters is not necessarily optimal for FT on target tasks. Earlier work has reported
that the performance is sensitive to the default hyperparameter selection, in particular learning rate,
momentum (for stochastic gradient descent), weight decay and number of epochs [16, 11, 14]. The
optimal choice of these parameters is not only target data dependent but also sensitive to the domain
similarity between the source and target datasets [14]. Therefore, in order to ensure the target task
accuracy (against which the correlation of transferability metrics is measured) is optimal, we repeat
the FT exercise for 100 trials of hyperparameter settings. We employ Adam for FT experiments
and optimize over batch size, learning rate, number of epochs and weight decay (L2 regularization
on the classifier head). We select the space of these hyperparameters based on existing literature
on FT, e.g. the learning rate is varied in the range [1e− 1, 1e− 5], the number of epochs between
{25, 50, 75, 100, 125, 150, 175, 200}, the batch size between {32, 64, 128} and the weight decay in
the range [1e− 6, 1e− 2].
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Table S3: Feature extraction layer in ImageNet models for nonlinear FT. The names are from
pre-trained ImageNet models in Tensorflow Keras https://keras.io/api/applications/.

Models Linear Fine-Tuning Nonlinear Fine-Tuning
Embedding Layer d Embedding Layer d

VGG19 penultimate 4096 block3_pool 28× 28× 256 = 200, 704
ResNet50 penultimate 2048 conv2_block3_out 28× 28× 256 = 200, 704
ResNet101 penultimate 2048 conv2_block3_out 28× 28× 256 = 200, 704
DenseNet121 penultimate 1024 pool2_pool 28× 28× 128 = 100, 352
DenseNet201 penultimate 1920 pool2_pool 28× 28× 128 = 100, 352
Xception penultimate 2048 add_6 14× 14× 728 = 142, 688
InceptionV3 penultimate 2048 mixed4 12× 12× 768 = 110, 592
MobileNet penultimate 1024 conv_pw_6_relu 14× 14× 512 = 100, 352
EfficientNetB0 penultimate 1280 block3a_activation 28× 28× 144 = 112, 896

S5 Feature Embedding layers for linear and nonlinear Finetuning

S6 Target Task Selection Experiments setup

This evaluation regime is motivated by task transfer policy learning in robotics/reinforcement learning.
Under this regime, transferability measures can be used to greedily optimize a task transfer policy
given a collection of tasks. For instance, a robot has to automatically select which new object to pick
up. Given that the robot has learned to pick up a few objects before, it would be beneficial for the
robot to optimally select the most transferable source/task object pair and improve it’s maneuvering
ability throughout the process in a highly efficient manner. TMs can also shed light on the relatedness
of different tasks in reinforcement learning setups for better understanding.

We currently evaluate target task selection regime on visual classification tasks with both VGG19
[22] and ResNet50 [9] models on subsets of CIFAR-100/CIFAR-10 data under three different dataset
regimes following [18]. In all 3 cases outlined below, 20% of the samples from the randomly
generated subsets is designated as validation set for hyperparameter tuning to find the model with
with optimal validation accuracy. We use all examples in the original test set for evaluating out-of-
sample accuracy performance on the target data. Both training and validation samples in the subsets
are used for computation of transferability metrics and we report the correlation of these measures
against the (relative) test accuracies for the randomly generated subsets.

• Small-Balanced Target Data: We make a random selection of 5 classes from CIFAR-100/CIFAR-
10 and sample 50 samples per class from the original train split, out of which we designate 10
samples per class for validation. We repeat this exercise 50 times (with a different selection of 5
classes), fine-tune the model for each selection (100 hyperparameter tuning trials per selection
to find finetuned model with optimal validation accuracy) and evaluate performance of those
optimal models in terms of test accuracy. We then evaluate rank correlations of TMs across the 50
experiments with random selection of 5 sub-classes.

• Small-Imbalanced Target Data: We make 50 random selections of 2 classes from CIFAR-
100/CIFAR-10, sample between 30− 60 samples from the first class and sample 5× the number of
samples from the second class. This makes for a binary imbalanced classification task. We again
measure performance of transferability measures against optimal target test accuracy.

• Large-Balanced Target Data with different number of classes: We randomly select 2-100 classes
from CIFAR-100 and include all samples from the chosen classes (500 samples per class). This
constructs a range of large balanced dataset target task selection cases. We evaluate correlation of
TMs with relative target test accuracy across the variable number of target classes.

S7 Spearman Rank Correlation Performance of supervised Transferability
Measures

We present rank correlation performance of all supervised TMs across various FT scenarios (target
task selection and source model selection), FT strategies (linear and nonlinear) in various data regimes.
Table S4 combines setups in Tables 1, 2, and 3 and presents Spearman correlation performance of
Hα(f) against supervised TMs. Correlations marked with asterisks (*) are not statistically significant
(p-value > 0.05). Hyphen (-) indicates the computation ran out of memory on 128GB RAM and/or
was really slow.
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Table S4: Spearman correlation comparison of supervised TMs. Larger correlations indicate better
identifiability as quantified by TM. We compared our proposed Hα(f) against original H(f) and
state-of-the-art measures. For L-B regimes in the table we correlate against relative accuracy. For
other rows, we use vanilla accuracy.

FT scenario FT strategy Target Data Model Regime H(f) Hα(f) n-NCE n-LEEP n-NLEEP TransRate LFC LogME

Target Task Selection
Linear

CIFAR-100
VGG19 S-B -0.19* 0.77 0.67 0.67 0.81 0.56 0.72 0.86

S-IB -0.07* 0.71 0.64 0.63 0.72 0.40 0.52 0.79
L-B 0.96 0.97 0.50 0.44 0.95 0.91 0.88 0.96

ResNet50 S-B 0.13* 0.80 0.63 0.65 0.78 0.19* 0.69 0.82
S-IB -0.10* 0.76 0.57 0.58 0.69 0.43 0.53 0.81
L-B 0.98 1.00 -0.89 -0.86 -0.74 0.90 0.92 0.99

CIFAR-10
VGG19 S-B 0.06* 0.57 0.49 0.49 0.55 0.30 0.30 0.65

S-IB 0.21* 0.72 0.76 0.85 0.85 0.32 0.41 0.86

ResNet50 S-B -0.31 0.60 0.28 0.29 0.51 0.02* 0.46 0.59
S-IB 0.35 0.76 0.64 0.69 0.72 0.25* -0.10* 0.76

Nonlinear CIFAR-100 VGG19 S-B -0.00* 0.76 0.61 0.62 0.71 0.02* 0.71 -
S-IB 0.03* 0.59 0.62 0.62 0.68 0.47 0.16* -

Source Model Selection Linear CIFAR-100 - Small 0.30* 0.88 0.83 0.83 0.80 0.35* 0.81 0.83
CIFAR-10 - Small 0.07* 0.88 0.93 0.92 0.92 0.07* 0.72 0.95

Nonlinear CIFAR-100 - Small 0.052* 0.96 0.93 0.93 0.93 0.29 0.88 -

With respect to Spearman correlations in the table above, our shrinkage-based H-score Hα(f) leads
in 7/15 cases and LogME leads in 8/15 cases. In terms of Pearson correlations, Hα(f) leads in 9/15
cases (Tables 1, 2, 3) and LogME leads in 4/15 cases. Additionally, LogME seems to be intractable
with respect to memory and computational speed for nonlinear settings where feature dimension is
large (d ∼ 105). Our efficient implementation for Hα(f) provides a 3 − 55 times computational
advantage over LogME.

S8 Experimental code and type of resources

We use Tensorflow Keras for our implementation. Imagenet checkpoints (Resnet and VGG) come
from Keras https://keras.io/api/applications/. For experiments, we use 2 P100 GPUs per model, 15GB
RAM per GPU
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