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ABSTRACT

Being able to evaluate the quality of a clustering result even in the absence of
ground truth cluster labels is fundamental for research in data mining. However,
most cluster validation indices (CVIs) do not capture noise assignments by density-
based clustering methods like DBSCAN or HDBSCAN, even though the ability
to correctly determine noise is crucial for a successful clustering. In this paper,
we propose DISCO, a Density-based Internal Score for Clusterings with nOise,
the first CVI to explicitly assess the quality of noise assignments rather than
merely counting them. DISCO is based on the established idea of the Silhouette
Coefficient, but adopts density-connectivity to evaluate clusters of arbitrary shapes,
and proposes explicit noise evaluation: it rewards correctly assigned noise labels
and penalizes noise labels where a cluster label would have been more appropriate.
The pointwise definition of DISCO allows for the seamless integration of noise
evaluation into the final clustering evaluation, while also enabling explainable
evaluations of the clustered data. In contrast to most state-of-the-art, DISCO
is well-defined and also covers edge cases that regularly appear as output from
clustering algorithms, such as singleton clusters or a single cluster plus noise.

1 INTRODUCTION

Density-based clustering is a fundamental concept known from methods like DBSCAN (Ester et al.,
1996) or HDBSCAN (Campello et al., 2013) and serves as the basis of recent solutions, e.g., for fair
clustering (Krieger et al., 2025). However, evaluating the quality of density-based clusterings still
faces open challenges, especially regarding noise assignments. Density-based clusters are regions of
high object density that are separated by regions of lower object density. Points that do not lie in a
cluster are labeled as noise. Unlike in centroid-based clustering, density-based clusters may have
arbitrary shapes, and not all points need to be assigned to a cluster. For example, in Figure 1a, each
ring is one density-based cluster separated from other clusters by low-density regions that contain
noise points.

(a) DISCO: 0.52,
SC: -0.15, DBCV: 0.77

(b) DISCO: -0.01,
SC: 0.38, DBCV: -0.90

(c) DISCO: 0.50,
SC: 0.08, DBCV: 0.46

(d) DISCO: 0.21,
SC: 0.29, DBCV: 0.63

Figure 1: Ring-shaped ground truth clusters (color-coded) with noise (gray +). Top: The density-
based CVIs DISCO and DBCV rate the ground truth ring clustering in (a) higher than the k-Means
clustering cutting across rings in (b), while the Silhouette Coefficient (SC) prefers the latter. Bottom:
DISCO scores the “clean” clustering in (c) higher than the version where some noise points are added
to the ring-shaped clusters (d). DBCV only evaluates the amount of noise, and, thus, prefers the latter.

Internal cluster validity indices (CVIs) provide a quality score for a clustering without known ground
truth (Zaki et al., 2020). By comparing the quality of different clusterings, CVIs are essential for
selecting suitable clustering algorithms and their hyperparameter settings. Typically, CVIs balance
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the compactness of clusters and their separation, e.g., in Davies-Bouldin (Davies & Bouldin, 1979),
Dunn index (Dunn, 1974), or Silhouette Coefficient (Rousseeuw, 1987).

Inherently, most CVIs assume compact clusters and are, thus, not suitable to evaluate the quality of
arbitrarily-shaped clusters like the three rings in Figure 1a. The Silhouette Coefficient (SC) of the
perfect clustering is −0.15, which incorrectly indicates a poor clustering. In contrast, the unintuitive
k-Means clustering in Figure 1b, where clusters are cut into pieces like a pie chart and the rings
are disconnected, is incorrectly scored with a much higher value of 0.38 by the SC. Supporting
arbitrarily-shaped clusters, the most prominent method, DBCV (Moulavi et al., 2014), correctly
prefers the perfect clustering.

One key advantage of density-based clustering is its ability to identify and label noise points. However,
such noise labels are not evaluated by most current CVIs, which ignore them altogether. To the best of
our knowledge, DBCV (Moulavi et al., 2014) is the only CVI that is properly defined for clusterings
with noise labels. However, it does not evaluate their quality, but simply reduces the total score by the
fraction of noise – even for correctly identified noise points. Thus, DBCV rates the worse clustering
in Figure 1d with a score of 0.63 as better than the perfect clustering in Figure 1c, which only yields
a DBCV score of 0.46. Note that CVIs that are not designed to handle or evaluate noise labels may
exhibit unintended and unintuitive biases when selecting the optimal clustering.

To overcome these limitations, we introduce DISCO, a Density-based Internal Evaluation Score for
Clusterings with nOise. DISCO is the only CVI that correctly scores the clusterings in Figure 1,
consistently preferring the optimal clusterings over worse ones by evaluating the quality of noise
labels based on their local object density. For cluster points, DISCO redefines the intuitive Silhouette
Coefficient based on density-connectivity. In contrast to existing CVIs, DISCO is well-defined with
a bounded value range from −1 to 1 for any possible labeling, which may not only include noise
labels but also singleton clusters and one-cluster clusterings. Our suggested internal cluster evaluation
measure for density-based clusterings, DISCO, has the following properties:

• It is the first internal CVI to evaluate the quality of noise labels, an essential feature of density-based
clustering.

• For both noise points and clustered points, DISCO adopts the principle of density-connectivity,
which allows to assess the quality of density-based clusterings correctly.

• Building on the concepts of compactness and separation, DISCO assesses clustering quality with
an intuitive pointwise score, thereby enhancing interpretability.

2 RELATED WORK

Internal CVIs evaluate clustering quality without the need for ground truth labels by comparing the
compactness of clusters with the separation between clusters (Zaki et al., 2020). This concept is
employed in classical methods like Davies-Bouldin (Davies & Bouldin, 1979), Dunn index (Dunn,
1974), Silhouette Coefficient (Rousseeuw, 1987), or S Dbw (Halkidi & Vazirgiannis, 2001), which
work well for centroid-based clustering. However, these measures assume that clusters are ball-shaped,
making them problematic for arbitrarily-shaped clusters. While they can be combined with other
distance measures like minmax-path distance, e.g., in MMJ-SC (Liu, 2023), to capture non-spherical
clusters, their definitions do not consider noise assignments.

Compactness and separation can be evaluated either at the cluster or point level. Among the
clusterwise CVIs, CDbw (Halkidi & Vazirgiannis, 2008) and CVNN (Liu et al., 2013) extend
centroid-based CVIs with multiple representation points to handle more complex shapes. As a
downside, their scores depend on the number and choice of these representation points. CVDD (Hu &
Zhong, 2019) uses local density when computing the distance between clusters, allowing it to assess
cluster separation without being misled by outliers. For CVDD and CVNN, the resulting scores are
not bounded, making it difficult to assess how good a clustering really is, especially as, in practice,
the output spans several orders of magnitude.

In contrast, DBCV (Moulavi et al., 2014) and DCSI (Gauss et al., 2024) score compactness and
separation as the longest edge within and the minimum distance between clusterwise minimal
spanning trees (MSTs) under the pairwise mutual reachability distance. Both DBCV and DCSI
do not consider all points to avoid outliers: DBCV builds one MST on all points of each cluster
and then removes all leaves, while DCSI builds the MSTs only on core points. Importantly, as
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MSTs are not unique, removing all leaves may result in quite different sets of points remaining in
DBCV’s computations. Thus, DBCV outputs different scores for the exact same clustering, making it
unsuitable as a metric, we discuss at the end of this section and in Section B.

LCCV (Cheng et al., 2018) and VIASCKDE (Şenol, 2022) aggregate pointwise scores to capture con-
nectedness and separation. LCCV builds on points with local maximum density, while VIASCKDE
employs Kernel Density Estimation to assign higher weights to scores from points in regions of
higher density. Another step in the direction of density-based clustering evaluation is the work by
Schlake & Beecks (2024). They suggest using the density-connectivity distance (dc-dist) (Beer et al.,
2023) that captures the essence of density-connectivity-based clustering algorithms like DBSCAN
with various classic internal evaluation measures.

While all these methods use some notion of density for evaluating clusterings, they share a significant
drawback: In most cases, noise points are not even mentioned in their paper, with DBCV being the
only exception. DBCV filters noise points and scales the final score with the fraction of non-noise
points, a technique that could be applied in any CVI. Implicitly, LCCV and CVNN include noise
points when comparing against “all other” points. Although it is not discussed in the respective papers
that this might include noise points, the scores can behave desirably even for clusterings including
noise labels. All of these approaches penalize the existence of noise rather than evaluating the quality
of noise-labeled points, i.e., whether the noise label is desired or not (cf Section A.2). We summarize
key properties of these methods in Table 1.

Table 1: Features of internal evaluation measures.

Method
arbitrary
shapes

evaluates
noise bounded deterministic ↑/ ↓

Silhouette ✗ ✗ ✓ ✓ ↑
S Dbw ✗ ✗ ✗ ✓ ↓
DBCV ✓ ♦ ✓ ✗ ↑
DCSI ✓ ✗ ✓ ✓ ↑
LCCV ✓ ♦ ✓ ✓ ↑
VIASCKDE ✓ ✗ ✓ ✓ ↑
CVDD ✓ ✗ ✗ ✓ ↑
CDbw ✓ ✗ ✗ ✓ ↑
CVNN ✓ ♦ ✗ ✓ ↓
DISCO (ours) ✓ ✓ ✓ ✓ ↑

✓ yes ✗ no ♦ no, but affected by noise

0.3 0.2 0.1 0.0 0.1 0.2 0.3
DBCV

0

50

C
ou

nt

Dataset 1: complex8 Dataset 2: complex9

Figure 2: DBCV scores for ground truth cluster-
ing of complex8 (complex9) in green (blue) over
1000 runs: Scores are not deterministic and spread
around a mean (black dashed line) for a shuffled
processing order of data points.

Limitations of DBCV The currently used state-of-the-art internal CVI for density-based clusterings
is DBCV (Moulavi et al., 2014). However, DBCV is inherently non-deterministic as it excludes
points at the leaf level of the cluster-wise MST from its calculations. Since these points are not
uniquely determined for a given dataset and clustering, DBCV scores are non-deterministic as
also shown experimentally in Figure 2. As DBCV’s non-determinism has not been discussed in
literature, yet, we give more background on this novel and crucial finding in Section B. Note that as a
consequence, clustering results cannot be compared among each other using DBCV in a reproducible
way, prohibiting a scientific assessment of the clustering quality. E.g., on the ground truth clusterings
of the benchmark dataset complex8, DBCV yielded scores between −0.3 and 0.1 for the exact same
assignment of points to clusters (see Figure 2). This non-determinism is not discussed in Moulavi et al.
(2014). While the effect could be diminished, e.g., by taking the mean of several runs, users would
need to know about the problem, and such a mitigation is not part of the standard implementations.

3 DISCO: INTERNAL EVALUATION OF CLUSTERINGS WITH NOISE

Preliminaries DISCO evaluates a given density-based clustering C on a dataset X ∈ Rn×m with
n m-dimensional points. A clustering C is is a set of clusters Ci: C = {C1, C2, . . . , Ck} with
Ci ∩ Cj = ∅ for all i ̸= j. An advantage of density-based clustering methods is that not every point
needs to be assigned to a cluster: There may be noise points N = X \

⋃
i Ci. For x ∈ X , we use

shorthand Ĉx when referring to cluster Ci such that x ∈ Ci.

Internal evaluation metrics assess compactness and separation to evaluate given clusterings. Since
we focus on density-based clusterings, we base our concepts on notions introduced in density-based
clustering approaches like DBSCAN (Ester et al., 1996), or more recently HDBSCAN (Campello
et al., 2013). Density-based clusters are defined using core points and density-connectivity. Core
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points are points with more than µ neighbors within an ε-distance (their neighborhood), which makes
these areas dense. The core-distance κ(x) = deucl(x, x(µ)) captures the density of the area around
a point x as the Euclidean distance to its µ-th nearest neighbor x(µ). A lower core-distance, thus,
implies a higher object-density around x. Two points are density-connected if there is a path of core
points connecting both such that the maximum distance between successive core points is at most ε.
Density-based clusters are maximal sets of density-connected core points, i.e., they form a connected
component in a graph with the core points as nodes and edges that connect any pair of points with a
Euclidean distance smaller than ε.

To assess density-connectivity in a clustering, DISCO uses the density-connectivity distance (dc-dist)
ddc(x, y) (Beer et al., 2023). It is the minimax path (i.e., the path with the smallest maximum step
size) distance between two points x, y ∈ X in the graph given by all pairwise mutual reachability
distances dm(x, y) = max

(
κ(x), κ(y), deucl(x, y)

)
(Ankerst et al., 1999):

ddc(x, y) = max
e∈p(x,y)

|e| if x ̸= y, else 0 (1)

where |e| is the weight of any edge e (given by dm) on the path p(x, y) that connects points x and y
in the minimum spanning tree (MST) over this graph. Note that, in contrast to Euclidean distance,
ddc not only depends on the feature values of points x and y, but rather on how they are connected in
the dataset X: The minimax path may meander through the dataset to reach the target using only
small steps, effectively focusing on dense regions.

3.1 DEFINITION OF DISCO

To allow the assessment of individual cluster assignments and support interpretability, we define
DISCO pointwise, giving a score ρ(x) to each point x. The score for the entire dataset X is then the
average over all points’ scores:

DISCO: ρ(X) = avg
x∈X

ρ(x). (2)

DISCO treats cluster points and noise points differently, as we detail in the following subsections:

ρ(x) =

{
ρcluster(x) if x ∈ Ci for any i ∈ [1, . . . , k]

ρnoise(x) if x ∈ N
, (3)

where ρcluster and ρnoise are the pointwise DISCO scores for cluster and noise points, which we later
define in Equations (4) and (7).

Cluster Points: ρcluster(x). When x ∈ X is assigned to a cluster Ĉx, we compute ρcluster(x) by
comparing average distances within the cluster (compactness) with those to the closest other cluster
(separation). Importantly, these assessments employ the dc-dist ddc to account for density-based
clustering notions using d̃dc(x,Ci) = avgy∈Ci

ddc(x, y):

ρcluster(x) = min
Ci ̸=Ĉx

d̃dc(x,Ci)− d̃dc(x, Ĉx)

max(d̃dc(x,Ci), d̃dc(x, Ĉx))
(4)

In Equation (4), we compare the average distance from x to points in its own cluster Ĉx and the
“closest” other cluster. Here, shape and density of Ĉx and the “gap” to the next cluster are much more
important than, e.g., the Euclidean distance to the closest point of each cluster (see also Figure 7).

Noise Points: ρnoise(xn). One of the key advantages of density-based clustering methods is their
ability to detect and label noise explicitly, in contrast to clustering algorithms like k-Means or
Gaussian mixtures that assume clean data without global noise. In this paper, we focus on a
commonly used basic noise model: additional noise points in the data that do not belong to any cluster.
Those noise points usually stem from a different source than the points within clusters, thus, they
follow a different distribution. In order to properly evaluate the quality of a density-based clustering,
internal CVIs must quantify the quality of noise and cluster labels. Note that neither ignoring noise
points in the score nor interpreting them as a separate cluster (as is commonly done in standard
implementations) yields accurate evaluations. Excluding noise points from the evaluation can result
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in overly favorable scores for excessive noise labeling, while treating them as a cluster penalizes the
poor compactness associated with correctly labeled noise.

In contrast to other methods, DISCO actively evaluates the quality of given noise labels. To do so,
we follow the notion of noise points in density-based clustering (Ester et al., 1996; Campello et al.,
2013). There, noise points are points that are neither core points nor density-connected to any cluster.
Thus, a noise point is (a) in a low-density area (otherwise, the point would be a core point and would
start its own cluster) and (b), it is far away from any existing cluster (otherwise, it would be part of
such a nearby cluster). We capture both properties in our score.

(a) Noise points are not core points Noise points’ core-distances are larger than some ε. If a
noise point xn is in a low-density area, measured by comparing its core-distance to the maximum
core-distance of a point within a cluster, then it should be considered noise. We capture this by

ρsparse(xn) = min
Ci∈C

κ(xn)− κ(Ci)

max
(
κ(xn), κ(Ci)

) , (5)

where the core-distance threshold of a cluster C is the maximum core-distance of any point in C:
κ(C) = maxx∈C κ(x). It corresponds to the smallest ε such that the entire cluster remains density-
connected. By choosing the minimum over all clusters in Equation (5) instead of just comparing
to the core-distance of the closest cluster, we account for clusters of varying density. This global
interpretation of sparsity ensures that a group of noise points with the same density as a cluster
(somewhere else) is not rated as well-labeled noise.

(b) Noise points are not density-connected to any cluster. We assess this by comparing the
dc-dist between the noise point and each cluster with the maximum core-distance in that cluster. If
the dc-dist between the point and the cluster is smaller or equal to the maximum core-distance of the
cluster, then it is density-connected to said cluster and should thus be part of it (see also Figure 8).
Formally, for a noise point xn we compute a score for not being density-connected as

ρfar(xn) = min
Ci ∈C

miny∈Ci
ddc(xn, y) − κ(Ci)

max
(
miny∈Ci

ddc(xn, y), κ(Ci)
) . (6)

As noise should be neither in a dense region nor density-connected to an existing cluster, it is scored
as the minimum of these two:

ρnoise(xn) = min
(
ρsparse(xn), ρfar(xn)

)
. (7)

Edge Cases We handle edge cases as follows: For the extreme case of clusterings with only noise
points and no clusters, we define ρnoise(xn) = −1 as they have no clustering value.

Singleton clusters consist of only one point, contradicting the idea of grouping together similar points.
Thus, for all points x in singleton clusters, we set ρcluster(x) = 0. Similarly, if the clustering consists
of one cluster and no noise points, we let ρcluster(x) = 0 for all x ∈ X .

If there are, in addition to the only cluster C1, also noise points, we evaluate C1 w.r.t. the closest
noise points instead of the (non-existent) closest cluster:

ρcluster(x) =
minxn∈N ddc(x, xn) − d̃dc(x, Ĉx)

max
(
minxn∈N ddc(x, xn), d̃dc(x, Ĉx)

) (8)

Note that no other CVI is defined for clusterings with less than two clusters, even though density-based
methods like DBSCAN (Ester et al., 1996) or HDBSCAN (Campello et al., 2013) and synchroniza-
tion-based clustering methods (Böhm et al., 2010) may return such clusterings.

A commonly overlooked edge case occurs when datasets have more than µ duplicate points, making
their core-distances 0. This can lead to zero denominators in, e.g., Eq. 5. However, as these points
are always core points and, thus, “bad” noise, we simply set the fraction (and, thus, ρsparse) to 0.

3.2 DISCUSSION

DISCO effectively assesses compactness and separation in the density-connectivity sense, following
the structure of well-established CVIs. DISCO is deterministic and produces scores that are bounded
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Figure 3: Pointwise DISCO scores for cluto-t8-8k based on the ground truth clustering (left) and a
k-Means clustering (right). Lines indicate k-Means cluster borders. DISCO assigns high scores to
well-separated clusters and most noise points, and low scores to (disconnected) k-Means clusters.

between −1 and 1. By computing scores at the individual point level, it naturally enables evaluating
the quality of any point’s label – cluster label or noise label. DISCO is also widely applicable: being
based on density-connectivity, it is suitable not only for numeric data but also for any data type given
the pairwise similarities. It covers all edge cases that might be produced by various cluster algorithms
(e.g., clusterings with only one cluster or datasets with duplicate points). Figure 3 showcases several
of those benefits on a 2d toy dataset with two different labelings: density-based ground truth clustering
(left) and k-Means clustering (right). The colors indicate the pointwise DISCO scores, which are high
(blue) for most points on the left. Only one cluster in the middle right has mediocre (light brown)
scores, as it is the least dense cluster and relatively close to the next cluster. In contrast, the k-Means
clustering yields only low (orange) or mediocre (light brownish) DISCO scores for almost all points
as density-separated clusters are merged and density-connected clusters are split apart.

With an overall complexity of O(n2), DISCO yields in practice comparable runtimes to most density-
based competitors. While some CVIs (LCCV, CVDD, and CDbw) are much slower than DISCO,
centroid-based methods are usually faster.

4 EXPERIMENTS

In the following, we compare centroid-based and density-based evaluation (Section 4.1) and showcase
noise handling (Section 4.2). We investigate typical use cases (Section 4.3), compare to external
evaluation results (Section 4.4), and finally show DISCO’s behavior in systematic ablation studies
(Sections 4.5 and 4.6). We compare to the introduced CVIs that can also handle arbitrarily-shaped
clusters, and the classical approaches SC and S Dbw, which has been shown to be useful in many
scenarios (Liu et al., 2010). Details on the setup and implementation can be found in Section C. Our
code is available online: https://anonymous.4open.science/r/DISCO-E358/

4.1 DENSITY-BASED VS. CENTROID-BASED CLUSTER NOTION

Density-based CVIs should provide better scores for correct, density-based clusterings than for
unintuitive, centroid-based clusterings (that might be more compact). Thus, in Table 2, we regard two
different labelings of the density-based toy datasets 3-spiral and complex9: first, the density-based
ground truth labels, and second, a k-Means clustering. We compute the CVIs described in Section 2
and mark them in green if they indeed yield better scores for the density-based clustering than for the
centroid-based clustering. Most of the CVIs discussed in Section 2 for the density-based notion indeed
prefer (i.e., evaluate better) the density-based clustering. However, CVNN does not, VIASCKDE
evaluates both labelings as similarly good, and CDbw only makes a difference for complex9, but not
for 3-spiral. As expected, Silhouette and S Dbw prefer the k-Means clustering (orange in Table 2).

4.2 EVALUATING NOISE LABELS IS IMPORTANT

To the best of our knowledge, no internal CVI evaluates noise labels explicitly. While most of our
competitors do not define how noise should be handled at all, some unintended side effects may
appear when applying the methods nevertheless: points labeled as noise are treated as an own cluster
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or as many singleton clusters. DBCV applies a penalty proportional to the amount of noise labels.
This handling of noise or the lack thereof can yield undesirable results, as shown in Table 3.

Table 2: A density-based CVI should evalu-
ate the DBSCAN clustering equaling the ground
truth (left) as better than the k-Means clusterings
(right). The color indicates if the CVIs align
with these expectations or not. ↓ denotes that
lower scores imply a better clustering.

CVI
3-spiral 3-spiral complex9 complex9

DBSCAN k-Means DBSCAN k-Means

DISCO 0.59 0.00 0.36 0.02
Silhouette 0.0 0.36 -0.01 0.40
S Dbw ↓ 2.79 1.90 0.59 0.49
CVNN ↓ 5.49 3.63 5.11 4.79
DBCV 0.55 -0.95 −0.15 -0.88
DCSI 0.93 0.01 0.95 0.71
MMJ-SC 0.79 -0.01 0.44 0.03
LCCV 0.66 0.01 0.55 0.16
VIASCKDE 0.31 0.26 0.63 0.60
CVDD 189.35 0.58 689.4 25.86
CDbw 0.01 0.01 0.61 0.23

Table 3: CVIs for different clustering qualities.
The color indicates if the CVIs align with the ex-
pectations or not.∗ indicates the CVI does not han-
dle noise; the implementation treats noise-labeled
points as a cluster by default. + indicates noise
filtering. ↓ denotes that lower is better.

CVI

Label Quality optimal very bad optimal suboptimal

DISCO 0.30 -0.07 0.50 0.19
Silhouette∗ 0.06 0.09 0.07 0.30
S Dbw+ ↓ 0.73 0.31 0.53 0.55
CVNN ↓ 5.59 4.86 54.67 58.14
DBCV -0.05 0.17 0.46 0.63
DCSI+ 0.92 0.96 0.99 0.94
MMJ-SC 0.31 0.01 0.24 0.32
LCCV 0.11 0.26 0.38 0.40
VIASCKDE∗ 0.66 0.65 -1 -
CVDD+ 0.07 0.15 37.74 0.07
CDbw+ 0.1560 0.5646 0.0016 0.0014

Here, we examine how various CVIs evaluate a good and a bad clustering (with noise labels) on
two datasets. Columns one and two present the cluto-t8-8k dataset from Figure 3, with ground truth
labeling in the first column. The second column shows a very bad labeling of this dataset, where each
cluster on the left side is split into two clusters that are separated by points labeled as noise (gray).
One of the clusters is completely mislabeled as noise. Columns three and four show the dataset
from Figure 1 with two circle-shaped clusters and uniform background noise. Here, we compare the
ground truth clustering (column three) with a slightly worse clustering, where some noise points have
been mistakenly assigned to the clusters (column four). For each CVI, we compare the scores for the
optimal and the non-optimal clustering, and mark cases where the optimal one is preferred in green.
Notably, DISCO is the only CVI to prefer both good clusterings over their suboptimal counterparts.1

4.3 DETERMINING BEST PARAMETER SETTINGS
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Figure 4: CVIs for DBSCAN clusterings with
varying ε values on the noisy Synth high dataset
(k = 10, d = 100). Top: Resulting number of
clusters k. Bottom: Corresponding ARI scores.

A key application of CVIs is to determine good
parameter settings for clustering methods that
result in a high-quality clustering. Ideally, the
highest internal CVI score across different pa-
rameter settings corresponds to the clustering
that is most similar to the ground truth. Thus,
in Figure 4, we compare the scores of inter-
nal CVIs for DBSCAN clusterings across a
range of ε-values (leading to k ∈ [2, 20] clus-
ters) on the Synth high dataset that has k = 10
density-connected well-separated ground truth
clusters. Optimally, the circles indicating the
highest score should fit the highest ARI values
at k = 10 (red bar). However, only DISCO
and DBCV have the desired peak at ten clusters.
Thus, if used to find the best parameter setting,
other CVIs are misleading here, while DISCO
and DBCV correctly guide users to the setting
aligned with the ground truth. In Section D,
we show the corresponding experiments for the
very high-dimensional COIL20 dataset and the
3-spirals dataset from Table 2.

1 Note that VIASCKDE cannot be computed for the second dataset (columns 3 and 4) as the density of the
circular clusters is too uniform, leading to a division by zero in the official implementation.
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Table 4: Pearson Correlation Coefficient (PCC) between internal CVI scores and ARI values. For
each tested CVI (columns) and a wide range of datasets (rows) we compute the PCC based on seven
clusterings/labelings: the ground truth, DBSCAN, HDBSCAN, Ward, k-Means, and two random
labelings. – denotes that at least one clustering could not be evaluated by the respective CVI.

Dataset DISCO ↑ DBCV ↑ DCSI ↑ MMJ-SC ↑ LCCV ↑ VIAS. ↑ CVDD ↑ CDbw ↑ CVNN ↓ Silh. ↑ S Dbw ↓

three spiral 89.16 – – 89.01 85.82 – – 31.60 – −2.43 42.38
aggregation 80.95 – – 75.30 92.41 – – 86.48 – 89.95 −81.13
chainlink 92.78 99.71 72.27 92.49 90.07 51.84 99.67 76.93 −36.53 26.99 26.50
cluto-t4-8k 44.43 77.56 93.82 62.68 76.12 57.02 18.37 – −42.69 42.40 −53.84
cluto-t7-10k 48.66 83.87 88.86 61.64 32.42 50.38 −1.47 – −39.42 13.49 −53.19
cluto-t8-8k 91.35 71.41 88.53 89.69 59.64 81.94 −1.53 – −58.51 8.44 −68.10
complex8 95.71 90.53 90.09 96.04 90.17 87.15 47.60 48.43 −59.49 30.80 −71.59
complex9 56.35 59.63 78.28 61.20 75.16 68.58 19.25 66.13 −46.81 −1.52 −62.96
compound 86.08 – – 87.05 92.92 – – 67.59 – 62.12 −67.60
dartboard1 96.83 99.79 98.83 96.74 89.11 64.35 99.95 −53.39 −35.10 −20.07 −36.22
diamond9 98.99 87.13 99.31 99.27 93.52 98.99 67.20 13.71 −68.45 96.84 −87.33
smile1 96.60 – 96.40 96.58 94.62 – – 68.53 – 79.20 −93.58

Synth low 98.13 – 92.48 96.64 79.11 – – 13.89 – 87.70 −85.88
Synth high 96.87 – 95.52 96.30 72.72 – – 56.44 – 88.93 −87.40
htru2 37.40 −41.94 −26.74 35.07 55.80 50.50 58.43 – −37.98 73.46 −24.05
Pendigits 40.31 10.64 56.23 60.72 79.03 – 50.52 10.41 −43.92 78.22 −48.76
COIL20 95.79 93.44 94.17 97.94 93.13 – 63.99 21.84 −65.84 85.15 −90.29
cmu faces 62.08 – 71.43 64.59 78.33 – 80.75 −2.84 −53.60 80.46 −55.85
Optdigits 91.07 50.57 83.32 92.37 90.14 – 65.70 12.44 −61.59 86.94 −70.67

4.4 CONSENSUS OF INTERNAL AND EXTERNAL CVIS

Ideally, internal CVIs should yield similar scores to external CVIs based on the ground truth. In
Table 4, we study this correspondence between internal CVIs and the (external) ARI values across
several datasets and clusterings: We generate clusterings by diverse standard clustering algorithms
for each dataset and add two random clusterings. We compute the Pearson Correlation Coefficient
(PCC) between the respective CVIs and the ARI values for those clusterings. For the ARI calculation,
points labeled as noise are treated as singleton clusters. Some of our competitors are not defined for
the full range of clusterings, e.g., singleton clusters. Thus, they cannot be computed in some cases,
marked with “–” in Table 4, see further Section 3.1. DISCO is the only CVI inherently designed to
handle all edge cases, which typically occur when, e.g., DBSCAN’s parameter ε is set too high (only
one cluster) or too low (no cluster). A reliable CVI should always return some result and, ideally,
have a high PCC to the ARI. Table 4 shows that DISCO, MMJ-SC, and LCCV meet those criteria
best. DBCV and DCSI come close if they return a value; however, their scores contradict ARI on,
e.g., htru2.

4.5 HYPERPARAMETER ROBUSTNESS

DISCO has one hyperparameter, µ, which is used for the computation of the dc-dist. In Figure 5, we
test DISCO’s robustness by varying µ in the ranges [1, 30] for real-world datasets including large

1 5 10
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cluto-t7-10k
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Figure 5: DISCO scores (y-axis) are robust against varying µ (x-axis) for the tested datasets (implied
by color). Left: Datasets from the Deric benchmark. Right: Other real world datasets.
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and high-dimensional datasets like COIL20 or Pendigits, and [1, 10] for 2d benchmark data that is
commonly used for density-based methods. For most datasets, DISCO yields stable results. Only on
the datasets “3-spiral” and “COIL20”, DISCO values drop significantly for higher values for µ. This
can be explained by the sparseness on the outer ends of the spirals (3-spiral) and sparse clusters within
the dataset (COIL20). However, for both cases, our default of µ = 5 captures the density-connectivity
well. In Section D.3, we additionally analyze the effect of µ depending on the amount of existing
noise, where we observe robust results over a range of µ-values. Robustness across benchmarks
indicates that DISCO’s performance is not sensitive to µ, allowing us to fix µ = 5 in all experiments,
consistent with minPts heuristics in Ester et al. (1996); Schubert et al. (2017).

4.6 ABLATION OF CLUSTERING SCORE ρcluster

We perform an extensive sensitivity analysis of the clustering score ρcluster across data variations
(see Section D.6 for exact settings and Figure 20 for detailed diagrams). We test the influence of
mislabeled cluster points, separation, and fuzzy cluster borders. DISCO adapts smoothly as the
number of mislabeled points increases from a perfect clustering. In contrast, DBCV, CVDD, CDbw,
and DCSI exhibit abrupt drops, making them more susceptible to adversarial manipulation. For
increasing separation between clusters, DISCO, DBCV, and DCSI increase sharply once the clusters
become clearly distinct, indicating that they effectively capture density connectivity. As clusters
become increasingly fuzzy and overlapping, most CVIs, including DISCO, behave as expected,
starting with high scores that gradually decrease. In contrast, CVDD rates the clustering poorly even
at low fuzziness levels, while LCCV shows a bias toward fuzziness around 5%.

4.7 ABLATION OF NOISE SCORE ρnoise

As our competitors do not explicitly evaluate noise, we only present DISCO’s behavior.

Figure 6: Left: Influence of ρsparse on one cluster and a distant group of points with increasing size
and density, labeled as noise. Right: Influence of ρfar for a single noise-labeled point with increasing
distance to the cluster.

Sparseness of noise (ρsparse) True noise points lie in sparse areas as measured by ρsparse. In Figure 6
(left), we regard a dataset with a uniform, spherical cluster of points and noise points that lie far apart.
We add further noise close to the first noise point by placing them uniformly within a small radius,
which increases the density in this area. Increasing the density of noise points quickly deteriorates
ρsparse when the noise points start forming a cluster. This lowers the overall DISCO score, as expected.

Distance between noise and the closest cluster (ρfar) Noise points should be far from any cluster,
a property measured by ρfar. We evaluate this part of the noise score in Figure 6 (right) on a dataset
with a uniform, spherical cluster with radius r = 2 and one noise point at increasing distance from
the cluster’s center. When the noise point is in the middle of the cluster, DISCO yields the desired
outcomes around 0. ρnoise and accordingly DISCO increases sharply as soon as the noise point is not
density-connected to the cluster anymore, i.e., at a distance from the center larger than 2.

5 CONCLUSION

We introduced DISCO, a density-based internal CVI for the evaluation of arbitrarily-shaped cluster-
ings that includes evaluating the quality of noise labels. We provide extensive experiments showcasing
the ability of DISCO to properly evaluate a large variety of clusterings. DISCO enables fair and
reproducible evaluation of density-based clustering and clusterings with noise labels.
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A BACKGROUND ON DENSITY-CONNECTIVITY

C1 C2Cx

x defining
edge

dc-dist≈1.5

defining edge

dc-dist≈2.5

Euclidean dist to C1≈3.5 Euclidean dist to C2≈4.5

Figure 7: Regarding the dc-dist, C2 is closer to object x than C1.

A.1 DENSITY-CONNECTIVITY DISTANCE

Figure 7 visualizes the distances between point x to points in the other clusters. Decisive for the
dc-distance between any two points is the widest sparse area that needs to be bridged: The point x in
the red cluster is closer (in terms of dc-dist) to C2 than to C1 because the gap between the Ĉx and C2

is smaller than between Ĉx and C1. Since these gaps are the longest edges one needs to pass to reach
C1 or C2 from x, the length of those edges defines the respective dc-dist. This notion of “closest”
contrasts with the Euclidean distance under which C1 would be the closest cluster from x and not C2.

A.2 ’GOOD’ NOISE AND ’BAD’ NOISE- A VISUALIZATION

We visualize different base cases of ’good’ and ’bad’ noise in Figure 8. The toy example shows two
dense clusters (red and teal) and a less dense cluster in yellow. The clustering we regard detected the
yellow and the teal cluster (objects represented by circles) and assigns the objects shown as three-ray
stars to noise. Conceptually and intuitively, a CVI should return the following:

(a) (Mis-)labeling the red, dense cluster (a) as noise should yield low quality scores.
(b) Labeling the blue point (b) with the largest core-distance in the dataset that is far away from

all other points as noise should yield a high quality score.
(c) Labelling the red point (c) within the yellow low-density cluster as noise should yield low

quality scores.
(d) Labelling point (d) correctly is hard: The closest cluster regarding Euclidean distance is

the dense (teal) Cluster 2. Compared to Cluster 2, the point is clearly a noise point, as it
is farther away than dcore of this cluster. However, the point (d) fits to the sparser (yellow)
Cluster 1, lying within distance dcore and should, thus, be assigned to Cluster 1.

DISCO fulfills these requirements. E.g., using the minimum of ρsparse and ρfar in Equation (7)
ensures that not only (c) but also (a) and (d) in Figure 8 get low DISCO scores.

Cluster 1

dcore

Cluster 2
dcore

(a)

noise points forming
a dense region

dcore

(b)
‘good’

isolated noise
dcore

(d)

close to C1

≈ dcore

>dcore

(c)

in dense region
and close to C1

Figure 8: Assessing the quality of noise: red noise labels have low DISCO scores, and blue is
prototypical noise.
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Furthermore, the noise score ρfar of the noise point (d) that is decisive for the DISCO score in this
case is determined by Cluster 1 and not Cluster 2, even though both have the same distance because
Cluster 1 has a larger core-distance.

B DBCV IS NOT DETERMINISTIC

In Section 2 we state that DBCV (Moulavi et al., 2014) is not deterministic. DBCV’s (non-)
determinism is not discussed in Moulavi et al. (2014) or – to the best of our knowledge – in any other
literature, yet, and one might think any evaluation measure will automatically return the same values
for the same clustering. The first subsection, shows how non-unique MSTs lead to the observed
lack of determinism while the second includes additional experiments showcasing the problem that
non-determinism might bring.

B.1 INFLUENCE OF MSTS

Figure 9: Different MSTs on the same graph given by the mutual reachability distance (MRD) with
minPts = 15 on the complex8 dataset. MSTs are computed with Kruskal’s algorithm (left) and
Prim’s (right). Both are equally valid, but have different sets of leaf nodes.

It is easy to overlook that MSTs are not unique, as in practice, most datasets in Euclidean space
have a unique MST. However, the MSTs used in DBCV are not computed on pairwise distances in
Euclidean space, but on the mutual reachability distance dm between points. As dm is based on a
maximum function, it typically produces many repeated pairwise values in the distance matrix, while
there are few to none when using Euclidean distance. Thus, there are many different valid MSTs
with different sets of leaf nodes (e.g. in Figure 9). Most implementations simply return one possible
MST (e.g. NetworkX, SciPy). For many use cases of MSTs, it does not make a difference for the
downstream task, which of the valid MSTs is used (e.g. Christofides’ 1.5 approximation for metric
TSP). However, as DBCV relies on the structure of the MST and excludes leaves of the MST the set
of excluded points as well as the number of excluded (leaf) points might change drastically between
different computation methods. Experimentally, we can show this by using different algorithms to
build the MST as they are not specified in Moulavi et al. (2014) (see Figure 9), or even by simply
choosing different processing orders of data points for e.g. Prim or Kruskal. We performed the latter
experiment in Figure 2 on two different datasets. For both datasets, we compute the DBCV of a given,
fixed clustering and solely change the order in which the points are processed. Each point’s cluster
assignment stays the same for all 1000 runs. A deterministic CVI would yield the very same result
for all 1000 runs, as the order of points does not matter for a data set. However, DBCV exhibits a
Gaussian distribution of values. Certainly, the strength of the effect and variance of results varies
for different datasets. However, we argue that a CVI should never be non-deterministic in order to
prevent overoptimistic evaluation: one can easily be made believe that a specific clustering (method)
is better/worse than another one by accidentally receiving values from the tails of the distribution.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Parameter setting (ε,minPts) DBCV (mean) Selected (in % across 100 runs)

(a) (0.06, 10) 0.684 ± 0.095 7
(b) (0.06, 8) 0.675 ± 0.113 70

Ground Truth - 0.618 ± 0.037 23

Table 5: Parameter selection when using DBCV for parameter optimization for cluto-t5-8k.

We show that such effects actually appear in practice and exemplarily showcase that they can lead to
highly-suboptimal choices of hyperparameters for DBSCAN.

Note that the variance and subsequent suboptimal choices could be diminished by performing DBCV
computations several times over a randomized processing order. However, this is not done in
state-of-the-art research, will increase the runtime drastically, and is still not deterministic.

B.2 SELECTING THE BEST PARAMETER SETTINGS FOR CLUTO-T5-8K

We conduct additional experiments to highlight the drawbacks of DBCV’s lack of determinism. The
goal of the experiment is hyperparameter optimization. The experiment setup is as follows:

1. We calculate DBSCAN clusterings for minPts ∈ {2, 4, 5, 8, 10} and ε ∈
{0.04, 0.045, 0.05, 0.06, 0.1, 0.2, 0.3, 0.4} for the cluto-t5-8k benchmark dataset (overall:
40 clusterings).

2. We evaluate the clusterings with DBCV to determine the best clustering, i.e., the optimal
parameter set for DBSCAN. This step is performed 100 times:

(a) For each of the 100 runs, we shuffle the order of the dataset and labels respectively.
Thus, within one run, the order is the same across all 41 clusterings (DBSCAN+GT).

(b) For each run, we evaluate all clusterings with DBCV, and depending on the highest
DBCV value, we report which clustering is determined as the best one.

3. After evaluating the clusterings across all runs, we count how often each clustering was
determined to be the best across the runs. A deterministic CVI would prefer the same
clustering (with the highest value) in each case.

For this experiment, we made sure that DBCV actually achieves high scores of 0.5 and above, often
approaching 0.75. We observe that only two of the 40 DBSCAN clusterings are ever chosen to be the
best clustering by DBCV, namely settings (a) and (b) as shown in Table 6 and illustrated in Figure 10.
We also visualize the spread of DBCV values in Figure 11 where we observe that the spread for
settings (a) and (b) is much wider than for the GT clustering. On average,(a) and (b) achieve higher
mean DBCV scores than the ground truth and in 70 out of 100 runs, users relying on DBCV would
chose (b) over the other settings.

Figure 10: Clusterings for cluto-t5-8k, that were at least once labeled the best by DBCV. Across the
100 runs, DBCV selects clustering (a) in 7 runs, (b) in 70 runs, and the ground truth in 23 runs.
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Figure 11: DBCV scores for GT and two DBSCAN clusterings on cluto-t5-8k. The dashed line
denotes the mean value. Across the 100 runs, DBCV selects setting (a) in 7 runs, (b) in 70 runs, and
the ground truth in 23 runs.

B.3 COMPARISON BETWEEN CLUSTERINGS ON CLUTO-T8-8K WITH DBCV

In the second experiment, we use the cluto-t8-8k dataset. On this dataset, DBCV scores the ground
truth (GT) with low values around 0. For the experiment, we calculate labels for three parameter
settings for DBSCAN ((a), (b), and (c) in Table 6) as well as the ground truth clustering as shown in
Figure 13). We compute DBCV values for different processing orders of these clusterings and report
them in Table 6: The ground truth yields the best DBCV value in 67%, DBSCAN clustering (c) is
selected in 10%, and parameter setting (b) is selected in 23% of the runs. In Figure 12, we show the
DBCV score range for each clustering.

In practice, when selecting the best clustering, the ground truth labeling is often not included in the
options. Thus, we also report how DBCV selects between (a), (b), and (c) when it is not available. We
observe in Table 6, last column, that DBCV shows even more variance than before in choosing the
best possible clustering. Interestingly, for parameter setting (a), the variance between the individual
DBCV scores is much lower than for the other clusterings.

Parameter setting (ε,minPts) DBCV (mean) Selected (in % across 100 runs) Selected (when GT is excluded)

(a) (0.04, 5) -0.278 ± 0.015 0 21
(b) (0.2, 2) -0.242 ± 0.315 23 40
(c) (0.1, 8) -0.213 ± 0.166 10 39

Ground Truth - -0.025 ± 0.076 67 -

Table 6: Parameter selection when using DBCV for hyperparameter tuning. The last column shows
the number of selections when GT is not available.

Figure 12: DBCV score ranges across included parameter settings and 100 evaluation runs. The
dashed line denotes the mean value.
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Figure 13: Clusterings for cluto-t8-8k dataset. Note that, the second cluster in (b) are the two pink
points in the lower right. Across the 100 runs DBCV selects clustering (b) in 23 runs, (c) in 10 runs
and the ground truth in 67 runs. When GT is unavailable, (a) is selected 21, (b) 40, and (c) 39 times.

Thus, users that are relying on DBCV to find the best parameter settings encounter several problems
originating in DBCV’s non determinism: 1) The DBCV scores for the same clustering deviate
depending on the machine, processing order, or implementation of DBCV. 2) Because of the high
variance of DBCV scores for some clusterings, users would need to compute DBCV sufficiently
often to make sure they choose the parameter setting that reaches the highest DBCV score on average.
When computing DBCV only once (like common for an evaluation measure), it is likely that a worse
clustering yields the better DBCV scores.

C EXPERIMENT DETAILS

Here we provide all details about experiment settings, implementations, methods, and datasets.

Experiment Settings All experiments were performed with Python 3.12 on a Linux workstation
with 2x Intel 6326 with 16 cores each and multithreading, as well as 512GB RAM. We use the sklearn
clustering implementations for our experiments with clustering algorithms.

Datasets Table 7 gives an overview of the datasets we used. The synthetic data (Synth high,
Synth low) is provided by the data generator DENSIRED (Jahn et al., 2024) that we also used for
some of the systematic experiments in Section 4. Those datasets have ten density-connected clusters
of different densities that are generated based on random walks in high-dimensional space. For
the generated data, we include noise points that are uniformly distributed and positioned outside
of the clusters, s.t. they are guaranteed to be density-separated from the clusters. All datasets are
z-standardized for the experiments. For tabular data, every feature has a mean of 0 and a standard
deviation of 1. For image data, this step has been performed globally instead of per feature.

Other Cluster Validation Indices Table 8 provides implementation details for our competitors. We
link to the author implementations where available and use them when implemented in Python. Else,
we re-implemented the method in Python for our experiments (marked with ✓ in the last column). We
employ the default hyperparameters provided by the authors. The first column implies the direction
of the CVI: ↑ (↓) means higher (lower) is better. We distinguish between bounded methods ( 7→ and7→

) and unbounded ones ( ↑ and ↓ ). Both scores (S Dbw and CVNN), where lower values are better,
are in the range [0,∞), i.e., they have a lower bound. To allow an easy comparison, we linearly
normalized unbounded scores to be in [0, 1] and reversed the values where lower values are better to
have the same orientation for all diagrams.
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Table 7: Dataset properties. Number of samples (n), dimensions (d), ground truth clusters (k), noise
points (#noise), DISCO score for the ground truth labels, and the source.

Dataset n d k #noise DISCO Source
D

en
si

ty
-b

as
ed

B
en

ch
m

ar
k

D
at

a
smile1 1,000 2 4 0 0.90 Barton & Bruna (2015)
dartboard1 1,000 2 4 0 0.87 Barton & Bruna (2015)
chainlink 1,000 3 2 0 0.84 Barton & Bruna (2015)
3-spiral 312 2 3 0 0.59 Barton & Bruna (2015)
complex8 2,551 2 8 0 0.39 Barton & Bruna (2015)
complex9 3,031 2 9 0 0.36 Barton & Bruna (2015)
compound 399 2 6 0 0.35 Barton & Bruna (2015)
aggregation 788 2 7 0 0.31 Barton & Bruna (2015)
cluto-t8-8k 8,000 2 8 323 0.30 Barton & Bruna (2015)
cluto-t7-10k 10,000 2 9 792 0.29 Barton & Bruna (2015)
cluto-t4-8k 8,000 2 6 764 0.24 Barton & Bruna (2015)
diamond9 3,000 2 9 0 0.22 Barton & Bruna (2015)

Synth high 5,000 100 10 500 0.82 Jahn et al. (2024)
Synth low 5,000 100 10 500 0.76 Jahn et al. (2024)

R
ea

lW
or

ld htru2 17,898 8 2 0 0.41 Markelle Kelly (2023)
COIL20 1,440 16,384 20 0 0.30 Nene et al. (1996)
Pendigits 10,992 16 10 0 0.11 Markelle Kelly (2023)
cmu faces 624 960 20 0 0.07 Markelle Kelly (2023)
Optdigits 5,620 64 10 0 0.06 Markelle Kelly (2023)

Table 8: Implementation details of included internal CVIs.

Hyperparameter Official Implemented
Method (default) implementation ourselfs

7→ Silhouette Rousseeuw (1987) ✗ (sklearn) ✗
↓ S Dbw Halkidi & Vazirgiannis (2001) ✗ - ✓

7→ DBCV Moulavi et al. (2014) distance (squared euclidean) Matlab, Python ✗

7→ DCSI Gauss et al. (2024) minPts (5) R ✓

7→ LCCV Cheng et al. (2018) ✗ Matlab ✓

7→ VIASCKDE Şenol (2022) bandwidth, kernel (0.05, gaussian) Python ✗
↑ CVDD Hu & Zhong (2019) number of neighborhoods (7) Matlab ✓
↑ CDbw Halkidi & Vazirgiannis (2008) number of representative points (10) - ✓
↓ CVNN Liu et al. (2013) number of nearest neighbors (10) - ✓

7→ DISCO (ours) µ (5) Python (github) ✓

D ADDITIONAL EXPERIMENTS

The following subsections present the results of additional experiments, including runtime experi-
ments, an analysis to determine optimal parameter settings, experiments that demonstrate DISCO’s
robustness towards µ, and a sensitivity analysis of the clustering score.

D.1 RUNTIME EXPERIMENTS

Figure 14 illustrates runtimes across different CVIs and datasets, including high-dimensional (
COIL20 (n = 1, 440, d = 16, 384), Synth high (n = 5, 000, d = 100), Optdigits (n = 5, 620, d =
64)) and large low-dimensional datasets (cluto-t8-8k (n = 8, 000, d = 2), cluto-t7-10k (n =
10, 000, d = 2, Pendigits(n = 10, 992, d = 16), htru2 (n = 17, 898, d = 8)). More details
regarding the datasets can be found in Section C. Additional runtimes are shown in Table 9. We
find that the runtime of DISCO increases with the size of the dataset rather than its dimensionality.
DISCO performs similarly to CVNN, DBCV, and DCSI. However, the runtimes of CVDD, LCCV,
VIASCKDE, MMJ, and CDbw are much higher (note the logarithmic scaling of the y-axis). Only the
centroid-based CVIs, Silhouette and S Dbw, are faster.
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Table 9: Runtimes of the CVIs in seconds.

Dataset DISCO DBCV DCSI MMJ-SC LCCV VIAS. CVDD CDbw CVNN Silh. S Dbw

three spiral 0.147 0.089 0.137 0.126 0.139 0.159 0.613 0.079 0.096 0.065 0.060
aggregation 0.167 0.136 0.126 0.436 0.450 0.298 2.872 0.268 0.094 0.135 0.073
chainlink 0.197 0.186 0.226 0.659 1.005 0.427 4.467 0.156 0.105 0.085 0.051
cluto-t4-8k 4.245 1.780 4.192 41.749 418.852 17.633 279.168 23.077 1.974 1.177 0.254
cluto-t7-10k 6.387 2.720 7.029 65.338 790.698 26.836 431.350 57.260 2.785 1.640 0.443
cluto-t8-8k 3.982 1.831 4.303 41.406 539.823 17.844 278.174 34.016 1.929 1.195 0.342
complex8 0.578 0.378 0.498 3.830 6.583 1.829 28.112 2.205 0.286 0.255 0.151
complex9 0.669 0.509 0.720 5.465 8.551 2.697 39.618 2.648 0.405 0.295 0.179
compound 0.105 0.100 0.076 0.168 0.148 0.138 0.825 0.118 0.066 0.055 0.052
dartboard1 0.185 0.156 0.154 0.650 0.532 0.427 4.476 0.186 0.094 0.083 0.060
diamond9 0.610 0.397 0.476 5.293 16.540 2.767 38.903 7.068 0.357 0.215 0.180
smile1 0.195 0.157 0.155 0.661 0.773 0.448 4.497 0.167 0.094 0.084 0.060

Synth low 2.764 1.075 2.003 16.730 27.505 30.482 107.960 18.336 0.925 0.480 0.314
Synth high 2.409 1.055 1.994 16.745 22.885 31.411 107.945 18.365 0.844 0.496 0.315
htru2 37.191 38.432 89.207 259.819 6388.110 107.973 1399.325 78.498 13.875 6.170 0.194
Pendigits 8.428 2.932 5.485 82.153 1671.582 49.325 524.496 130.090 3.476 1.971 0.578
COIL20 0.503 6.500 20.432 1.563 33.190 580.777 24.278 176.752 0.634 0.333 3.654
cmu faces 0.157 0.176 0.258 0.309 0.490 2.862 1.954 5.397 0.107 0.087 0.187
Optdigits 2.862 1.083 1.891 22.835 222.576 27.727 137.894 32.008 1.126 0.632 0.377

COIL20
Synth_high Optdigits cluto-t8-8k

cluto-t7-10k Pendigits htru2
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Figure 14: Runtimes of the CVIs for several datasets (sorted by DISCO runtime). Time in seconds
(logarithmic scale).

D.2 DETERMINING BEST PARAMETER SETTINGS

Figure 15 shows the CVI scores for different parameter settings for DBSCAN on two datasets:
3-spiral (left) and COIL20 (right). DISCO, as well as some of its competitors, are suitable for finding
very good parameter settings for DBSCAN, where the ARI is (close to) optimal. For the 3-spiral
dataset, CDbw and VIASCKDE overestimate the optimal number of clusters and suggest a too small
ε-value. For COIL20, there are several ε-values that lead to 19 clusters, but no value that leads
to the ground truth number of clusters k = 20. While most CVIs are best for one of the settings,
producing 19 clusters, CDbw, LCCV, DCSI, and S Dbw overestimate the number of clusters and
prefer a significantly lower value for ε. In summary, DISCO is a reliable tool to find good parameter
settings for DBSCAN on datasets with very different sizes, dimensionalities, and numbers of clusters.
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Figure 15: CVIs for DBSCAN clusterings with varying ε values on the 3-spiral dataset (left) and
the COIL20 dataset (right). We report CVI scores (top) and the corresponding ARI scores (bottom).
The x-axes give the ε-values and the resulting number of clusters. The best CVI score (larger circles)
should ideally correspond to the best ARI score (red column). Note that for COIL20, there are various
similar ε-values that all yield very similar clusterings with the same number of clusters (k = 19).
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Figure 16: DISCO scores on synthetic data for varying µ and noise levels.

D.3 ROBUSTNESS TOWARDS µ

To additionally analyze the influence of µ on the DISCO score and its behavior under varying levels
of noise we perform the following experiments in Figure 16. We increase the amount of uniform
additive noise on a synthetic dataset with 10 density-based clusters, generated with DENSIRED (Jahn
et al., 2024). DISCO is stable for µ ≥ 3 across a large range of added noise. For µ = 1, each point
has a core-distance of zero. Thus, all added noise points would ideally form singleton clusters, which
leads to lower DISCO scores for higher noise percentages.

D.4 DIFFERENT NOISE DISTRIBUTIONS

To account for other noise distributions, we perform additional experiments similar to the one outlined
in Figure 16. For this experiment, we utilize the two datasets Synth high and Synth low, each of
which originally contains 500 noise points. We replace the existing noise points with 500 newly
generated with Gaussian, uniform, and Poisson distribution. The Gaussian parameters are determined
based on the mean and standard deviation of the remaining points. For the Poisson distribution, we set
the lambda parameter to 5, using the numpy random implementations. Each dataset is then evaluated
across a range of µ values (1, 3, 5, 7, 9, 11). The results are visualized in Figure 17 and Figure 18.
We find that the DISCO scores behave very similarly across all tested noise strategies. Additionally,
we note that the results across varying values for µ are very consistent.

D.5 NOISE IN REAL-WORLD DATASET

We test DISCO’s performance on six real-world UCI datasets as shown in Table 10. We use the
labeling C given by HDBSCAN with default settings. In this experiment, we compare point-wise
noise scores between actual noise-labeled points and points that were assigned to a cluster by
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Figure 17: DISCO scores on Synth high and Synth low with different type of noise for varying µ.

Figure 18: Noise scores ρnoise on Synth high and Synth low with different noise distributions for
varying µ.

Table 10: Number of objects n, dimensionality d, number of noise points #noise points, and number
of clusters |C | found by HDBSCAN with default parameters (minclustersize=5), and the
ground truth number of classes k on five real world datasets.

Dataset n d #noise |C | k DISCO

Iris (Fisher, 1936) 150 4 2 2 3 0.61
Seeds (Charytanowicz & Lukasik, 2010) 199 7 78 3 3 0.14
WiFi (Bhatt, 2017) 2000 7 147 3 4 0.25
Spambase (Hopkins & Suermondt, 1999) 4601 57 3407 121 2 -0.27
Wine quality (Cortez & Reis, 2009) 6497 11 4946 166 7 -0.36

Yeast (Nakai, 1991) 1484 8 0 3 10 0.82

HDBSCAN (‘cluster points’). A good evaluation measure should return higher scores for noise points
than for cluster points that were labeled as noise.

To assess DISCO’s noise score ρnoise(x) for cluster points, we treat each cluster point xc as a noise
point once, i.e., we calculate DISCO scores for the given clustering with the only change that point
xc is labeled as noise. Thereby we can assess which noise score this wrongly labeled noise point
would receive. We do this for every cluster point in the clustering individually. Figure 19 illustrates
the point-wise noise scores, categorized by point type: noise points versus cluster points. DISCO
consistently evaluates noise points with higher scores than non-noise points that have (wrongly) be
assigned to noise.

Note that for the larger datasets Spambase and Wine quality, the scores for many noise points are
negative, indicating a low-quality of the noise labels. This is because of the significant overestimation
of noise points in the dataset by HDBSCAN: it assigns 74.05% and 76.13% of all points to noise,
respectively, and finds 121 instead of 2 clusters on the Spambase dataset and 166 clusters instead of 7
on the Wine quality dataset. On the Yeast dataset, HDBSCAN detects three clusters and no noise.
The range of DISCO’s noise scores ρnoise ∈ [−1, 0] suggests that the points are correctly assigned to
be in some cluster (instead of noise).
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Figure 19: Pointwise noise scores (ρnoise) for cluster (yellow) and actual noise (blue) points according
to HDBSCAN clusterings with default parameters on six real-world datasets (described in Table 10).
Note that HDBSCAN yields low quality clusterings on Spambase and Wine quality: it significantly
overestimates the number of noise points as well as the number of clusters, assigning 74.05% and
76.13% of all points to noise, respectively, which leads to the low values for ρnoise. On the Yeast
dataset, it assigns all points to clusters.

D.6 SENSITIVITY ANALYSIS OF CLUSTERING SCORE ρcluster

As we focus on density-based clustering evaluation, we exclude S Dbw and CVNN in the following
diagrams for clarity.

D.6.1 INFLUENCE OF MISLABELED CLUSTER POINTS

A good CVI should be robust against small changes in the clustering, and points with a similar role in
the dataset should have a similar influence on the score. In Figure 20a,2 we increase the percentage
of wrongly assigned points for the two-moons dataset. While most CVIs, including DISCO, show the
intended consistent decrease in quality, DCSI and DBCV show questionable behavior. DBCV drops
to the worst-case evaluation of −1 as soon as only 2 of 50 points per cluster are wrongly assigned.
DCSI gives a perfect score for less than 10% wrongly assigned points and the worst-case score for
more than 14% wrongly assigned points, leaving only a very small range with distinguishable results.

D.6.2 INFLUENCE OF SEPARATION

Figure 20b shows the CVIs for increasingly distant clusters, exposing interesting behaviors for CDbw
and CVDD: They display a consistent, linear increase, where it is not recognizable at which distance
the switch from density-connected to density-separated clusters happens. In contrast, DISCO, DBCV,
and DCSI increase sharply as soon as the clusters are clearly separated.

D.6.3 INFLUENCE OF FUZZY CLUSTER BORDERS

To regard the influence of blending and fuzzy clusters, we increase the fuzziness (jitter) of the two
moons dataset in Figure 20c. Most CVIs, including DISCO, behave as expected, starting with high
values that evenly decrease. However, CVDD drops quite rapidly for very low amounts of jitter,
where the clusters are still well separated. LCCV shows an unexpected drop at 2% jitter, yielding
higher scores for less and more jitter. Being purely centroid-based, the Silhouette Coefficient stays
constant.

E LLM USAGE

In some paragraphs, we used LLMs as a post-processing step to improve wording and grammar.
While we did not copy anything above sentence level, we drew inspiration for shortening or phrasing
more elegantly. Figures and content of the paper are our own work and have not been generated,
updated, or processed with LLMs.

2For clarity, we linearly normalize CVDD and CDbw to [0, 1] in all plots, marked with (n). CVIs with
reversed orientation are additionally subtracted from their largest value, marked with (r).
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(a) Influence of mislabeled points: Increasing percentage of random points assigned to the wrong cluster in the
two moons dataset.

(b) Influence of separation: Increasing distance between cluster centers for uniform, spherical clusters of radius 2.

(c) Influence of fuzzy cluster borders: Increasing fuzziness of two moons (in percent of “jitter”).

Figure 20: Ablation of Clustering Score ρcluster (data shown along the x-axes).
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