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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly
effective strategy for empowering Large Language Models (LLMs) with long
chain-of-thought reasoning abilities. However, its design and optimizations remain
tailored to purely textual domains, resulting in suboptimal performance when ap-
plied to multimodal reasoning tasks. In particular, we observe that a major source
of error (67%) in current multimodal reasoning lies in the perception of visual
inputs. Notably, PAPO does not rely on any additional data annotation, reward
models, or stronger teacher models, and can therefore be seamlessly integrated
into mainstream RLVR algorithms such as GRPO and DAPO. To further enhance
the training stability of PAPO, we introduce the Double Entropy Loss, which
effectively regularizes the new KL objective without compromising performance.
Despite its simplicity, PAPO yields significant overall improvements of 4.4%-
17.5% on eight multimodal reasoning benchmarks. The improvements are more
pronounced, approaching 8.0%-19.1%, on tasks with high vision dependency. We
also observe a substantial reduction of 30.5% in perception errors, indicating im-
proved perceptual capabilities with PAPO. Overall, PAPO offers a new perspective
on advancing multimodal RLVR via the optimization objective, moving beyond
rollout or reward design and pointing toward deeper integration of perception and
reasoning.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key driver of recent
progress in large language models (LLMs), particularly in enhancing their reasoning capabilities.
By optimizing models using verifiable signals, such as structured thinking formats and final answer
accuracy, RLVR has demonstrated strong empirical success in models like DeepSeek-R1 (Guo
et al., 2025), as well as through algorithmic innovations like Group Relative Policy Optimization
(GRPO) (Shao et al., 2024). Large Multimodal Models (LMMs), however, continue to struggle
with complex multimodal reasoning tasks that require both fine-grained perception and multi-step
reasoning (Yue et al., 2024; Zhang et al., 2024; Wang et al., 2025e). This limitation stands in contrast
to the strong reasoning performance of LLMs in textual domains.

Aiming to address this gap, a growing body of work (Chen et al., 2025; Shen et al., 2025a; Meng
et al., 2025b; Huang et al., 2025; Yang et al., 2025; Liu et al., 2025a; Wang et al., 2025d; Xiao
et al., 2025a; Zhu et al., 2025b; Wang et al., 2025b; Liang et al., 2025; Xia et al., 2025; Xiao et al.,
2025b; Shen et al., 2025c; Wan et al., 2025; Yao et al., 2025) has explored applying RLVR to LMMs
in hopes of similarly improving their multimodal reasoning abilities. Initial successes have been
reported, particularly in terms of generalization ability when using GRPO compared to supervised
finetuning (Chen et al., 2025; Shen et al., 2025a; Huang et al., 2025). However, most prior efforts
have primarily focused on improving data and rollout quality (Li et al., 2025a; Liang et al., 2025;
Wang et al., 2025b; Li et al., 2025b; Liu et al., 2025a; Yao et al., 2025) or reward design (Xiao et al.,
2025a; Xia et al., 2025; Li et al., 2025c) leaving the core optimization objective largely unchanged
from its application in textual domains. This raises two fundamental research questions: (1) Are
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there unique challenges in multimodal reasoning that do not arise in text-only settings and cannot be
addressed solely through data- or reward-level modifications? (2) If so, how can we address this by
designing a new RLVR optimization objective that is better grounded in multimodal domains?

GRPO

PAPO (ours)

Total Error

Question:

Ground Truth:

Find x.

9

GRPO: Perception Error Example

<think> To find the side x of the right-angled
triangle, we can use  trigono-metric ratios.
The triangle has a 60-degree angle, and the
hypotenuse is 18. Since    x is the side
opposite the 60-degree angle , we can use the
sine function, which is defined as:
...  Therefore, the value of x is             
 </think> \boxed{          }

PAPO: Corrected Perception

<think> ...  In a 30-60-90 triangle, the
hypotenuse is twice the length of the short
leg (the  side opposite the 30-degree angle).
Here,  the hypotenuse is 18, so the short leg,
which is x, is half of 18. The long leg is y. 

Therefore:                    </think> \boxed{9}56.03%

Total Error

59.15%

Error Analysis Inference Example

First
200

Figure 1: Comprehensive error-type breakdown and
inference example between GRPO and PAPO. We ob-
serve that perception errors account for the majority
(67%) of failures in current multimodal reasoning mod-
els trained with GRPO. PAPO significantly reduces
the dominant perception-driven errors by 30.5%, with
the reduced portion indicated in gray. On the right,
we present an inference example illustrating how en-
hanced perception enables better reasoning.

To investigate the first question, we con-
ducted a comprehensive error analysis on
a multimodal reasoning model trained us-
ing the standard GRPO pipeline. We man-
ually examined 200 error cases across four
benchmarks and categorized the types of er-
rors. Surprisingly, as shown in Figure 1, we
found that 67% of the errors stemmed from
perception (see § 2.2 for more details). We
attribute this bottleneck to the fact that exist-
ing RLVR objectives do not explicitly incen-
tivize models to generate visually grounded
responses. Recent approaches (Xia et al.,
2025; Xiao et al., 2025a; Li et al., 2025c)
have also recognized the importance of per-
ception, introducing additional rewards that
either directly assess perception quality or
require the model to explicitly perform cap-
tioning before reasoning. While promising,
these strategies often impose a rigid sep-
aration between perception and reasoning,
rather than enabling joint learning of both.
They also rely on additional large neural-
based reward models, resulting in significant
computational overhead and limitations im-
posed by the reward model’s capacity.

In this work, we challenge the prevailing view that multimodal reasoning in RLVR can be addressed
solely through data, rollout, or reward modifications. Instead, we investigate a deeper and more
efficient integration of perceptual incentives into the core optimization objectives. To this end,
we propose Perception-Aware Policy Optimized (PAPO), a novel policy gradient algorithm that
enhances multimodal reasoning through visually grounded optimization. Notably, PAPO can serve
as a direct drop-in replacement for GRPO (Shao et al., 2024) or DAPO (Yu et al., 2025).

The key idea behind PAPO is to encourage the model to learn to perceive while learning to reason.
Intuitively, a well-learned multimomdal model should rely on informative visual context while
performing reasoning. Based on this intuition, we introduce a Kullback-Leibler divergence (KL)
objective, Implicit Perception Loss (KLprcp), which we maximize within an RLVR framework. As
illustrated in Figure 2, this “reverse KL” loss is computed between two probability distributions over
the same rollout token sequence, conditioned on either the original or the corrupted visual inputs.
From an information gain (Shannon, 1948) perspective, this loss encourages the model to assign
higher probability to the response when more informative visual input is provided. As a result, we
are able to incentivize the generation of visually grounded responses without requiring any external
supervision. To better regularize the unbounded KLprcp objective, we further introduce a Double
Entropy Loss, which effectively enhances training stability without compromising performance.

Despite its simplicity, PAPO delivers consistent improvements over GRPO and DAPO across
eight multimodal reasoning benchmarks with an average gain of 4.4%-17.5%. The improvement
is particularly pronounced (8.0%-19.1%) in tasks with higher vision-dependency where the input
question provides limited visual clues. Furthermore, we observe a significant 30.5% reduction in
perception-related errors with PAPO, as evidenced by the manual analysis shown in Figure 1. Finally,
PAPO also shows faster convergence with early-stage gains starting around 25 steps.

To summarize, our main contributions are threefold: (1) We present PAPO, a new policy optimization
algorithm that encourages the model to generate visually grounded responses. To our knowledge, this
is the first work to explore a deeper integration of perception-aware supervision signals beyond reward-
level modifications. (2) Comprehensive evaluations across varying levels of vision dependency show
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consistent improvements of PAPO over GRPO and DAPO, using identical training data and reward
functions. (3) We conduct extensive analyses of PAPO and identify potential training instabilities,
which we mitigate through entropy-based losses.

2 PRELIMINARY

2.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

GRPO (Shao et al., 2024) is a variant of the Proximal Policy Optimization (PPO) (Schulman et al.,
2017) algorithm that removes the value model and estimates advantages via group-based computation.
In the context of multimodal reasoning, consider a dataset D containing datapoints consisting of visual
inputs I , questions q, and ground truth answers a. The GRPO learning objective with respect to the
policy πθ can be written as follows, where θ represents the parameters in a large multilmodal model:

JGRPO(θ) = E[{oi}Gi=1∼πθold
(O|q,I)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵl, 1 + ϵh) Âi,t

]
− βDKL [πθ||πref ]

}
with ri,t(θ) =

πθ(oi,t|q, I, oi,<t)

πθold(oi,t|q, I, oi,<t)
(1)

G denotes the size of the group which contains multiple responses O sampled from the rollout policy
πθold , corresponding to one input instance (q, I). ϵl, ϵh ∈ R are hyperparameters for clipping too
large updates. The original GRPO (Shao et al., 2024) sets ϵl = ϵh, while recent work (Yu et al.,
2025) shows benefits of clip-higher, i.e., ϵh > ϵl. We follow the clip-higher configuration in all of our
experiments. The token-level advantage Âi,t is defined as the sequence-level reward R̃i normalized
across the group. Given a reward verifier eq(), which checks whether a response is equivalent to
the ground truth, the advantage is computed as follows:

Âi,t = R̃i =
Ri −mean(R)

std(R)
, where Ri =

{
1.0, if eq(a, oi),

0.0, otherwise.

where R = {R1, R2, . . . , RG} is the rewards for the current group.

Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025) is a representa-
tive follow-up to GRPO, introducing several modifications such as Clip-Higher, Dynamic Sampling,
and Token-Level Policy Gradient Loss. We refer readers to the original paper for detailed descriptions.
In this work, we investigate the application of PAPO to both GRPO and DAPO.

2.2 ERROR ANALYSIS OF MULTIMODAL REASONING

We first investigate the question: Are there unique challenges in multimodal reasoning that do not
arise in text-only settings? We follow a typical GRPO pipeline to train Qwen2.5-VL-3B (Qwen Team,
2024a) on ViRL39K (Wang et al., 2025b) (experimental details can be found in §4) and manually
examine and categorize error types based on 200 error instances sampled from four benchmarks:
Geometry3K (Lu et al., 2021), MMK12 (Meng et al., 2025b), LogicVista (Xiao et al., 2024), and
MathVerse (Zhang et al., 2024). We identify four dominant error types: (1) Perception Error:
Inaccurate interpretation of the visual content. For example, in Figure 1, the model associates x with
the wrong side; (2) Reasoning Error: Mistakes in the logical inference process, such as applying
incorrect rules or theorems; (3) Calculation Error: Mistakes in performing arithmetic operations;
(4) Inconsistency Error: Discrepancies between intermediate reasoning steps and the final answer.

We show the error distribution in Figure 1. To our surprise, we find that the majority of errors, 67.0%,
stem from poor perception. In many cases, the model performed well in logical or algebraic reasoning
but failed to accurately interpret visual inputs, such as spatial relationships or label associations.
We attribute this bottleneck in perception to the GRPO objective not providing any incentive for
the model to generate visually grounded responses. This leads us to a key question: can we jointly
improve perception and reasoning in multimodal RLVR? We present our approach in the next section.
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Figure 2: Illustration of the PAPOG objective, which extends GRPO by adding the Implicit
Perception Loss (KLprcp). Additional Double Entropy Loss regularization (H[πθ], H[πmask

θ ]) can
be added for enhancing training stabilities. The KLprcp is formulated as maximizing the difference
between the original policy πθ and a corrupted policy πmask

θ , computed with a masked visual input.
Intuitively, PAPO encourages the model to produce visually grounded responses while still achieving
high rewards.

3 METHOD

3.1 TASK FORMULATION

We follow a typical RLVR setting (Shao et al., 2024; Yu et al., 2025), where the training dataset
D contains visual inputs I , questions q, and short ground truth answers a. A simple rule-based
verifier (hiyouga, 2025) is used to assign rewards for each rollout during training. We do not rely on
any existing chain-of-thought data and initiate RL training directly without supervised fine-tuning. In
the following method sections, we use GRPO as an example to elaborate on the PAPO algorithm.

3.2 PAPO

To address the aforementioned unique challenges in multimodal RLVR, we propose Perception-
Aware Policy Optimized (PAPO). The key idea behind PAPO is to encourage the policy to
prefer visually grounded responses that can achieve high rewards. PAPO requires no additional
annotations, no reliance on stronger teacher models, and no expensive neural reward models. We
formally describe the key components of the PAPO algorithm as follows. Figure 2 shows an
illustrative overview of the algorithm.

Implicit Perception Loss (KLprcp). To indicate whether a generated response depends on meaning-
ful visual information, we define the following ratio: rprcp(θ) = πθ(o|q,I)

πθ(o|q,Imask)
, where o is a generated

sequence of tokens, q is the question and I is the original visual input. And Imask is defined as a
corrupted visual input, which is constructed by masking out a sufficiently large portion of the original
input. Figure 2 shows an example of Imask where 60% of the patches are masked.

From an information gain (Shannon, 1948) perspective, this ratio quantifies the degree to which the
model’s output distribution changes when meaningful visual information is removed. A higher ratio
indicates that the model assigns significantly lower probability to the correct output when deprived
of full visual context, suggesting that the visual input contributes substantial information to the
decision. Conversely, a low ratio implies that the model’s prediction remains largely unaffected by
masking, indicating that it may rely primarily on the textual input rather than truly grounded visual
understanding. Thus, intuitively, for a well-behaved multimodal policy model θ, we want rprcp(θ) to
be high. Based on this intuition, we introduce an additional loss to the GRPO objective, the Implicit
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Figure 3: Visualization of different masking strategies. Random masking selects patches uniformly,
whereas semantic-aware masking prioritizes patches containing salient objects. Gaussian noise is less
effective at obscuring informative semantics, even when applied with a high noise factor.

Perception Loss (KLprcp), which is implemented by maximizing the following Kullback-Leibler (KL)
divergence: DKL[πθ||πmask

θ ] = DKL[πθ(o|q, I) ∥ πθ(o|q, Imask)].

Entropy Regularization. Since we maximize a KL divergence that is theoretically unbounded,
the model may “hack” KLprcp, eventually leading to performance collapse. To further enhance the
training stability of PAPO, we introduce Double Entropy Loss, an effective regularizer that prevents
collapse while preserving performance. This idea stems from our observation that rising rollout
entropy in both πθ and πmask

θ is a representative sign of collapse. Double Entropy Loss encourages
the model to keep both entropy values low.

Combining the Implicit Perception Loss and Double Entropy Loss with the GRPO objective yields
the complete PAPOG objective:

JPAPOG(θ) = E[{oi}Gi=1∼πθold
(O|q,I)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵl, 1 + ϵh) Âi,t

]
− βDKL [πθ||πref ]

+ γDKL[πθ||πmask
θ ]− η1H

[
πθ

]
− η2H

[
πmask
θ

]}
(2)

where the KLprcp is implemented as DKL[πθ||πmask
θ ] = rprcp

i (θ)− log rprcp
i (θ)−1 following Schulman

(2020). i indexes the i-th rollout response. The entropy values for the Double Entropy Loss are
implemented as H[πθ] = log πθ(o|q, I), H[πmask

θ ] = log πθ(o|q, Imask). And γ, η1 and η2 are
hyperparameters used for loss weighting. Similarly, we derive the DAPO-version objective of PAPO
(PAPOD), as shown in Appendix B.

Masking Strategy. We investigate two strategies for creating the corrupted visual input Imask for
the KLprcp loss: (1) random masking and (2) semantic-aware masking. For both strategies, we first set
a target masking ratio (e.g., 60 %), which determines the fraction of patches to be masked. We adopt
patch-based masking rather than pixel-level noise (e.g., adding Gaussian noise) because patch-based
masking more effectively removes informative semantic content, whereas pixel-level noise typically
preserves semantics even at high noise levels (see Figure 3 for a comparison).

In random masking, patches are selected uniformly. In semantic-aware masking, we leverage
DINOv2 (Oquab et al., 2023), a self-supervised, pre-trained vision encoder, to identify salient patches:
we aggregate its patch-level self-attention scores and select the top-scoring patches (see Appendix G
for details). Empirically, we find that random masking yields better performance with negligible
computational overhead (detailed in §5.2).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We train all models on ViRL39K (Wang et al., 2025b) for 2 epochs using a learning rate of 1e-6. We
perform direct RL training from Qwen2.5-VL-3B, 7B and Qwen3-VL-2B, comparing the standard
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Table 1: Performance (avg@8 acc %) comparison of Qwen2.5-VL and Qwen3-VL models be-
tween GRPO, DAPO and PAPO on general and more vision-dependent multimodal reasoning tasks.
MathVerseV refers to the vision-centric subset of MathVerse (Zhang et al., 2024). ∆%

rel indicates
the averaged relative gain over the baseline for each task. We observe consistent improvements
against both GRPO and DAPO, with gains approaching 8%-19%, especially on tasks with high
vision-dependency. Training dynamics for these models are compared in Figure 4.

Method General Multimodal Reasoning Vision-Dependent Multimodal Reasoning Overall

Geo3k MathVista We-Math MMKI2 MathVerse AVG ∆%
rel LogicVista Counting MMMU-Pro MathVerseV AVG ∆%

rel AVG ∆%
rel

Qwen2.5-VL

GRPO-3B 28.72 59.34 58.90 57.24 55.25 51.89 − 38.14 55.81 25.66 52.26 42.97 − 47.92 −
PAPOG-3B 30.95 61.38 60.09 57.39 57.14 53.39 ↑ 3.38 38.67 62.56 27.11 53.95 45.57 ↑ 5.60 49.92 ↑ 4.36

GRPO-7B 40.18 65.48 68.12 72.26 66.51 62.51 − 45.62 73.94 35.17 61.71 54.11 − 58.78 −
PAPOG-7B 40.25 69.53 66.79 72.52 68.43 63.50 ↑ 1.53 46.07 89.81 36.63 64.97 59.37 ↑ 7.96 61.66 ↑ 4.39

DAPO-3B 31.20 60.89 59.95 66.83 56.25 55.02 − 40.69 74.25 28.42 53.09 49.11 − 52.40 −
PAPOD-3B 35.65 62.53 62.67 64.09 60.51 57.09 ↑ 5.00 41.67 83.56 28.76 57.72 52.93 ↑ 5.97 55.24 ↑ 5.54

DAPO-7B 35.92 61.91 58.51 75.93 55.64 57.58 − 37.05 90.05 29.02 51.04 51.79 − 55.01 −
PAPOD-7B 44.11 67.53 68.30 80.61 68.58 65.83 ↑ 15.61 46.70 91.38 36.34 64.87 59.82 ↑ 19.09 63.16 ↑ 17.54

Qwen3-VL (thinking)

GRPO-2B 39.29 53.58 57.12 47.71 47.98 49.13 − 29.84 80.13 20.51 45.41 43.97 − 46.84 −
PAPOG-2B 41.08 56.08 59.17 48.57 51.89 51.36 ↑ 4.52 32.83 80.63 23.42 50.05 46.73 ↑ 6.27 49.30 ↑ 5.25

GRPO DAPO

Figure 4: Comparison of the training dynamics on the accuracy reward. Solid lines indicate
running averages with a stepping window size of 20. PAPO demonstrates consistently faster learning
from the early stages on both GRPO and DAPO. Notably, DAPO-7B suffers from model collapse in
the later stages, whereas PAPOD achieves continued improvements without collapse, highlighting
the effectiveness of the proposed Double Entropy regularization. Further analysis on regularizing the
DAPO baseline is presented in Appendix H.

GRPO and DAPO baselines with our proposed variants, PAPOG and PAPOD. Note that GRPO uses
a reference KL penalty, while DAPO removes it and employs dynamic sampling. Additional details
on the hyperparameter configurations are provided in Appendix C.

4.2 EVALUATION

To systematically evaluate the effectiveness of PAPO, we conduct experiments and ablation studies
on eight benchmarks that cover diverse multimodal reasoning problems, including: (1) Math and
Geometric Reasoning: Geometry3K (Lu et al., 2021), MathVista (Lu et al., 2023), MathVerse (Zhang
et al., 2024), and We-Math (Qiao et al., 2024); (2) Multi-discipline Multimodal Reasoning: MMMU-
Pro (Yue et al., 2024); (3) Logical Reasoning: LogicVista (Xiao et al., 2024); (4) Counting:
SuperClevr Counting (Li et al., 2023). All evaluation metrics are based on exact match against ground
truth answer. We report average accurarcy @ 8 for all benchmarks with a inference temperature of
1.0. We omit datasets or instances with free-form answers that require LLM-as-a-judge evaluation.
Analysis on Vision Dependency. As also discussed in (Zhang et al., 2024; Yue et al., 2024), we
observe that not all mainstream multimodal benchmarks are guaranteed to have visually dependent
problems. That is, some reasoning tasks may rely heavily on textual content and do not require the
visual content for deriving the answer. For example, Figure 6 exhibits VQA problems of different
vision-dependency levels, highlighting the varying degrees of reliance on visual information in multi-
modal question answering. To this end, we conduct a manual screening of the included benchmarks
and identify the following two categories: (1) Vision-Dependent Multimodal Reasoning: Bench-
marks in which instances explicitly require proper interpretation of the visual input; (2) General
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Table 2: Results on integrating PAPO with modifications from other perspectives (e.g., Noisy-
Rollout). The base model is Qwen2.5-VL-3B. We find that NoisyRollout yields substantial gains
on some datasets but shows inconsistent improvements across different tasks (reductions on 4/9
benchmarks). PAPO is compatible with NoisyRollout and delivers additional gains when combined.

Method General Multimodal Reasoning Vision-Dependent Multimodal Reasoning Overall

Geo3k MathVista We-Math MMKI2 MathVerse LogicVista Counting MMMU-Pro MathVerseV AVG

GRPO 28.72 59.34 58.90 57.24 55.25 38.14 55.81 25.66 52.26 47.92

GRPO + NoisyRollout 28.49 61.34 58.58 66.78 61.34 37.47 61.44 28.79 51.30 50.61

PAPOG 30.95 61.38 60.09 57.39 57.14 38.67 62.56 27.11 53.95 49.92

PAPOG + NoisyRollout 30.66 58.83 60.60 66.95 56.21 39.51 71.38 29.47 53.36 51.89

Multimodal Reasoning: Benchmarks where instances may place weaker requirements on attending
to the visual input when answering the question. More details are presented in Appendix D.

5 RESULTS

5.1 MAIN RESULTS

PAPO consistently outperforms GRPO and DAPO for multimodal reasoning. We present the
main results on both 3B and 7B base models in Table 1. The ∆%

rel denotes the average relative gain
against the GRPO/DAPO baseline across all tasks. PAPO shows consistent overall improvements
(4.4%-17.5%), with identical training dataset, rollout space and reward design, compared to the
baselines. In Figure 4, we further present a comparison of training dynamics based on the accuracy
rewards on ViRL39K. PAPO showcases faster learning even from the early steps. While DAPO-7B
encounters model collapse in later stages, PAPOD continues to improve steadily, demonstrating
the efficacy of the proposed Double Entropy regularization. In Appendix H, we further explore
regularizing the DAPO baseline with our proposed entropy-based loss and demonstrate improvements
over the stronger, regularized DAPO baseline. In Appendix E, we provide additional qualitative
analysis of the attention patterns, illustrating how PAPO encourages stronger and more accurate
attention to the image patches.

More significant improvements on vision-dependent reasoning. The performance gains are more
pronounced on the vision-dependent subset, leading to a relative gain of 8.0%-19.1%. This aligns
with our expectation regarding the impact of Implicit Perception Loss, as it encourages visually
dependent responses.

Significantly reduced perception errors. We further conduct a comprehensive qualitative study
on the error distribution, following the setup detailed in §2.2. Figure 1 shows a before-and-after
comparison of errors with GRPO and PAPO. We observe a significant reduction in perception errors,
demonstrating the effectiveness of addressing the perception bottleneck in GRPO for multimodal
reasoning. In Appendix K, we provide additional evaluations on OCR-Bench-v2 (Fu et al., 2024),
which demonstrate the benefits of PAPO on fine-grained perception tasks. In Appendix N, we
further analyze the perception errors and their outcomes under PAPO, investigating whether these
errors are corrected or shift to other categories.

Compatibility with other algorithmic modifications. As discussed in §1, prior work has focused
on modifying the RLVR framework from the data, rollout, and reward perspectives. Since PAPO
modifies only the optimization objective, it is in theory complementary to modifications from these
other perspectives. To further examine this, we integrate PAPO with NoisyRollout (Liu et al., 2025a).
The results are presented in Table 2. We summarize our findings as follows: (1) NoisyRollout yields
inconsistent improvements across tasks, achieving large gains on some tasks but reductions on 4 out of
9 benchmarks. (2) Combining PAPO with NoisyRollout yields complementary gains, demonstrating
strong compatibility with advances from other perspectives, such as the rollout stage.

Robustness in GRPO with removed KL penalty. To conduct a more controlled investigation of
the robustness of PAPO with KLprcp under the removal of the original KL penalty, we consider an
additional GRPO variant where the reference KL is removed without introducing other modifications
like in DAPO. Table 8 (in Appendix F) shows that PAPO achieves overall improvements of 11.2%
and 4.0% on the 3B and 7B models, respectively, outperforming the GRPO + Removed KL baselines.
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Robustness in low vision-dependent tasks. Currently, PAPO applies the Implicit Perception
Loss loss to all instances and all tokens, encouraging perceiving the visual inputs. Although this
minimalist design works empirically well, we further investigate the model’s robustness to strictly
vision-independent scenarios. Specifically, we consider a text-only general reasoning benchmark
MMLU-pro (Wang et al., 2024), and insert dummy visual inputs into the context (images containing
pure random noise). If the model were to attend to these noisy visual tokens indiscriminately, we
would expect a degradation in performance. The results are presented in Table 13 (Appendix). We find
that PAPO still achieves competitive or stronger performance under this extreme setting, indicating
good robustness in low-vision-dependency scenarios.

5.2 ABLATION ON KEY DESIGN CHOICES

Table 3: Impact of masking strategy and ratio.
Performance comparison of PAPOG using different
approaches for constructing Imask. The base model is
Qwen2.5-VL. Despite its simplicity, random mask-
ing empirically outperforms semantic-aware mask-
ing. A sufficiently large masking ratio (e.g., 0.6)
yields stronger performance. See details in §5.2.

Model General Vision Overall

Size Method AVG ∆%
rel AVG ∆%

rel AVG ∆%
rel

GRPO Baselines

3B GRPO 51.89 − 42.97 − 47.92 −
7B GRPO 62.51 − 54.11 − 58.78 −

Impact of Masking Strategy on PAPO

3B
random @0.6 52.53 ↑ 1.73 45.17 ↑ 4.52 49.26 ↑ 2.97

semantic @0.6 52.13 ↑ 0.34 43.78 ↑ 1.88 48.42 ↑ 1.02

7B
random @0.6 63.56 ↑ 1.91 57.49 ↑ 5.37 60.86 ↑ 3.55

semantic @0.6 63.39 ↑ 1.48 56.83 ↑ 3.89 60.47 ↑ 2.55

Impact of Masking Ratio on PAPO

3B

random @0.4 52.51 ↑ 1.55 44.12 ↑ 2.29 48.78 ↑ 1.88

random @0.6 52.53 ↑ 1.73 45.17 ↑ 4.52 49.26 ↑ 2.97

random @0.8 52.57 ↑ 1.49 44.24 ↑ 2.69 48.87 ↑ 2.02

random @1.0 52.13 ↑ 0.71 43.98 ↑ 2.31 48.51 ↑ 1.42

Impact of Masking Ratio and Strategy.
We investigate the most effective way to cor-
rupt the original visual input to maximize the
benefit of PAPO. In Table 3, we compare both
masking strategies on PAPOG, i.e., random
masking vs. semantic-aware masking, and
masking ratios, which control the percentage
of patches to be masked. Implementation de-
tails for the masking strategies are provided in
Appendix G. We find:

• Random masking empirically outperforms
semantic-aware masking. We hypothe-
size that semantic-aware masking underper-
forms because, as illustrated in Figure 3, it
tends to obscure entire salient regions, caus-
ing the model to attend to all objects indis-
criminately instead of focusing on the most
informative parts.

• Masking a sufficiently large portion of the
image, e.g., 0.6 to 0.8, results in best per-
formances. However, using a completely
blackened image is not favorable, as it en-
courages the model to attend to the image
regardless of its content. We also observe
that complete blackening is more likely to
cause KLprcp Hacking (detailed in §5.3).

Table 4: Impact of KLprcp loss weighting. Per-
formance comparison on PAPOG with Qwen2.5-
VL-3B using different values of γ. Increasing γ up
to 0.02 generally improves performance, while an
excessively large γ, such as 0.04, leads to model
collapse (see detailed discussion in §5.3). Larger
models are also more sensitive to high γ as shown in
Figure 12.

Method General Vision Overall

AVG ∆%
rel AVG ∆%

rel AVG ∆%
rel

GRPO 51.89 − 42.97 − 47.92 −

PAPO @0.005 52.40 ↑ 1.19 43.73 ↑ 1.92 48.55 ↑ 1.51

PAPO @0.01 52.53 ↑ 1.73 45.17 ↑ 4.52 49.26 ↑ 2.97

PAPO @0.02 53.39 ↑ 3.38 45.57 ↑ 5.60 49.92 ↑ 4.36

PAPO @0.04 (collapsed) 31.24 ↓ 43.15 38.31 ↓ 14.09 34.38 ↓ 28.46

Impact of Implicit Perception Loss weight-
ing. We ablate on the choice of γ, which is
the weighting coefficient of KLprcp as shown
in Equation 2. Table 4 presents the per-
formance comparison based on PAPOG-3B
when varying γ from 0.005 to 0.04. We sum-
marize our findings as follows:

• A larger γ under 0.02 tends to result in
more pronounced improvements, especially
on more visually-dependent tasks. Without
additional regularization, setting γ = 0.02
for PAPOG-3B models and γ = 0.01 for
PAPOG-7B models serves as a good de-
fault.

• γ should not be set too large (e.g., 0.04), as
it causes severe model collapse that cannot
be regularized even with Double Entropy Loss. We also observe that larger models are more
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sensitive to higher γ values and require earlier regularization as shown in Figure 12 in the
Appendix. We further discuss the impact of γ on KLprcp Hacking in §5.3.

• In settings without a reference KL penalty (including PAPOD), γ needs to be set more conserva-
tively (e.g., 0.01), and Double Entropy Loss is indispensable (see Figure 10 in the Appendix).

5.3 DEEP DIVE ON TRAINING STABILITY

Figure 5: Comparison of different regularization
strategies. All strategies are applied to the same
collapsing baseline, PAPOG (γ = 0.02, no regu-
larization). Among the four methods described in
the main text, three successfully prevent the collapse
entirely, while adding Single Masked Entropy only
delays it. The proposed Double Entropy Loss demon-
strates the best training dynamics and prevents the
collapse. Detailed results are compared in Table 5.

In this section, we aim to gain a deeper under-
standing of KLprcp Hacking, a unique failure
mode where the model over-optimizes the Im-
plicit Perception Loss. We present our find-
ings on: (1) the model’s generation behavior
after collapsing; (2) early signs indicating a
model collapse; (3) the most influential fac-
tors contributing to the hacking; and (4) reg-
ularization approaches to prevent or delay its
occurrence.

Collapsing behavior. We first examine how
the model behaves after collapsing in terms of
its generation. We manually examine the gen-
erated tokens of a collapsed model, a PAPOG-
7B with γ = 0.02 (without regularization),
and a non-collapsing model, GRPO-7B. We
observe a notably abnormal generation behav-
ior, namely, a tendency to generate entirely
unrelated tokens during reasoning (see Fig-
ure 13 in the Appendix). We quantitatively
verify this by leveraging GPT-4.1-mini (Ope-
nAI, 2025) as a judge to score the relatedness of the model’s response. As presented in the bottom
left of Figure 13, the collapsed model shows significantly lower relatedness. See Appendix M for
more details on this experiment.

Early signs of KLprcp Hacking. When the hacking occurs, the model exhibits a drastic decrease in
KLprcp, accompanied by collapsing training rewards. Meanwhile, the Clipping Ratio-High increases,
indicating a growing proportion of tokens undergoing policy gradient updates beyond the clipping
threshold, which serves as an early sign of collapse. We also observe an interesting pattern: the
entropy loss for both the original πθ and the corrupted policy πmask

θ increases as the collapse unfolds.
This observation inspires our regularization strategies, which are detailed later in this section. See
Figure 11 in the Appendix for the metric dynamics.

Table 5: Performance comparison between the
three regularization methods that successfully pre-
vent model collapse, as shown in Figure 5. The base
model is Qwen2.5-VL-7B. Among these methods,
Double Entropy Loss achieves the best overall im-
provement of 4.4%.

Method General Vision Overall

AVG ∆%
rel AVG ∆%

rel AVG ∆%
rel

GRPO 62.51 − 54.11 − 58.78 −

PAPOG w/ Inc KLref 63.14 ↑ 1.12 57.03 ↑ 3.99 60.42 ↑ 2.40

PAPOG w/ Single Ent 63.34 ↑ 1.53 58.36 ↑ 5.96 61.12 ↑ 3.50

PAPOG w/ Double Ent 63.50 ↑ 1.53 59.37 ↑ 7.96 61.66 ↑ 4.39

Influential factors towards KLprcp Hacking.
We summarize three main factors that make
the model more prone to KLprcp Hacking: (1)
Model size: Larger models tend to be more
sensitive to hacking under the same configu-
ration. For example, setting γ = 0.02 causes
collapse on 7B models but not on 3B mod-
els. (See Figure 12 a.) (2) Loss weighting: A
higher KLprcp weighting, such as 0.04, is more
likely to lead to collapse. (See Figure 12 b.)
(3) Masking ratio: Using an extreme mask-
ing ratio, e.g., 1.0, leads to a faster collapse.
(See Figure 12 c.)

Regularization approaches for preventing KLprcp Hacking. Inspired by the aforementioned
findings, we investigate four different approaches to prevent the collapse: (1) Increasing the KL
penalty against the reference model; (2) Adding a single entropy loss on the original policy sequence
πθ; (3) Adding a single entropy loss on the corrupted policy sequence πmask

θ ; (4) Adding a Double
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Entropy Loss on both πθ and πmask
θ . See Figure 5 in the Appendix for the training dynamics of the

four approaches. Among them, (1)(2)(4) successfully prevent the collapse from happening.

We further examine their evaluation performance, as shown in Table 5. We find that adding entropy-
based loss on the original sequence is essential for regularizing training stability. Overall, Double
Entropy Loss achieves the most significant performance gain while also successfully avoiding KLprcp
Hacking. In Figure 9 in the Appendix, we also show that adding entropy loss alone fails to prevent
DAPO from collapsing, whereas PAPOD stabilizes training and yields significant improvements.

6 RELATED WORK

Prior work on multimodal RLVR have primarily focused on enhancing three components of the
original GRPO framework: Data, Rollout, and Reward, while leaving the core optimization
objectives largely untouched. We offer a comprehensive categorization and comparison in Table 15
in the Appendix.

Data-Centric Approaches. Earlier efforts such as R1-V (Chen et al., 2025; Huang et al., 2025;
Meng et al., 2025a) distill chain-of-thought (CoT) data from strong textual reasoning models like
Deepseek-R1 (Guo et al., 2025) and explore directly applying R1-style training pipelines to multi-
modal tasks, demonstrating initial promise in generalization. Recent work such as MoDoMoDo (Liang
et al., 2025; Li et al., 2025a) explores more sophisticated sample selection mechanisms to improve
data quality.

Rollout Improvements. NoisyRollout (Liu et al., 2025a) and R1-ShareVL (Yao et al., 2025) show
the benefits of diversifying the rollout space using responses generated from moderately augmented
visual inputs. VL-Rethinker (Wang et al., 2025b) and Skywork R1V2 (Wang et al., 2025d) adopt a
Selective Sample Replay mechanism to mitigate the prevalent issue of vanishing advantages.

Reward Enhancements. Several approaches (Ma et al., 2025; Liu et al., 2025b; Fan et al., 2025)
incorporate grounding-related metrics, such as IoU for bounding boxes. Visionary-R1 (Xia et al.,
2025) introduces captioning-based rewards, prompting the model to generate detailed textual descrip-
tions of visual input before reasoning. While initially promising, this approach enforces a separation
between perception and reasoning, which can be suboptimal for capturing low-level visual details.

Perception as Tool-Using. Another line of emerging work takes a different view on improving
perception in multimodal reasoning, relying on tool use for perception. Recent efforts such as
DeepEyes (Zheng et al., 2025), ACTIVE-O3 (Zhu et al., 2025b), and Pixel Reasoner (Su et al., 2025)
enhance perception by incentivizing the LMM to perform visual operations, such as zooming in.
However, these methods do not directly improve the native perception capabilities of the multimodal
models.

Consequently, we find that the prevailing assumption: multimodal reasoning can be effectively
addressed solely through data- and reward-level modifications to text-based RL, is inherently limiting.
Our work challenges this paradigm by demonstrating that incentivizing visually grounded reasoning
requires deeper integration into the core optimization objective, rather than treating vision as a
secondary modality addressed through auxiliary adjustments.

7 CONCLUSION AND LIMITATIONS

In this paper, we present PAPO, a novel policy gradient algorithm that encourages the reasoning steps
in Large Multimodal Models (LMMs) to be internally grounded in visual inputs. PAPO requires
no additional annotations, no reliance on stronger teacher models, and no expensive neural reward
models, making it a direct drop-in replacement to GRPO or DAPO. Despite its simplicity, PAPO
significantly improves complex visual reasoning. One limitation of our current work is that we have
not yet explored scaling to larger model sizes or evaluating compatibility with other model families,
such as the InternVL (Zhu et al., 2025a) series. Additionally, while PAPO introduces only moderate
computational overhead (see Appendix O), we have not focused on optimizing training efficiency,
which remains an important direction for future research. Another promising avenue for future work
is investigating a finer-grained selection of tokens on which to apply the PAPO objective, rather than
applying it uniformly to all tokens.

10
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8 REPRODUCIBILITY STATEMENT

We include an anonymous source code in the supplementary material, containing training and
evaluation instructions for reproducing the results in this paper. Implementation details of the datasets
and models are provided in §C. The prompt used for the LLM-as-a-judge evaluation in Figure 13 is
presented in Figure 14.

9 ETHICS STATEMENT

This work focuses on fundamental research in reinforcement learning and multimodal reasoning. Our
methods are developed and evaluated entirely on publicly available benchmarks without involving
human subjects, sensitive personal data, or private information. The proposed algorithm, PAPO, is
designed as a general optimization technique and does not raise concerns regarding fairness, bias,
discrimination, privacy, or security. We believe that our study poses no foreseeable ethical risks and
fully complies with research integrity standards.
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A USE OF LARGE LANGUAGE MODELS STATEMENT

Large language models, such as ChatGPT, are used exclusively for grammar checking during the
writing process. They are not used for research ideation. In addition, LLM-based coding assistants,
such as Copilot, are employed to support code implementation.

B PAPOD OBJECTIVE

Similar to PAPOG, we extend DAPO (Yu et al., 2025) with our perception-aware supervision signal
to implement PAPOD. The complete PAPOD objective is shown as follows:

JPAPOD (θ) = E[{oi}Gi=1∼πθold
(O|q,I)]

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵl, 1 + ϵh) Âi,t

]
+γDKL[πθ||πmask

θ ]− η1H
[
πθ

]
− η2H

[
πmask
θ

]}
with 0 < |{oi | is equivalent(a, oi)}| < G (3)

where γ is the weighting coefficient for KLprcp, η1 and η2 are the weighting coefficients for the
Double Entropy Loss terms, and rprcp

i (θ) = πθ(oi|q,I)
πθ(oi|q,Imask)

quantifies the model’s reliance on visual
information. We implement KLprcp using the same approximation method as in PAPOG. Note
that in PAPOD, the reference KL penalty (DKL [πθ||πref ]) is removed as in DAPO. In addition,
the dynamic sampling strategy is enabled to prevent sampling instances with either all-correct or
all-wrong rollouts. The maximum number of retries for dynamic sampling is set to 20 for both the
DAPO baseline and PAPOD.

C IMPLEMENTATION DETAILS

Dataset. We use ViRL39K (Wang et al., 2025b), a diverse collection of 38.8K multimodal reasoning
QA pairs covering problems in math, STEM, charts, and social topics. Note that the training
data includes only input queries and final answers, without intermediate chain-of-thought (CoT)
annotations.

Models. We employ the Qwen2.5-VL-3B (Qwen Team, 2024a), Qwen2.5-VL-7B (Qwen Team,
2024b) and Qwen3-VL-2B-thinking (Qwen Team, 2024c) as our base models. By default, the
base model refers to Qwen2.5-VL. We consider the following main model variants and default
configurations:

• GRPO: GRPO (Shao et al., 2024) baseline with clipping factors set to ϵl = 0.2, ϵh = 0.3,
and reference KL penalty coefficient set to β = 0.01.

• DAPO: DAPO (Yu et al., 2025) baseline with clipping factors set to ϵl = 0.2, ϵh = 0.28,
reference KL removed, token-level loss averaging enabled, and dynamic sampling with a
maximum of 20 retries.

• PAPOG: PAPO instantiated from GRPO.
• PAPOD: PAPO instantiated from DAPO.

Table 6 summarizes the hyperparameter configurations for the best performing model variants as
shown in Table 1. Detailed ablations and analysis are presented in §5.2 and §5.3. For PAPO models,
we use random masking with a default masking ratio of 0.6. Double Entropy Loss is essential for
settings with higher γ on 7B models, and for configurations without the reference KL penalty (i.e.,
PAPOD), due to the inherently weaker regularization against deviation from the base model.

Training. We conduct RLVR on all model variants using the following typical response format,
where reasoning steps are enclosed in <think></think> and the final answer is enclosed in
\boxed{}. Each model is trained for 2 epochs on ViRL39K (Wang et al., 2025b) with a learning
rate of 1e-6 and weight decay of 1e-2. We use 2 and 4 NVIDIA H100 80G GPUs for 3B and 7B
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Model γ η1, η2 Mask Ratio β εl, εh

Qwen2.5-VL GRPO-3B - - - 0.01 0.2, 0.3
Qwen2.5-VL GRPO-7B - - - 0.01 0.2, 0.3
Qwen3-VL GRPO-2B - - - 0.01 0.2, 0.3
Qwen2.5-VL PAPOG-3B 0.02 - 0.6 0.01 0.2, 0.3
Qwen2.5-VL PAPOG-7B 0.02 0.05 0.6 0.01 0.2, 0.3
Qwen3-VL PAPOG-2B 0.01 - 0.6 0.01 0.2, 0.3

Qwen2.5-VL DAPO-3B - - - - 0.2, 0.28
Qwen2.5-VL DAPO-7B - - - - 0.2, 0.28
Qwen2.5-VL PAPOD-3B 0.01 0.03 0.6 - 0.2, 0.28
Qwen2.5-VL PAPOD-7B 0.01 0.03 0.6 - 0.2, 0.28

Table 6: Hyperparameter configurations for models in Table 1.

experiments respectively. We use a rollout batchsize of 384, and generate n = 5 responses per prompt.
More details on training configuration can be found in the code supplementary.

D VISION-DEPENDENCY ANALYSIS

Table 7: Analysis of vision-dependency across nine
multimodal reasoning datasets.

Dataset Low Medium High

Training Dataset

ViRL39K (Wang et al., 2025b) ✗ ✓ ✓

General Reasoning

Geo3K (Lu et al., 2021) ✓ ✓ ✗

LogicVista (Xiao et al., 2024) ✗ ✗ ✓

MathVerse (Zhang et al., 2024) ✓ ✓ ✓

MathVista (Lu et al., 2023) ✓ ✓ ✓

MMK12 (Meng et al., 2025b) ✓ ✓ ✓

We-Math (Qiao et al., 2024) ✓ ✓ ✗

Vision-Dependent Reasoning

Counting (Li et al., 2023) ✗ ✗ ✓

MathVerseV (Zhang et al., 2024) ✗ ✓ ✓

MMMU-Pro (Yue et al., 2024) ✗ ✗ ✓

We observe that current multimodal rea-
soning benchmarks exhibit varying degrees
of reliance on visual information, ranging
from questions answerable through textual
cues alone to those requiring comprehensive
visual analysis. To systematically charac-
terize this spectrum, we propose a taxon-
omy of vision dependency levels and an-
alyze their distribution across mainstream
multimodal reasoning datasets, including
ViRL39K (Wang et al., 2025b), Geome-
try3K (Lu et al., 2021), MathVista (Lu et al.,
2023), MathVerse (Zhang et al., 2024), Log-
itVista (Xiao et al., 2024), MMK12 (Meng
et al., 2025b), We-Math (Qiao et al., 2024),
SuperClevr-Counting (Li et al., 2023), and
MMMU-Pro (Yue et al., 2024). Specifically,
we categorize vision dependency into three
levels based on the significance distribution
of critical information between textual ques-
tions and visual contents:

• Low: In low vision-dependency tasks, the questions typically embed substantial visual
information within the textual input itself, such as specifying the length of an important
triangle side, thereby reducing the model’s reliance on visual processing.

• Medium: Medium-level vision-dependency tasks provide partial contextual information
textually while requiring the model to perceive and extract complementary visual features
from the image.

• High: High vision-dependency tasks contain minimal or no visual information in the textual
input, requiring the model to derive answers entirely through visual reasoning.

We manually examine the data instances and dataset construction pipelines for each benchmark
and summarize our findings in Table 7. In Figure 6, we further illustrate representative examples
from each category, demonstrating how the practical manifestation of these dependency levels
directly correlates with the perception challenges we observe in current multimodal reasoning models.
Notably, our experiments show that PAPO’s improvements are most pronounced (8.0%) on high
vision-dependency tasks, unveiling that learning perception-aware policies is essential for robust
multimodal reasoning.
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Figure 6: Illustrative examples of different levels of vision-dependency.
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Figure 7: Qualitative analysis of attention patterns comparing the GRPO baseline and PAPOG.
We find that (1) PAPO encourages more attention on image tokens versus text tokens, and (2) PAPO
places stronger attention on salient objects while reducing attention on empty regions (as highlighted
in the circles).

Table 8: Controlled experiments on reference KL removal. For PAPOG, we add a Double Entropy
Loss with a coefficient of 0.03 for both 3B and 7B models. We find that PAPOG is highly compatible
with this setting, achieving further improvements with an average relative gain of 11.2% and 4.0%.
Improvements against the GRPO + No KLref is more pronounced on more vision-dependent tasks,
highlighting stronger perception capabilities for reasoning.

Method General Vision Overall

AVG ∆%
rel AVG ∆%

rel AVG ∆%
rel

3B

GRPO 51.89 − 42.97 − 47.92 −
GRPO + No KLref 53.96 ↑ 4.75 45.46 ↑ 5.37 50.18 ↑ 5.03

PAPOG + No KLref 56.21 ↑ 9.26 49.33 ↑ 13.60 53.15 ↑ 11.19

7B

GRPO 62.51 − 54.11 − 58.78 −
GRPO + No KLref 63.99 ↑ 2.05 57.94 ↑ 5.36 61.30 ↑ 3.53

PAPOG + No KLref 63.31 ↑ 1.15 59.18 ↑ 7.54 61.47 ↑ 3.99

E ADDITIONAL ANALYSIS ON ATTENTION PATTERN

We visualize the attention heatmap from the response tokens to the input image tokens. In Figure 7,
we present the attention patterns of GRPO and PAPO, along with the overall attention distribution
across image and text tokens in the inputs. We observe that (1) PAPO encourages more attention to
be allocated to the input image tokens overall, and (2) PAPO directs attention more precisely toward
salient objects while suppressing attention to empty or uninformative regions.

F CONTROLLED EXPERIMENTS ON REFERENCE KL REMOVAL WITH GRPO

To have a further controlled investigation on the robustness of PAPO with KLprcp under the removal
of the original KL penalty, we consider an additional GRPO variant in which we remove the
reference KL without introducing other modifications as in DAPO. Under this setting, we remove the
DKL[πθ||πref ] term (referred to as KLref) from the GRPO and PAPOG training objective (Eq 2).

In Table 8, we compare GRPO + No KLref with PAPOG + No KLref, using γ = 0.01 and Double
Entropy Loss with η1 = η2 = 0.03. We observe that PAPOG performs well in this setting, achieving
overall improvements of 11.2% and 4.0% for the 3B and 7B models, respectively. Its superiority
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over the GRPO + No KLref baseline is particularly evident on vision-dependent tasks, with gains of
13.6% and 7.5%, indicating enhanced perception capabilities for reasoning.

G MASKING STRATEGIES

We extend our elaboration on our two masking strategies for creating corrupted visual inputs Imask
used in the Implicit Perception Loss KLprcp. We show an illustration of different masking strategies
in Figure 3. As visualized in Figure 3, we observe that patch-based masking removes informative
semantic contents more effectively while pixel-level noises typically preserve semantics even at high
noise levels. We detail the two patch-level masking strategies as follows.

G.1 RANDOM MASKING

Random masking is a simple and computationally efficient approach for generating Imask. Given an
input image I and a blackening probability p ∈ [0, 1], we traverse the image in a grid pattern with
patch size s × s pixels (s = 14 by default). For each patch location, we generate an independent
random variable r ∼ Uniform(0, 1) and mask the patch if r < p.

This random masking implementation ensures that each patch has the probability p of being masked,
independent of other patches. The expected fraction of masked patches is p, with minimal computa-
tional overhead.

G.2 SEMANTIC-AWARE MASKING

Semantic-aware masking aims to preferentially mask patches that contain more semantically important
visual information. This approach leverages a pre-trained vision encoder to identify salient regions
before applying masking. Our implementation uses DINOV2 (Oquab et al., 2023) as the vision
encoder for its strong self-supervised representation learning capabilities.

Attention-Based Saliency Computation. Given an input image I , we first process the image to
obtain patch-level attention maps. For a model with L layers and H attention heads, this yields
attention matrices A(l) ∈ RH×N×N for each layer l ∈ 1, 2, . . . , L, where N is the total number of
patches. As middle layers often capture more meaningful semantic relationships, we employ 6, 7, 8, 9
layers to aggregate patch-level self-attention scores for saliency computation.

Specifically, for each selected layer l, aggregate attention across heads using mean pooling:

A
(l)

=
1

H

H∑
h=1

A
(l)
h (4)

The saliency score is computed for each patch i by summing the attention it receives from all other
patches:

s
(l)
i =

N∑
j=2

A
(l)

j,i+1 (5)

where the +1 offset accounts for the first CLS token.

Saliency scores are averaged across selected layers:

si =
1

|L|
∑
l∈L

s
(l)
i (6)

where L = 6, 7, 8, 9 is the set of selected layers.

Saliency-Based Patch Selection. With computed saliency scores for all image patches, we select
patches for masking through:

• Ranking. Sort patches in descending order of saliency scores to identify the most semanti-
cally important regions.
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Table 9: Normalized entropy of the attention distribution (from the response tokens to the input
image tokens), comparing PAPO trained with random masking and semantic masking.

Model (Qwen2.5-VL) Mean - Geo3K Median - Geo3K Mean - Counting Median - Counting

3B PAPO-G w/ Random Masking 0.9520 0.9522 0.9351 0.9362
3B PAPO-G w/ Semantic Masking 0.9522 0.9517 0.9331 0.9342
7B PAPO-G w/ Random Masking 0.9457 0.9472 0.9525 0.9530
7B PAPO-G w/ Semantic Masking 0.9401 0.9403 0.9513 0.9512

• Top-k Selection. Given masking ratio p, select the top k = ⌊p × (N − 1)⌋ patches with
highest saliency scores for masking.

• Patch Masking. Apply the same zero-out operation as in random masking to the selected
high-saliency patches.

G.3 FURTHER ANALYSIS OF MASKING STRATEGIES

In Table 3, we empirically observed that random masking performs better than semantic-aware
masking. We believe the reason is that random masking naturally strikes a balance between masking
out enough informative content while avoiding the removal of an entire “block” of salient information.
A similar phenomenon has been observed in prior work on masked autoencoders (He et al., 2022)
and masked visual modeling (Xie et al., 2022; Fu et al., 2023), where random masking is found to be
competitive with, or even superior to, block-wise and attention-based masking strategies.

To further investigate what makes random masking performant, we conduct two additional analysis:
(1) analyzing the attention patterns of PAPO models trained with random masking versus semantic
masking, and (2) examining the error distribution in cases where the random-masking model succeeds
but the semantic-masking model fails.

Attention Pattern Analysis. The goal of this experiment is to investigate whether the masking
strategy leads to different attention behaviors after training. We extract the average attention weight
from response tokens to input image tokens, and then compute the normalized entropy of the attention
distribution across the image tokens. The normalized entropy is defined as Ent(P )/Ent(Puni), where
Puni is the uniform distribution over image patches; this normalization accounts for different numbers
of image tokens. A higher entropy indicates a more scattered attention distribution, whereas a lower
entropy indicates a more centralized one. We conduct this experiment on two datasets, Geo3K and
Counting, sampling 100 instances per dataset.

As shown in Table 9, we find that the overall attention patterns do not differ significantly between
the two masking strategies. However, the random-masking model generally exhibits slightly higher
entropy, indicating a more scattered attention distribution. This observation aligns with our hypothesis
that semantic masking encourages the model to focus more heavily on a centralized salient region.

Error Analysis. We also investigate what types of errors cause the semantic-masking model to
underperform relative to the random-masking model. We sample 30 instances per dataset from
Geo3K, Counting, and MathVerse where the random-masking model is correct but the semantic-
masking model fails, and manually categorize the error types. As presented in Figure 8, we find that
the predominant error source is still perception-related errors, suggesting that the primary advantage
of random-masking over semantic-masking lies in improved perception ability.

H ADDITIONAL EXPERIMENTS ON REGULARIZING DAPO BASELINE

As shown in Figure 4, we observe model collapsing on the DAPO-7B baseline. In this section, we
investigate further regularizing this baseline with an entropy loss and compare with PAPOD.

Unlike PAPO that uses both πθ and πmask
θ , DAPO baseline operates with a single policy πθ. Accord-

ingly, we explore the effects of adding an entropy loss term to the DAPO objective:

JDAPO+Ent(θ) = JDAPO(θ)− ηH[πθ] (7)
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Figure 8: Error categorization for cases where the semantic-masking model fails but the random-
masking model succeeds. We find that the most common reason for underperformance is poorer
perception.

Figure 9: Training dynamics of DAPO baseline with entropy loss. Adding entropy loss to the
DAPO-7B baseline effectively delays the collapse. PAPOD with Double Entropy Loss maintains
more stable training and achieves superior performance. The comparison of benchmark performance
is presented in Table 10.

where H is computed as the log probabilities of the response tokens, and η is set to the same as
η1 = 0.03 as in PAPOD. Figure 9 and Table 10 present the training dynamics and evaluation
performance of the regularized DAPO baseline, compared with the original DAPO and PAPOD. Our
main findings are as follows:

• Adding single entropy loss to DAPO successfully delays collapse and improves end-task
performance, but the regularization does not fully prevent collapse.

• PAPOD with Double Entropy Loss consistently outperforms both DAPO variants and
completely prevents collapse throughout training.
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Table 10: Performance of DAPO baseline with entropy loss. While adding entropy loss effectively
reduces collapsing on DAPO-7B, PAPOD with Double Entropy Loss consistently outperforms this
regularized DAPO baseline.

Method General Vision Overall

AVG ∆%
rel AVG ∆%

rel AVG ∆%
rel

DAPO-7B 57.58 − 51.79 − 55.01 −
DAPO-7B + Ent Loss 64.77 ↑ 13.52 59.14 ↑ 17.73 62.27 ↑ 15.86

PAPOD-7B (w/ Double Ent) 65.83 ↑ 15.61 59.82 ↑ 19.09 63.16 ↑ 17.54

Figure 10: Impact of KLprcp weighting (γ) under settings without reference KL. Double Entropy
Loss is indispensable for stabilizing training in this setting. Due to inherently weaker regularization,
γ should be set to a smaller value. When set higher (e.g., 0.02), model collapse still occurs, even with
Double Entropy Loss.

I ADDITIONAL RESULTS ON ABLATION STUDIES

We provide additional results for the ablation studies discussed in § 5.2. Figure 10 presents the impact
of varying the KLprcp weighting on PAPOG under settings with the reference KL removed. Due
to inherently weaker regularization in such settings, a higher γ (e.g., 0.02) can lead to irreversible
collapse, even with Double Entropy Loss applied. Empirically, a good default γ in this setting,
including PAPOD, is 0.01. Figure 10 also highlights the importance of Double Entropy Loss in
enhancing training stability, even when γ is low.

In Table 11, we further investigate the impact of the Double Entropy loss coeficients (η). Here, a
smaller coefficient means less regularization strength. At 0.01, we observe model collapse in the later
stages of training, whereas at 0.03 and 0.05 the entropy loss successfully prevents hacking behavior.
Empirically, 0.05 performs the best across 9 evaluation benchmarks.

J ADDITIONAL RESULTS ON KLPRCP HACKING ANALYSIS

We provide additional results for the deep dive analysis on the KLprcp hacking problem as discussed
in § 5.2. Figure 11 presents the early signs of model collapsing due to KLprcp Hacking. Figure 12
presents the key factors influencing the likelihood of model collapse. Figure 5 presents a comparison
of the effectiveness of different regularization strategies.

24



Published as a conference paper at ICLR 2026

Table 11: Impact of Double Entropy Loss coefficient. “DE” is short for Double Entropy Loss, “@
k” indicates the coefficient value for η1 and η2, as introduced in §3.2.

Method General Multimodal Reasoning Vision-Dependent Multimodal Reasoning Overall

Geo3k MathVista We-Math MMKI2 MathVerse LogicVista Counting MMMU-Pro MathVerseV AVG

GRPO 40.18 65.48 68.12 72.26 66.51 45.62 73.94 35.17 61.71 58.78

PAPOG + DE
@ 0.01 (collapsed) 39.95 62.03 65.19 69.71 62.72 44.30 92.50 38.01 59.77 59.35

@ 0.03 40.00 68.09 67.59 72.43 68.28 46.46 89.94 35.85 61.17 61.09

@ 0.05 40.25 69.53 66.79 72.52 68.43 46.07 89.81 36.63 64.97 61.66

a. b. d. e.c.

Figure 11: Early signs of model collapsing due to KLprcp Hacking. The “No Collapse” and
“Collapsed” models refer to PAPOG-7B (γ = 0.01) and PAPOG-7B (γ = 0.02 without double
entropy regularization), respectively. When collapsing occurs, we notice (a-b) the Implicit Perception
Loss drops drastically, accompanied by a collapsing training reward, (c) the clipping ratio-high
continuously increases, which indicates the proportion of tokens undergoing policy gradient updates
beyond the clipped threshold and (d-e) the entropy loss increases in both the masked policy πmask

θ
and the original policy πθ.

K ADDITIONAL RESULTS ON OCR TASKS

To further investigate the model’s perception-centric ability, we include additional evaluation on OCR-
bench-v2 (Fu et al., 2024). Table 12 shows that PAPO also brings benefits on such information-dense
tasks which require fine-grained perception on the visual inputs.

L ROBUSTNESS IN LOW VISION-DEPENDENT TASKS

Table 13 presents the results on MMLU-Pro with dummy visual inputs, which guarantees that the
image is irrelevant to the query. We find that PAPO achieves competitive or better performance in
this extreme setting, indicating PAPO ’s robustness to noisy or uninformative visual inputs.

M EXPLORATION ON COLLAPSING BEHAVIORS

In addition to a notable decline in performance (Table 4), collapsed models also generate responses
containing entirely unrelated tokens. To explore the extent of this abnormal generation behavior, we
extend our analysis to token relevance in model outputs after collapsing occurs. Qualitative examples
and quantitative results can be found in Figure 13.

Experimental Setup. We evaluated both a collapsed 7B PAPO model (γ = 0.02, without regular-
ization) and a non-collapsed 7B GRPO baseline on Geo3K (Lu et al., 2021). To assess the coherence
and relevance of generated responses, we employed GPT-4.1-mini (OpenAI, 2025) as a judge to
evaluate how well each model’s response relates to and addresses the input question on a scale from 0
to 10. Our evaluation prompt below specifically instructs the judge to focus on whether the response
attempts to solve the given problem rather than correctness, with scoring guidelines ranging from
0 (completely unrelated/gibberish) to 10 (perfectly related reasoning, even if the final answer is
incorrect). The complete evaluation prompt is provided in Figure 14.
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a. b. c.

Figure 12: Influential factors towards KLprcp Hacking. We identify three main factors: (a) KLprcp
weighting (higher values lead to a greater likelihood of collapse); (b) size (the larger the model, the
more likely it is to collapse); (c) an extreme masking ratio (e.g., 1.0) results in a faster collapse.

Table 12: Results on OCR-bench-
v2. The base model is Qwen2.5-VL.

Size Method OCR-bench-v2 (%)

3B Base 20.14

3B GRPO 26.32

3B PAPOG 27.22

7B Base 27.75

7B GRPO 31.17

7B PAPOG 32.11

Table 13: Results on MMLU-Pro with dummy
visual inputs. The base model is Qwen2.5-VL.

Size Method MMLU-pro Dummy Visual (%)

3B Base 23.23

3B GRPO 39.34

3B PAPOG 40.74

7B Base 31.57

7B GRPO 50.76
7B PAPOG 50.55

Quantitative Analysis. Our relatedness evaluation revealed that the collapsed model demonstrated
significantly degraded coherence, with an average relatedness score approximately 18% lower than
the baseline model. This substantial drop in relevance scores reflects the model’s tendency to
generate tokens that bear little semantic relationship to the input context or fail to attempt solving the
given problem. Additionally, we measured the variance in the KLprcp loss across response tokens
by computing per-token KL divergence between responses generated from original images versus
randomly patch-blackened versions of the same images. The collapsed model showed approximately
8.4 times higher variance in KL divergence compared to the baseline, indicating that the model has
learned to exploit the KLprcp by generating highly unpredictable token sequences.

Qualitative Observations. Based on the grading of GPT-4.1-mini and our manual inspection, we
find that collapsed models frequently generate responses that may begin with some problem-relevant
content but contain substantial portions of irrelevant text, numbers, or apparent meaningless contents.
An example can be found in Figure 13.

N ADDITIONAL ANALYSIS ON REDUCED PERCEPTION ERROR

In Figure 1, we show that PAPO significantly reduces perception-related errors. We further analyze
how these instances behave: do they all become correct, or do they still struggle with other types of
errors? To investigate this, we sample 60 instances that originally resulted in perception errors under
the GRPO baseline and examine their outcomes under PAPO. As shown in Figure 15 41% of the
original perception errors are corrected, 24% remain perception errors, and 25% shift to other error
categories. This indicates that eliminating perception errors alone may not be sufficient for some
challenging instances. However, overall, PAPO achieves a substantial 40% complete error removal,
demonstrating strong effectiveness in improving the overall performance.
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Example on Generating Unrelated Tokens

<think> In a right triangle, the Pythagorean theorem can be used to find
the length of the hypotenuse. [...]
\boxed{ \@ifundefined{FontU}{}{
\ifCLASSOPTIONcaptionscolor\colorbox{blue!10!white}
{\normalfont$29$}%
\else\@ifundefined{color}{\normalfont$29$}{\normalfont$29$}% [...]

Question: Find x.

Ground Truth:

Figure 13: Collapsing behavior. A distinctive generation pattern in collapsed models is the produc-
tion of irrelevant tokens. We verify this quantitatively by prompting GPT-4.1-mini OpenAI (2025)
to provide relatedness scores of the responses from 0 to 10 for GRPO and collapsed PAPOG-7B
(γ = 0.02, no regularization) model. We further compare the variance of KLprcp over the response
tokens. As illustrated, the collapsed PAPO model exhibits significantly lower relatedness scores and
higher variance across tokens in KLprcp. See §5.3 for a detailed discussion.

Table 14: Analysis of computational overhead. We report the average time per training step (in
seconds) and the time spent on the additional forward pass in PAPO. The experiments are conducted
using 2 and 4 NVIDIA H100 GPUs for the 3B and 7B models, respectively. While we observe a
moderate increase in training time per step (67.2 seconds for 3B and 108.6 seconds for 7B) we leave
further optimization of training efficiency to future work.

Model Method Per Step (s) Additional Forward Pass (s)

3B GRPO 360.9 -
PAPOG 428.1 48.8

7B GRPO 258.5 -
PAPOG 367.1 49.7

O COMPUTATIONAL OVERHEAD ANALYSIS

The main computational overhead stems from the additional forward pass on the rollout sequences
with a corrupted visual input. In Table 14, we report the averaged wall-clock time for each training
step and the additional forward pass comparing GRPO and PAPOG. 3B and 7B experiments are
conducted on 2 and 4 Nvidia H100 GPUs respectively.

P ADDITIONAL ANALYSIS ON RELATED WORK

In Table 15, we additionally offer a comprehensive categorization and comparison of recent literature
within the broader area of advancing multimodal reasoning. We highlight our novelty as the first
work to focus on improving the optimization objectives in multimodal RL.
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Prompt for Scoring Relatedness

You are an expert evaluator for mathematical visual reasoning tasks. Your job is to evaluate how well a model's reasoning and answer relates to a given
question.

You will be provided with:
1. An image containing a problem
2. The question with specific response format instructions
3. The ground truth answer
4. The model's generated answer

Your task is to rate the model's answer on a scale of 0-10 based on how well it relates to and addresses the question:

**Scoring Guidelines:**
In general, the higher your score is, the more strongly the model's answer pertains to and addresses the question.
- **0-1**: Completely unrelated (talks about other irrelevant things or topics)
- **2-3**: Minimally related (mentions some relevant terms but most contents are not attempting to solve the problem)
- **4-5**: Somewhat related (attempts to address the problem but with major unrelated contents)
- **6-7**: Moderately related (addresses the problem with some correct reasoning but significant unrelated sentences or words)
- **8-9**: Highly related (good attempt at solving the problem with mostly pertaining reasoning, minor unrelated sentences or words)
- **10**: Perfectly related (correctly addresses the problem with totally related reasoning, even if final answer differs from ground truth)
Please differentiate between scores of each level (e.g., 2 is more unrelated than 3)

**Important Notes:**
- Focus on whether the answer ATTEMPTS to solve the given problem, not just correctness
- A mathematically incorrect answer can still score high if it shows proper understanding and reasoning
- Consider the formatting requirements (like using <think> tags or \boxed{{}}) as part of following instructions
- The ground truth is provided for context, but your score should be based on relevance and reasoning quality, not exact matching

**Question Text:** {formatted_question}

**Ground Truth Answer:** {ground_truth}

**Model's Generated Answer:** {generated_answer}

Based on the image, question, and model's response, provide a score from 0-10 indicating how well the model's answer relates to and addresses the
question.

Respond with ONLY the numerical score (0-10), nothing else.

Figure 14: Prompt to GPT-4.1-mini for scoring the relatedness between the model-generated response
and the input query.

Original Error Examples w/ GRPO

PAPO-G (Ours)

60 (100%)

24 (41%) 14 (24%) 10 (17%) 5 (8%) 6 (10%)

Correct Perception Error Reasoning Error Inconsistency Error Calculation Error

Figure 15: Detailed analysis of 60 GRPO perception-error cases and their outcomes under PAPO.
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Table 15: Comprehensive categorization and comparison of different approaches. We highlight
our novelty as the first work to focus on improving the optimization objectives in multimodal RL.

Method Improvement
Perspective

Highlight

Think or Not? (Wang
et al., 2025c)

Training Frame-
work

Introduces a Cold-Start SFT stage with “thought dropout,” allowing
the model to skip unnecessary thinking on simple tasks to improve
efficiency.

Semi-off-Policy (Shen
et al., 2025b), Vision-
SR1 (Li et al., 2025c)

Training Frame-
work

Separates perception and reasoning into two stages/models: generates
captions first, then performs reasoning on them, and propagates
rewards back to improve the multimodal model.

Open Vision Rea-
soner (Wei et al., 2025),
R1-V (Chen et al., 2025),
LMM-R1 (Peng et al.,
2025)

Data Synthesizes reasoning trajectories by leveraging strong text-only
reasoning models such as DeepSeek-R1.

Reason-RFT (Tan
et al., 2025), MM-
Eureka (Meng
et al., 2025b), VL-
rethinker (Wang et al.,
2025b)

Data Constructs a diverse multimodal reasoning dataset covering counting,
structural perception, and spatial transformation.

NoisyRollout (Liu et al.,
2025a), R1-ShareVL (Yao
et al., 2025)

Rollout Introduces semantic-preserving data augmentation during rollout,
such as Gaussian noise, to diversify exploration and improve robust-
ness.

VL-rethinker (Wang
et al., 2025b), Skywork
R1V2 (Wang et al.,
2025d)

Rollout Introduces Selective Sample Replay to mitigate the issue of vanishing
advantages.

Visual-RFT (Liu
et al., 2025c), Vision-
R1 (Huang et al., 2025),
V-Triune (Ma et al.,
2025), Perception-
R1 (Xiao et al., 2025b),
VisionReasoner (Liu
et al., 2025b)

Reward Introduces grounding-related rewards such as IoU and Dynamic IoU
to enhance detection and localization performance.

Visionary-R1 (Xia et al.,
2025)

Reward Introduces model-based rewards computed directly on captions gen-
erated by the policy model.

GRIT (Fan et al., 2025),
TreeVGR (Wang et al.,
2025a), DeepEyes (Zheng
et al., 2025), Mini-o3 (Lai
et al., 2025)

Reward Introduces multi-turn rewards using “thinking-with-images” or
“thinking-with-bounding-boxes” paradigms.

PAPO (ours) Optimization
Objective

Distinct from previous work, PAPO explores improvements from the
core optimization objective tailored to the multimodal domain, and
shows compatibility with advances from other perspectives.
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