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ABSTRACT
Recent advances in vision-language models have combined contrastive ap-
proaches with generative methods to achieve state-of-the-art (SOTA) on down-
stream inference tasks like zero-shot image classification. However, one persistent
issue of these models for image classification is their out-of-distribution (OOD)
generalization capabilities. We first show that when an OOD datapoint is misclas-
sified, the correct class can be typically found in the Top-K predicted classes. In
order to steer the model prediction toward the correct class within the top predicted
classes, we propose the Image-Caption Encoding (ICE) method, a straightforward
approach that directly enforces consistency between the image-conditioned and
caption-conditioned predictions at evaluation time only. Intuitively, we take ad-
vantage of unique properties of the generated captions to guide our local search
for the correct class label within the Top-K predicted classes. We show that our
method can be easily combined with other SOTA methods to enhance Top-1 OOD
accuracies by 0.5% on average and up to 3% on challenging datasets.

1 INTRODUCTION

Original prediction: Coral fungus ; ICE prediction: Starfish

“a photo of a starfish”

Original prediction: App. Sen. ; ICE prediction: B. Collie

“a photo of a black and white dog ”

Original prediction: Hot pot ; ICE prediction: Soup bowl

“a photo of a bowl of miso soup”

Original prediction: Bucket ; ICE prediction: Trash can

“a photo of a green compost bin”

Figure 1: A demonstration for how our ICE method can be used to reclassify correctly. In these
examples, ICE is applied directly to a frozen pre-trained CoCa model for zero-shot classification.
Using the contexts given from the generated captions, ICE is able to successfully influence the
pretrained model into predicting the correct classes.

There has been rapid progress in zero-shot image classification over the past two years, thanks to
advancements in vision-language (VL) pre-training such as CLIP, ALIGN, and BLIP (Radford et al.,
2021; Cohen, 1997; Li et al., 2022). At a high level, these models contain a pair of encoders that
project visual and textual inputs into a joint latent embedding space. As described in the CLIP
framework (Radford et al., 2021), zero-shot classification can be reformulated as an image-to-text
retrieval problem, where the class name closest to the image in embedding space is predicted as
the label. However, state-of-the-art (SOTA) zero-shot classification lags behind in-distribution su-
pervised fine-tuning on all benchmarks. In many applications, in-distribution data is not available
during training, so fine-tuning on out-of-distribution (OOD) source data in a way that generalizes to
unseen data and labels remains an important problem. Prior works in this area follow two general
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(a) A visualization of the Top-5 accuracies
on misclassified Top-1 datapoints in each test
dataset. Recall that correct Top-5 classifica-
tions form a strict superset over the correct
Top-1 classifications. We observe that across
all datasets, the true correct class can be found
within the Top-5 predicted classes for most
misclassified datapoints.
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(b) A visualization of Top-1 accuracies be-
tween CLIP, CoCa using image embeddings
only, and CoCa using caption embeddings
only. We observe that while caption embed-
dings generally underperform compared to
standard CoCa, they still retain competitive
performance. We include more details on
datasets and experiments in Section 4.

Figure 2

directions: (1) Few-shot OOD methods such as CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al.,
2022a), and MaPLe (Khattak et al., 2023) fine-tune the VL model on generic few-shot source data
(e.g. ImageNet). The fine-tuning process is constrained to a carefully selected subset of parame-
ters to ensure generalization to target datasets. (2) Zero-shot methods, such as Menon & Vondrick
(2022) and manual prompt ensembling (Radford et al., 2021), focus on refining the zero-shot predic-
tion without additional fine-tuning. These methods do not require additional data, but they typically
either require a large closed-source LLM or human-engineered prompts.

Our goal is to contribute to the zero-shot classification literature by leveraging captioners, which is
previously under-explored. Towards this goal, we first observe in Figure 2a that the Top-K accuracy
(the percentage of samples where the correct label is within the K classes with highest predicted
scores, K > 1) is consistently higher than the Top-1 accuracy. The reason is that the Top-K
predicted classes form a strict superset of the Top-1 predicted classes when K > 1, and thus char-
acterize a wider range of potentially correct classes. We observe from Figure 2a that when an image
is misclassified, the correct class can usually be found within the Top-5 predicted classes. Thus, our
motivating question is: in order to improve Top-1 accuracy, how can we steer the model prediction
toward the correct prediction within the Top-K predicted classes?

Before we address this question, we first note that current SOTA zero-shot image classification
methods perform a nearest-neighbor search between image and text CLIP embeddings (Radford
et al., 2021). Recently, Yu et al. (2022) proposed CoCa, which extends CLIP with an additional
text decoder. This text decoder is trained to output a description of the image by cross-attending
to all image tokens outputted by the image encoder. Consequently, the decoder output captures
fine-grained spatial information that may be absent from the image cls token. Furthermore, the
caption verbalizes the content of the image as discrete text tokens, which can oftentimes be used to
directly infer the image label. These advantages are illustrated in Figure 2b, where we use a spider
plot to compare the Top-1 zero-shot accuracies achieved by CLIP image embeddings, CoCa image
embeddings, and CoCa caption embeddings, across 15 datasets. We notice that while the caption-
only CoCa under-performs compared to standard CoCa, it is still competitive and even surpasses
CLIP on many datasets. This means that the captions must contain enough information about the
image to supplement the standard CoCa zero-shot prediction.

To leverage this additional information, we propose a novel zero-shot method called Image-Caption
Encoding (ICE), where we combine the information encoded by both image embeddings and caption
embeddings in order to make a more informed decision at test time. As seen in Figure 3, ICE is a

2



Under review as a conference paper at ICLR 2024

argmax
ෝ𝒚𝑰𝑪𝑬Σ

𝜆
softmax

image 
encoder

text 
encoder

text 
decoder

classes

cross-attention

“a photo of a black 
and white dog ”

𝜃

Image-Caption Encoding (ICE)

CoCa

𝜃 softmax

Figure 3: An overview of our Image-Caption Encoding (ICE) method. The diagram outlined in
green describes the standard CoCa (Yu et al., 2022) workflow for obtaining the image and class
embeddings. Here, we also query CoCa for the caption, and obtain the caption embedding using the
text encoder. We calculate the image and caption probability distributions over the classes by passing
the image embeddings, caption embeddings, and class embeddings through the cosine similarity
function θ and softmax operation. Then, we select the Top-K classes and perform a weighted sum
of the image and caption probabilities. The weight on the caption prediction λ is adaptively selected
based on the relative confidence of the image and caption predictions.

zero-shot method with no training component and can be easily paired with existing SOTA methods
for improved downstream classification performance.

Although ICE draws inspiration from traditional ensembling techniques, there are several key dif-
ferences. First, ICE leverages the predictions obtained from a single model rather than those from
several different models. Second, instead of aggregating predictions over all classes, we only con-
sider the Top-K image predicted classes. Third, we incorporate an innovative confidence selection
mechanism that sets the weight on the caption prediction dynamically. Finally and most importantly,
we exploit specific properties induced within the captions by a pre-trained CoCa model that are not
present in the image embeddings for standard zero-shot classification. We discuss these properties
in-depth in Section 3.4 and demonstrate specific examples of their non-trivial impact in Section 4.3.

Our contributions are as follows:

1. We propose Image-Caption Encoding (ICE), a novel zero-shot classification method that utilizes
information from both images and captions to make a decision at evaluation-time only.

2. We provide experimental results for ICE paired with several different SOTA baselines across 15
different OOD datasets. We show consistent improvements of 0.5% on average and up to 3% on
several challenging datasets.

3. We analyze the benefits and drawbacks of using ICE, and provide ablation studies to analyze the
effects of changing different parameters in our ICE method.

2 RELATED WORKS

Multimodal foundational models. Many VL foundational models have emerged over the past
two years, including CLIP (Radford et al., 2021), ALIGN (Cohen, 1997), BLIP (Li et al., 2022),
and CoCa (Yu et al., 2022). These models achieve SOTA on VL tasks by using vast quantities
of un-curated image-text data from the web. CLIP uses an image encoder and a text encoder to
project the two modalities into a joint latent embedding space. Popular downstream applications
include zero or few-shot classification and image-text retrieval. CoCa improves CLIP by additionally
training a text decoder to explain the embedding space with a caption. CoCa achieves SOTA in zero-
shot classification and retrieval, but can also perform VL understanding tasks such as captioning
and VQA with minimal additional supervision. In the current work, we leverage the captioning
capability of CoCa for robust classification.
Robust fine-tuning. There is growing interest in fine-tuning multimodal foundational models on
limited training data such that the resulting model achieves high accuracy even on domain-shifted
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data and data with labels not seen during training. Many modern approaches rely on prompt tuning
and ensembling. CoOp (Zhou et al., 2022b) is a seminal work which treats the prompt in front
of the label names as soft learnable tokens. CoCoOp (Zhou et al., 2022a) trains a meta-network
to condition the prompt tokens on the image embedding. MaPLe (Khattak et al., 2023) shows that
learning a conditional visual prompt jointly with textual prompts improves target accuracy. All three
works achieve impressive results on a diverse set of test datasets despite only being trained on few-
shot ImageNet data. ClipOOD (Shu et al., 2023) uses an adaptive margin loss to optimize the visual
encoder only, attaining good results on domain generalization benchmarks. Our proposed method
ICE is a training-free approach that can be readily combined with the above fine-tuning methods to
yield higher accuracy on most target datasets.
Ensembling for robust classification. Ensembling methods leverage multiple diverse predictions
to form a robust final prediction; many recent works, including ours, focus on discovering new
sources of diversification. WiSE-FT (Wortsman et al., 2022) calculates a weight space ensemble
of the fine-tuned and pre-trained models to increase robustness under distribution shifts in target
data, while inference time remains the same. Vogt-Lowell et al. (2023) demonstrates combining
cross-entropy fine-tuning with stochastic weight averaging improves domain generalization. Menon
& Vondrick (2022) use GPT descriptions to generate a more diverse set of text prototypes for zero-
shot classification. Radford et al. (2021) use an ensemble of 80 handcrafted prompts to achieve
the same goal. In our paper, while drawing inspiration from ensembling, we introduce the novel
use of CoCa captions as a unique source of diversification, an avenue not yet explored by previous
studies. Importantly, our approach is designed to seamlessly integrate with other zero-shot methods,
as demonstrated in our experimental results.

3 METHODOLOGY

3.1 PRELIMINARIES

Consider a dataset D ⊂ I × T where I is the image domain and T is the text domain, and
(Ii, Ti) forms a corresponding image-text pair (i.e. Ti is a caption that describes Ii). In the CLIP
framework (Radford et al., 2021), there are two main architectural components: an image encoder
fI : I → Rl that maps images to a shared latent space, and a text encoder fT : T → Rl that maps
text to the same shared latent space. Both encoders are pre-trained using a contrastive loss that pulls
corresponding image-text embeddings close together in latent space, and pushes non-corresponding
image-text embeddings away from each other in latent space. CoCa (Yu et al., 2022) extends CLIP
with an additional text decoder, trained using a next-token-prediction loss, to provide captioning
functionality. During image classification, only the CLIP component of the CoCa architecture is
considered.

In image classification following the CLIP framework (Radford et al., 2021), for an image vector
I and class labels vector y := [y1, y2, . . . , ym]⊺, we first feed each class label through a prompt
skeleton to obtain class prompts (e.g. for class “cat” and a prompt skeleton “A photo of a {}”, the
resulting prompt is “A photo of a cat”). Then, both the image and class prompt vectors pass through
the image and text encoders to obtain latent embeddings Ĩ and ỹ, respectively. The predicted class
label ŷ is then given by argmaxi θ(Ĩ , ỹi), i ∈ {1, 2, . . . ,m}, where θ : Rl × Rl → R is the cosine
similarity function.

3.2 IMAGE-CAPTION ENCODING

Consider a text decoder fϕ : P×I → T that maps a prompt p ∈ P (e.g. ”a photo of”) and an image
I to a caption c ∈ T . We can feed caption c back through the text encoder to obtain c̃ := fT (c).

Using the Softmax function (Bridle, 1989), we obtain the class probabilities for image I and caption
c, respectively, as

SI := Softmax
([

θ(Ĩ , ỹ1), θ(Ĩ , ỹ2), . . . , θ(Ĩ , ỹm)
]⊺)

Sc := Softmax
([

θ(c̃, ỹ1), θ(c̃, ỹ2), . . . , θ(c̃, ỹm)
]⊺)

. (1)
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Figure 4: A more detailed look at how our Image-Caption Encoding (ICE) method works. In prac-
tice, instead of using a single caption for ICE, we use the centroid of υ differently-prompted cap-
tion embeddings. Then, using the centroid caption embedding, we adaptively select the λ weight
by comparing the standard deviations of the image prediction probabilities and caption prediction
probabilities, over the Top-5 classes. The final ICE scores are then a λ-weighted sum between the
two probability distributions.

The indices corresponding to the K classes with highest image-predicted probability, and the final
ICE prediction, are computed respectively as:

ΩI
K := argmax

J⊂M,|J|=K

∑
j∈J

SI
j argmax

ω∈ΩI
K

SI
ω + λSc

ω (2)

where M = {1, 2, . . . ,m} and λ is a scalar variable. In essence, the ICE prediction remains an-
chored within the primary Top-K classifications as determined by the image class probabilities.
When we incorporate the caption scores tied to these Top-K predictions, it reshapes the proba-
bility landscape over the initial Top-K image-determined classes. By selecting the class with the
highest probability from this refined distribution, we aim to align closer with the true class while
retaining the accuracy of previous classifications. Intuitively, the caption probability distribution
should provide information about the image that is not clear or fully captured by the image proba-
bility distribution, as detailed in Section 3.4, and their aggregated prediction should provide a more
reasonable downstream prediction. Figures 3 and 4 contain a high-level overview and an in-depth
visual interpretation of our method, respectively.

3.3 ADDITIONAL MODIFICATIONS

As visualized in Figure 4, in our experiments, we use the centroid of a diverse set of captions
rather than a single caption for increased robustness. That is, for a set of prompts P ∈ Pυ ,
we generate a set of corresponding captions C ∈ T υ , obtain their caption embeddings C̃ :=
{fT (c1), fT (c2), . . . fT (cυ)}, and finally, their centroid c̃ := 1

υ

∑υ
i c̃i. The centroid c̃ is then used

in place of c in Equations 1 and 2.

In addition, we dynamically compute the caption scalar variable λ ∈ R+ as a function of the standard
deviation of the captions. That is, given some image I and caption c, we compute λ as

λ = ξ
σ(Sc

K)

max(||[σ(SI
K), σ(Sc

K)]||2, ϵ)
(3)

where ξ is a constant, ϵ is a small constant, SI
K and Sc

K are the Top-K probabilities for SI and
Sc respectively (i.e. the probabilities whose indices are specified by ΩI

K), and σ is the standard
deviation operator. Intuitively, the standard deviation of the Top-K highest probabilities of the image
and caption distributions correspond to the model confidence about their respective predictions. On
one hand, when the model confidence for the image prediction is high and the caption confidence is
low, then the caption probabilities should not influence the image probabilities as much. On the other
hand, when the image confidence is low but the caption confidence is high, the caption probabilities
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should more heavily influence the image probabilities. In the event when both image and caption
confidences are high or low, the default weighting would be relatively equal. The constant ξ can
specify how much the caption probabilities should affect the image probabilities overall.

3.4 CAPTION PROPERTIES

In general, the zero-shot accuracy using only the caption embeddings is significantly (on average
about 5 %, see Table 1) lower than the zero-shot accuracy using image embeddings, with the no-
table exception of aircraft fine-grained classification. Caption-only zero-shot classification is often
unreliable, since the caption does not always correspond to one of the class names. For example, a
picture containing a teddy bear on top of a bed might be captioned as “a picture of a teddy bear”,
ignoring the bed in the background. However, if teddy-bear is not one of the labels, and the correct
label is “bed”, the caption does not provide useful information for the classification problem. For
this reason, the optimal hyperparameters for ICE place a greater emphasis on the prediction from
the image embedding Ĩ . Nonetheless, for the caption embedding to contribute to a higher aggregate
accuracy, we only require that the caption-predicted probabilities Sc

K be not completely correlated
with SI

K . In other words, the caption sometimes contains extra information that nudges the predic-
tion in the correct direction. We list here a few intuitions for why using captions can improve overall
classification accuracy:

1. The CoCa text decoder cross-attends to all output image tokens from the vision encoder, while the
image prediction only uses the output cls token. The image token matrix contains spatial information
that may be pertinent to the classification problem.

2. The CoCa text decoder was trained to output web image captions with a language-modeling
loss. Consequently, CoCa exhibits some rudimentary reasoning ability based on memorization of
relationships between certain concepts. For example, the text decoder has learned that the painting
“the starry night” is authored by Vincent van Gogh. This correspondence is memorized by the
weights of the decoder and may be useful for some classification problems. In our experiments, we
found that the caption prediction is much better than the image prediction on aircraft classification.
This is likely because the correspondence between fine-grained visual concepts and the aircraft
model name is encoded in the text decoder.

3. The CoCa caption effectively isolates visual concepts; this is an inherent property of textual
data. For example, a caption that reads “a rough red blanket” effectively isolates the texture, color
and content of the image. In our experiments, we found that captions on the EuroSAT dataset often
isolate the land-use information from the geographical information, e.g. “a photo of agricultural land
in China”. The caption explicitly separates useful information (agricultural land) from information
that is irrelevant to the classification problem (China). Consequently, a classifier trained on captions
is less likely to learn domain-specific spurious correlations, especially in the few-shot setting.

We provide concrete examples of these discussed intuitions in our empirical analysis in Section 4.3.

4 EXPERIMENTS

In our experiments, we analyze the impact of combining ICE with different baselines across a suite
of benchmarks. We show that our method can give consistent improvements without requiring
additional training. In addition, we analyze several data points to show how ICE improves over the
base method that it is paired with. All implementation details can be found in Appendix A.

Datasets. Our datasets are split between two common OOD categories: cross-dataset general-
ization and domain generalization. For cross-dataset generalization, each evaluation dataset has
mostly non-overlapping classes and unrelated data distributions for zero-shot classification. For do-
main generalization, the evaluation datasets are domain-shifted variations of the ImageNet dataset
and share the same classes as ImageNet. We evaluate our method on 11 cross-dataset general-
ization datasets covering a wide range of image recognition tasks. These include two generic ob-
jects datasets, ImageNet (Russakovsky et al., 2014) and Caltech101 (Fei-Fei et al., 2004); five fine-
grained datasets, OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102
(Nilsback & Zisserman, 2008)), Food101 (Bossard et al., 2014), and FGVCAircraft (Maji et al.,
2013); a scene categorization dataset, SUN397 (Xiao et al., 2010); an action recognition dataset,
UCF101 (Soomro et al., 2012); a describable textures dataset, DTD (Cimpoi et al., 2013), and a
satellite images dataset, EuroSAT (Helber et al., 2017). In addition, we consider four domain gener-
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Zero-shot(Image) 75.1 97.6 93.8 92.7 77.3 87.5 36.8 73.6 57.2 58.5 73.4 74.8 67.5 63.5 53.8 87.0 68.0
Zero-shot (Caption) 58.8 85.6 76.3 83.1 63.6 72.7 40.7 54.8 44.0 34.9 60.3 61.6 50.2 50.7 38.7 73.8 53.3
+ ICE 75.6 97.1 93.8 93.0 78.0 87.7 38.3 74.0 59.3 61.3 74.3 75.7 67.8 64.0 54.4 87.5 68.4

Manual Prompts 75.5 97.1 93.7 92.7 77.5 87.5 37.5 74.0 60.7 60.2 73.8 75.5 67.8 64.7 53.2 88.1 68.4
+ ICE 75.9 97.1 93.8 93.1 78.7 87.6 39.7 74.1 61.6 61.2 73.9 76.1 68.2 64.7 54.4 88.4 68.9

GPT Centroids 74.8 97.8 93.3 92.4 75.8 87.4 36.4 73.9 58.8 63.7 73.2 75.3 67.3 63.3 52.6 86.7 67.5
+ ICE 75.2 97.4 93.0 92.8 76.3 87.7 39.1 74.2 60.2 64.2 73.7 75.9 67.4 63.5 53.5 87.1 67.9

GPT Score Mean 74.9 97.6 93.7 92.4 76.2 87.3 36.2 73.9 58.9 64.9 73.6 75.5 67.6 63.5 52.8 86.8 67.7
+ ICE 75.4 97.4 93.5 92.8 77.0 87.6 39.2 74.2 60.2 65.5 73.9 76.1 67.9 63.7 53.4 87.2 68.1

Table 1: Comparison with zero-shot baselines on 15 test datasets. We always observe that stacking
our ICE method on top of baseline methods provides consistent improvements. All methods are
zero-shot and use CoCa ViT-L/14. The caption zero-shot accuracy is reported using one caption
embedding prompted by “a photo of”. ImageNet is abbreviated INet.

Source Cross-dataset Evaluation Targets Domain Generalization Targets
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CLIPood 76.6 97.2 94.3 92.7 77.5 87.3 37.4 74.3 60.3 59.5 75.2 75.6 69.5 64.9 56.6 88.7 69.9
+ ICE 76.7 97.2 93.9 93.1 77.8 87.4 39.6 74.3 60.8 61.8 75.7 76.2 69.2 64.9 56.7 88.8 69.9

CoOp 76.4 97.4 93.9 93.2 77.0 87.6 39.0 73.4 59.2 61.2 74.7 75.7 69.0 63.3 55.2 87.7 68.8
+ ICE 76.7 97.2 93.8 93.5 77.7 87.6 40.7 73.6 60.6 62.0 75.1 76.2 69.0 63.4 55.9 88.1 69.1

MaPLe 77.3 96.7 94.2 92.8 76.9 87.2 39.5 73.9 61.1 58.7 76.0 75.7 70.2 64.7 54.8 88.2 69.5
+ ICE 77.5 96.6 94.1 93.0 77.1 87.2 41.4 74.3 61.3 59.6 76.8 76.1 70.1 64.6 55.1 88.6 69.6

Table 2: Comparison with few-shot baselines in the cross-dataset evaluation setting and the domain
generalization setting. The model is fine-tuned on ImageNet with three different methods and tested
on 15 total target datasets. The average accuracies are calculated separately for the two settings fol-
lowing prior work. In all cases, we observe that evaluating with our ICE method provides consistent
improvements. All methods use CoCa ViT-L/14.

alization datasets, each applying a different distribution shift to the source ImageNet dataset. These
include an extension of the ImageNet dataset, ImageNetV2 (Recht et al., 2019); a black and white
sketches dataset, ImageNet-Sketch (Wang et al., 2019), a naturally adversarial dataset, ImageNet-A
(Hendrycks et al., 2019), and a dataset containing different renditions (e.g. cartoons, graffiti, plush
objects, etc.) of the ImageNet classes, ImageNet-R (Hendrycks et al., 2020).

4.1 ZERO-SHOT CLASSIFICATION

Baselines. We consider four existing SOTA methods as zero-shot classification baselines for ICE:
(1) a pre-trained CoCa model (Yu et al., 2022) with class embeddings generated using the prompt “a
photo of a {}”, where “{}”is replaced by the corresponding class (2) a pre-trained CoCa model (Yu
et al., 2022) with class embeddings as the centroids of 80 intermediate class embeddings generated
using hand-crafted prompts from Radford et al. (2021) (3) a pre-trained CoCa model using large
language model (LLM) generated descriptors from (Menon & Vondrick, 2022) (4) a variation of the
previous baseline, where we take the centroid of each descriptor embedding for standard zero-shot
classification.

Results. In Table 1, we observe that stacking ICE achieves consistent improvements of around
0.5% on average across cross-dataset evaluation and domain-generalization evaluation benchmarks,
with improvements of up to 3% on datasets like FGVCAircraft and EuroSAT.

4.2 FINE-TUNING BASELINES WITH FEW-SHOT LEARNING

Additionally, we consider SOTA methods where a pre-trained model is fine-tuned on 16-shot Ima-
geNet training data. Specifically, the ImageNet training dataset contains 1000 classes with 16 images
per class, for a total of 16,000 images in the train dataset.
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Figure 5: A qualitative analysis on various ways ICE can affect the downstream classification per-
formance.

Baselines. We consider two prompt learning methods, CoOp (Zhou et al., 2022b) and MaPLe
(Khattak et al., 2023), and a fine-tuning method CLIPood (Shu et al., 2023) as our ICE baselines.
We use each method for few-shot fine-tuning on the CLIP components of the CoCa (Yu et al.,
2022) architecture, and perform standard zero-shot classification by following the CLIP framework
(Radford et al., 2021).

Results. As seen in Table 2, applying ICE to each baseline provides improvements of 0.5% on
average across cross-dataset generalization evaluation datasets, and smaller improvements for the
domain generalization datasets. Importantly, for the methods such as CLIPood where we do not see
improvements in domain generalization on average, we find that ICE at least maintains the average
performance of the classification backbone.

4.3 UNDERSTANDING WHY ICE PROVIDES IMPROVEMENTS

To better understand why ICE improves the base methods paired with it, we analyze examples in
Figure 5 where ICE correctly reclassifies a previously incorrectly classified datapoint, where ICE
preserves a previously correct classification, where ICE fails to correctly reclassify a previously in-
correct classification, and where ICE accidentally incorrectly reclassifies a previously correct clas-
sification.

In the top left example of Figure 5, we observe that ICE reclassifies the incorrectly predicted Ap-
penzeller Sennenhund class to the correct Border Collie class. One intuition for why this occurs
is that Border Collies most commonly have black and white fur, whereas Appenzeller Sennenhund
dogs typically have unique tricolor fur coats. Thus, the caption “a photo of a black and white dog”
would correspond more with the Border Collie purely based on its bicolor fur. Additional examples
of correct ICE reclassifications can be found in Figure 1.

In the bottom left example, we observe that ICE is able to successfully preserve an originally correct
classification. Here, since the caption agrees with the image predicted class, ICE is able to predict
the same class as before.

In the top right image, ICE fails to correctly reclassify an initially incorrect prediction. In this case,
the original prediction was a tray, which would make sense since this image can technically be
described as a “tray of fruits”. Similarly, the captions describe the image as “a photo of a fruit
platter”, which can correspond more to a plate or tray than a strawberry. Thus, the ICE predicted
class still matches that of the original class.

Finally, the bottom right image is an example for how ICE can accidentally incorrectly reclassify an
initially correct prediction. Here, the correct class is a magnetic compass, as evident by the blue text
written on the instrument. While the caption “a photo of the instrument’s dial” technically describes
the image, without additional visual context, it is easy to believe that the caption is describing a
clock rather than a magnetic compass since dials tend to be associated with clocks. Due to this
ambiguity, ICE was able to convince the initial predicted class to reclassify to the runner-up class of
analog clock. This example highlights the importance of why we need to consider both the image
and caption information for making the most informed decisions.
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Figure 6: Left: Ablation results on varying ξ. Comparison between fixed caption weight λ and
adaptive λ using Eq. 3. Adaptive λ is clearly superior on Cars and ImageNet. Center: Ablation
results on varying K. K = 4 is optimal and clearly superior than bypassing Top-K selection step
(denoted as max K in bar plot). Right: Ablation results on varying caption prompting and number
of captions in ensemble (υ). υ = 3 captions is optimal.

5 ABLATION STUDIES

A comprehensive ablation study on the parameters of ICE is presented in Figure 6. First, we evaluate
the contribution of the adaptive λ mechanism proposed in Eq. 3 on the left of the figure. On
ImageNet and cars, the zero-shot accuracy of the adaptive λ is clearly superior to the fixed λ for
varying values of ξ (in the adaptive case) and λ (in the fixed case). In the middle bar plot, we
examine the contribution of the Top-K selection procedure outlined in Eq. 2. We compare multiple
values of K (where K = 1 is equivalent to ignoring caption embeddings, and “max K” denotes
score averaging over all classes without Top-K selection). Values of K around K = 4 are clearly
superior to both ignoring caption embeddings and score averaging without Top-K selection. Finally,
in the bar plot on the right, we examine the contribution of ensembling multiple captions. Using
υ = 3 captions is approximately optimal. Note that the 7 individual captions exhibit high variance
in zero-shot accuracy (under the ICE framework); this variance in performance is greatly reduced
by ensembling a small number of captions.

6 LIMITATIONS

While our results show consistent improvements when evaluating on several different baseline meth-
ods across a diverse collection of datasets, we note several key limitations of our method. First, as
elaborated in Section 3.4, ICE heavily relies on the assumption that the captions can provide useful
information about the image that is not fully encoded by the image embeddings. As seen in Section
4.3, when the captions provide unhelpful or adversarial information and there lacks a good selec-
tion of caption scores weight λ, ICE could decrease the base classification performance. Second,
determining a good choice for λ is non-trivial, as it requires the selector to have an understanding
for when to trust the caption or image scores more on a per-datapoint basis. This task is comparable
with relevant literature on failure mode prediction using confidence estimation (Tsiligkaridis, 2020;
Hendrycks & Gimpel, 2016; Zhu et al., 2023), which is known to be challenging. Finally, gener-
ating captions can be expensive, since each additionally generated caption requires an additional
forward pass on the base model. For image-text foundation models like CoCa (Yu et al., 2022),
which typically contain hundreds of millions of parameters, this strategy can quickly become a time
bottleneck for ICE. Thus, it is important to find a balance between the robustness benefits reaped
from the number of captions used, and the linearly-increasing time costs for each additional caption
generated.

7 CONCLUSION

We proposed a novel method for improved zero-shot classification performance based on combin-
ing image and caption embeddings. We showed that our method can be easily paired with existing
SOTA methods, and provide improvements of 0.5% on average and up to 3% across a diverse array
of datasets in cross-dataset generalization and domain generalization. Several ablation studies are
presented to study sensitivity of parameters on performance. We performed an in-depth analysis
on why our method can help reclassify previously misclassified points, and also cover cases where
it might fail. Future work includes extending this work to better balance the weights between im-
age and caption scores, and considering ways to generate more informative captions for improved
downstream classification.
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APPENDIX A EXPERIMENT IMPLEMENTATION DETAILS

ICE. For each method ICE is paired with, we simply take the image probability distribution output
by our baseline method, and apply ICE with the computed caption scores. The hyperparameters we
use to implement ICE in all experiments are K = 5, ξ = 0.08, ϵ = 1 × 10−12, υ = 3, and
P = {“a”, “a photo of”, “a photo containing”}. We find the best empirical performance when using
the centroid of the embeddings of 3 differently prompted captions and dynamically computing the
caption scores weight λ using Equation 3.

Baselines. We make a good-faith attempt to tune the hyperparameters of each few-shot baseline.
We use batch size 64 and SGD with momentum. Training data is sampled in a round robin fashion
to maximize class diversity within each mini-batch. CLIPood trains the vision encoder for 750
iterations at learning rate 1× 10−5 with adaptive margin value of 0.1. CoOp trains 3 prompt tokens
initialized with “a photo of” for 1250 iterations at learning rate 2 × 10−4 with cross-entropy loss.
MaPLe trains 3 prompt tokens prepended to each of the first 3 layers on both encoders for 750
iterations at learning rate 1 with cross-entropy loss.
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