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ABSTRACT

The Earth’s weather system involves intricate weather data modalities and di-
verse weather understanding tasks, which hold significant value to human life.
Existing data-driven models focus on single weather understanding tasks (e.g.,
weather forecasting). While these models have achieved promising results, they
fail to tackle various complex tasks within a single and unified model. Moreover,
the paradigm that relies on limited real observations for a single scenario hin-
ders the model’s performance upper bound. Inspired by the in-context learning
paradigm from visual foundation models and large language models, in this pa-
per, we introduce the first weather generalist foundation model (WeatherGFM)
to address weather understanding tasks in a unified manner. Specifically, we first
unify the representation and definition for diverse weather understanding tasks.
Subsequently, we design weather prompt formats to handle different weather data
modalities, including single, multiple, and temporal modalities. Finally, we adopt a
visual prompting question-answering paradigm for the training of unified weather
understanding tasks. Extensive experiments indicate that our WeatherGFM can
effectively handle up to 12 weather understanding tasks, including weather fore-
casting, super-resolution, weather image translation, and post-processing. Our
method also showcases generalization ability on unseen tasks. The source code is
available at https://github.com/xiangyu-mm/WeatherGFM.

1 INTRODUCTION

Modeling Earth weather systems involves a series of complex subprocesses that are intended to trans-
form intricate Earth observation data into applications like weather forecasting (Chen et al., 2023a; Bi
et al., 2023), downscaling (Chen et al., 2022), assimilation (Huang et al., 2024), retrieval (Liu et al.,
2011), and bias correction (Gong et al., 2024). During the past decade, many data-driven machine
learning methods have been investigated for various weather understanding tasks and delivering
desirable performance on specific tasks. For example, recent studies using large-scale training data
(e.g., ERA5 reanalysis data (Hersbach et al., 2020)) have exceeded the accuracy of conventional nu-
merical weather forecasts. However, current weather foundational models face challenges regarding
generalizability and data scale limitations. On the one hand, the Earth observation system consists
of a variety of observation devices, such as satellites, radar, and weather stations, which produce
diverse modalities of data. Consequently, designing a specific model for a single-task scenario is
highly complex, time-consuming, and labor-intensive. On the other hand, large-scale data in fields
such as computer vision can be obtained at a low cost, whereas weather understanding tasks face
an intrinsic bottleneck in data scale due to restrictions on individual scenes and single observation
devices as shown in Table 1. For instance, local short-term precipitation forecasting models can only
utilize a finite range of observational data.

†This work was primarily conducted during the author’s internship at the Shanghai Artificial Intelligence
Laboratory.
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A significant trend in AI research is the development of foundation models, shifting towards large-
scale pre-training and in-context learning. This paradigm enables unified processing of a multitude
of complex tasks and generalization to unseen tasks. For example, large language models (LLMs)
can perform a variety of language-centric tasks (e.g., sentiment analysis, question answering and
machine translation) by combining language input-output examples with new query inputs (prompts)
without optimizing model parameters (Brown, 2020). Similarly, vision foundation models (Wang
et al., 2023b; Liu et al., 2023b; Chen et al., 2024b) employ visual prompts with query inputs to
carry out diverse image-centric tasks, such as semantic segmentation, depth estimation, and image
restoration. These studies highlight the significant potential of generalist foundational models.

The study of foundation models remains largely limited in weather understanding, with the majority
focused on Computer Vision and Natural Language Processing. While there has been some progress
with large foundation models in weather and climate, the focus is mainly on weather forecasting
and downscaling tasks. For example, Climax (Nguyen et al., 2023) uses a pre-training-finetuning
paradigm for weather forecasting and downscaling. Aurora (Bodnar et al., 2024) employs LoRA
to unify weather forecasting and quick prediction of atmospheric chemistry. However, as shown in
Table 1, these studies do not take into account the modeling of multi-modalities and multi-tasks. This
poses a challenge: Is it possible to design a universal foundation model capable of handling a variety
of complex weather understanding tasks and data modalities?

In this paper, we first propose a weather generalist foundation model, WeatherGFM, to uniformly
address a variety of complex weather understanding tasks and data modalities. Unlike prior studies
that focused on weather forecasting, our proposed method can expand the task scope to weather
forecasting, weather super-resolution (i.e., weather downscaling) (Veillette et al., 2020), weather
image translation (similar to retrieval in weather) (Veillette et al., 2020), and post-processing (Gong
et al., 2024). These tasks all belong to the domain of weather understanding, but their modalities are
distinct. Specifically, Sequence modal data can be utilized for weather forecasting, such as short-term
predictions based on radar data. Multi-modal data can be employed for weather image translation,
such as converting multi-modal satellite data to generate radar data. Single-modal data can be applied
to various common scenarios, such as radar image super-resolution and post-processing. To unify the
diverse weather data modalities into a general representation, we introduce a weather prompt format
that assigns different prompt phrases to various modalities. By leveraging in-context learning, our
WeatherGFM achieves a promising in-context ability on both various seen tasks and unseen tasks.
The significance of our work can be summarized as:

• We propose the first weather generalist foundation model (i.e., WeatherGFM), which can
handle more than 12 weather understanding tasks.

• Our weather prompt design supports a diversity of weather data modalities, including
time-series, multi-modal, and single-modal data.

• Our WeatherGFM with in-context learning first demonstrates the generalization ability to
unseen weather understanding tasks.

2 RELATED WORK

Weather understanding and beyond. Over the past decade, machine learning techniques (Zhang
et al., 2022; 2023; 2024) have consistently attracted attention in the field of weather and climate.
Numerous data-driven machine learning models have been proposed to address classical tasks in
weather understanding (Veillette et al., 2020), such as forecasting, super-resolution, image translation,
and post-processing. Weather forecasting (Bi et al., 2023)) aims to predict future observations
from past data. Weather super-resolution tasks, i.e., weather downscaling Chen et al. (2022) focus
on recovering high-resolution data from low-resolution observations. Weather image translation
tasks (Stock et al., 2024) involves converting existing observational data into desired target modalities,
such as transforming satellite observations into ground-based weather radar data. Post-processing
tasks seek to enhance existing model results, such as bias correction and deblurring (Gong et al.,
2024). Despite significant advancements, current methods often rely on specialized datasets and
customized single-task models for certain scenarios. Consequently, single-task models struggle to
exhibit strong generalization abilities and fail to capture the interconnections between diverse tasks,
which hinders the establishment of simulations for the Earth system.

2



Published as a conference paper at ICLR 2025

Table 1: Comparison of task-specific models and general models across Earth science and computer
vision domains. Our proposed WeatherGFM stands out with its capability to handle multiple
tasks, process multi-modal data, and demonstrate general adaptability—underscoring its strength in
acquiring challenging-to-access weather data.

Category Method
Data Acquisition

Difficulty
Supported Tasks

Multi-tasks

support?

Multi-modal

support?

Generalist

support?

Computer

Vision

HAT (Chen et al., 2023b) Low-cost Image super-resolution (SR) ✗ ✗ ✗

IPT (Chen et al., 2021) Low-cost Image restoration, Derain, Dehaze ✓ ✗ Requires fine-tuning

Painter (Wang et al., 2023a) Low-cost
Image restoration

Segmentation, Keypoint detection
✓ ✗ ✓

PromptGIP (Liu et al., 2023a) Low-cost Image restoration, Derain, Dehaze ✓ ✗ ✓

GenLV (Chen et al., 2024a) Low-cost Image restoration, enhancement, translation ✓ ✗ ✓

Earth

Science

Prediff (Gao et al., 2024) High-cost Weather forecasting ✗ ✗ ✗

Cascast (Gong et al., 2024) High-cost Post-processing ✗ ✗ ✗

Climax (Nguyen et al., 2023) High-cost Weather forecasting, Super-resolution ✓ ✗ Requires fine-tuning

Aurora (Bodnar et al., 2024) High-cost
Weather forecasting

Atmospheric chemistry prediction
✗ ✓ Requires fine-tuning

WeatherGFM

(ours)
High-cost

Weather forecasting, Weather image SR

Weather image translation, Post-processing
✓ ✓ ✓

Weather foundation model. The rise of foundation models (Liu et al., 2024; Zhao et al., 2024a;b;
Xu et al., 2023) in Natural Language Processing and computer vision has sparked interest in their
application for weather and climate. Large foundation models, enhanced through pre-training,
improve the generalization of AI climate models and can be fine-tuned for specific tasks. Pathak
et al. (2022) proposed FourCastNet, a climate pre-trained model using Vision Transformer for high-
resolution predictions and rapid inference through self-supervised pre-training and autoregressive
fine-tuning. Pangu-Weather (Bi et al., 2023) utilizes a 3D Earth-specific Transformer for accurate
global predictions. ClimaX (Nguyen et al., 2023) introduces supervised pre-training to weather
prediction, offering flexibility for diverse forecasting tasks. A pre-training foundation model usually
requires mask modeling for pre-training and then undergoes fine-tuning on specific tasks, such as fine-
tuning the pre-trained model on weather forecasting, remote sensing classification and segmentation
tasks Bodnar et al. (2024); Cong et al. (2022); Noman et al. (2024); Li et al. (2024).

Visual in-context learning. In recent advancements, visual in-context learning has emerged as a
promising research area, inspired by the success of language models like GPT-3 (Brown, 2020).
These models adapt to various NLP tasks using prompts or in-context examples without extensive
retraining. Similarly, in the vision domain, models such as MAE-VQGAN (Hojel et al., 2024) and
Painter (Wang et al., 2023b) have begun exploring in-context learning. However, challenges persist,
especially in low-level tasks requiring detailed pixel manipulation. To address this, PromptGI (Liu
et al., 2023b) and GenLV have incorporated in-context learning concepts into their designs to
unify low-level vision tasks with diverse input and output modalities, aiming to develop generalist
models. Vision-language models like Unified-IO (Lu et al., 2022) and Unified-IO 2 (Lu et al., 2024)
have made significant progress in integrating multiple tasks, highlighting the potential for unified
approaches across modalities. Additionally, compositional visual reasoning, exemplified by Visual
Programming (Gupta & Kembhavi, 2023), aligns with in-context learning goals by emphasizing
visual task synthesis. ViperGPT (Surís et al., 2023) further demonstrates foundational models for
visual reasoning, employing computational techniques similar to our objectives, though without
relying on programmatic inputs. These collective efforts pave the way for more sophisticated and
versatile visual in-context learning frameworks.

3 METHOD

3.1 UNIFIED REPRESENTATION OF WEATHER UNDERSTANDING TASKS

Weather understanding tasks involve processing multi-source observational data (Veillette et al., 2020),
such as geostationary satellites (GEOS), polar-orbiting satellites (POES), weather radars, and ground
observation stations. Each task (e.g., weather forecasting, spatial and temporal super-resolution,
weather image translation, and post-processing) utilizes different types of input and output data. To
address this challenge, we first developed a unified data representation that can standardize these
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Figure 1: Illustration of the unified representation framework for weather understanding tasks.

diverse tasks. Unlike traditional methods that rely on task-specific models for each distinct task, we
introduce a universal foundational model capable of addressing various weather understanding tasks
through a single and general solution.

As shown in Figure 1, several key weather understanding tasks can be framed using different types of
input and output data. For instance, the weather spatial super-resolution (SR) task generates a high-
resolution image xHR from a low-resolution image xLR, while weather temporal super-resolution
predicts a high-resolution image xt

HR based on two consecutive observed input images xt−1
LR and xt+1

LR ,
where t represents a particular moment in time. The weather temporal super-resolution task aims to
restore the missing observed data in time t. Weather forecasting relies on a sequence of observed
data points {x1, x2, . . . , xt} that are gathered over the past t time steps. These observed data points
serve as condition, enabling the prediction of future data points such as points {xt+1, xt+2, . . .}. The
image translation task focuses on converting an input image from one modality (e.g., satellite image)
to another modality (e.g., radar image). Formally, we can represent these tasks as projections from
the source input data XS to the target output data XT :

τ : XS −→ XT . (1)

When XS = xLR and XT = xHR, the task corresponds to spatial SR. Similarly, when XS =
{x1, x2, . . . , xt} and XT = {xt+1, xt+2, . . .}, the task represents weather forecasting. As these
tasks differ in their input and output formats, as well as sequence lengths, the key challenge lies in
unifying them within one coherent data representation.

3.2 WEATHERGFM: A WEATHER GENERALIST FOUNDATION MODEL

We present the Weather Generalist Foundation Model (WeatherGFM) to tackle the challenges
inherent in a range of weather understanding tasks. Through in-context learning, our WeatherGFM
can uniformly handle various weather understanding tasks involving multiple data modalities.

Weather prompt designing. In large language models and vision foundation models, task prompts
commonly provide specific task-related input-output pairs. As shown in Figure 2, in machine
translation (Stahlberg, 2020), the model is given English to French text pairs as prompts. The model
can perform machine translation tasks based on these sample prompts for a given input. In visual
tasks (Wang et al., 2023a), the visual prompt image1 may be a natural image, and image2 is the
corresponding segmented image. The model will conduct the segmentation task for a new input
image3 to obtain the segmented image.

Following this paradigm, we designed weather prompts for weather understanding tasks. Since
the input for weather understanding tasks involves multiple modalities, such as a single weather
observation variable, multiple different weather variables, and time-series weather variables, we
proposed three prompts to handle different modalities of input. In Figure 2, weather prompt1 is
similar to visual prompts, converting a single modality image into a target image. In weather prompt2,
the input modality can be two different channel satellite observation images (e.g., IR069 and IR107
data), and the output can be weather radar observation data for image translation tasks. In weather
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Text Prompt:    {example: sea otter, loutre de merr}         query: cheese                output: fromage
Visual Prompt: {example:  image1, image2}                    query: image3               output: image4

Weather Prompt1: {example: image1, image2}               query: image3               output: image4
Weather Prompt2: {example: image1,image2, image3}  query: image4,image5  output: image6
Weather Prompt3: {example: sequence1, sequence2}     query: sequence3          output: sequence4

Weather Prompts

Figure 2: Comparison of weather prompts with text and visual prompts design.
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Figure 3: Overall approach of our weather generalist foundation model (WeatherGFM).

prompt3, time-series prompts can be input to perform weather forecasting-related tasks. With these
forms of prompt design, our method can handle most weather understanding tasks.

Weather in-context learning. Inspired by the success of in-context learning in large language
models (Dong et al., 2022) and vision foundation models (Wang et al., 2023a), we propose to unify
the weather understanding problem as the visual prompting question-answer paradigm, as illustrated
in Eq. 2. Specifically, given a visual question-answer prompt pair (Pin, Ptarget) as a task-guided
prompt and a query input Xin, the model is expected to perceive the context of the prompt (i.e., what
task it represents). Consequently, the model can perform the corresponding operations on the query
with the prompt. This process can be formulated as follows:

Xtarget = Fτ (Pin, Ptarget, Xin; θ); (2)

where Fτ represents a universal foundation model parameterized by θ. Pin and Ptarget denotes the
input and target of task prompts. We can determine what task will be performed on the input Xin

by selecting the task-specific prompt Pin and Ptarget, and then obtain the target Xtarget for the
corresponding task through the model Fτ .

Mixed-modal mask modeling. Upon redefining the output spaces of the aforementioned representa-
tive vision tasks, it is observed that both the input and output of these tasks are in the form of images
as transformers-based architectures could provide flexibility by treating the image-like data as a set of
tokens. Therefore, we build the WeatherGFM architecture on Vision Transformers (ViT) and propose
a mixed-modal masked image modeling (MMIM) pipeline to train multiple weather understanding
tasks as shown in Figure 3. Inspired by the concept of Visual Question Answering Wang et al.
(2023a); Liu et al. (2023b); Chen et al. (2024a), we introduce mixed-modality masking on various
weather modalities for visual question-and-answer modeling in weather understanding tasks. This
process can be formulated as follows:

P
′

target, X
′

target = Fτ (Pin,M(Ptarget), Xin,M(Xtarget); θ); (3)

where we randomly conduct mask operation M on the prompt target Ptarget as well as the ground
truth Xtarget according to the mask ratio. Meanwhile, the prompt input Pin and the input query Xin
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will be retained entirely. P
′

target and X
′

target represent the predicted target output of model Fτ . The
optimization objectives are as follows:

Ltotal
θ = L2(P

′

target, Ptarget) + L2(X
′

target, Xtarget). (4)

where we use MSE (mean square error) loss L2 to train the weather generalist foundation model. In
the inference stage, we keep the Pin, Ptarget, and Xin intact while the target image is fully masked.
This target full masking strategy allows generalist foundation models to generate the corresponding
target through a visual question-and-answer format. Our WeatherGFM comprises two main elements:
the format for input data and the architectural design.

Input format: Given an input of shape (C,H,W ), ViT predicts an output of shape (C
′
, H

′
,W

′
),

where C represents the input channels and C
′

represents the output channels. As shown in Figure 3,
different tasks have different channels. The model tokenizes the input into a sequence of patches,
with each patch having a size of C × p2, where p is the patch size. Unlike RGB-based image data,
where the channels are fixed, the number of physical variables in climate and weather data can vary
between different datasets and tasks. To adapt the ViT to different weather-related downstream tasks,
we designed task-specific patch embedding layers within the architecture. After the patch embedding
layer, we use an MLP layer to align the embeddings of different tasks to the same space:

zC = PatchEmbedC(x), x ∈ RC×H×W , zC ∈ RN×D,

z0 = MLPC(LN(zC)), z0 ∈ RN×D
(5)

where N,D denotes the number of input tokens and the transformer dimension, respectively. For the
masked area, we follow previous works (Liu et al., 2023a) to use a learnable token vector to replace
each masked patch. We adopt the block-wise masking strategy, taking the masking ratio as 75%.

Architecture: A vanilla vision Transformer (ViT) is adopted as the backbone architecture. It
consists of task-specific patch-embedded layers and several alternating layers made of Multi-Head
Self-Attention (MHSA) and MLP blocks. Layer Normalization (LN) is applied before every block,
and residual connections are applied after every block. As shown in Figure 3, this process can be
formulated as follows:

z
′

ℓ = MHSA(LN(zℓ−1)) + zℓ−1, ℓ = 1...L,

zℓ = MLP(LN(z
′

ℓ)) + z
′

ℓ, ℓ = 1...L,
(6)

where L denotes the number of layers. After the attention layers, we employ a prediction head and
then unpatchify the output of the prediction head. The prediction head is a one-layer MLP with a
hidden dimension of 1024.

4 EXPERIMENTS

4.1 WEATHER UNDERSTANDING TASKS

We incorporate up to 12 tasks including diverse weather forecasting, weather super-resolution,
weather image translation and weather post-processing tasks into our experiments. Specifically, we
leverage the Storm EVent ImageRy (SEVIR) (Veillette et al., 2020), ERA5 (Hersbach et al., 2020),
POMINO-TROPOMI product (Liu et al., 2020) and GEOS-CF (Keller et al., 2021) datasets to train
and evaluate our WeatherGFM. We provide a detailed introduction in Appendix A and B.

4.2 IMPLEMENTATION AND EVALUATION

Training details. During training, we resize the weather images of different resolutions to a
resolution of 256×256 and input them into the model in accordance with the combination mode
of Pin, Pout, Xin, Xout in the task-specific prompt format, resulting in a N × 256 × 256 total input
resolution. The L1 loss is employed as the loss function. For optimization, the AdamW optimizer
with a cosine learning rate scheduler is utilized. The base learning rate is 1e4. The batch size is 20.

Evaluation metrics. Besides RMSE and ACC, we also include the Critical Success Index (CSI),
which is commonly used in weather understanding tasks (e.g., precipitation nowcasting). Details can
be found in Appendix C.4
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Figure 4: Visual results of the weather understanding tasks by our WeatherGFM.
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Table 2: Quantitative results on weather understanding tasks. #: single-task model. †: trained with all
weather understanding tasks. ⋆: continual training with REA5 dataset. RMSE, ACC and CSI are
calculated as the quantitative metric. A lower RMSE and higher CSI/ACC indicate better results. For
Weather Forecasting tasks, we report RMSE scores along with the average ACC score for forecast
horizons ranging from 6 to 168 hours. The best results are highlighted in bold, and the second-best
results are underscored.

Weather super-resolution (SR)

Task name
Satellite Spatial SR Radar Temporal SR Radar Spatial SR

Metrics RMSE CSI/-4000 CSI/-6000 RMSE CSI/74 CSI/160 CSI/219 RMSE CSI/74 CSI/160 CSI/219

UNet# 0.932 0.650 0.912 0.739 0.485 0.182 0.034 0.650 0.675 0.400 0.184
ViT# 0.047 0.987 0.990 0.333 0.591 0.285 0.061 0.120 0.830 0.637 0.358
WeatherGFM† 0.042 0.988 0.996 0.327 0.597 0.287 0.073 0.121 0.831 0.644 0.375

Weather Forecasting Post-processing

Task name
Satellite extrapolation Radar extrapolation Deblur

Metrics RMSE CSI/-4000 CSI/-6000 RMSE CSI/74 CSI/160 CSI/219 RMSE CSI/74 CSI/160 CSI/219

UNet# 1.033 0.617 0.900 0.815 0.353 0.082 0.007 0.713 0.457 0.145 0.027
ViT# 0.408 0.840 0.943 0.490 0.440 0.079 0.007 0.163 0.594 0.291 0.104
WeatherGFM† 0.347 0.863 0.951 0.467 0.465 0.128 0.021 0.264 0.629 0.255 0.082

Weather image translation

Task name
GOES2Radar GOES-IR2GOES-IR

Metrics RMSE CSI/16 CSI/74 CSI/160 CSI/181 CSI/219 RMSE CSI/-6000 CSI/-4000 CSI/0 CSI/2000

UNet# 0.821 0.222 0.370 0.180 0.153 0.079 0.915 0.929 0.741 0.638 0.078
ViT# 0.445 0.602 0.436 0.180 0.131 0.042 0.257 0.987 0.972 0.809 0.136
WeatherGFM† 0.436 0.619 0.447 0.208 0.157 0.053 0.310 0.993 0.968 0.808 0.222

Task name GOES-IR2GOES-Visible GOES2POES-NO2

Metrics RMSE CSI/2000 CSI/3200 CSI/4400 CSI/5600 CSI/6800 RMSE CSI/1 CSI/5 CSI/10 CSI/15

UNet# 0.915 0.422 0.285 0.179 0.100 0.040 0.866 0.799 0.360 0.274 0.202
ViT# 0.448 0.574 0.437 0.303 0.184 0.071 0.549 0.841 0.432 0.328 0.253
WeatherGFM† 0.439 0.580 0.439 0.298 0.166 0.068 0.302 0.682 0.562 0.382 0.197

Task name Weather Forecasting T2M Weather Forecasting U10

Lead Time [hr.] 6h 24h 72h 120h 168h 6h 24h 72h 120h 168h ACC

IFS 0.97 1.02 1.30 1.71 2.23 0.79 1.11 1.92 2.89 3.81 0.836
ClimaX 1.11 1.19 1.47 1.83 2.17 1.04 1.31 2.02 2.79 3.35 0.824
WeatherGFM⋆ 1.08 1.23 1.56 1.68 1.76 1.12 1.26 1.99 2.61 3.11 0.848

Table 3: Standard deviation of the performance computed based on 20 different prompts. Avg. CSI
denotes the mean of the CSI score across thresholds [16, 74, 133, 160, 181, 219].

GOES2Radar Radar extrapolation GOES-IR2GOES-IR Radar Spatial SR Radar Temporal SR Deblur

Avg. RMSE 0.0087 0.0012 0.0481 0.0001 0.0002 0.0016
Avg. CSI 0.0187 0.0201 0.0284 0.0006 0.0010 0.0047

4.3 EXPERIMENTAL RESULTS

Currently, there is no general weather foundation model that can comprehensively handle all the
discussed weather understanding tasks simultaneously. Although many machine learning methods
have been investigated for single tasks, they generally adopt different backbone networks and design
strategies tailored to them. For a fair comparison, we have trained a series of baselines (i.e., single-task
model) for each weather understanding task under a consistent training setup, including commonly
used UNet (Trebing et al., 2021) and ViT (Nguyen et al., 2023) networks. Notably, the purpose of
this paper is not to achieve state-of-the-art performance on every task.

The weather generalist foundation model can achieve strong universal capabilities. As seen
in Table 2, our WeatherGFM, equipped with a straightforward ViT backbone, shows impressive
performance and adaptability in 12 weather understanding tasks. It is not only capable of conducting
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Figure 5: Case studies of our WeatherGFM with different prompts in the radar extrapolation task.

weather forecasting and super-resolution tasks but is also proficient in dealing with weather image
translation and post-processing tasks. Overall, our WeatherGFM achieves promising performance on
a diversity of weather understanding tasks.

The weather generalist foundation model outperforms single-task models. In Table 2, we
notice that our WeatherGFM achieves results that outperform the baseline in weather forecasting,
weather super-resolution, and image translation tasks. For instance, in radar extrapolation tasks,
our WeatherGFM with universal ViT-based model outperforms the single-task ViT model. This
indicates that a unified approach to weather understanding tasks can potentially break the performance
upperbound of single-task models.

In-context learning can generate correct outputs across a variety of data modalities and tasks. As
depicted in Figure 4, our WeatherGFM effectively carries out a wide array of weather understanding
tasks on multi-modal weather data. In practical scenarios, weather forecasting and weather image
transformation represent two substantially different tasks due to differences in temporal modalities.
Despite their intricacies, our WeatherGFM with in-context learning can successfully recognize distinct
task types, highlighting its significant generalization capacity.

4.4 ABLATION STUDIES AND EXPLORATIONS

Exploration of different task prompts. To investigate the impact of various visual prompts on
quantitative performance, we randomly select 20 meteorological prompts for each task and calculate
their quantitative metrics on the test set. Table 3 presents the standard deviation of performance for
each task across the 20 distinct meteorological prompts. We note that weather super-resolution tasks
are minimally affected by the randomness of weather prompts, whereas weather forecasting tasks and
image transformation tasks exhibit more significant variability, reaching approximately 0.02 in CSI.
Figure 5 illustrates that for certain weather events, employing different prompts yields more precise
outputs. This indicates that our method can comprehend specific weather cases based on weather
prompts rather than being a black box model incapable of interactive operations.

Exploration of generalizability. To assess the generalizability of our framework, we also utilize
the ERA5 dataset (1.40625°) (Hersbach et al., 2020). The WeatherGFM model used for the ERA5
comparison is further trained on the original model by incorporating the ERA5 data, mixed with the
previous tasks, as an additional task for continual training. With the introduction of new meteoro-
logical variables, we add a new patch embedding layer for each of these variables to the original
model. Following the approach of ClimaX (Nguyen et al., 2023), we use a cross-attention module to
aggregate all variable embeddings into a single vector. This allows us to handle the task using the
single-modal mode in WeatherGFM. Specifically, we employ an MLP layer to align the embeddings
for this task. In line with ClimaX (Nguyen et al., 2023), we use 48 ECMWF (European Centre for
Medium-Range Weather Forecasts) variables as input and evaluate the performance of WeatherGFM
using the temperature at 2 meters above ground (T2m). We consider seven lead times: 6 hours and
1, 3, 5, 7 days, covering a range from nowcasting to short- and medium-range forecasting. Instead
of training separate models for each target variable, our WeatherGFM is trained once to predict all
variables across all lead times simultaneously. During fine-tuning, we randomize the lead time from
6 hours to 7 days. Table 8 and Table 9 show that our approach significantly outperforms ClimaX in
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Figure 6: Visual results of our WeatherGFM on OOD tasks.

Figure 7: The effect of model sizes. ViT-ST: single-task ViT trained on 0.5 million samples. Base:
our WeatherGFM with 100 M parameters trained on 4 million samples. Large: our WeatherGFM
with 330 M parameters trained on 4 million samples.

the 120-hour and 168-hour forecast results, even exceeding the ECMWF IFS method. More results
can be found in Appendix D.

Exploration of out-of-distribution tasks. To evaluate the generalization ability of our WeatherGFM,
we have devised a variety of out-of-distribution (OOD) tasks that were not encountered during the
training phase, including GEOS-IR107 extrapolation, weather image translation GEOS-IR107 to
GEOS-IR069, weather temporal SR at 15 minutes and GEOS-visible satellite extrapolation. As shown
in Figure 6, our WeatherGFM generates correct outputs for the first three tasks, which are similar
to the training distribution. However, the model encounters difficulties with the more challenging
task of multiple-modal satellite spatial SR, where its outputs fail to provide effective meteorological
information. These OOD tests demonstrate the model’s ability to identify tasks outside the training
distribution from new prompts, showcasing a degree of generalization.

The scaling law for weather foundation models. To evaluate the impact of data and model scale on
performance, we compared single-task models, the base version of our WeatherGFM, and its large
version. We established a baseline using a 30M parameter ViT under a single-task with 0.5 million
samples. Subsequently, in a multi-task setting with 4 million samples, our model was configured
with a base version of 110M and a large version of 330M parameters. Figure 7 illustrates that
improvements in performance on various tasks are achieved with the increase of model and data scale.
In specific tasks like radar super-resolution, we observe that scaling up both the data and the model is
essential for performance gains.

5 CONCLUSION

We introduce WeatherGFM, the first generalist foundation model for weather. By utilizing a unified
representation across multiple weather understanding tasks and employing a multi-modal prompt
design, WeatherGFM effectively addresses a range of tasks, including weather forecasting, super-
resolution, image translation, and post-processing through in-context learning. We conduct com-
prehensive explorations of the model’s adaptability to various tasks, its generalization capabilities
to unseen tasks, and its scaling behavior with respect to data and model size. We hope this study
paves the way for the development of future large-scale generalist foundation models in weather and
climate.
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A DATASETS

SEVIR. The Storm EVent ImageRy dataset (SEVIR) (Veillette et al., 2020) is a spatiotemporally
aligned dataset that contains over 10,000 weather events represented by five spatially and temporally
aligned sensors. These sensors consist of three channels (C02, C09, C13) from the GOES-16 satellite,
one NEXRAD derived vertically integrated liquid (VIL) mosaic variable, and lighting detections
from the GOES GLM sensor. Each SEVIR event spans 4 hours with 5-minute intervals, sampled
randomly (with oversampling of events with moderate and high precipitation) using the NOAA Storm
Event Database. In our task, we uniformly resize the resolution of images from different modalities
to 256×256. Moreover, we filter the events within the SEVIR dataset and pick out those events that
include both the three channels of the GOES-16 satellite and the one variable derived from weather
radar. Ultimately, the dataset we utilize comprises 11,508 events with four distinct sensing modalities.
Among them, 11,308 events are selected as the training set, while 100 events are designated as the
validation set and 100 events are designated as the test set. Consequently, the training set contains a
total of 2.2M images, while the validate/test set has a total of 19.6K images. We provide a detailed
introduction in Appendix B.

POMINO-TROPOMI, GEOS-CF. In addition, we add a weather image translation task for en-
vironment monitoring: Translate geostationary NO2 data to polar-orbiting satellites NO2 data
(GEOS2POES-NO2) based on POMINO-TROPOMI product (Liu et al., 2020) and GEOS-CF
dataset (Keller et al., 2021). In this task, the input images are sourced from GEMS as well as the
GEOS-CF datasets, while the output images are obtained from the TROPOMI dataset. The original
image has a resolution of 1400×800. We also divide it into grids of 256×256 with a sliding step size
of 128. Each original image can thus be segmented into 45 pieces of 256×256 pictures. We utilize
the observational data from January 2021 to April 2022. After processing, each modality has 20,000
images with a resolution of 256×256. Among them, we allocate 18,000 images as the training set,
1,000 images as the validation set, and 1,000 images as the test set.

ERA5. ERA5 (Hersbach et al., 2020), developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF), is a global atmospheric reanalysis dataset that provides detailed information
on the Earth’s climate and weather conditions from 1940 to the present. It includes a diverse set
of variables such as temperature, humidity, precipitation, wind speed and direction, mean sea level
pressure, and more. In line with the ClimaX framework, our input selection consists of 48 variables
in total: 6 atmospheric variables across 7 vertical levels, 3 surface variables, and 3 constant fields.

B DETAILS OF WEATHER UNDERSTANDING TASKS

Table 4: Overview of model inputs, outputs, and prompt formats

Task Dataset Prompt Format Prompt Input Prompt Output Input Output

Radar Spatial SR Sevir Single Modal VIL LR VIL HR VIL LR VIL HR
Satellite Spatial SR Sevir Single Modal IR-069 LR IR-069 HR IR-069 LR IR-069 HR
Radar Temporal SR Sevir Single Modal VIL (0,60min) VIL 30min VIL (0,60min) VIL 30min
Deblur Sevir Single Modal VIL (Earthformer) VIL (Ground Truth) VIL (Earthformer) VIL (Ground Truth)
GEOS-IR2Radar Sevir Cross Modal IR-069,IR-107 VIL IR-069,IR-107 VIL
GEOS-IR2GEOS-IR Sevir Cross Modal IR-069 IR-107 IR-069 IR-107
GEOS-IR2GEOS-Vis Sevir Cross Modal IR-069 VIS IR-069 VIS
GEOS2POES-NO2 POMINO Cross Modal GEMS, GEOS-CF TROPOMI GEMS, GEOS-CF TROPOMI
Satellite extrapolation Sevir Time-series Modal IR-069 (0,30,60,90min) IR-069 (120,180min) IR-069 (0,30,60,90min) IR-069 (120,180min)
Radar extrapolation Sevir Time-series Modal VIL (0,30,60,90min) VIL (120,180min) VIL (0,30,60,90min) VIL (120,180min)
Weather Forecasting T2M ERA5 Cross Modal 48 variables t2m variable 48 variables t2m variable
Weather Forecasting U10 ERA5 Cross Modal 48 variables U10 variable 48 variables U10 variable

Weather forecasting. Radar echo extrapolation aims to forecast data for the subsequent 1-2 hours
utilizing observations from past moments (Gao et al., 2024). This task, similar to precipitation
nowcasting, plays a significant role in predicting local weather conditions. It can directly impact
traffic plans, disaster warnings, and energy management. Likewise, meteorological satellite image
extrapolation is crucial for monitoring and analyzing meteorological conditions. Based on the SEVIR
dataset, we consider two weather forecasting tasks: radar echo extrapolation Gong et al. (2024)
and satellite image extrapolation (Shukla et al., 2011). Our weather prediction tasks incorporate
observations from the hour before (0, 30, 60, and 90 minutes past) and the hour ahead (120 and 180
minutes into the future) for both radar and satellite IR-069 extrapolation. Consequently, for this task,
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the SEVIR data was extracted and processed to generate 135,696 sequences for training, along with
an independent set of 1,200 sequences to validate/test the fitted model.

Weather super-resolution (SR). Weather spatial super-resolution task (Veillette et al., 2020) gen-
erates a high-resolution image from a low-resolution(LR) image, while temporal super-resolution
predicts a high-resolution(HR) image based on two consecutive observed input images. We take into
consideration three weather super-resolution tasks: spatial SR for satellite IR-069, spatial SR for radar
VIL, and temporal SR for radar VIL with a one-hour interval. We utilize the SEVIR dataset as the
source of the HR image. To obtain the LR image, we employ the "Bicubic" interpolation approach,
which is commonly used in vision image SR. In the context of meteorology, this is analogous to
statistical downscaling, as described in statistical downscaling (Vandal et al., 2017). Specifically,
for the VIL image, given that its original resolution is 384×384, we resize it to 256×256 to serve
as the HR image and resize it to 64×64 to function as the LR image, thereby implementing a 4x
super-resolution task. For the IR-069 image, since its original image has a resolution of 196×196, we
resize it to 256×256 to be the HR image and resize it to 64×64 to be the LR image, thus carrying
out a 3x super-resolution task. For each spatial SR for satellite tasks, the SEVIR data was extracted
and processed to yield 542,784 images for training, along with an independent set of 4,800 images
for validating/testing. For the weather temporal SR, we use the radar VIL image at 1 hour (0 and 60
minutes) as the input to predict the radar VIL image at 30 minutes. For the temporal SR task, the
SEVIR data was further extracted and processed to generate 407,088 sequences for training, along
with an independent set of 3,600 sequences to validate/test the fitted model.

Weather image translation. Weather image translation involves converting observation data (e.g.,
satellite data) to a desired weather image (Veillette et al., 2020). For example, depictions of storms
obtained from weather radar are extremely important. However, most areas of the world do not have
access to ground-based radar. It is useful for generating weather radar images of storm depictions from
satellite observation (Veillette et al., 2020). We consider three weather image translation tasks based
on SEVIR dataset: translate geostationary IR-069 to geostationary IR-107 data (GEOS-IR2GEOS-IR),
geostationary IR-069 to geostationary Visible data (GEOS-IR2GEOS-Vis), translate geostationary
IR-069 and IR-107 to radar VIL data (GEOS-IR2Radar). In addition, we add a weather image
translation task for environment monitoring: Translate geostationary NO2 data to polar-orbiting
satellites NO2 data (GEOS2POES-NO2) based on POMINO-TROPOMI product (Liu et al., 2020).
For the image translation tasks based on SEVIR dataset, we split SEVIR into 542,784 training
samples, 4,800 validation samples and 4,800 test samples. For translating geostationary NO2 data,

Weather post-processing: Post-processing (e.g., bias correction) aims to minimize or eliminate
systematic biases in model outputs and observational data, which emerge due to uncertainties in
weather models and measurement errors. Various methods, including statistical, machine learning,
and deep learning techniques, can be employed for post-processing, tailoring the approach based on
the specific application and data characteristics. By minimizing or eliminating systematic biases,
post-processing improves the quality and reliability of weather and climate data. In our experiment,
we consider a classic post-processing task: Debluring for radar VIL nowcasting. We employ the
output of Earthformer and the corresponding high-quality image as a training sample. Deblurring
aims to learn how to map from the output of Earthformer to the corresponding high-quality image.

C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

The hyperparameters for WeatherGFM in our experiments is shown in Table refhyperparameters.
The L1 loss is employed as the loss function. For optimization, the AdamW optimizer with a cosine
learning rate scheduler is utilized. The base learning rate is 1e-4. The batch size is 20 and the
accumulation gradient iterations are 4. We use 16 Nvidia A100 GPUs for training. A total of 50
epochs are executed. We leverage fp16 floating point precision in our model.

C.2 VIT HYPERPARAMETERS

We borrow our ViT implementation from (Beyer et al., 2022). We use the following hyperparameters
for ViT in all of our experiments.
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Table 5: Default hyperparameters of WeatherGFM

Hyperparameter Meaning Large Base

p Patch size 16 16
Encoder dimension Encoder Embedding dimension 1024 768
Decoder dimension Decoder Embedding dimension 512 512
Encoder depth Number of Encoder blocks 24 12
Decoder depth Number of Encoder blocks 8 8
Encoder Heads Encoder’s attention heads 16 12
Decoder Heads Decoder’s attention heads 16 16
MLP ratio The hidden dimension of the MLP layer in a ViT block 4 4
Masked ratio Percentage of the masked target data 75% 75%

Table 6: Hyperparameters of ViT

Hyperparameter Meaning Value

p Patch size 16
Dimension Embedding dimension 512
Depth Number of Encoder blocks 16
Heads Encoder’s attention heads 8
MLP dim Encoder’s attention heads 1024

C.3 UNET HYPERPARAMETERS

We use the following hyperparameters for UNet in all of our experiments.

C.4 CSI METRIC

The CSI (Critical Success Index) is a commonly used metric used in weather understanding tasks
(e.g., precipitation nowcasting). The definition of CSI is:

CSI =
Hits

Hits + Misses + F.Alarms

To count the Hits (truth=1, pred=1), Misses (truth=1, pred=0) and F.Alarms (truth=0, pred=1), the
prediction and the ground-truth are normalized using mean-variance normalization and binarized
at different thresholds. Following SEVIR (Veillette et al., 2020), for radar output tasks, we have
established thresholds at [16, 74, 133, 160, 181, 219]. GEOS-visible output tasks are assigned
thresholds of [2000, 3200, 4400, 5600, 6800]. The GEOS-IR107 output tasks operate with thresholds
set to [-6000, -4000, 0, 2000]. Lastly, the GEOS-IR069 output task employs thresholds of [-4000,
-5000, -6000, -7000].

Table 7: Hyperparameters of UNet

Hyperparameter Meaning Value
Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Channel multiplications Number of output channels for Down and Up blocks [1, 2, 4, 8, 8]
Blocks Number of blocks 3
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0
Inner channel Number of channels in the intermediate layers 64
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D EXTENDABILITY

Tables 8 and Table 9 show the comparison of RMSE and ACC with different lead times for IFS,
ClimaX, and our WeatherGFM on the variables t2m and U10. Our method achieves comparable
results to ClimaX at other lead times. It’s worth noting that Climax fine-tunes the pre-train model
for each lead time, meaning Climax requires N models for weather forecasting at N lead times. In
contrast, our universal model can handle all lead time tasks with just a single model, without the
need for task-specific fine-tuning. Moreover, the Climax method trained for 100 epochs using 80
V100 GPUs, while our generalist model trained for 20 epochs using 8 A100 GPUs. This indicates
that our generalist model converges much faster than Climax. On the other hand, Aurora, focusing
on forecasting tasks, employs resolutions of 0.25° and 0.1°, which often produce better quantitative
results than 1.4°. For comparison with ClimaX, we selected the 1.4° setting for our atmospheric
forecasting experiments. Our generalist model has outperformed ClimaX on multiple variables in
these experiments.

Table 8: Comparison of RMSE and ACC across different lead times for IFS, ClimaX, and ours
WeatherGFM on t2m variable. ClimaX views predicting at each lead time as a separate task and
fine-tunes a separate model for every individual task. In contrast, our WeatherGFM utilizes a single
model to deal with all of these tasks. Aurora is a forecasting foundation model that is trained using
higher resolution atmospheric data from ERA5 (0.25°), making its results not directly comparable.

Lead Time RMSE ↓ ACC ↑
[hr.] IFS Aurora (0.25°) ClimaX WeatherGFM IFS ClimaX WeatherGFM

6 0.97 0.53 1.11 1.08 0.99 0.98 0.98
24 1.02 0.68 1.19 1.23 0.99 0.97 0.97
72 1.30 0.96 1.47 1.56 0.98 0.96 0.96

120 1.71 1.32 1.83 1.68 0.96 0.94 0.95
168 2.23 1.73 2.17 1.76 0.93 0.91 0.94

Table 9: Comparison of RMSE and ACC across different lead times for IFS, ClimaX,and ours
WeatherGFM on U10 variable. WeatherGFM utilizes a single model to deal with different lead time
tasks.

Lead Time RMSE ↓ ACC ↑
[hr.] IFS Aurora (0.25°) ClimaX WeatherGFM IFS ClimaX WeatherGFM

6 0.79 0.69 1.04 1.12 0.98 0.97 0.97
24 1.11 0.97 1.31 1.26 0.97 0.95 0.95
72 1.92 1.56 2.02 1.99 0.89 0.87 0.88

120 2.89 2.27 2.79 2.61 0.76 0.74 0.79
168 3.81 2.98 3.35 3.11 0.58 0.59 0.65

E EFFECTS OF MULTI-TASK TRAINING

In order to assess the influence of multi-task training on performance, we contrasted the versions
of our WeatherGFM that were trained on 4 tasks and 10 tasks respectively. Additionally, for the
purpose of comparison with WeatherGFM, we also made use of the single-task Vision Transformer
(ViT). As shown in the table 12, WeatherGFM-4tasks is trained on four tasks: Radar Temporal
SR, GOES2GOES, GOES2Radar, and Radar Spatial SR. It uses more data and encompasses more
tasks than the ViT-ST specialized model, which is trained on these four tasks separately. However,
WeatherGFM-4tasks utilizes less data and fewer tasks compared to WeatherGFM-10tasks, which
is trained on ten tasks. The results indicate that for radar image generation tasks (Radar Temporal
SR, GOES2Radar, and Radar Spatial SR), both WeatherGFM-4tasks and WeatherGFM-10tasks
outperform ViT-ST. This is likely because most of the selected tasks are related to radar image
generation. However, for the satellite image generation task (GOES2GOES), WeatherGFM-4tasks
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Table 10: Influence of employing different visual prompts on different tasks. The color red is used
for the poorest-performing prompts, and green is used for the best-performing prompts.

Prompts Idx0 Idx1 Idx2 Idx3 Idx4 Idx5 Idx6 Idx7 Idx8 Idx9

GOES2Radar
RMSE 0.4759 0.471 0.5117 0.4748 0.4691 0.4725 0.4726 0.4692 0.4722 0.473
CSI 0.3401 0.3335 0.3233 0.3300 0.3452 0.3298 0.3272 0.2467 0.3302 0.3317

Radar
Extrapolation

RMSE 0.4912 0.4908 0.4891 0.4925 0.4933 0.4937 0.4933 0.493 0.4933 0.4951
CSI 0.3401 0.2497 0.2534 0.2479 0.2484 0.2467 0.2462 0.2467 0.2453 0.2467

GOES-IR2GOES-IR
RMSE 0.283 0.2947 0.2593 0.3791 0.2424 0.2989 0.3213 0.2811 0.4372 0.387
CSI 0.6851 0.6907 0.6963 0.6559 0.6958 0.7525 0.6835 0.7314 0.6240 0.6529

Radar Spatial SR
RMSE 0.1331 0.1331 0.1334 0.1331 0.1332 0.1335 0.1334 0.1333 0.1333 0.1335
CSI 0.7208 0.7206 0.7209 0.7208 0.7228 0.7222 0.7221 0.7227 0.7217 0.7225

Radar Temporal SR
RMSE 0.3166 0.3166 0.3164 0.3164 0.3168 0.3172 0.3168 0.3166 0.317 0.3172
CSI 0.3387 0.3395 0.3389 0.3359 0.3398 0.3366 0.3376 0.3376 0.3372 0.3388

Deblur
RMSE 0.2272 0.2236 0.2236 0.2255 0.2253 0.2274 0.2273 0.2286 0.2241 0.2233
CSI 0.3412 0.3405 0.3420 0.3413 0.3407 0.3406 0.3408 0.3408 0.3410 0.3419

Prompts Idx10 Idx11 Idx12 Idx13 Idx14 Idx15 Idx16 Idx17 Idx18 Idx19

GOES2Radar
RMSE 0.4711 0.4762 0.4731 0.4706 0.4743 0.4752 0.4747 0.4764 0.4735 0.4725
CSI 0.3260 0.3252 0.3277 0.3266 0.3264 0.3297 0.3248 0.3247 0.3276 0.3265

Radar
Extrapolation

RMSE 0.4927 0.4931 0.4934 0.493 0.4938 0.4929 0.4932 0.4934 0.4937 0.4934
CSI 0.2478 0.2474 0.2483 0.2483 0.2493 0.2488 0.2474 0.2477 0.2479 0.2474

GOES-IR2GOES-IR
RMSE 0.4052 0.3017 0.2917 0.3136 0.3027 0.2828 0.2886 0.3189 0.3147 0.3102
CSI 0.6451 0.7057 0.7034 0.6930 0.7064 0.7044 0.7076 0.6899 0.6982 0.7040

Radar Spatial SR
RMSE 0.1332 0.1333 0.1332 0.1332 0.1332 0.1332 0.1332 0.1333 0.1332 0.1332
CSI 0.7222 0.7221 0.7215 0.7216 0.7217 0.7219 0.7218 0.7215 0.7224 0.7213

Radar Temporal SR
RMSE 0.3166 0.3168 0.3167 0.3168 0.3166 0.3167 0.3166 0.3169 0.317 0.3166
CSI 0.3359 0.3374 0.3370 0.3371 0.3381 0.3367 0.3375 0.3374 0.3371 0.3376

Deblur
RMSE 0.2252 0.2233 0.2272 0.2257 0.2259 0.2257 0.2264 0.2267 0.2235 0.2263
CSI 0.3405 0.3405 0.3413 0.3417 0.3416 0.3418 0.3416 0.3417 0.3414 0.3415

Table 11: Comparison of the models with random prompts, high-quality prompts, and searched
prompts according to RMSE.

Tasks GOES2Radar Radar Extrapolation

Metrics CSI/74 CSI/133 CSI/160 CSI/181 CSI/219 CSI/74 CSI/133 CSI/160 CSI/181 CSI/219

random prompts 0.389 0.238 0.194 0.15 0.048 0.423 0.187 0.106 0.069 0.017
high prompts 0.399 0.249 0.208 0.164 0.057 0.426 0.191 0.11 0.072 0.019
searched prompts 0.401 0.24 0.199 0.155 0.049 0.425 0.188 0.108 0.071 0.018

Table 12: The effect of multi-task training. ViT-ST: single-task ViT. WeatherGFM-4Tasks: our
WeatherGFM trained on 4 tasks. WeatherGFM-10Tasks: our WeatherGFM trained on all tasks.

Tasks GOES2Radar Radar Temporal SR

Metrics RMSE CSI/74 CSI/133 CSI/181 CSI/219 RMSE CSI/74 CSI/133 CSI/181 CSI/219

ViT-ST 0.445 0.424 0.242 0.134 0.045 0.333 0.585 0.366 0.215 0.063
WeatherGFM-4Tasks 0.460 0.443 0.263 0.166 0.059 0.353 0.576 0.355 0.209 0.074
WeatherGFM-10Tasks 0.436 0.447 0.266 0.157 0.053 0.327 0.597 0.376 0.217 0.073

Tasks Radar Spatial SR GOES2GOES

Metrics RMSE CSI/74 CSI/133 CSI/181 CSI/219 RMSE CSI/-6K CSI/-4K CSI/0 CSI/2K

ViT-ST 0.120 0.820 0.703 0.573 0.387 0.257 0.987 0.972 0.809 0.136
WeatherGFM-4Tasks 0.120 0.831 0.714 0.574 0.380 0.317 0.994 0.968 0.766 0.148
WeatherGFM-10Tasks 0.121 0.831 0.712 0.570 0.375 0.310 0.993 0.968 0.808 0.222
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Figure 8: Case studies of our WeatherGFM using different prompts in the GEOS-IR2Radar task.

Figure 9: RMSE performance comparison across different model configurations.

does not perform as well. This suggests that multi-task learning of similar tasks can enhance the
model’s performance on those tasks.

F MORE DETAILS OF SCALING LAW

In Figure 9, we present the results of the RMSE metric that compares single-task models, the base
version of our WeatherGFM, and its large version. It can be observed that increasing the capacity of
the model generally leads to better performance when the data size remains constant. In contrast, for
smaller models, an increase in training data may result in poorer performance. We hypothesize that
this could be due to the specificity of different tasks within the training data, which makes it more
challenging for the model to fit effectively.

G EFFECTS OF VISUAL PROMPTS

To assess the effectiveness of visual prompts within the WeatherGFM framework, we conducted
a series of tests across various scenarios, including GOES2Radar, Radar Extrapolation, GOES-
IR2GOES-IR, Radar Spatial SR, Radar Temporal SR, and Deblur tasks. In our main paper, we detail
a thorough process of prompt selection, curating 20 unique prompts for each task and subsequently
reporting the most favorable quantitative outcomes. The comprehensive results of these prompt
variations on several representative tasks are presented in the tables. By examining Table 10, we
observed that prompts have a significant impact on the GOES2Radar and Radar Extrapolation tasks.
Consequently, we conducted further experiments on these two tasks. The results are shown in Table 11.
In these experiments, “random prompt” refers to prompts selected randomly, while “high prompt”
refers to prompts selected from a high-quality prompt base derived from radar data. Specifically, we
grouped 100 events and selected samples that contained values exceeding a threshold of 50 within
each group, totaling 113 samples. Prompts were then randomly selected from this high-quality base
for the experiments. “Searched prompt” refers to a method where prompts are selected based on the
RMSE metric calculated from the input images to find similar prompts.
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Table 13: Quantitative evaluation on OOD tasks. ∗ denotes that WeatherGFM has not been trained or
fine-tuned for the tasks listed below and conducts generalized inference directly. # indicate that UNet
and ViT undergo supervised training on the corresponding training dataset.

Tasks IR107 Satellite extraplotion IR107 2 IR069

Metrics RMSE CSI/-4K CSI/0 CSI/2K RMSE CSI/-4K CSI/-6K

UNet# 0.991 0.695 0.642 0.074 0.942 0.642 0.910
ViT# 0.413 0.899 0.776 0.245 0.212 0.958 0.986
WeatherGFM∗ 0.389 0.903 0.774 0.244 0.340 0.934 0.986

Tasks Temporal SR at 15min

Metrics RMSE CSI/16 CSI/74 CSI/133 CSI/160 CSI/181 CSI/219

UNet# 0.676 0.211 0.627 0.428 0.351 0.262 0.083
ViT# 0.218 0.838 0.761 0.598 0.525 0.445 0.190
WeatherGFM∗ 0.272 0.814 0.703 0.507 0.419 0.336 0.117

Table 14: More quantitative results on weather understanding tasks. We also report the results of the
POD and FAR metrics.

Downscaling Forecasting

Task name Satellite Spatial SR Radar Temporal SR Radar Spatial SR Radar Extrapolation

Metrics AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR

UNet 1.0000 0.7466 0.4380 0.1738 0.6568 0.1702 0.3207 0.1751
ViT 0.9941 0.0560 0.4520 0.0139 0.7219 0.0047 0.2749 0.0228
WeatherGFM 0.9973 0.05400 0.4362 0.0111 0.7320 0.0039 0.3028 0.01620

Inversion Forecasting

Task name GOES2Radar GOES-IR2GOES-Visible GOES2POES-NO2 Satellite Extrapolation

Metrics AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR AVG. POD AVG. FAR

UNet 0.4691 0.1821 0.4260 0.1358 0.5993 0.2548 1.0000 0.7841
ViT 0.3537 0.0229 0.4626 0.0829 0.5421 0.1686 0.9599 0.3514
WeatherGFM 0.3524 0.0147 0.3630 0.1388 0.5023 0.0024 0.9578 0.2379

H ADDITIONAL QUANTITATIVE RESULTS

In this section, we present more quantitative results on various weather understanding tasks. Table 13
provides quantitative evaluation on OOD tasks. Table 14 provides a detailed comparison of these
metrics for the UNet, ViT, and WeatherGFM models. AVG.POD and AVG.FAR represent the mean
scores across different thresholds for various tasks. For radar output tasks, the thresholds are [16,
74, 133, 160, 181, 219]; for GEOS-visible output tasks, the thresholds are [2000, 3200, 4400, 5600,
6800]; and for GEOS-IR069 output tasks, the thresholds are [-4000, -5000, -6000, -7000].

I MORE VISUAL RESULTS

To comprehensively assess the performance of WeatherGFM, we present a range of qualitative
visual results across various tasks, including weather forecasting, weather super-resolution, and
weather image translation. Additionally, we conduct a comparative evaluation against the unified
ViT-large model, as well as single-task ViT and UNet models. The visual outputs and comparisons
are thoughtfully illustrated in Figure 10. WeatherGFM’s proficiency in generating visually appealing
outputs is readily evident in the presented results. Notably, the visual quality surpasses that of the
baseline models. However, the significance of WeatherGFM’s capability extends beyond visual quality.
Its distinctive strength lies in its ability to effectively handle a wide array of image enhancement
tasks and image detection. This marks a noteworthy distinction from traditional models, which often
struggle to concurrently address such a diverse spectrum of tasks.
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Figure 10: Visual results of the weather understanding tasks by our WeatherGFM.
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