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Abstract

Mutual information (MI) is one of the most general ways to measure relationships
between random variables, but estimating this quantity for complex systems is
challenging. Denoising diffusion models have recently set a new bar for density
estimation, so it is natural to consider whether these methods could also be used
to improve MI estimation. Using the recently introduced information-theoretic
formulation of denoising diffusion models, we show the diffusion models can be
used in a straightforward way to estimate MI. In particular, the MI corresponds to
half the gap in the Minimum Mean Square Error (MMSE) between conditional
and unconditional diffusion, integrated over all Signal-to-Noise-Ratios (SNRs) in
the noising process. Our approach not only passes self-consistency tests but also
outperforms traditional and score-based diffusion MI estimators. Furthermore, our
method leverages adaptive importance sampling to achieve scalable MI estimation,
while maintaining strong performance even when the Ml is high.

1 Introduction

Estimating Mutual Information (MI) from samples is a fundamental problem with widespread
applications. Methods based on local density estimation (Kraskov et al., 2004; [Pal et al., 2010} |Gao
et al.| 2015) have been displaced by variational approaches using neural networks (Poole et al.,[2019)
to estimate lower bounds on MI (Belghazi et al.,|2018b; Nguyen et al.||2010). Unfortunately, these
approaches may have sample complexity or variance which scale exponentially with the true MI
(Gao et al.| [2015; McAllester & Stratos}, 2020} van den Oord et al., 2018). In practical scenarios, the
MI between two variables is usually unknown, making reliable estimation challenging. To tackle
this, |Song & Ermon| (2019) introduced three self-consistency experiments designed to evaluate the
robustness of MI estimators. For a more standardized and comprehensive evaluation, |Czyz et al.
(2023)) developed a benchmark consisting of 40 synthetic datasets derived from diverse distributions,
providing a consistent basis for assessing the performance of different MI estimators.

Denoising diffusion models |Sohl-Dickstein et al.| (2015); [Ho et al.| (2020); |Kingma et al.[ (2021);
Kong et al.|(2022)) have dramatically improved the modeling of complex distributions, igniting a new
industry for Al art generation |[Rombach et al.| (2022)); Ramesh et al.[(2022); |Saharia et al.| (2022)).
Recently, Franzese et al.|(2024) introduced a MI estimator, MINDE, based on score-based diffusion
models. This estimator not only achieved an 87.5% estimation success rate on the benchmark of
Czyz et al.[(2023) but also passed the self-consistency tests. However, its reliance on accurately
approximating the log-density gradient can be a challenging intermediate step. This motivates a more
direct formulation, connecting MI to the denoising objective itself rather than its gradient.

In this paper, we exploit the recently discovered connections between information theory and diffusion
models to derive an elegant and effective approach to MI estimation (Guo et al.,2005; |Kong et al.,
2022). Our contributions are as follows:

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39
40
41
42

43
44
45

46
47
48

49
50
51
52

54
55
56
57

58

59
60
61

62
63

64
65

66

67

68
69
70
71

72

* We show that conditional density estimation and mutual information estimation can both
be written exactly in terms of the global optimum of a denoising objective. Conditional
density estimation corresponds to a gap between MMSEs (Kong et al.,2022) for conditional
and unconditional denoising diffusion models, and mutual information is the expected gap
over all data, leading to the Mutual Information Estimation via the MMSE Gap in Diffusion
(MMG) estimator.

* We develop an adaptive importance sampling scheme that tailors the integration to the
specific data distribution. By dynamically fitting a sampling distribution to the MMSE gap,
this technique significantly improves the precision and efficiency of the final MI estimate.

* MMG has passed all self-consistency tests and achieved state-of-the-art results across
multiple tasks, particularly excelling in high MI estimation, and has outperformed the
current leading estimator, MINDE, in these scenarios.

* We release a unified PyTorch library that, for the first time, brings diffusion-based and
established neural MI estimators into a single, consistent framework. Its simple API is
designed to streamline their future side-by-side evaluation. Our code can be found at:
https://anonymous.4open.science/r/DMI-50D8

2 Background

Let p(z,|z) be a Gaussian noise channel with z,, = \/v/(1 +v)z++/1/(1 + 7)e and € ~ N(0,1),
where ~ represents the Signal-to-Noise Ratio (SNR). The unknown data distribution is p(x). The
MMSE refers to the minimum mean square error for recovering x in this noisy channel (Kong et al.|
2022).

mmse,(y) = min Ep(zmm)[(w — aﬁ(zv,w))Q] e))
w(z'yv’Y)
The optimal estimator, £*, can be derived via variational calculus and written analytically.
Z*(2y,7) = argmmse, (7) = Exp(z)=,) (7] 2)

Sampling from the true posterior is typically intractable, but by using a neural network to solve Eq.|[T]
we can get an approximation for £*. We also introduce pointwise MMSE which is just the MMSE
evaluated at a single point x, and E, ;) [mmse(x|y)] = mmse, (7).

mmse(z|y) = By jz)[(x — 2% (24,7))%] S

From Kong et al.|(2022)) we see that log likelihood can be written exactly in terms of an expression
that depends only on the MMSE solution to the Gaussian denoising problem.

—logp(x) = d/2log(2me) — 1/2 /000 dry (117 - mmse(a:*y)) 4)

We can use this result to derive elegant formulations for supervised learning and mutual information
estimation.

3 Method

3.1 Mutual Information Estimation

Consider that our data is drawn from some unknown joint distribution, p(zx, y). At this point we don’t
specify the domain of y, it could be discrete or continuous, vector or scalar. The pointwise denoising
relation, Eq. 4} holds for any input distribution, so a valid choice would be p(x|y). Therefore we can
write a conditional version that holds for each y.

i d
~togp(ely) = d2tog2re) ~ 2 [ (-~ mmse(ahn) ®
0 v
We use the following definitions for conditional MMSE.

ﬁj*(z'y,’)/v y) = arg min IEp(zn,lsc)p(:l:,y) [(w - aA:(Z'yv Y5 y))z}
2(z4,7,Y)

mmse(@|y,y) = Ep(z, jo) (2 — (2,7, 9))"] (©)


https://anonymous.4open.science/r/DMI-50D8

73

74

75
76

77
78
79
80
81
82

83
84

85
86

87

88
89
90

91
92
93
94

I(x;y) = % Area between curves (A)

d Denoiser
—— mmsex(y) —_ ,

< —— mmseyy(y)
§ ., e~ (0,1) l
IS 2 Ml Loss
IS — T

P B I R S —_—

optional
0 2 4 6 8 10 &

y (SNR)

Figure 1: The mutual information is exactly half Figure 2: The schematic of the MMG training pro-
the area between MMSE curves for conditional and cess. Noise at a given v level is added to the data «,
unconditional denoising. We use denoising diffu-and a denoiser is used to recover it, with or without
sion models to approximate the MMSE curves,conditioning on y at a 50% probability. Finally,
then numerically integrate to get an estimate of the the MI loss, as defined in Eq.[I0] is computed to
mutual information. backpropagate the gradient.

We write the expected conditional MMSE as mmse, () = Ep(s,,) [mmse(zx|y,y)].

Now we can subtract Eq. 4] and Eq. [5]to get the following.

log p(y) — logp(x) = 1/2 / " 4y (mmse(z|y) — mmse(z|y, )) )

The expression on the left is sometimes called pointwise mutual information, because its expectation,
E[log p(x|y)/p(x)] = I(x;y) is equal to the mutual information.

I(x;y) = 1/2 /OOC dy (mmsex('y) — mmsex‘y(y)) ®)

Conditioning on y can only decrease the MMSE |Wu & Verdd| (2011), so the mutual information
is non-negative as expected. While Eq.[7]appears to be novel, a version of Eq. [§|appeared in|Guo
et al.| (2005). This result holds for discrete or continuous data |Guo et al.| (2005)), or even mixed
continuous and discrete, a particularly challenging problem |Gao et al.|(2017). We propose to use
recent advances in denoising diffusion modeling to approximate the right-hand side to achieve better
mutual information estimates.

To efficiently estimate the integral in Eq.[8] we applied importance sampling in the integral on the
right-hand side of Eq. [8|with the importance weights ¢(~).

I(:E; y) = 1/2E’y,m,y [(Inmsex (7) - mmsez\y(f}/)) /Q(’Y)] 9

Therefore, we can train expert denoisers to estimate the MMSE for various distributions of ¢(7y), as
different density consistently lead to distinct distributions of the MMSE gap in Figure [T}

3.2 Model Training

In practice, we parametrize the denoising function in terms of a neural network. At training time, we
have to solve two minimization problems, or actually a continuum of minimization problems for each
SNR level.

0" = arg mein Ep(zvlw)p(w,y)[(w — Zo(2y,7, y))z] (10)
¢" = arg m(gnEp(z”w)p(m) [(x — &4(2, )]

We parametrize &4 (2,7, y) as some neural network that is trained with a mean square error loss to
recover the signal, &, from noise and the auxiliary signal, y, across different SNRs, ~y (see Figure[2). In
principle we should train a separate neural network that recovers data from noise without conditioning
on y. However, we can borrow from existing architectures which train a single network for both
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conditional and unconditional denoising Ho & Salimans|(2021)). Conditional diffusion models have
shown compelling results in|Nichol et al.[(2021)); Ramesh et al.|(2022)); Saharia et al.|(2022). During
training we simply replace y with a null value, y = (), some fraction of the time so that the same
(conditional) network can learn to denoise in the absence of conditioning.

In practice, we can’t guarantee that the neural network finds the true global optimum, the MMSEs in
Eq.[8] Because MMSEs appear with both signs in that expression, we can’t even guarantee that our
network gives an upper or lower bound. While this is unfortunate, conventional wisdom suggests that
sufficiently expressive neural networks do converge to global optima (Du et al., 2019; Jacot et al.|
2018).

4 Implementation

The core of the experiment is training a denoiser capable of effectively performing denoising across
different noise levels, characterized by varying SNRs, to simulate an MMSE curve. The MI is then
computed from the gap between the conditional and unconditional MMSE curves (Eq. [8). This
MMSE-based theoretical approach offers greater flexibility to enhance the accuracy and robustness
of MI estimation. To leverage this flexibility for enhanced accuracy and robustness, we introduce the
core components of our implementation below.

4.1 Adaptive Importance Sampling

As in[Kong et al.|(2022)), we estimate integrals using importance weighted Monte Carlo estimators,
with log-SNR values chosen from a logistic distribution with some location, p and scale, o. Since the
shape of the integration area (A area in Fig. [I) is data-dependent, a fixed sampling distribution can
be inefficient. For our adaptive variants, we therefore optimize this distribution for each specific task.

To find the data-adapted parameters (u, o), we employ a two-stage procedure. First, we train a
preliminary model and analyze its conditional MMSE curve, MMSE,,,,. Inspired by the use of error
landmarks in density estimation (Kong et al., [2022)), our heuristic identifies the critical transition
region of this curve, where the denoiser becomes effective. Specifically, we define the parameters as
follows (where d is the data dimensionality):

* The location  is set to the log-SNR where the MMSE curve crosses the d/2 error threshold.
This centers our sampling distribution on the midpoint of the denoiser’s transition from high
to low error.

* The scale o is derived from the log-SNR where the curve crosses the d/4 threshold, capturing
the steepness of this transition. For example, it can be set as the difference between the
log-SNRs at the d/2 and d/4 crossings.

The final adaptive estimators are then trained with this optimized distribution, targeting the critical
SNR range to yield more accurate and efficient MI estimates.

4.2 The Orthogonal Principle

To further enhance estimator stability, we incorporate the orthogonality principle from Kong et al.
(2023). The principle states that for optimal denoisers, the gap in MMSE is precisely the expected
squared distance between the conditional and unconditional estimators. This provides an alternative
way to express the MI integrand. Formally, let (z,) = E[z|2,] and (24, y) = E[x|z,,y|. The
identity at a fixed SNR is:

El|x — 2(z,)["]) — Elllx — 2(zy, )] = Elll2(zy, y) — (2] an
MMSE Gap Orthogonal Form of the Gap

After expanding the left-hand side, the cross terms vanish due to the orthogonality principle Kong
et al.| (2023)), resulting in the expression on the right-hand side. This allows us to substitute the
original integrand in our MI formula (Eq. [8) with the term on the right-hand side. The orthogonal MI
estimator, in its practical importance-sampled form, is therefore:

|2 (2y, ) — (2]

1
I(xz;y) = -E ~ 12
(x;y) o Y2y Y a(7) (12)
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In practice, this is implemented as a training-free, inference-time plug-in. This formulation guarantees
a non-negative integrand and improves the stability of MI estimates, as detailed in Appendix [A]

The practical advantage of this formulation is its numerical stability. The standard MMSE gap is
computed as a difference between two large, separately estimated MSE values. Small approximation
errors in each term can lead to a noisy, high-variance result for their difference, which can even
become negative. In contrast, the orthogonal form computes the integrand as a single, squared term,
which is guaranteed to be non-negative and is empirically much smoother.

S Experiments

We evaluate four variants of our estimator in the experiments for ablation comparison:

* MMG: The baseline estimator using a fixed, default importance sampling distribution.
* MMG-adaptive: Employs adaptive importance sampling for more accurate integration.
* MMG-orthogonal: Applies the orthogonal principle at inference time with baseline sampling.

* MMG-orthogonal-adaptive: Combines both adaptive sampling and the orthogonal principle.

5.1 MI Estimation Benchmark

We evaluate on the benchmark of (Czyz et al.| 2023), which combines base distributions (Uniform,
Normal with dense or sparse correlation, and long-tailed Student-t) with MI-preserving nonlinear
transformations (Half-Cube, Asinh, Swiss-roll, Spiral). This setup introduces high dimensional-
ity, heavy tails, sparsity, and non-linear geometry. We compare MMG against neural estimators,
such as MINE (Belghazi et al., [2018a), INFONCE (Oord et al., 2018)),NwJ (Nguyen et al., [2007)),
DOE (McAllester & Stratos|,[2020) and MINDE [Franzese et al.|(2023)).

The results in Table [T]establish our method’s state-of-the-art performance. Our MMG-orthogonal-
adaptive and MMG-orthogonal variants succeed on 39/40 and 37/40 tasks respectively, surpassing
the MINDE (35/40). This robustness is rooted in our two main contributions: adaptive importance
sampling ensures accuracy by focusing the integral on critical SNR regions, while the orthogonal
principle guarantees a low-variance integrand for stability. This combination allows our method to
excel on complex non-linear datasets where traditional methods fail.
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Table 1: Low MI estimation over 10 seeds using N = 10k test samples against ground truth (GT) (Czyz
et al.,[2023). All methods were trained with 100k samples. Color indicates relative negative (red)
and positive bias (blue). Blank entries indicate that an estimator experienced numerical instabilities.
List of abbreviations ( Mn: Multinormal, S¢: Student-t, Nm: Normal, Hc: Half-cube, Sp: Spiral)



165

166
167
168
169
170

171
172
173
174
175
176
177
178
179

180
181
182
183
184

185

186
187
188
189
190

5.2 High MI Benchmark

To test the robustness and limits of our estimator, we extend the high-MI study from MINDE (Franzese
et al.} [2024), pushing their experimental setup from a range of MI < 5 into the significantly more
challenging regime of MI € [10, 15]. Following their protocol, we use a sparse 3 x 3 Multinormal
setup and its two MI-preserving transforms (Half-cube, Spiral). Figure [3|reports the mean + one
standard deviation over 10 seeds.

On the original and Half-cube cases (Fig. Ba&b), MMG-adaptive remains the most accurate
as MI grows, while other estimators falter due to distinct sources of error. MINDE struggles
significantly as its score-matching objective requires approximating the sharp, high-frequency score
functions of high-MI distributions, a task where neural networks’ spectral bias leads to significant
underestimation Rahaman et al.| (2019). In contrast, our orthogonal variants exhibit a different
limitation: a systematic conservative bias. This occurs because the orthogonal estimator measures the
distance between neural network approximations of the denoisers, and the distance between these
"smoothed-out" approximations is inherently smaller than the true distance between the optimal
denoisers. This underestimation bias becomes more pronounced as the true MI gap grows larger.

This reveals a clear bias-variance trade-off dictating the optimal estimator. For the broad low-MI
benchmark, the main challenge is variance, making the stable MMG-orthogonal-adaptive the
superior choice. In this high-MI setting, however, this systematic bias becomes the dominant error,
rendering the less-biased MM G-adaptive more accurate. This relative performance ranking holds
even on the highly non-linear Spiral transform (Fig. [Bc), where all methods are challenged.

Figure 1: High MI benchmark: original and transformed variants

(a) Half-cube @ Multinormal 3 x 3 (sparse) (b) Multinormal 3 x 3 (sparse) (c) Spiral @ Multinormal 3 x 3 (sparse)
15 15

14 7/
14 ,/
e
1 / e
= it — MMG
2 2 2 ,' MMG_orthogonal
‘E 5 . E /’ = MMG_adaptive
s s s P —— MMG_orthogonal_adaptive

s // —— MINDE
// / —— MINDE_sigma

9 10 1u 12 13 13 15 9 10 1 12 13 1 15 8 10 12 1
True MI True MI True MI

Figure 3: High MI benchmark: original (column (b)) and transformed variants (columns (a) and (c)).

5.3 Consistency Test

15 15 3
Z1o B 10 mmmmmmmmmmmmmmmmmmmm oo &
= z //— =
05 05 1
—— MMG —— MMG
—— MMG ==+ |deal ==+ Ideal
0.0 0.0 0
0 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Rows Used Rows Used Rows Used
(a) Baseline test (b) Data processing test (c) Additivity test
: . : . ; I(A;B;). ;
Figure 4: Consistency Tests over MNIST dataset: (a) evaluation of A8 (b) evaluation of

I(A§[Br+k7B'r‘])

I([A',A%}[B,,B7])
I(A;Br+k) :

for & > 0; (c¢) evaluation of (AT B1)
We conduct self-consistency tests inspired by [Song & Ermon| (2019)) to evaluate the properties of
MMG using high-dimensional real-world data, specifically samples from the MNIST dataset (28x28
resolution) (Deng), 2012). Let A represent an image and B, denote the image consisting of the
top r rows of A. These tests are designed to verify whether the estimators adhere to fundamental
properties of MI through three subtasks: Baseline Test, Data-Processing Test, and Additivity Test for
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two independent images sampled from dataset. Ideally, as r increases, II(&%)) should monotonically

approach 1, %f’:gr]) should consistently equal 1, and % should consistently

equal 2. To ensure a fair comparison with MINDE (Franzese et al.,[2024), we aligned our experimental
settings and parameters and tested MMG using five random seeds. The results of the three tests are
presented in Figure 4] Overall, MMG performed well and successfully passed all tests.

6 Related Work

Estimating mutual information (MI) from samples is a central challenge in machine learning. Tradi-
tional non-parametric approaches, such as methods based on data binning or kernel density estimation
(KDE), struggle with the curse of dimensionality. More advanced estimators based on k-nearest
neighbors have shown significant improvements (Kraskov et al.l 2004; [Pal et al., 2010}, but can still
be challenged by complex, high-dimensional data (Gao et al.,|2015). Consequently, the modern
paradigm is dominated by neural network-based approaches that optimize a variational bound on the
ML

Variational Bounds on Mutual Information. Most recent neural MI estimators are built upon
variational lower bounds derived from f-divergences. The pioneering work, MINE (Belghazi et al.,
2018b)), leverages the Donsker-Varadhan representation of the KL-divergence, spurring related
estimators like the variance-reduced SMILE (Song & Ermon, [2019) and DoE (McAllester & Stratos),
2020). A particularly successful family is based on contrastive learning, where estimators like
InfoNCE (van den Oord et al.,2018)) train a critic to distinguish between joint and marginal samples
(Poole et al., [2019). However, these methods face significant limitations: their sample complexity
can scale exponentially with the true MI, often being capped by the logarithm of the batch size
(McAllester & Stratos| [2020). This difficulty can be viewed as a "density chasm": the marginal
distribution p(x)p(y) is often a poor proposal for the joint p(z, ), leading to high-variance estimates,
especially in high-MI settings (Rhodes et al., [2020; Brekelmans et al.| [2021).

Mutual Information Estimation with Diffusion Models. Denoising diffusion models offer a
natural and powerful framework to bridge this density chasm. They define a continuous process that
transforms a complex data distribution into a simple tractable one, providing a path of intermediate
distributions. The potential of this framework for MI estimation was recently demonstrated by
MINDE (Franzese et al., [2024), which connects MI to the difference between conditional and
unconditional score functions (V, log p(x)). Our work, MMG, builds on a different and more direct
connection (Guo et al., 2005; Kong et al.| 2022)). Instead of relying on learned score functions, we
show that MI corresponds exactly to the integrated gap between the Minimum Mean Square Error
(MMSE) of conditional and unconditional denoising. This formulation connects MI directly to the
denoising objective itself, rather than its gradient, providing an elegant and potentially more robust
pathway for estimation.

7 Conclusion

In this work, we introduced MMG, a principled and robust estimator for mutual information derived
from the information-theoretic properties of denoising diffusion models. Our method directly
connects MI to the integrated Minimum Mean Square Error (MMSE) gap between a conditional and
an unconditional denoiser. We further enhanced this framework with two key techniques: an adaptive
importance sampling scheme to improve integration accuracy and an orthogonal principle to increase
estimator stability.

Through extensive experiments, we demonstrated that MMG achieves exceptional accuracy and ro-
bustness, successfully providing stable estimates on 39 out of 40 tasks in a comprehensive benchmark,
and successfully passes all self-consistency tests. Notably, our method excels in the challenging
high-MI regime, significantly outperforming current score-based diffusion estimators. Our analysis
also uncovered a fundamental bias-variance trade-off, revealing that the optimal estimator configura-
tion—either with or without the orthogonal principle—depends on the MI magnitude of the problem.
Future work could explore strategies to automatically navigate this bias-variance trade-off or apply
the MMSE-gap framework to other information-theoretic quantities.
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A Derivation of the Orthogonal Principle
This section provides a brief derivation for the orthogonal principle (Equation [IT]) used in our
estimator, following the original work of Kong et al.[(2023).

The principle is based on the following identity. Let &(z,) = & = E[x|z,] be the unconditional
MMSE denoiser and &(z,y) = &, = E[x|z,, y| be the conditional one. The identity states:

Ellz - [%] - Elllx - &%) = El|&, — 2| (13)
Below is a brief proof sketch for Equation[13]
Proof Sketch. The proof relies on the law of total expectation and the orthogonality property

of MMSE estimation (i.e., the estimation error is orthogonal to any function of the conditioning
variables). We begin by showing a key cross-term is zero:

Ef(x — ) - (zy — )] = E[E[(x — &) - (¢, — &)|2,,y]]  (Law of Total Expectation)
=E[(
=E[(

Because this cross-term is zero, we can expand the unconditional error ||z — &||? as follows:

Elz|zy,y] — &) - (y — T)] (Pulling out known terms)
Ty —&y) - (&, —2)] =0 (Definition of &,)

Ellz — 2] = Ell(z — ;) + (2, — 2)|]
=Efllx — 2, [°] + Elllz, — 2] + 2 E[(z — &,) - (&, — 2)]

0

= E[|lz - &, + Ef|2, — 2|]
Rearranging the terms yields the identity in Equation T3]

Table 2: MMG network training hyper-parameters. Dim of the task correspond the sum of the two
variables dimensions, and d corresponds to the randomization probability.

Benchmark Dim d Width Time Embedding Size Batch Size [r Iterations # of Params

<10 05 o4 64 128 le-3 390k 55425

50 0.5 128 128 256 2e-3 290k 220810

100 0.5 256 256 256 2e-3 290k 898354
Consistency Tests 0.5 256 256 64 le-3 390k 1597968

Sampling Parameter LogSNR Loc LogSNR Scale Clip EMA Decay Inference Times N_Points

- 2.0 3.0 4.0 0.999 10 10000
Table 3: Sampling Hyperparameters

B Ablation Study on Adaptive Sampling

In this section, we conduct an ablation study to specifically evaluate the impact of our adaptive
importance sampling strategy. We compare the performance of two non-orthogonal estimator
variants:

* MMG-adaptive (''Adaptive''): Employs the adaptive importance sampling scheme de-
scribed in Section

* MMG (''Baseline"): Uses a fixed, default importance sampling distribution.

This comparison is designed to isolate the effect of the sampling strategy on estimation accuracy and
stability, particularly across a diverse set of distributions. The results are presented in Table [4]
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Table 4: Ablation study comparing MMG-adaptive ("Adaptive") with adaptive importance sampling
against the baseline MMG ("Baseline") with a fixed sampling distribution. This analysis uses the
non-orthogonal variants to isolate the impact of the sampling strategy. For each task, the estimate
closer to the Ground Truth and the lower standard deviation (Std) are independently bolded.

Adaptive Baseline
Estimate Std Estimate Std

Task Ground Truth

Basic Distribution Tasks

1v1l-normal-0.75 0.4133 0.4160 0.0447 0.4208 0.0754
1v1-additive-0.1 1.7094 1.6929 0.0494 1.6984 0.0677
1v1-bimodal-0.75 0.4133 0.4133 0.0612 0.4201 0.0766
High Dimensional Tasks

multinormal-dense-25-25-0.5 1.2922 1.2063 0.1636 1.1603 0.2526
multinormal-dense-50-50-0.5 1.6243 1.7926 0.3053 1.8493 0.4398
Non-Gaussian Distribution Tasks

student-identity-1-1-1 0.2242 0.3644 0.2472 0.3583 0.2884
student-identity-3-3-2 0.2909 0.4901 0.6502 0.5123 0.7055
student-identity-5-5-2 0.4482 0.7747 1.0550 0.7683 1.0492
Complex Transformation Tasks

spiral-multinormal-sparse-3-3-2.0 1.0217 1.0012 0.0805 1.0152 0.1187

spiral-multinormal-sparse-25-25-2.0 1.0217 0.8713 0.1557 0.8215 0.2683

The results in Table ] demonstrate the consistent benefits of the adaptive sampling strategy. The
"Adaptive" method frequently achieves a lower standard deviation, indicating improved estimator
stability. This is particularly evident in high-dimensional and complex transformation tasks, such as
‘multinormal-dense-50-50-0.5¢ and ‘spiral-multinormal-sparse-25-25-2.0¢, where the reduction in
variance is substantial. While the accuracy of the point estimate is competitive across both methods,
the adaptive approach often provides estimates closer to the ground truth in the more challenging
settings. Overall, this ablation study validates that tailoring the sampling distribution to the specific
data leads to a more robust and reliable MI estimator.

C Implementation Details

We follow the implementation of |Franzese et al.|(2023) which uses stacked multi-layer perception
(MLP) with skip connections. We adopt a simplified version of the same network architecture:
this involves three Residual MLP blocks. We use the Adam optimizer (Kingma, [2014) for training
and Exponential moving average (EMA) with a momentum parameter m = 0.999. We use the
ReduceLROnPlateau scheduler with a patience of 200 epochs, reducing the learning rate by half if
the training loss does not improve after 200 epochs. We returned the mean estimate on the test data
set over 10 runs. All experiments are run on NVIDIA RTX A6000 GPUs. The hyper-parameters
are presented in Table [2] for MMG. Concerning the consistency tests, we independently train an
autoencoder for each version of the MNIST dataset with r rows available.

D Visual Analysis of the MMG Estimator

This section provides an intuitive, qualitative analysis of the MMG estimator’s integrand to support
the core components of our method. By visualizing the integrand on a challenging three-dimensional,
Spiral-transformed sparse Multinormal distribution (GT MI = 9.90), we can clearly see the comple-
mentary roles of the orthogonal principle for stability and adaptive importance sampling for accuracy.
The plots below were generated by densely sampling 10,000 log SNR points and then binning the
results (bin=50) to illustrate the underlying trends.

Figure [5 directly compares the integrand calculated via direct MMSE subtraction against the one
derived from our orthogonal principle.
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Figure 5: Integrand analysis on a Spiral-transformed task (GT MI = 9.90). Comparison between
(a) the volatile direct MMSE subtraction method and (b) the stable orthogonal principle. In both
plots, the adaptive sampler (red) outperforms the baseline (blue) by focusing on the most informative
region.

Analysis of the Orthogonal Principle’s Contribution The orthogonal principle’s primary contri-
bution is enhancing integrand stability. As shown in Figure[5h] it replaces the highly volatile direct
subtraction method with an exceptionally smooth and non-negative integrand, crucial for reliable
numerical integration. This stability, however, introduces a trade-off that becomes particularly evident
in high mutual information estimation: the orthogonal integrand’s peak is lower, which can lead
to a conservative bias by underestimating the true distance between optimal denoisers. While the
dramatic reduction in variance makes it a more robust choice for general cases, this systematic
underestimation can become a limiting factor when the true MI is large.

Analysis of Adaptive Sampling’s Contribution Adaptive sampling boosts estimation accuracy and
efficiency. As illustrated in Figure[Sb] while a fixed sampler may be misaligned with the integrand’s
peak, our adaptive method dynamically concentrates samples in this most informative SNR region.
This targeted strategy leads to a demonstrably more accurate MI estimate (8.075 bits vs. 6.933 bits
for the direct method), confirming the value of focusing the integration where it matters most.
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