
MMG: Mutual Information Estimation via the MMSE Gap in Diffusion

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Mutual information (MI) is one of the most general ways to measure relationships
2 between random variables, but estimating this quantity for complex systems is
3 challenging. Denoising diffusion models have recently set a new bar for density
4 estimation, so it is natural to consider whether these methods could also be used
5 to improve MI estimation. Using the recently introduced information-theoretic
6 formulation of denoising diffusion models, we show the diffusion models can be
7 used in a straightforward way to estimate MI. In particular, the MI corresponds to
8 half the gap in the Minimum Mean Square Error (MMSE) between conditional
9 and unconditional diffusion, integrated over all Signal-to-Noise-Ratios (SNRs) in
10 the noising process. Our approach not only passes self-consistency tests but also
11 outperforms traditional and score-based diffusion MI estimators. Furthermore, our
12 method leverages adaptive importance sampling to achieve scalable MI estimation,
13 while maintaining strong performance even when the MI is high.

14 1 Introduction

15 Estimating Mutual Information (MI) from samples is a fundamental problem with widespread
16 applications. Methods based on local density estimation (Kraskov et al., 2004; Pál et al., 2010; Gao
17 et al., 2015) have been displaced by variational approaches using neural networks (Poole et al., 2019)
18 to estimate lower bounds on MI (Belghazi et al., 2018b; Nguyen et al., 2010). Unfortunately, these
19 approaches may have sample complexity or variance which scale exponentially with the true MI
20 (Gao et al., 2015; McAllester & Stratos, 2020; van den Oord et al., 2018). In practical scenarios, the
21 MI between two variables is usually unknown, making reliable estimation challenging. To tackle
22 this, Song & Ermon (2019) introduced three self-consistency experiments designed to evaluate the
23 robustness of MI estimators. For a more standardized and comprehensive evaluation, Czyż et al.
24 (2023) developed a benchmark consisting of 40 synthetic datasets derived from diverse distributions,
25 providing a consistent basis for assessing the performance of different MI estimators.

26 Denoising diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Kingma et al. (2021);
27 Kong et al. (2022) have dramatically improved the modeling of complex distributions, igniting a new
28 industry for AI art generation Rombach et al. (2022); Ramesh et al. (2022); Saharia et al. (2022).
29 Recently, Franzese et al. (2024) introduced a MI estimator, MINDE, based on score-based diffusion
30 models. This estimator not only achieved an 87.5% estimation success rate on the benchmark of
31 Czyż et al. (2023) but also passed the self-consistency tests. However, its reliance on accurately
32 approximating the log-density gradient can be a challenging intermediate step. This motivates a more
33 direct formulation, connecting MI to the denoising objective itself rather than its gradient.

34 In this paper, we exploit the recently discovered connections between information theory and diffusion
35 models to derive an elegant and effective approach to MI estimation (Guo et al., 2005; Kong et al.,
36 2022). Our contributions are as follows:

37 • We show that conditional density estimation and mutual information estimation can both
 38 be written exactly in terms of the global optimum of a denoising objective. Conditional
 39 density estimation corresponds to a gap between MMSEs (Kong et al., 2022) for conditional
 40 and unconditional denoising diffusion models, and mutual information is the expected gap
 41 over all data, leading to the **Mutual Information Estimation via the MMSE Gap in Diffusion**
 42 (**MMG**) estimator.

43 • We develop an adaptive importance sampling scheme that tailors the integration to the
 44 specific data distribution. By dynamically fitting a sampling distribution to the MMSE gap,
 45 this technique significantly improves the precision and efficiency of the final MI estimate.

46 • MMG has passed all self-consistency tests and achieved state-of-the-art results across
 47 multiple tasks, particularly excelling in high MI estimation, and has outperformed the
 48 current leading estimator, MINDE, in these scenarios.

49 • We release a unified PyTorch library that, for the first time, brings diffusion-based and
 50 established neural MI estimators into a single, consistent framework. Its simple API is
 51 designed to streamline their future side-by-side evaluation. Our code can be found at:
 52 <https://anonymous.4open.science/r/DMI-50D8>

53 **2 Background**

54 Let $p(\mathbf{z}_\gamma | \mathbf{x})$ be a Gaussian noise channel with $\mathbf{z}_\gamma = \sqrt{\gamma/(1+\gamma)}\mathbf{x} + \sqrt{1/(1+\gamma)}\boldsymbol{\epsilon}$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbb{I})$,
 55 where γ represents the Signal-to-Noise Ratio (SNR). The unknown data distribution is $p(\mathbf{x})$. The
 56 MMSE refers to the minimum mean square error for recovering \mathbf{x} in this noisy channel (Kong et al.,
 57 2022).

$$\text{mmse}_x(\gamma) \equiv \min_{\hat{\mathbf{x}}(\mathbf{z}_\gamma, \gamma)} \mathbb{E}_{p(\mathbf{z}_\gamma, \mathbf{x})}[(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{z}_\gamma, \gamma))^2] \quad (1)$$

58 The optimal estimator, $\hat{\mathbf{x}}^*$, can be derived via variational calculus and written analytically.

$$\hat{\mathbf{x}}^*(\mathbf{z}_\gamma, \gamma) \equiv \arg \text{mmse}_x(\gamma) = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x} | \mathbf{z}_\gamma)}[\mathbf{x}] \quad (2)$$

59 Sampling from the true posterior is typically intractable, but by using a neural network to solve Eq. 1
 60 we can get an approximation for $\hat{\mathbf{x}}^*$. We also introduce pointwise MMSE which is just the MMSE
 61 evaluated at a single point \mathbf{x} , and $\mathbb{E}_{p(\mathbf{x})}[\text{mmse}(\mathbf{x} | \gamma)] = \text{mmse}_x(\gamma)$.

$$\text{mmse}(\mathbf{x} | \gamma) \equiv \mathbb{E}_{p(\mathbf{z}_\gamma | \mathbf{x})}[(\mathbf{x} - \hat{\mathbf{x}}^*(\mathbf{z}_\gamma, \gamma))^2] \quad (3)$$

62 From Kong et al. (2022) we see that log likelihood can be written *exactly* in terms of an expression
 63 that depends only on the MMSE solution to the Gaussian denoising problem.

$$\boxed{-\log p(\mathbf{x}) = d/2 \log(2\pi e) - 1/2 \int_0^\infty d\gamma \left(\frac{d}{1+\gamma} - \text{mmse}(\mathbf{x} | \gamma) \right)} \quad (4)$$

64 We can use this result to derive elegant formulations for supervised learning and mutual information
 65 estimation.

66 **3 Method**

67 **3.1 Mutual Information Estimation**

68 Consider that our data is drawn from some unknown joint distribution, $p(\mathbf{x}, y)$. At this point we don't
 69 specify the domain of y , it could be discrete or continuous, vector or scalar. The pointwise denoising
 70 relation, Eq. 4, holds for *any* input distribution, so a valid choice would be $p(\mathbf{x} | y)$. Therefore we can
 71 write a conditional version that holds for each y .

$$\boxed{-\log p(\mathbf{x} | y) = d/2 \log(2\pi e) - 1/2 \int_0^\infty d\gamma \left(\frac{d}{1+\gamma} - \text{mmse}(\mathbf{x} | \gamma, y) \right)} \quad (5)$$

72 We use the following definitions for conditional MMSE.

$$\begin{aligned} \hat{\mathbf{x}}^*(\mathbf{z}_\gamma, \gamma, y) &\equiv \arg \min_{\hat{\mathbf{x}}(\mathbf{z}_\gamma, \gamma, y)} \mathbb{E}_{p(\mathbf{z}_\gamma | \mathbf{x})p(\mathbf{x}, y)}[(\mathbf{x} - \hat{\mathbf{x}}(\mathbf{z}_\gamma, \gamma, y))^2] \\ \text{mmse}(\mathbf{x} | \gamma, y) &\equiv \mathbb{E}_{p(\mathbf{z}_\gamma | \mathbf{x})}[(\mathbf{x} - \hat{\mathbf{x}}^*(\mathbf{z}_\gamma, \gamma, y))^2] \end{aligned} \quad (6)$$

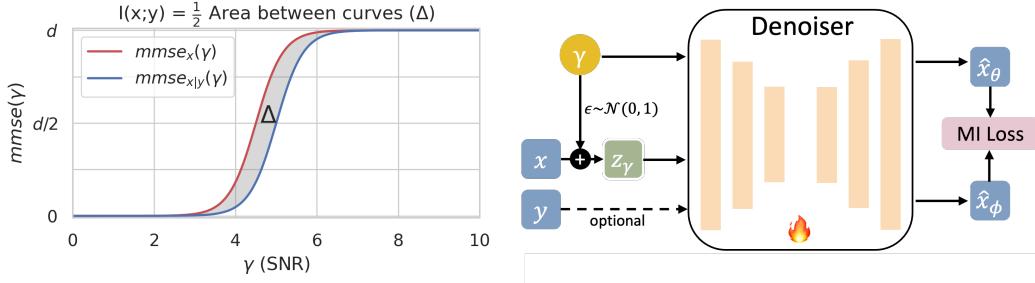


Figure 1: The mutual information is exactly half the area between MMSE curves for conditional and unconditional denoising. We use denoising diffu-and a denoiser is used to recover it, with or without sion models to approximate the MMSE curves,conditioning on y at a 50% probability. Finally, then numerically integrate to get an estimate of the the MI loss, as defined in Eq. 10, is computed to mutual information.

73 We write the expected conditional MMSE as $\text{mmse}_{x|y}(\gamma) = \mathbb{E}_{p(\mathbf{x}, y)}[\text{mmse}(\mathbf{x}|\gamma, y)]$.

74 Now we can subtract Eq. 4 and Eq. 5 to get the following.

$$\log p(\mathbf{x}|y) - \log p(\mathbf{x}) = 1/2 \int_0^\infty d\gamma (\text{mmse}(\mathbf{x}|\gamma) - \text{mmse}(\mathbf{x}|\gamma, y)) \quad (7)$$

75 The expression on the left is sometimes called *pointwise mutual information*, because its expectation,
76 $\mathbb{E}[\log p(\mathbf{x}|y)/p(\mathbf{x})] = I(\mathbf{x}; y)$ is equal to the mutual information.

$$I(\mathbf{x}; y) = 1/2 \int_0^\infty d\gamma (\text{mmse}_x(\gamma) - \text{mmse}_{x|y}(\gamma)) \quad (8)$$

77 Conditioning on y can only decrease the MMSE Wu & Verdú (2011), so the mutual information
78 is non-negative as expected. While Eq. 7 appears to be novel, a version of Eq. 8 appeared in Guo
79 et al. (2005). This result holds for discrete or continuous data Guo et al. (2005), or even mixed
80 continuous and discrete, a particularly challenging problem Gao et al. (2017). We propose to use
81 recent advances in denoising diffusion modeling to approximate the right-hand side to achieve better
82 mutual information estimates.

83 To efficiently estimate the integral in Eq. 8, we applied importance sampling in the integral on the
84 right-hand side of Eq. 8 with the importance weights $q(\gamma)$.

$$I(\mathbf{x}; y) = 1/2 \mathbb{E}_{\gamma, x, y} [(\text{mmse}_x(\gamma) - \text{mmse}_{x|y}(\gamma)) / q(\gamma)] \quad (9)$$

85 Therefore, we can train expert denoisers to estimate the MMSE for various distributions of $q(\gamma)$, as
86 different density consistently lead to distinct distributions of the MMSE gap in Figure 1.

87 3.2 Model Training

88 In practice, we parametrize the denoising function in terms of a neural network. At training time, we
89 have to solve two minimization problems, or actually a continuum of minimization problems for each
90 SNR level.

$$\begin{aligned} \theta^* &= \arg \min_{\theta} \mathbb{E}_{p(\mathbf{z}_\gamma | \mathbf{x}) p(\mathbf{x}, y)} [(\mathbf{x} - \hat{\mathbf{x}}_\theta(\mathbf{z}_\gamma, \gamma, y))^2] \\ \phi^* &= \arg \min_{\phi} \mathbb{E}_{p(\mathbf{z}_\gamma | \mathbf{x}) p(\mathbf{x})} [(\mathbf{x} - \hat{\mathbf{x}}_\phi(\mathbf{z}_\gamma, \gamma))^2] \end{aligned} \quad (10)$$

91 We parametrize $\hat{\mathbf{x}}_\theta(\mathbf{z}_\gamma, \gamma, y)$ as some neural network that is trained with a mean square error loss to
92 recover the signal, \mathbf{x} , from noise and the auxiliary signal, y , across different SNRs, γ (see Figure 2). In
93 principle we should train a separate neural network that recovers data from noise without conditioning
94 on y . However, we can borrow from existing architectures which train a single network for both

95 conditional and unconditional denoising Ho & Salimans (2021). Conditional diffusion models have
 96 shown compelling results in Nichol et al. (2021); Ramesh et al. (2022); Saharia et al. (2022). During
 97 training we simply replace y with a null value, $y = \emptyset$, some fraction of the time so that the same
 98 (conditional) network can learn to denoise in the absence of conditioning.

99 In practice, we can't guarantee that the neural network finds the true global optimum, the MMSEs in
 100 Eq. 8. Because MMSEs appear with both signs in that expression, we can't even guarantee that our
 101 network gives an upper or lower bound. While this is unfortunate, conventional wisdom suggests that
 102 sufficiently expressive neural networks do converge to global optima (Du et al., 2019; Jacot et al.,
 103 2018).

104 4 Implementation

105 The core of the experiment is training a denoiser capable of effectively performing denoising across
 106 different noise levels, characterized by varying SNRs, to simulate an MMSE curve. The MI is then
 107 computed from the gap between the conditional and unconditional MMSE curves (Eq. 8). This
 108 MMSE-based theoretical approach offers greater flexibility to enhance the accuracy and robustness
 109 of MI estimation. To leverage this flexibility for enhanced accuracy and robustness, we introduce the
 110 core components of our implementation below.

111 4.1 Adaptive Importance Sampling

112 As in Kong et al. (2022), we estimate integrals using importance weighted Monte Carlo estimators,
 113 with log-SNR values chosen from a logistic distribution with some location, μ and scale, σ . Since the
 114 shape of the integration area (Δ area in Fig. 1) is data-dependent, a fixed sampling distribution can
 115 be inefficient. For our adaptive variants, we therefore optimize this distribution for each specific task.

116 To find the data-adapted parameters (μ, σ) , we employ a two-stage procedure. First, we train a
 117 preliminary model and analyze its conditional MMSE curve, $\text{MMSE}_{x|y}$. Inspired by the use of error
 118 landmarks in density estimation (Kong et al., 2022), our heuristic identifies the critical transition
 119 region of this curve, where the denoiser becomes effective. Specifically, we define the parameters as
 120 follows (where d is the data dimensionality):

- 121 • The location μ is set to the log-SNR where the MMSE curve crosses the $d/2$ error threshold.
 122 This centers our sampling distribution on the midpoint of the denoiser's transition from high
 123 to low error.
- 124 • The scale σ is derived from the log-SNR where the curve crosses the $d/4$ threshold, capturing
 125 the steepness of this transition. For example, it can be set as the difference between the
 126 log-SNRs at the $d/2$ and $d/4$ crossings.

127 The final adaptive estimators are then trained with this optimized distribution, targeting the critical
 128 SNR range to yield more accurate and efficient MI estimates.

129 4.2 The Orthogonal Principle

130 To further enhance estimator stability, we incorporate the orthogonality principle from Kong et al.
 131 (2023). The principle states that for optimal denoisers, the gap in MMSE is precisely the expected
 132 squared distance between the conditional and unconditional estimators. This provides an alternative
 133 way to express the MI integrand. Formally, let $\hat{x}(z_\gamma) = \mathbb{E}[x|z_\gamma]$ and $\hat{x}(z_\gamma, y) = \mathbb{E}[x|z_\gamma, y]$. The
 134 identity at a fixed SNR is:

$$\underbrace{\mathbb{E}[\|x - \hat{x}(z_\gamma)\|^2] - \mathbb{E}[\|x - \hat{x}(z_\gamma, y)\|^2]}_{\text{MMSE Gap}} = \underbrace{\mathbb{E}[\|\hat{x}(z_\gamma, y) - \hat{x}(z_\gamma)\|^2]}_{\text{Orthogonal Form of the Gap}} \quad (11)$$

135 After expanding the left-hand side, the cross terms vanish due to the orthogonality principle Kong
 136 et al. (2023), resulting in the expression on the right-hand side. This allows us to substitute the
 137 original integrand in our MI formula (Eq. 8) with the term on the right-hand side. The orthogonal MI
 138 estimator, in its practical importance-sampled form, is therefore:

$$I(x; y) = \frac{1}{2} \mathbb{E}_{x, y, z_\gamma, \gamma \sim q} \left[\frac{\|\hat{x}(z_\gamma, y) - \hat{x}(z_\gamma)\|^2}{q(\gamma)} \right] \quad (12)$$

139 In practice, this is implemented as a *training-free, inference-time plug-in*. This formulation guarantees
 140 a non-negative integrand and improves the stability of MI estimates, as detailed in Appendix A.

141 The practical advantage of this formulation is its numerical stability. The standard MMSE gap is
 142 computed as a difference between two large, separately estimated MSE values. Small approximation
 143 errors in each term can lead to a noisy, high-variance result for their difference, which can even
 144 become negative. In contrast, the orthogonal form computes the integrand as a single, squared term,
 145 which is guaranteed to be non-negative and is empirically much smoother.

146 **5 Experiments**

147 We evaluate four variants of our estimator in the experiments for ablation comparison:

- 148 • **MMG**: The baseline estimator using a fixed, default importance sampling distribution.
- 149 • **MMG-adaptive**: Employs adaptive importance sampling for more accurate integration.
- 150 • **MMG-orthogonal**: Applies the orthogonal principle at inference time with baseline sampling.
- 151 • **MMG-orthogonal-adaptive**: Combines both adaptive sampling and the orthogonal principle.

152 5.1 MI Estimation Benchmark

153 We evaluate on the benchmark of (Czyz et al., 2023), which combines base distributions (Uniform,
 154 Normal with dense or sparse correlation, and long-tailed Student-t) with MI-preserving nonlinear
 155 transformations (Half-Cube, Asinh, Swiss-roll, Spiral). This setup introduces high dimensionality,
 156 heavy tails, sparsity, and non-linear geometry. We compare MMG against neural estimators,
 157 such as MINE (Belghazi et al., 2018a), INFONCE (Oord et al., 2018), NWJ (Nguyen et al., 2007),
 158 DOE (McAllester & Stratos, 2020) and MINDE Franzese et al. (2023).

159 The results in Table 1 establish our method’s state-of-the-art performance. Our **MMG-orthogonal**
 160 **adaptive** and **MMG-orthogonal** variants succeed on 39/40 and 37/40 tasks respectively, surpassing
 161 the MINDE (35/40). This robustness is rooted in our two main contributions: adaptive importance
 162 sampling ensures accuracy by focusing the integral on critical SNR regions, while the orthogonal
 163 principle guarantees a low-variance integrand for stability. This combination allows our method to
 164 excel on complex non-linear datasets where traditional methods fail.

GT	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.4 0.2 0.3 0.2 0.4 0.3 0.4 1.7 1.0 3.0 0.4
MINE	0.2 0.4 0.2 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 0.9 0.9 0.8 0.7 0.6 0.9 0.9 0.9 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.4 1.7 1.0 3.0 0.4
InfoNCE	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.8 0.8 0.8 0.9 1.0 1.0 0.2 0.3 0.2 0.3 0.3 0.2 0.4 0.3 0.4 1.7 1.0 3.0 0.4
D-V	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.8 0.8 0.8 0.9 1.0 1.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.4 1.7 1.0 3.0 0.4
NWJ	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.8 0.8 0.8 0.9 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.6 0.1 0.1 0.2 0.4 1.7 1.0 3.0 0.4
DoE(Gaussian)	0.2 0.5 0.3 0.6 0.4 0.4 0.4 0.7 1.0 1.0 1.0 0.4 0.7 0.7 1.0 0.6 0.9 1.3 0.4 0.7 1.0 1.0 0.5 0.6 0.6 0.6 0.7 0.8 6.7 7.7 9.1 8.2 25.0 6.4 2.1 1.2 1.6 0.1 0.4
DoE(Logistic)	0.1 0.4 0.2 0.4 0.4 0.4 0.4 0.6 0.9 0.9 0.3 0.7 0.7 0.8 1.0 0.6 0.9 1.3 0.4 0.8 1.1 1.0 0.5 0.6 0.6 0.7 0.8 0.8 2.0 0.5 0.8 0.3 1.5 0.6 1.6 0.1 0.4
MINDE-I ($\sigma = 1$)	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.1 1.0 1.0 1.0 0.3 0.9 1.2 1.0 0.4 1.0 0.6 1.7 0.4 1.0 1.0 1.0 0.9 0.9 0.9 1.0 0.9 1.0 0.2 0.4 0.2 0.3 0.2 0.5 0.3 0.5 1.6 0.3 0.4
MINDE-J	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.2 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.7 0.4 1.1 1.0 1.0 1.0 0.9 0.9 1.1 1.0 1.0 0.1 0.2 0.2 0.3 0.2 0.5 0.3 0.4 1.7 1.0 3.0 0.4
MINDE-C ($\sigma = 1$)	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.9 0.9 0.9 1.0 0.9 1.0 0.3 0.2 0.3 0.2 0.4 0.3 0.3 1.7 1.0 3.0 0.4
MINDE-C	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.9 0.9 0.9 1.0 1.0 1.0 0.1 0.2 0.3 0.2 0.3 0.4 0.3 1.7 1.0 3.0 0.4
MMG	0.2 0.4 0.3 0.5 0.4 0.4 0.4 0.9 1.1 0.9 1.0 0.0 2.0 0.9 1.2 1.0 0.4 1.0 0.6 1.4 0.5 1.0 1.0 1.0 1.1 1.0 1.2 1.0 1.0 0.2 0.3 0.2 0.3 0.2 0.4 0.2 0.3 1.7 1.0 3.0 0.4
MMG-adaptive	0.2 0.4 0.3 0.4 0.4 0.4 0.4 0.9 1.0 0.9 1.0 0.3 1.0 1.2 1.0 0.4 1.0 0.6 1.4 0.4 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0 0.2 0.3 0.2 0.3 0.3 0.2 0.5 0.2 0.3 1.7 1.0 3.0 0.4
MMG-orthogonal	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.1 0.3 0.2 0.2 0.3 0.2 0.4 0.3 0.4 1.7 1.0 3.0 0.4
MMG-orthogonal-adaptive	0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.2 0.4 0.2 0.3 0.2 0.4 0.3 0.4 1.7 1.0 3.0 0.4

Table 1: Low MI estimation over 10 seeds using $N = 10k$ test samples against ground truth (GT) (Czyz et al., 2023). All methods were trained with 100k samples. **Color indicates relative negative (red) and positive bias (blue)**. Blank entries indicate that an estimator experienced numerical instabilities. List of abbreviations (*Mn*: Multinormal, *St*: Student-t, *Nm*: Normal, *Hc*: Half-cube, *Sp*: Spiral)

List of abbreviations (*Mn*: Multinormal, *St*: Student-t, *Nm*: Normal, *Hc*: Half-cube, *Sp*: Spiral)

165 **5.2 High MI Benchmark**

166 To test the robustness and limits of our estimator, we extend the high-MI study from MINDE (Franzese
 167 et al., 2024), pushing their experimental setup from a range of $MI \leq 5$ into the significantly more
 168 challenging regime of $MI \in [10, 15]$. Following their protocol, we use a sparse 3×3 Multinormal
 169 setup and its two MI-preserving transforms (Half-cube, Spiral). Figure 3 reports the mean \pm one
 170 standard deviation over 10 seeds.

171 On the *original* and *Half-cube* cases (Fig. 3a&b), **MMG-adaptive** remains the most accurate
 172 as MI grows, while other estimators falter due to distinct sources of error. **MINDE** struggles
 173 significantly as its score-matching objective requires approximating the sharp, high-frequency score
 174 functions of high-MI distributions, a task where neural networks' spectral bias leads to significant
 175 underestimation Rahaman et al. (2019). In contrast, our orthogonal variants exhibit a different
 176 limitation: a systematic conservative bias. This occurs because the orthogonal estimator measures the
 177 distance between neural network approximations of the denoisers, and the distance between these
 178 "smoothed-out" approximations is inherently smaller than the true distance between the optimal
 179 denoisers. This underestimation bias becomes more pronounced as the true MI gap grows larger.

180 This reveals a clear bias-variance trade-off dictating the optimal estimator. For the broad low-MI
 181 benchmark, the main challenge is variance, making the stable **MMG-orthogonal-adaptive** the
 182 superior choice. In this high-MI setting, however, this systematic bias becomes the dominant error,
 183 rendering the less-biased **MMG-adaptive** more accurate. This relative performance ranking holds
 184 even on the highly non-linear *Spiral* transform (Fig. 3c), where all methods are challenged.

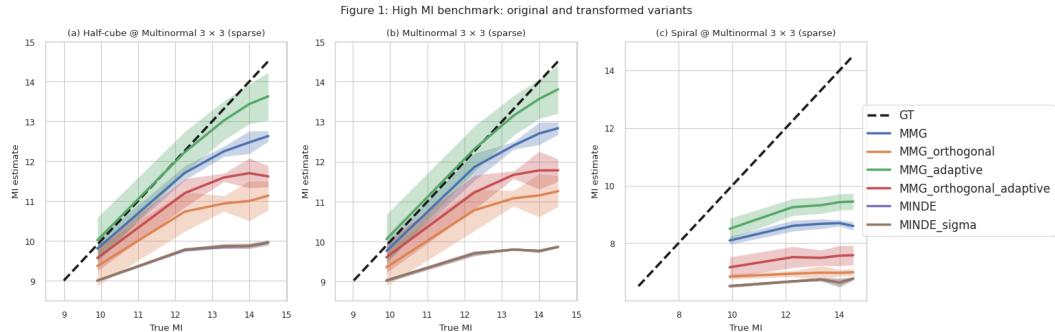


Figure 3: High MI benchmark: original (column (b)) and transformed variants (columns (a) and (c)).

185 **5.3 Consistency Test**

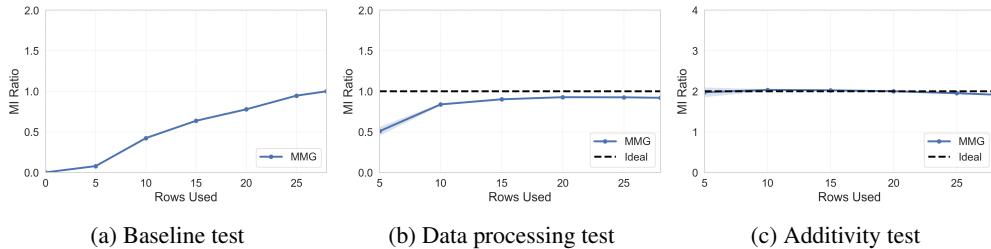


Figure 4: Consistency Tests over MNIST dataset: (a) evaluation of $\frac{I(A;B_r)}{I(A;B)}$; (b) evaluation of $\frac{I(A;[B_{r+k}, B_r])}{I(A;B_{r+k})}$ for $k > 0$; (c) evaluation of $\frac{I([A^1, A^2];[B_r^1, B_r^2])}{I(A^1;B_r^1)}$.

186 We conduct self-consistency tests inspired by Song & Ermon (2019) to evaluate the properties of
 187 MMG using high-dimensional real-world data, specifically samples from the MNIST dataset (28 \times 28
 188 resolution) (Deng, 2012). Let A represent an image and B_r denote the image consisting of the
 189 top r rows of A . These tests are designed to verify whether the estimators adhere to fundamental
 190 properties of MI through three subtasks: Baseline Test, Data-Processing Test, and Additivity Test for

191 two independent images sampled from dataset. Ideally, as r increases, $\frac{I(A;B_r)}{I(A;B)}$ should monotonically
 192 approach 1, $\frac{I(A;[B_{r+k}, B_r])}{I(A;B_{r+k})}$ should consistently equal 1, and $\frac{I([A^1, A^2];[B_r^1, B_r^2])}{I(A^1;B_r^1)}$ should consistently
 193 equal 2. To ensure a fair comparison with MINDE (Franzese et al., 2024), we aligned our experimental
 194 settings and parameters and tested MMG using five random seeds. The results of the three tests are
 195 presented in Figure 4. Overall, MMG performed well and successfully passed all tests.

196 6 Related Work

197 Estimating mutual information (MI) from samples is a central challenge in machine learning. Traditional
 198 non-parametric approaches, such as methods based on data binning or kernel density estimation
 199 (KDE), struggle with the curse of dimensionality. More advanced estimators based on k-nearest
 200 neighbors have shown significant improvements (Kraskov et al., 2004; Pál et al., 2010), but can still
 201 be challenged by complex, high-dimensional data (Gao et al., 2015). Consequently, the modern
 202 paradigm is dominated by neural network-based approaches that optimize a variational bound on the
 203 MI.

204 **Variational Bounds on Mutual Information.** Most recent neural MI estimators are built upon
 205 variational lower bounds derived from f-divergences. The pioneering work, MINE (Belghazi et al.,
 206 2018b), leverages the Donsker-Varadhan representation of the KL-divergence, spurring related
 207 estimators like the variance-reduced SMILE (Song & Ermon, 2019) and DoE (McAllester & Stratos,
 208 2020). A particularly successful family is based on contrastive learning, where estimators like
 209 InfoNCE (van den Oord et al., 2018) train a critic to distinguish between joint and marginal samples
 210 (Poole et al., 2019). However, these methods face significant limitations: their sample complexity
 211 can scale exponentially with the true MI, often being capped by the logarithm of the batch size
 212 (McAllester & Stratos, 2020). This difficulty can be viewed as a "density chasm": the marginal
 213 distribution $p(x)p(y)$ is often a poor proposal for the joint $p(x, y)$, leading to high-variance estimates,
 214 especially in high-MI settings (Rhodes et al., 2020; Brekelmans et al., 2021).

215 **Mutual Information Estimation with Diffusion Models.** Denoising diffusion models offer a
 216 natural and powerful framework to bridge this density chasm. They define a continuous process that
 217 transforms a complex data distribution into a simple tractable one, providing a path of intermediate
 218 distributions. The potential of this framework for MI estimation was recently demonstrated by
 219 **MINDE** (Franzese et al., 2024), which connects MI to the difference between conditional and
 220 unconditional score functions ($\nabla_x \log p(\mathbf{x})$). Our work, **MMG**, builds on a different and more direct
 221 connection (Guo et al., 2005; Kong et al., 2022). Instead of relying on learned score functions, we
 222 show that MI corresponds exactly to the integrated gap between the Minimum Mean Square Error
 223 (MMSE) of conditional and unconditional denoising. This formulation connects MI directly to the
 224 denoising objective itself, rather than its gradient, providing an elegant and potentially more robust
 225 pathway for estimation.

226 7 Conclusion

227 In this work, we introduced MMG, a principled and robust estimator for mutual information derived
 228 from the information-theoretic properties of denoising diffusion models. Our method directly
 229 connects MI to the integrated Minimum Mean Square Error (MMSE) gap between a conditional and
 230 an unconditional denoiser. We further enhanced this framework with two key techniques: an adaptive
 231 importance sampling scheme to improve integration accuracy and an orthogonal principle to increase
 232 estimator stability.

233 Through extensive experiments, we demonstrated that MMG achieves exceptional accuracy and ro-
 234 bustness, successfully providing stable estimates on 39 out of 40 tasks in a comprehensive benchmark,
 235 and successfully passes all self-consistency tests. Notably, our method excels in the challenging
 236 high-MI regime, significantly outperforming current score-based diffusion estimators. Our analysis
 237 also uncovered a fundamental bias-variance trade-off, revealing that the optimal estimator configura-
 238 tion—either with or without the orthogonal principle—depends on the MI magnitude of the problem.
 239 Future work could explore strategies to automatically navigate this bias-variance trade-off or apply
 240 the MMSE-gap framework to other information-theoretic quantities.

241 **References**

242 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
243 Courville, and Devon Hjelm. Mutual information neural estimation. In *Proceedings of the 35th*
244 *International Conference on Machine Learning*, pp. 531–540, 2018a.

245 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
246 Courville, and Devon Hjelm. Mutual information neural estimation. In *International Conference*
247 *on Machine Learning*, pp. 531–540. PMLR, 2018b.

248 Rob Brekelmans, Sicong Huang, Marzyeh Ghassemi, Greg Ver Steeg, Roger Baker Grosse, and
249 Alireza Makhzani. Improving mutual information estimation with annealed and energy-based
250 bounds. In *International Conference on Learning Representations*, 2021.

251 Paweł Czyż, Frederic Grabowski, Julia E. Vogt, Niko Beerenwinkel, and Alexander Marx. Beyond
252 normal: On the evaluation of mutual information estimators, 2023. URL <https://arxiv.org/abs/2306.11078>.

254 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
255 web]. *IEEE Signal Processing Magazine*, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.

256 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
257 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–1685.
258 PMLR, 2019.

259 Giulio Franzese, Mustapha Bounoua, and Pietro Michiardi. Minde: Mutual information neural
260 diffusion estimation. *arXiv preprint arXiv:2310.09031*, 2023.

261 Giulio Franzese, Mustapha Bounoua, and Pietro Michiardi. Minde: Mutual information neural
262 diffusion estimation, 2024. URL <https://arxiv.org/abs/2310.09031>.

263 Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Efficient estimation of mutual information for
264 strongly dependent variables. In *Artificial intelligence and statistics*, pp. 277–286. PMLR, 2015.

265 Weihao Gao, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Estimating mutual information
266 for discrete-continuous mixtures. *Advances in neural information processing systems*, 30, 2017.

267 Dongning Guo, Shlomo Shamai, and Sergio Verdú. Mutual information and minimum mean-square
268 error in gaussian channels. *IEEE transactions on information theory*, 51(4):1261–1282, 2005.

269 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on*
270 *Deep Generative Models and Downstream Applications*, 2021.

271 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
272 *Neural Information Processing Systems*, 33:6840–6851, 2020.

273 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
274 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

275 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
276 2014.

277 Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *arXiv*
278 *preprint arXiv:2107.00630*, 2021.

279 Xianghao Kong, Rob Brekelmans, and Greg Ver Steeg. Information-theoretic diffusion. *ICLR*, 2022.
280 URL <https://openreview.net/pdf?id=UvmDCdSPDOW>.

281 Xianghao Kong, Ollie Liu, Han Li, Dani Yogatama, and Greg Ver Steeg. Interpretable diffusion via
282 information decomposition. *arXiv preprint arXiv:2310.07972*, 2023.

283 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. *Phys.*
284 *Rev. E*, 69:066138, Jun 2004. doi: 10.1103/PhysRevE.69.066138. URL <https://link.aps.org/doi/10.1103/PhysRevE.69.066138>.

286 David McAllester and Karl Stratos. Formal limitations on the measurement of mutual information.
287 In *International Conference on Artificial Intelligence and Statistics*, pp. 875–884. PMLR, 2020.

288 XuanLong Nguyen, Martin J Wainwright, and Michael Jordan. Estimating divergence functionals
289 and the likelihood ratio by penalized convex risk minimization. In *Advances in Neural Information
290 Processing Systems*, 2007.

291 XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
292 and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*,
293 56(11):5847–5861, 2010.

294 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
295 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
296 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

297 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
298 coding. *Advances in neural information processing systems*, 2018.

299 Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation of rényi entropy and mutual infor-
300 mation based on generalized nearest-neighbor graphs. In *Proceedings of the 23rd International
301 Conference on Neural Information Processing Systems-Volume 2*, pp. 1849–1857, 2010.

302 Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
303 bounds of mutual information. In *Proceedings of the 36th International Conference on Machine
304 Learning*, 2019.

305 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
306 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference
307 on machine learning*, pp. 5301–5310. PMLR, 2019.

308 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
309 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.

310 Benjamin Rhodes, Kai Xu, and Michael U Gutmann. Telescoping density-ratio estimation. *Advances
311 in Neural Information Processing Systems*, 2020.

312 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
313 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
314 ence on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

315 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
316 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
317 Photorealistic text-to-image diffusion models with deep language understanding. *arXiv preprint
318 arXiv:2205.11487*, 2022.

319 Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
320 learning using nonequilibrium thermodynamics. *arXiv preprint arXiv:1503.03585*, 2015.

321 Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
322 estimators. In *International Conference on Learning Representations*, 2019.

323 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
324 coding. *arXiv preprint arXiv:1807.03748*, 2018.

325 Yihong Wu and Sergio Verdú. Functional properties of minimum mean-square error and mutual
326 information. *IEEE Transactions on Information Theory*, 58(3):1289–1301, 2011.

327 **A Derivation of the Orthogonal Principle**

328 This section provides a brief derivation for the orthogonal principle (Equation 11) used in our
 329 estimator, following the original work of Kong et al. (2023).

330 The principle is based on the following identity. Let $\hat{x}(z_\gamma) \equiv \hat{x} = \mathbb{E}[x|z_\gamma]$ be the unconditional
 331 MMSE denoiser and $\hat{x}(z_\gamma, y) \equiv \hat{x}_y = \mathbb{E}[x|z_\gamma, y]$ be the conditional one. The identity states:

$$\mathbb{E}[\|x - \hat{x}\|^2] - \mathbb{E}[\|x - \hat{x}_y\|^2] = \mathbb{E}[\|\hat{x}_y - \hat{x}\|^2] \quad (13)$$

332 Below is a brief proof sketch for Equation 13.

333 **Proof Sketch.** The proof relies on the law of total expectation and the orthogonality property
 334 of MMSE estimation (i.e., the estimation error is orthogonal to any function of the conditioning
 335 variables). We begin by showing a key cross-term is zero:

$$\begin{aligned} \mathbb{E}[(x - \hat{x}_y) \cdot (\hat{x}_y - \hat{x})] &= \mathbb{E}[\mathbb{E}[(x - \hat{x}_y) \cdot (\hat{x}_y - \hat{x})|z_\gamma, y]] \quad (\text{Law of Total Expectation}) \\ &= \mathbb{E}[(\mathbb{E}[x|z_\gamma, y] - \hat{x}_y) \cdot (\hat{x}_y - \hat{x})] \quad (\text{Pulling out known terms}) \\ &= \mathbb{E}[(\hat{x}_y - \hat{x}_y) \cdot (\hat{x}_y - \hat{x})] = 0 \quad (\text{Definition of } \hat{x}_y) \end{aligned}$$

336 Because this cross-term is zero, we can expand the unconditional error $\|x - \hat{x}\|^2$ as follows:

$$\begin{aligned} \mathbb{E}[\|x - \hat{x}\|^2] &= \mathbb{E}[\|(x - \hat{x}_y) + (\hat{x}_y - \hat{x})\|^2] \\ &= \mathbb{E}[\|x - \hat{x}_y\|^2] + \mathbb{E}[\|\hat{x}_y - \hat{x}\|^2] + 2 \cdot \underbrace{\mathbb{E}[(x - \hat{x}_y) \cdot (\hat{x}_y - \hat{x})]}_0 \\ &= \mathbb{E}[\|x - \hat{x}_y\|^2] + \mathbb{E}[\|\hat{x}_y - \hat{x}\|^2] \end{aligned}$$

337 Rearranging the terms yields the identity in Equation 13.

Table 2: MMG network training hyper-parameters. *Dim* of the task correspond the sum of the two variables dimensions, and *d* corresponds to the randomization probability.

Benchmark	Dim	<i>d</i>	Width	Time	Embedding Size	Batch Size	<i>lr</i>	Iterations	# of Params
	≤ 10	0.5	64		64	128	1e-3	390k	55425
	50	0.5	128		128	256	2e-3	290k	220810
	100	0.5	256		256	256	2e-3	290k	898354
Consistency Tests	0.5	256			256	64	1e-3	390k	1597968

Sampling Parameter	LogSNR	Loc	LogSNR	Scale	Clip	EMA Decay	Inference Times	N_Points
-	2.0		3.0	4.0	0.999		10	10000

Table 3: Sampling Hyperparameters

338 **B Ablation Study on Adaptive Sampling**

339 In this section, we conduct an ablation study to specifically evaluate the impact of our adaptive
 340 importance sampling strategy. We compare the performance of two non-orthogonal estimator
 341 variants:

342 • **MMG-adaptive ("Adaptive"):** Employs the adaptive importance sampling scheme de-
 343 scribed in Section 4.

344 • **MMG ("Baseline"):** Uses a fixed, default importance sampling distribution.

345 This comparison is designed to isolate the effect of the sampling strategy on estimation accuracy and
 346 stability, particularly across a diverse set of distributions. The results are presented in Table 4.

Table 4: Ablation study comparing MMG-adaptive ("Adaptive") with adaptive importance sampling against the baseline MMG ("Baseline") with a fixed sampling distribution. This analysis uses the non-orthogonal variants to isolate the impact of the sampling strategy. For each task, the estimate closer to the Ground Truth and the lower standard deviation (Std) are independently bolded.

Task	Ground Truth	Adaptive		Baseline	
		Estimate	Std	Estimate	Std
<i>Basic Distribution Tasks</i>					
1v1-normal-0.75	0.4133	0.4160	0.0447	0.4208	0.0754
1v1-additive-0.1	1.7094	1.6929	0.0494	1.6984	0.0677
1v1-bimodal-0.75	0.4133	0.4133	0.0612	0.4201	0.0766
<i>High Dimensional Tasks</i>					
multinormal-dense-25-25-0.5	1.2922	1.2063	0.1636	1.1603	0.2526
multinormal-dense-50-50-0.5	1.6243	1.7926	0.3053	1.8493	0.4398
<i>Non-Gaussian Distribution Tasks</i>					
student-identity-1-1-1	0.2242	0.3644	0.2472	0.3583	0.2884
student-identity-3-3-2	0.2909	0.4901	0.6502	0.5123	0.7055
student-identity-5-5-2	0.4482	0.7747	1.0550	0.7683	1.0492
<i>Complex Transformation Tasks</i>					
spiral-multinormal-sparse-3-3-2.0	1.0217	1.0012	0.0805	1.0152	0.1187
spiral-multinormal-sparse-25-25-2.0	1.0217	0.8713	0.1557	0.8215	0.2683

347 The results in Table 4 demonstrate the consistent benefits of the adaptive sampling strategy. The
 348 "Adaptive" method frequently achieves a lower standard deviation, indicating improved estimator
 349 stability. This is particularly evident in high-dimensional and complex transformation tasks, such as
 350 'multinormal-dense-50-50-0.5' and 'spiral-multinormal-sparse-25-25-2.0', where the reduction in
 351 variance is substantial. While the accuracy of the point estimate is competitive across both methods,
 352 the adaptive approach often provides estimates closer to the ground truth in the more challenging
 353 settings. Overall, this ablation study validates that tailoring the sampling distribution to the specific
 354 data leads to a more robust and reliable MI estimator.

355 C Implementation Details

356 We follow the implementation of Franzese et al. (2023) which uses stacked multi-layer perception
 357 (MLP) with skip connections. We adopt a simplified version of the same network architecture:
 358 this involves three Residual MLP blocks. We use the *Adam optimizer* (Kingma, 2014) for training
 359 and Exponential moving average (EMA) with a momentum parameter $m = 0.999$. We use the
 360 *ReduceLROnPlateau* scheduler with a patience of 200 epochs, reducing the learning rate by half if
 361 the training loss does not improve after 200 epochs. We returned the mean estimate on the test data
 362 set over 10 runs. All experiments are run on NVIDIA RTX A6000 GPUs. The hyper-parameters
 363 are presented in Table 2 for MMG. Concerning the consistency tests, we independently train an
 364 autoencoder for each version of the MNIST dataset with r rows available.

365 D Visual Analysis of the MMG Estimator

366 This section provides an intuitive, qualitative analysis of the MMG estimator's integrand to support
 367 the core components of our method. By visualizing the integrand on a challenging three-dimensional,
 368 Spiral-transformed sparse Multinormal distribution (GT MI = 9.90), we can clearly see the comple-
 369 mentary roles of the orthogonal principle for stability and adaptive importance sampling for accuracy.
 370 The plots below were generated by densely sampling 10,000 log SNR points and then binning the
 371 results (bin=50) to illustrate the underlying trends.

372 Figure 5 directly compares the integrand calculated via direct MMSE subtraction against the one
 373 derived from our orthogonal principle.

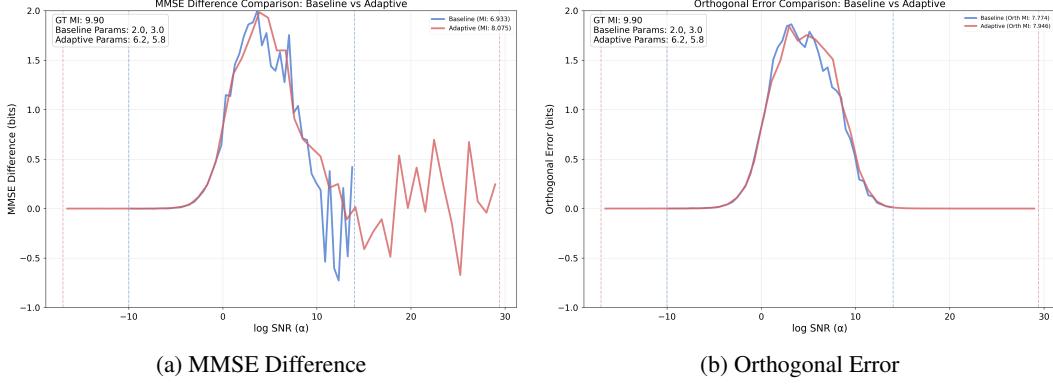


Figure 5: **Integrand analysis on a Spiral-transformed task (GT MI = 9.90).** Comparison between (a) the volatile direct MMSE subtraction method and (b) the stable orthogonal principle. In both plots, the adaptive sampler (red) outperforms the baseline (blue) by focusing on the most informative region.

374 **Analysis of the Orthogonal Principle’s Contribution** The orthogonal principle’s primary contribution
 375 is enhancing integrand stability. As shown in Figure 5b, it replaces the highly volatile direct
 376 subtraction method with an exceptionally smooth and non-negative integrand, crucial for reliable
 377 numerical integration. This stability, however, introduces a trade-off that becomes particularly evident
 378 in **high mutual information estimation**: the orthogonal integrand’s peak is lower, which can lead
 379 to a conservative bias by underestimating the true distance between optimal denoisers. While the
 380 dramatic reduction in variance makes it a more robust choice for general cases, this systematic
 381 underestimation can become a limiting factor when the true MI is large.

382 **Analysis of Adaptive Sampling’s Contribution** Adaptive sampling boosts estimation accuracy and
 383 efficiency. As illustrated in Figure 5b, while a fixed sampler may be misaligned with the integrand’s
 384 peak, our adaptive method dynamically concentrates samples in this most informative SNR region.
 385 This targeted strategy leads to a demonstrably more accurate MI estimate (**8.075 bits** vs. **6.933 bits**
 386 for the direct method), confirming the value of focusing the integration where it matters most.