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Abstract

Mutual information (MI) is one of the most general ways to measure relationships1

between random variables, but estimating this quantity for complex systems is2

challenging. Denoising diffusion models have recently set a new bar for density3

estimation, so it is natural to consider whether these methods could also be used4

to improve MI estimation. Using the recently introduced information-theoretic5

formulation of denoising diffusion models, we show the diffusion models can be6

used in a straightforward way to estimate MI. In particular, the MI corresponds to7

half the gap in the Minimum Mean Square Error (MMSE) between conditional8

and unconditional diffusion, integrated over all Signal-to-Noise-Ratios (SNRs) in9

the noising process. Our approach not only passes self-consistency tests but also10

outperforms traditional and score-based diffusion MI estimators. Furthermore, our11

method leverages adaptive importance sampling to achieve scalable MI estimation,12

while maintaining strong performance even when the MI is high.13

1 Introduction14

Estimating Mutual Information (MI) from samples is a fundamental problem with widespread15

applications. Methods based on local density estimation (Kraskov et al., 2004; Pál et al., 2010; Gao16

et al., 2015) have been displaced by variational approaches using neural networks (Poole et al., 2019)17

to estimate lower bounds on MI (Belghazi et al., 2018b; Nguyen et al., 2010). Unfortunately, these18

approaches may have sample complexity or variance which scale exponentially with the true MI19

(Gao et al., 2015; McAllester & Stratos, 2020; van den Oord et al., 2018). In practical scenarios, the20

MI between two variables is usually unknown, making reliable estimation challenging. To tackle21

this, Song & Ermon (2019) introduced three self-consistency experiments designed to evaluate the22

robustness of MI estimators. For a more standardized and comprehensive evaluation, Czyż et al.23

(2023) developed a benchmark consisting of 40 synthetic datasets derived from diverse distributions,24

providing a consistent basis for assessing the performance of different MI estimators.25

Denoising diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Kingma et al. (2021);26

Kong et al. (2022) have dramatically improved the modeling of complex distributions, igniting a new27

industry for AI art generation Rombach et al. (2022); Ramesh et al. (2022); Saharia et al. (2022).28

Recently, Franzese et al. (2024) introduced a MI estimator, MINDE, based on score-based diffusion29

models. This estimator not only achieved an 87.5% estimation success rate on the benchmark of30

Czyż et al. (2023) but also passed the self-consistency tests. However, its reliance on accurately31

approximating the log-density gradient can be a challenging intermediate step. This motivates a more32

direct formulation, connecting MI to the denoising objective itself rather than its gradient.33

In this paper, we exploit the recently discovered connections between information theory and diffusion34

models to derive an elegant and effective approach to MI estimation (Guo et al., 2005; Kong et al.,35

2022). Our contributions are as follows:36
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• We show that conditional density estimation and mutual information estimation can both37

be written exactly in terms of the global optimum of a denoising objective. Conditional38

density estimation corresponds to a gap between MMSEs (Kong et al., 2022) for conditional39

and unconditional denoising diffusion models, and mutual information is the expected gap40

over all data, leading to the Mutual Information Estimation via the MMSE Gap in Diffusion41

(MMG) estimator.42

• We develop an adaptive importance sampling scheme that tailors the integration to the43

specific data distribution. By dynamically fitting a sampling distribution to the MMSE gap,44

this technique significantly improves the precision and efficiency of the final MI estimate.45

• MMG has passed all self-consistency tests and achieved state-of-the-art results across46

multiple tasks, particularly excelling in high MI estimation, and has outperformed the47

current leading estimator, MINDE, in these scenarios.48

• We release a unified PyTorch library that, for the first time, brings diffusion-based and49

established neural MI estimators into a single, consistent framework. Its simple API is50

designed to streamline their future side-by-side evaluation. Our code can be found at:51

https://anonymous.4open.science/r/DMI-50D852

2 Background53

Let p(zγ |x) be a Gaussian noise channel with zγ =
√

γ/(1 + γ)x+
√
1/(1 + γ)ϵ and ϵ ∼ N (0, I),54

where γ represents the Signal-to-Noise Ratio (SNR). The unknown data distribution is p(x). The55

MMSE refers to the minimum mean square error for recovering x in this noisy channel (Kong et al.,56

2022).57

mmsex(γ) ≡ min
x̂(zγ ,γ)

Ep(zγ ,x)[(x− x̂(zγ , γ))
2] (1)

The optimal estimator, x̂∗, can be derived via variational calculus and written analytically.58

x̂∗(zγ , γ) ≡ argmmsex(γ) = Ex∼p(x|zγ)[x] (2)
Sampling from the true posterior is typically intractable, but by using a neural network to solve Eq. 159

we can get an approximation for x̂∗. We also introduce pointwise MMSE which is just the MMSE60

evaluated at a single point x, and Ep(x)[mmse(x|γ)] = mmsex(γ).61

mmse(x|γ) ≡ Ep(zγ |x)[(x− x̂∗(zγ , γ))
2] (3)

From Kong et al. (2022) we see that log likelihood can be written exactly in terms of an expression62

that depends only on the MMSE solution to the Gaussian denoising problem.63

− log p(x) = d/2 log(2πe)− 1/2

∫ ∞

0

dγ

(
d

1 + γ
−mmse(x|γ)

)
(4)

We can use this result to derive elegant formulations for supervised learning and mutual information64

estimation.65

3 Method66

3.1 Mutual Information Estimation67

Consider that our data is drawn from some unknown joint distribution, p(x, y). At this point we don’t68

specify the domain of y, it could be discrete or continuous, vector or scalar. The pointwise denoising69

relation, Eq. 4, holds for any input distribution, so a valid choice would be p(x|y). Therefore we can70

write a conditional version that holds for each y.71

− log p(x|y) = d/2 log(2πe)− 1/2

∫ ∞

0

dγ

(
d

1 + γ
−mmse(x|γ, y)

)
(5)

We use the following definitions for conditional MMSE.72

x̂∗(zγ , γ, y) ≡ arg min
x̂(zγ ,γ,y)

Ep(zγ |x)p(x,y)[(x− x̂(zγ , γ, y))
2]

mmse(x|γ, y) ≡ Ep(zγ |x)[(x− x̂∗(zγ , γ, y))
2] (6)
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Figure 1: The mutual information is exactly half
the area between MMSE curves for conditional and
unconditional denoising. We use denoising diffu-
sion models to approximate the MMSE curves,
then numerically integrate to get an estimate of the
mutual information.

Figure 2: The schematic of the MMG training pro-
cess. Noise at a given γ level is added to the data x,
and a denoiser is used to recover it, with or without
conditioning on y at a 50% probability. Finally,
the MI loss, as defined in Eq. 10, is computed to
backpropagate the gradient.

We write the expected conditional MMSE as mmsex|y(γ) = Ep(x,y)[mmse(x|γ, y)].73

Now we can subtract Eq. 4 and Eq. 5 to get the following.74

log p(x|y)− log p(x) = 1/2

∫ ∞

0

dγ (mmse(x|γ)−mmse(x|γ, y)) (7)

The expression on the left is sometimes called pointwise mutual information, because its expectation,75

E[log p(x|y)/p(x)] = I(x; y) is equal to the mutual information.76

I(x; y) = 1/2

∫ ∞

0

dγ
(
mmsex(γ)−mmsex|y(γ)

)
(8)

Conditioning on y can only decrease the MMSE Wu & Verdú (2011), so the mutual information77

is non-negative as expected. While Eq. 7 appears to be novel, a version of Eq. 8 appeared in Guo78

et al. (2005). This result holds for discrete or continuous data Guo et al. (2005), or even mixed79

continuous and discrete, a particularly challenging problem Gao et al. (2017). We propose to use80

recent advances in denoising diffusion modeling to approximate the right-hand side to achieve better81

mutual information estimates.82

To efficiently estimate the integral in Eq. 8, we applied importance sampling in the integral on the83

right-hand side of Eq. 8 with the importance weights q(γ).84

I(x; y) = 1/2Eγ,x,y

[(
mmsex(γ)−mmsex|y(γ)

)
/q(γ)

]
(9)

Therefore, we can train expert denoisers to estimate the MMSE for various distributions of q(γ), as85

different density consistently lead to distinct distributions of the MMSE gap in Figure 1.86

3.2 Model Training87

In practice, we parametrize the denoising function in terms of a neural network. At training time, we88

have to solve two minimization problems, or actually a continuum of minimization problems for each89

SNR level.90

θ∗ = argmin
θ

Ep(zγ |x)p(x,y)[(x− x̂θ(zγ , γ, y))
2] (10)

ϕ∗ = argmin
ϕ

Ep(zγ |x)p(x)[(x− x̂ϕ(zγ , γ))
2]

We parametrize x̂θ(zγ , γ, y) as some neural network that is trained with a mean square error loss to91

recover the signal, x, from noise and the auxiliary signal, y, across different SNRs, γ (see Figure 2). In92

principle we should train a separate neural network that recovers data from noise without conditioning93

on y. However, we can borrow from existing architectures which train a single network for both94
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conditional and unconditional denoising Ho & Salimans (2021). Conditional diffusion models have95

shown compelling results in Nichol et al. (2021); Ramesh et al. (2022); Saharia et al. (2022). During96

training we simply replace y with a null value, y = ∅, some fraction of the time so that the same97

(conditional) network can learn to denoise in the absence of conditioning.98

In practice, we can’t guarantee that the neural network finds the true global optimum, the MMSEs in99

Eq. 8. Because MMSEs appear with both signs in that expression, we can’t even guarantee that our100

network gives an upper or lower bound. While this is unfortunate, conventional wisdom suggests that101

sufficiently expressive neural networks do converge to global optima (Du et al., 2019; Jacot et al.,102

2018).103

4 Implementation104

The core of the experiment is training a denoiser capable of effectively performing denoising across105

different noise levels, characterized by varying SNRs, to simulate an MMSE curve. The MI is then106

computed from the gap between the conditional and unconditional MMSE curves (Eq. 8). This107

MMSE-based theoretical approach offers greater flexibility to enhance the accuracy and robustness108

of MI estimation. To leverage this flexibility for enhanced accuracy and robustness, we introduce the109

core components of our implementation below.110

4.1 Adaptive Importance Sampling111

As in Kong et al. (2022), we estimate integrals using importance weighted Monte Carlo estimators,112

with log-SNR values chosen from a logistic distribution with some location, µ and scale, σ. Since the113

shape of the integration area (∆ area in Fig. 1) is data-dependent, a fixed sampling distribution can114

be inefficient. For our adaptive variants, we therefore optimize this distribution for each specific task.115

To find the data-adapted parameters (µ, σ), we employ a two-stage procedure. First, we train a116

preliminary model and analyze its conditional MMSE curve, MMSEx|y . Inspired by the use of error117

landmarks in density estimation (Kong et al., 2022), our heuristic identifies the critical transition118

region of this curve, where the denoiser becomes effective. Specifically, we define the parameters as119

follows (where d is the data dimensionality):120

• The location µ is set to the log-SNR where the MMSE curve crosses the d/2 error threshold.121

This centers our sampling distribution on the midpoint of the denoiser’s transition from high122

to low error.123

• The scale σ is derived from the log-SNR where the curve crosses the d/4 threshold, capturing124

the steepness of this transition. For example, it can be set as the difference between the125

log-SNRs at the d/2 and d/4 crossings.126

The final adaptive estimators are then trained with this optimized distribution, targeting the critical127

SNR range to yield more accurate and efficient MI estimates.128

4.2 The Orthogonal Principle129

To further enhance estimator stability, we incorporate the orthogonality principle from Kong et al.130

(2023). The principle states that for optimal denoisers, the gap in MMSE is precisely the expected131

squared distance between the conditional and unconditional estimators. This provides an alternative132

way to express the MI integrand. Formally, let x̂(zγ) = E[x|zγ ] and x̂(zγ , y) = E[x|zγ , y]. The133

identity at a fixed SNR is:134

E[∥x− x̂(zγ)∥2]− E[∥x− x̂(zγ , y)∥2]︸ ︷︷ ︸
MMSE Gap

= E[∥x̂(zγ , y)− x̂(zγ)∥2]︸ ︷︷ ︸
Orthogonal Form of the Gap

(11)

After expanding the left-hand side, the cross terms vanish due to the orthogonality principle Kong135

et al. (2023), resulting in the expression on the right-hand side. This allows us to substitute the136

original integrand in our MI formula (Eq. 8) with the term on the right-hand side. The orthogonal MI137

estimator, in its practical importance-sampled form, is therefore:138

I(x; y) =
1

2
Ex,y,zγ ,γ∼q

[
∥x̂(zγ , y)− x̂(zγ)∥2

q(γ)

]
(12)
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In practice, this is implemented as a training-free, inference-time plug-in. This formulation guarantees139

a non-negative integrand and improves the stability of MI estimates, as detailed in Appendix A.140

The practical advantage of this formulation is its numerical stability. The standard MMSE gap is141

computed as a difference between two large, separately estimated MSE values. Small approximation142

errors in each term can lead to a noisy, high-variance result for their difference, which can even143

become negative. In contrast, the orthogonal form computes the integrand as a single, squared term,144

which is guaranteed to be non-negative and is empirically much smoother.145

5 Experiments146

We evaluate four variants of our estimator in the experiments for ablation comparison:147

• MMG: The baseline estimator using a fixed, default importance sampling distribution.148

• MMG-adaptive: Employs adaptive importance sampling for more accurate integration.149

• MMG-orthogonal: Applies the orthogonal principle at inference time with baseline sampling.150

• MMG-orthogonal-adaptive: Combines both adaptive sampling and the orthogonal principle.151

5.1 MI Estimation Benchmark152

We evaluate on the benchmark of (Czyż et al., 2023), which combines base distributions (Uniform,153

Normal with dense or sparse correlation, and long-tailed Student-t) with MI-preserving nonlinear154

transformations (Half-Cube, Asinh, Swiss-roll, Spiral). This setup introduces high dimensional-155

ity, heavy tails, sparsity, and non-linear geometry. We compare MMG against neural estimators,156

such as MINE (Belghazi et al., 2018a), INFONCE (Oord et al., 2018),NWJ (Nguyen et al., 2007),157

DOE (McAllester & Stratos, 2020) and MINDE Franzese et al. (2023).158

The results in Table 1 establish our method’s state-of-the-art performance. Our MMG-orthogonal-159

adaptive and MMG-orthogonal variants succeed on 39/40 and 37/40 tasks respectively, surpassing160

the MINDE (35/40). This robustness is rooted in our two main contributions: adaptive importance161

sampling ensures accuracy by focusing the integral on critical SNR regions, while the orthogonal162

principle guarantees a low-variance integrand for stability. This combination allows our method to163

excel on complex non-linear datasets where traditional methods fail.164
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Table 1: Low MI estimation over 10 seeds using N = 10k test samples against ground truth (GT) (Czyż
et al., 2023). All methods were trained with 100k samples. Color indicates relative negative (red)
and positive bias (blue). Blank entries indicate that an estimator experienced numerical instabilities.
List of abbreviations ( Mn: Multinormal, St: Student-t, Nm: Normal, Hc: Half-cube, Sp: Spiral)
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5.2 High MI Benchmark165

To test the robustness and limits of our estimator, we extend the high-MI study from MINDE (Franzese166

et al., 2024), pushing their experimental setup from a range of MI ≤ 5 into the significantly more167

challenging regime of MI ∈ [10, 15]. Following their protocol, we use a sparse 3× 3 Multinormal168

setup and its two MI-preserving transforms (Half-cube, Spiral). Figure 3 reports the mean ± one169

standard deviation over 10 seeds.170

On the original and Half-cube cases (Fig. 3a&b), MMG-adaptive remains the most accurate171

as MI grows, while other estimators falter due to distinct sources of error. MINDE struggles172

significantly as its score-matching objective requires approximating the sharp, high-frequency score173

functions of high-MI distributions, a task where neural networks’ spectral bias leads to significant174

underestimation Rahaman et al. (2019). In contrast, our orthogonal variants exhibit a different175

limitation: a systematic conservative bias. This occurs because the orthogonal estimator measures the176

distance between neural network approximations of the denoisers, and the distance between these177

"smoothed-out" approximations is inherently smaller than the true distance between the optimal178

denoisers. This underestimation bias becomes more pronounced as the true MI gap grows larger.179

This reveals a clear bias-variance trade-off dictating the optimal estimator. For the broad low-MI180

benchmark, the main challenge is variance, making the stable MMG-orthogonal-adaptive the181

superior choice. In this high-MI setting, however, this systematic bias becomes the dominant error,182

rendering the less-biased MMG-adaptive more accurate. This relative performance ranking holds183

even on the highly non-linear Spiral transform (Fig. 3c), where all methods are challenged.184

Figure 3: High MI benchmark: original (column (b)) and transformed variants (columns (a) and (c)).

5.3 Consistency Test185

(a) Baseline test (b) Data processing test (c) Additivity test

Figure 4: Consistency Tests over MNIST dataset: (a) evaluation of I(A;Br)
I(A;B) ; (b) evaluation of

I(A;[Br+k,Br])
I(A;Br+k)

for k > 0; (c) evaluation of I([A1,A2];[B1
r ,B

2
r ])

I(A1;B1
r)

.

We conduct self-consistency tests inspired by Song & Ermon (2019) to evaluate the properties of186

MMG using high-dimensional real-world data, specifically samples from the MNIST dataset (28×28187

resolution) (Deng, 2012). Let A represent an image and Br denote the image consisting of the188

top r rows of A. These tests are designed to verify whether the estimators adhere to fundamental189

properties of MI through three subtasks: Baseline Test, Data-Processing Test, and Additivity Test for190
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two independent images sampled from dataset. Ideally, as r increases, I(A;Br)
I(A;B) should monotonically191

approach 1, I(A;[Br+k,Br])
I(A;Br+k)

should consistently equal 1, and I([A1,A2];[B1
r ,B

2
r ])

I(A1;B1
r)

should consistently192

equal 2. To ensure a fair comparison with MINDE (Franzese et al., 2024), we aligned our experimental193

settings and parameters and tested MMG using five random seeds. The results of the three tests are194

presented in Figure 4. Overall, MMG performed well and successfully passed all tests.195

6 Related Work196

Estimating mutual information (MI) from samples is a central challenge in machine learning. Tradi-197

tional non-parametric approaches, such as methods based on data binning or kernel density estimation198

(KDE), struggle with the curse of dimensionality. More advanced estimators based on k-nearest199

neighbors have shown significant improvements (Kraskov et al., 2004; Pál et al., 2010), but can still200

be challenged by complex, high-dimensional data (Gao et al., 2015). Consequently, the modern201

paradigm is dominated by neural network-based approaches that optimize a variational bound on the202

MI.203

Variational Bounds on Mutual Information. Most recent neural MI estimators are built upon204

variational lower bounds derived from f-divergences. The pioneering work, MINE (Belghazi et al.,205

2018b), leverages the Donsker-Varadhan representation of the KL-divergence, spurring related206

estimators like the variance-reduced SMILE (Song & Ermon, 2019) and DoE (McAllester & Stratos,207

2020). A particularly successful family is based on contrastive learning, where estimators like208

InfoNCE (van den Oord et al., 2018) train a critic to distinguish between joint and marginal samples209

(Poole et al., 2019). However, these methods face significant limitations: their sample complexity210

can scale exponentially with the true MI, often being capped by the logarithm of the batch size211

(McAllester & Stratos, 2020). This difficulty can be viewed as a "density chasm": the marginal212

distribution p(x)p(y) is often a poor proposal for the joint p(x, y), leading to high-variance estimates,213

especially in high-MI settings (Rhodes et al., 2020; Brekelmans et al., 2021).214

Mutual Information Estimation with Diffusion Models. Denoising diffusion models offer a215

natural and powerful framework to bridge this density chasm. They define a continuous process that216

transforms a complex data distribution into a simple tractable one, providing a path of intermediate217

distributions. The potential of this framework for MI estimation was recently demonstrated by218

MINDE (Franzese et al., 2024), which connects MI to the difference between conditional and219

unconditional score functions (∇x log p(x)). Our work, MMG, builds on a different and more direct220

connection (Guo et al., 2005; Kong et al., 2022). Instead of relying on learned score functions, we221

show that MI corresponds exactly to the integrated gap between the Minimum Mean Square Error222

(MMSE) of conditional and unconditional denoising. This formulation connects MI directly to the223

denoising objective itself, rather than its gradient, providing an elegant and potentially more robust224

pathway for estimation.225

7 Conclusion226

In this work, we introduced MMG, a principled and robust estimator for mutual information derived227

from the information-theoretic properties of denoising diffusion models. Our method directly228

connects MI to the integrated Minimum Mean Square Error (MMSE) gap between a conditional and229

an unconditional denoiser. We further enhanced this framework with two key techniques: an adaptive230

importance sampling scheme to improve integration accuracy and an orthogonal principle to increase231

estimator stability.232

Through extensive experiments, we demonstrated that MMG achieves exceptional accuracy and ro-233

bustness, successfully providing stable estimates on 39 out of 40 tasks in a comprehensive benchmark,234

and successfully passes all self-consistency tests. Notably, our method excels in the challenging235

high-MI regime, significantly outperforming current score-based diffusion estimators. Our analysis236

also uncovered a fundamental bias-variance trade-off, revealing that the optimal estimator configura-237

tion—either with or without the orthogonal principle—depends on the MI magnitude of the problem.238

Future work could explore strategies to automatically navigate this bias-variance trade-off or apply239

the MMSE-gap framework to other information-theoretic quantities.240
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A Derivation of the Orthogonal Principle327

This section provides a brief derivation for the orthogonal principle (Equation 11) used in our328

estimator, following the original work of Kong et al. (2023).329

The principle is based on the following identity. Let x̂(zγ) ≡ x̂ = E[x|zγ ] be the unconditional330

MMSE denoiser and x̂(zγ , y) ≡ x̂y = E[x|zγ , y] be the conditional one. The identity states:331

E[∥x− x̂∥2]− E[∥x− x̂y∥2] = E[∥x̂y − x̂∥2] (13)

Below is a brief proof sketch for Equation 13.332

Proof Sketch. The proof relies on the law of total expectation and the orthogonality property333

of MMSE estimation (i.e., the estimation error is orthogonal to any function of the conditioning334

variables). We begin by showing a key cross-term is zero:335

E[(x− x̂y) · (x̂y − x̂)] = E [E[(x− x̂y) · (x̂y − x̂)|zγ , y]] (Law of Total Expectation)
= E [(E[x|zγ , y]− x̂y) · (x̂y − x̂)] (Pulling out known terms)
= E [(x̂y − x̂y) · (x̂y − x̂)] = 0 (Definition of x̂y)

Because this cross-term is zero, we can expand the unconditional error ∥x− x̂∥2 as follows:336

E[∥x− x̂∥2] = E[∥(x− x̂y) + (x̂y − x̂)∥2]
= E[∥x− x̂y∥2] + E[∥x̂y − x̂∥2] + 2 · E[(x− x̂y) · (x̂y − x̂)]︸ ︷︷ ︸

0

= E[∥x− x̂y∥2] + E[∥x̂y − x̂∥2]

Rearranging the terms yields the identity in Equation 13.337

Table 2: MMG network training hyper-parameters. Dim of the task correspond the sum of the two
variables dimensions, and d corresponds to the randomization probability.

Benchmark Dim d Width Time Embedding Size Batch Size lr Iterations # of Params

≤ 10 0.5 64 64 128 1e-3 390k 55425
50 0.5 128 128 256 2e-3 290k 220810

100 0.5 256 256 256 2e-3 290k 898354

Consistency Tests 0.5 256 256 64 1e-3 390k 1597968

Sampling Parameter LogSNR Loc LogSNR Scale Clip EMA Decay Inference Times N_Points

- 2.0 3.0 4.0 0.999 10 10000
Table 3: Sampling Hyperparameters

B Ablation Study on Adaptive Sampling338

In this section, we conduct an ablation study to specifically evaluate the impact of our adaptive339

importance sampling strategy. We compare the performance of two non-orthogonal estimator340

variants:341

• MMG-adaptive ("Adaptive"): Employs the adaptive importance sampling scheme de-342

scribed in Section 4.343

• MMG ("Baseline"): Uses a fixed, default importance sampling distribution.344

This comparison is designed to isolate the effect of the sampling strategy on estimation accuracy and345

stability, particularly across a diverse set of distributions. The results are presented in Table 4.346
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Table 4: Ablation study comparing MMG-adaptive ("Adaptive") with adaptive importance sampling
against the baseline MMG ("Baseline") with a fixed sampling distribution. This analysis uses the
non-orthogonal variants to isolate the impact of the sampling strategy. For each task, the estimate
closer to the Ground Truth and the lower standard deviation (Std) are independently bolded.

Task Ground Truth Adaptive Baseline
Estimate Std Estimate Std

Basic Distribution Tasks
1v1-normal-0.75 0.4133 0.4160 0.0447 0.4208 0.0754
1v1-additive-0.1 1.7094 1.6929 0.0494 1.6984 0.0677
1v1-bimodal-0.75 0.4133 0.4133 0.0612 0.4201 0.0766
High Dimensional Tasks
multinormal-dense-25-25-0.5 1.2922 1.2063 0.1636 1.1603 0.2526
multinormal-dense-50-50-0.5 1.6243 1.7926 0.3053 1.8493 0.4398
Non-Gaussian Distribution Tasks
student-identity-1-1-1 0.2242 0.3644 0.2472 0.3583 0.2884
student-identity-3-3-2 0.2909 0.4901 0.6502 0.5123 0.7055
student-identity-5-5-2 0.4482 0.7747 1.0550 0.7683 1.0492
Complex Transformation Tasks
spiral-multinormal-sparse-3-3-2.0 1.0217 1.0012 0.0805 1.0152 0.1187
spiral-multinormal-sparse-25-25-2.0 1.0217 0.8713 0.1557 0.8215 0.2683

The results in Table 4 demonstrate the consistent benefits of the adaptive sampling strategy. The347

"Adaptive" method frequently achieves a lower standard deviation, indicating improved estimator348

stability. This is particularly evident in high-dimensional and complex transformation tasks, such as349

‘multinormal-dense-50-50-0.5‘ and ‘spiral-multinormal-sparse-25-25-2.0‘, where the reduction in350

variance is substantial. While the accuracy of the point estimate is competitive across both methods,351

the adaptive approach often provides estimates closer to the ground truth in the more challenging352

settings. Overall, this ablation study validates that tailoring the sampling distribution to the specific353

data leads to a more robust and reliable MI estimator.354

C Implementation Details355

We follow the implementation of Franzese et al. (2023) which uses stacked multi-layer perception356

(MLP) with skip connections. We adopt a simplified version of the same network architecture:357

this involves three Residual MLP blocks. We use the Adam optimizer (Kingma, 2014) for training358

and Exponential moving average (EMA) with a momentum parameter m = 0.999. We use the359

ReduceLROnPlateau scheduler with a patience of 200 epochs, reducing the learning rate by half if360

the training loss does not improve after 200 epochs. We returned the mean estimate on the test data361

set over 10 runs. All experiments are run on NVIDIA RTX A6000 GPUs. The hyper-parameters362

are presented in Table 2 for MMG. Concerning the consistency tests, we independently train an363

autoencoder for each version of the MNIST dataset with r rows available.364

D Visual Analysis of the MMG Estimator365

This section provides an intuitive, qualitative analysis of the MMG estimator’s integrand to support366

the core components of our method. By visualizing the integrand on a challenging three-dimensional,367

Spiral-transformed sparse Multinormal distribution (GT MI = 9.90), we can clearly see the comple-368

mentary roles of the orthogonal principle for stability and adaptive importance sampling for accuracy.369

The plots below were generated by densely sampling 10,000 log SNR points and then binning the370

results (bin=50) to illustrate the underlying trends.371

Figure 5 directly compares the integrand calculated via direct MMSE subtraction against the one372

derived from our orthogonal principle.373
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(a) MMSE Difference (b) Orthogonal Error

Figure 5: Integrand analysis on a Spiral-transformed task (GT MI = 9.90). Comparison between
(a) the volatile direct MMSE subtraction method and (b) the stable orthogonal principle. In both
plots, the adaptive sampler (red) outperforms the baseline (blue) by focusing on the most informative
region.

Analysis of the Orthogonal Principle’s Contribution The orthogonal principle’s primary contri-374

bution is enhancing integrand stability. As shown in Figure 5b, it replaces the highly volatile direct375

subtraction method with an exceptionally smooth and non-negative integrand, crucial for reliable376

numerical integration. This stability, however, introduces a trade-off that becomes particularly evident377

in high mutual information estimation: the orthogonal integrand’s peak is lower, which can lead378

to a conservative bias by underestimating the true distance between optimal denoisers. While the379

dramatic reduction in variance makes it a more robust choice for general cases, this systematic380

underestimation can become a limiting factor when the true MI is large.381

Analysis of Adaptive Sampling’s Contribution Adaptive sampling boosts estimation accuracy and382

efficiency. As illustrated in Figure 5b, while a fixed sampler may be misaligned with the integrand’s383

peak, our adaptive method dynamically concentrates samples in this most informative SNR region.384

This targeted strategy leads to a demonstrably more accurate MI estimate (8.075 bits vs. 6.933 bits385

for the direct method), confirming the value of focusing the integration where it matters most.386
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