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Abstract
Large language models (LLMs) have revolu-001
tionized natural language processing, yet their002
tendency to hallucinate poses serious chal-003
lenges for reliable deployment. Despite numer-004
ous hallucination detection methods, their eval-005
uations often rely on ROUGE, a metric based006
on lexical overlap that misaligns with human007
judgments. Through comprehensive human008
studies, we demonstrate that while ROUGE009
exhibits high recall, its extremely low preci-010
sion leads to misleading performance estimates.011
In fact, several established detection meth-012
ods show performance drops of up to 45.9%013
when assessed using human-aligned metrics014
like LLM-as-Judge. Moreover, our analysis re-015
veals that simple heuristics based on response016
length can rival complex detection techniques,017
exposing a fundamental flaw in current evalua-018
tion practices. We argue that adopting semanti-019
cally aware and robust evaluation frameworks020
is essential to accurately gauge the true per-021
formance of hallucination detection methods,022
ultimately ensuring the trustworthiness of LLM023
outputs.024

1 Introduction025

Large language models (LLMs) have transformed026

natural language processing, but their tendency to027

hallucinate—generating fluent yet factually incor-028

rect outputs—poses a critical challenge for real-029

world applications (Huang et al., 2025). As LLMs030

are increasingly deployed in high-stakes scenarios,031

unsupervised hallucination detection has emerged032

as a promising solution, offering scalable evalua-033

tion without the generalization limitations of super-034

vised approach and costly annotation process (Su035

et al., 2024). A growing body of work has explored036

this direction (Chen et al., 2024; Farquhar et al.,037

2024; Du et al., 2024; Nikitin et al., 2024; Qiu and038

Miikkulainen, 2024; Duan et al., 2024; Nguyen039

et al., 2025), often relying on ROUGE as the pri-040

mary correctness metric. ROUGE, originally de-041

veloped to assess summary quality based on lexical042

Figure 1: ROUGE-based evaluation fails to reliably
capture true hallucination detection capabilities. Hal-
lucination detection performance (AUROC) comparison
of ROUGE-L and LLM-as-Judge evaluation across
three datasets. Many methods shows significant evalua-
tion discrepancies.

overlap (Lin, 2004), is used to approximate factual 043

consistency by applying threshold-based heuristics: 044

responses with low ROUGE overlap to reference 045

answers are often labeled as hallucinated. However, 046

the suitability of ROUGE for assessing the factual 047

accuracy of Question Answering (QA) responses, 048

specifically in identifying hallucinations, has been 049

largely assumed rather than rigorously validated. 050

Existing critiques of ROUGE often focus on 051

its limitations in capturing fluency or adequacy 052

in long-form summarization or dialogues (Hon- 053

ovich et al., 2022; Dziri et al., 2022; Zhong et al., 054

2022). In contrast, this paper presents a system- 055

atic, large-scale empirical investigation specifi- 056

cally evaluating ROUGE’s efficacy in the context 057

of QA hallucination detection. Our analysis goes 058

beyond general critiques by quantitatively demon- 059

strating ROUGE’s key shortcomings—such as its 060

susceptibility to response length—and how these 061

issues can inflate the reported performance of hal- 062

lucination detection methods. Furthermore, while 063
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ROUGE serves as our primary case study due to its064

ubiquity, we also demonstrate that other commonly065

used metrics, including those based on n-grams and066

semantic similarity, share similar vulnerabilities in067

this specific task, highlighting a broader deficiency068

in current evaluation practices.069

To establish a human-aligned benchmark, we070

collect human judgments of factual correctness071

and compare metric outputs against these gold la-072

bels. We find that ROUGE exhibits alarmingly low073

precision for identifying actual factual errors. In074

contrast, an LLM-as-Judge approach (Zheng et al.,075

2023a) aligns far more closely with human assess-076

ments. Based on these insights, we re-evaluate077

existing detection methods under both ROUGE078

and human-aligned criteria, revealing dramatic per-079

formance drops (up to 45.9% for Perplexity and080

30.4% for Eigenscore) when moving from ROUGE081

to LLM-as-Judge evaluation.082

Finally, we uncover a surprising baseline: sim-083

ple length-based heuristics (e.g., mean and standard084

deviation of answer length) rival or exceed sophis-085

ticated detectors like Semantic Entropy. Through086

controlled experiments that isolate length effects,087

we show how ROUGE can be manipulated via triv-088

ial repetition, even when factual content remains089

constant. Our findings expose a widespread over-090

estimation of current methods and underscore the091

urgent need for more reliable, human-aligned eval-092

uation metrics in QA hallucination detection.093

Our study makes the following key contribu-094

tions:095

1. A human evaluation study validating096

LLM-as-Judge as a reliable metric for097

factual correctness, while demonstrating that098

ROUGE—and other n-gram and semantic099

metrics—are severely misaligned with human100

judgments.101

2. A systematic re-evaluation of existing hal-102

lucination detection methods, showing that103

their effectiveness is often overstated when as-104

sessed with ROUGE and similar metrics, and105

revealing how these metrics can hide impor-106

tant flaws in the methods.107

3. Evidence that response length is a surprisingly108

effective indicator of hallucination, with sim-109

ple length-based heuristics often matching or110

exceeding the performance of more sophisti-111

cated detection approaches.112

2 Related Work 113

Hallucination Detection Methods Recent re- 114

search has shown that hallucinations in LLMs are 115

inevitable (Xu et al., 2024), spurring work on two 116

main detection paradigms: supervised and unsuper- 117

vised. Supervised methods usually employ probing 118

classifiers trained on labeled hidden states to detect 119

hallucinations (Azaria and Mitchell, 2023; Orgad 120

et al., 2024; Arteaga et al., 2024). While effective, 121

they depend on costly human annotations and often 122

fail to generalize across domains. Unsupervised 123

methods detect hallucinations by estimating uncer- 124

tainty directly—token-level confidence from single 125

generations (Ren et al., 2023), sequence-level vari- 126

ance across multiple samples (Malinin and Gales, 127

2021; Farquhar et al., 2024), or hidden-state pat- 128

tern analysis (Chen et al., 2024; Sriramanan et al., 129

2024a). While these methods show strong per- 130

formance on standard benchmarks, our analysis 131

reveals that simpler length-based baselines can 132

achieve comparable results—echoing prior find- 133

ings that simple baselines remain surprisingly com- 134

petitive and underscoring the need for rigorous 135

head-to-head comparisons (Fadeeva et al., 2023). 136

Evaluation Metrics and Their Limitations Tra- 137

ditional n-gram overlap measures such as ROUGE 138

(Lin, 2004) remain popular for detecting halluci- 139

nations, despite their inability to reliably assess 140

factual consistency (Honovich et al., 2022). Recent 141

studies have further highlighted these limitations, 142

particularly in multilingual settings where lexical 143

overlap proves unreliable compared to NLI-based 144

approaches (Kang et al., 2024). Even ROUGE-L, 145

which tracks the longest common subsequence, 146

often misses errors that leave surface overlap in- 147

tact. To overcome these shortcomings, a family of 148

embedding-based metrics — BERTScore (Zhang 149

et al., 2020), UniEval (Zhong et al., 2022), Align- 150

Score (Zha et al., 2023), and related approaches — 151

has been proposed to capture deeper semantic sim- 152

ilarity. However, these learned representations can 153

still diverge from human judgments of truthfulness. 154

By contrast, LLM-as-Judge methods (Zheng et al., 155

2023a) have shown strong agreement with human 156

judgments in QA tasks (Thakur et al., 2025), offer- 157

ing a more reliable alternative. Our study builds 158

on these insights by exposing ROUGE’s and other 159

metrics blind spots and validating LLM-as-Judge 160

as a more faithful framework for factual evaluation. 161
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3 Experimental Setup162

3.1 Overview163

Our experimental design aims to investigate both164

the shortcomings of current evaluation methods165

and the effectiveness of simpler alternatives.166

3.2 Datasets and Models167

For our experiments, we use three established QA168

datasets, each with distinct characteristics:169

• NQ-Open (Kwiatkowski et al., 2019): Con-170

tains 3,610 question-answer pairs drawn from171

real Google search queries, representing natu-172

ral information-seeking behavior173

• TriviaQA (Joshi et al., 2017): A subset of174

3,842 examples from the validation set, featur-175

ing trivia questions that often require specific176

factual knowledge177

• SQuAD (Rajpurkar et al., 2018): 4,150 ex-178

amples from the validation set (rc.nocontext),179

characterized by longer, more complex ques-180

tions and answers181

NQ-Open and TriviaQA primarily feature182

shorter questions and answers, whereas SQuADv2183

contains longer inputs, making it suitable for evalu-184

ating our method in more complex contexts.185

We generated answers using two open-source186

LLMs: LLAMA3.1-8B-INSTRUCT1 (Grattafiori,187

2024) and MISTRAL-7B-INSTRUCT-V0.32 (Jiang188

et al., 2023). For simplicity, we refer to these mod-189

els as LLAMA and MISTRAL in our plots and ta-190

bles.191

3.3 Hallucination Detection Baselines192

We compare our approach against established base-193

lines that fall into two categories. Uncertainty-194

based methods estimate model confidence, in-195

cluding Perplexity (Ren et al., 2023), Length-196

Normalized Entropy (LN-Entropy) (Malinin and197

Gales, 2021), and Semantic Entropy (SemEntropy)198

(Farquhar et al., 2024), which use multiple gen-199

erations to capture sequence-level uncertainty.200

Consistency-based methods analyze internal rep-201

resentations. EigenScore (Chen et al., 2024) com-202

putes generation consistency via eigenvalue spectra,203

while LogDet (Sriramanan et al., 2024a) measures204

covariance structure from single generations. We205

1hf.co/meta-llama/Llama-3.1-8B-Instruct
2hf.co/mistralai/Mistral-7B-Instruct-v0.3

also evaluate Effective Rank (eRank) (Roy and Vet- 206

terli, 2007; Garrido et al., 2023), an intrinsic dimen- 207

sionality measure we adapt as a novel hallucination 208

indicator (see Appendix F.1). 209

3.4 Ground Truth Labels 210

To obtain reliable ground truth labels for evaluating 211

the correctness of generated responses, we utilize 212

two complementary approaches: 213

LLM-as-Judge leverages GPT-4o-Mini (et al., 214

2024) for semantic assessment, following the 215

methodology outlined in (Zheng et al., 2023b) and 216

using a prompt adapted from (Orgad et al., 2025). 217

This approach classifies generated responses into 218

three categories: "correct," "incorrect," or "refuse" 219

(with "refuse" being treated as a hallucination). By 220

focusing on semantic equivalence and factual accu- 221

racy, this method goes beyond surface-level com- 222

parisons and exhibits strong alignment with human 223

judgments (Thakur et al., 2025). 224

ROUGE-L F1 Score (Lin, 2004) measures the 225

longest common subsequence between the gener- 226

ated response and the ground truth. Consistent 227

with prior work (Farquhar et al., 2024), we ap- 228

ply a threshold of 0.3 for this metric. Including 229

ROUGE-L allows us to compare our findings with 230

existing literature and highlight the limitations of 231

relying solely on lexical overlap for evaluating fac- 232

tual correctness. It helps to quantify the discrep- 233

ancy between semantic understanding (assessed by 234

the LLM judge) and simple word matching. 235

3.5 Evaluation Metrics 236

We employ Area Under the Receiver Operating 237

Characteristic curve (AUROC) and Area Under the 238

Precision-Recall curve (PR-AUC) as our primary 239

evaluation metrics. AUROC assesses the ability of 240

a hallucination detection method to correctly rank 241

positive and negative instances (hallucinations vs. 242

non-hallucinations). PR-AUC is particularly valu- 243

able when dealing with imbalanced datasets, which 244

is often the case in hallucination detection where 245

non-hallucinated responses might be more frequent. 246

Both metrics offer a threshold-independent evalua- 247

tion of the ranking performance (Lin et al., 2023). 248

3.6 Implementation Details 249

We utilize pretrained model weights from the Hug- 250

ging Face Transformers (Wolf et al., 2020) without 251

any additional fine-tuning. Following (Farquhar 252

et al., 2024), we generate 10 samples (n = 10) us- 253

ing temperature 1.0 for uncertainty estimation. Ad- 254
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ditionally, we generate one "best answer" sample255

with temperature 0.1 to serve as the best-generation256

estimate for performance evaluation.257

The models are evaluated in both zero-shot and258

few-shot (k = 5) settings:259

• Zero-shot: Models rely solely on their pre-260

existing knowledge, testing base capabilities261

• Few-shot: Models receive five carefully se-262

lected examples demonstrating expected an-263

swer formats264

Both settings use a standardized prompt de-265

signed to elicit concise answers. The specific266

prompt, adapted from (Kossen et al., 2024), can be267

found in Appendix D. We report results for a single268

run unless specified otherwise.269

4 Human Evaluation: The Gold Standard270

Before analyzing the technical problems of hallu-271

cination detection methods, we first establish that272

commonly used evaluation metrics—specifically273

ROUGE—are poorly aligned with human judg-274

ments of factual correctness (Honovich et al.,275

2022; Kang et al., 2024). In contrast, an evalua-276

tion method based on LLM-as-Judge demonstrates277

much closer agreement with human assessments278

(Thakur et al., 2025). To illustrate this, we con-279

ducted a comprehensive human evaluation study.280

Study Design We randomly selected 200281

question–answer pairs from the Mistral answers on282

the NQ-Open dataset, ensuring a balanced represen-283

tation of cases where ROUGE and LLM-as-Judge284

yield conflicting hallucination assessments. Each285

answer was independently assessed by three anno-286

tators using standardized guidelines from (Thakur287

et al., 2025), classifying responses as correct, in-288

correct, or refuse (we then classify model refusal289

as incorrect). The high inter-annotator agreement290

(Cohen’s Kappa = 0.799) confirms the reliability291

of human judgments.292

Key Findings Our results reveal a significant293

performance gap between LLM-as-Judge and294

ROUGE when benchmarked against human con-295

sensus. While ROUGE exhibits high precision but296

fails to detect many hallucinations, LLM-as-Judge297

achieves significantly higher recall, aligning more298

closely with human assessments, as shown in Table299

1.300

Table 1: LLM-as-Judge provides superior alignment
with human judgment. Comparison of ROUGE (with
standard 0.3 threshold) and LLM-as-Judge against hu-
man labels.

Method Precision Recall F1-Score Agreement

LLM-as-Judge 0.736 0.957 0.832 0.723
ROUGE 0.401 0.957 0.565 0.142

Implications Our findings underscore that 301

ROUGE is a poor proxy for human judgment in 302

evaluating hallucination detection. Despite its high 303

precision, ROUGE fails to capture many critical 304

errors, resulting in a significant misalignment with 305

human assessments of factual correctness. In con- 306

trast, LLM-as-Judge exhibits strong agreement 307

with human evaluations—achieving both high pre- 308

cision and recall—which motivates its adoption 309

as a more robust, semantically aware evaluation 310

method throughout this work. 311

5 Re-evaluating Hallucination Detection 312

Methods 313

5.1 Limitations of ROUGE for Factual 314

Accuracy Assessment in QA 315

The predominant reliance on ROUGE for evaluat- 316

ing QA hallucination detection methods warrants 317

careful scrutiny, as its core design for lexical over- 318

lap does not inherently capture factual correctness. 319

Our in-depth analysis, presented in Appendix G, 320

reveals several critical failure modes that systemati- 321

cally undermine ROUGE’s utility for this task. Key 322

limitations include: sensitivity to response length, 323

inability to handle semantic equivalence and sus- 324

ceptibility to false lexical matches. 325

Figure 2: ROUGE produces systematic errors across
all evaluation settings. Distribution of False Negatives
and False Positives across different datasets and models
highlights the inconsistency in ROUGE’s evaluation.

These failure modes, illustrated with concrete ex- 326

amples and error distributions in Figure 2, highlight 327

the potential for ROUGE to provide a misleading 328

assessment of both LLM responses and the effi- 329

cacy of hallucination detection techniques. This 330
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Table 2: Detection methods show dramatic performance drops when evaluated against human-aligned metrics
instead of ROUGE. Performance comparison using AUROC scores for LLAMA and MISTRAL models across three
datasets in zero-shot setting, where negative ∆% values reveal ROUGE’s overestimation of method effectiveness.

Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

LLAMA

Perplexity 0.709 0.700 -1.2 0.703 0.687 -2.4 0.733 0.789 7.2 0.715 0.725 1.2
LN-Entropy 0.521 0.605 13.9 0.558 0.611 8.7 0.563 0.636 11.5 0.547 0.617 11.4
SE 0.778 0.742 -4.8 0.707 0.705 -0.2 0.769 0.832 7.6 0.751 0.760 0.9
Eigenscore 0.816 0.686 -19.0 0.720 0.638 -12.7 0.752 0.734 -2.5 0.763 0.686 -11.4
eRank 0.825 0.632 -30.6 0.754 0.621 -21.4 0.717 0.660 -8.6 0.765 0.638 -20.2
LogDet 0.511 0.515 0.7 0.521 0.536 2.7 0.604 0.509 -18.6 0.545 0.520 -5.1

MISTRAL

Perplexity 0.852 0.584 -45.9 0.516 0.500 -3.2 0.843 0.627 -34.4 0.737 0.570 -27.8
LN-Entropy 0.718 0.645 -11.3 0.734 0.657 -11.7 0.586 0.596 1.8 0.679 0.633 -7.1
SE 0.836 0.729 -14.7 0.784 0.701 -11.9 0.726 0.707 -2.6 0.782 0.712 -9.7
Eigenscore 0.873 0.669 -30.4 0.803 0.648 -24.0 0.775 0.652 -18.9 0.817 0.656 -24.4
eRank 0.925 0.678 -36.4 0.518 0.511 -1.3 0.851 0.645 -31.9 0.765 0.611 -23.2
LogDet 0.628 0.508 -23.6 0.562 0.518 -8.5 0.843 0.606 -39.2 0.678 0.544 -23.8

underscores the need for evaluation against more331

human-aligned metrics.332

5.2 Quantifying the Evaluation Gap: ROUGE333

vs. LLM-as-Judge334

Given the outlined limitations of ROUGE, we re-335

evaluated existing unsupervised hallucination de-336

tection methods using LLM-as-Judge, which, as337

validated by our human study, offers a closer align-338

ment with human judgments of factual correctness.339

Main results As detailed in Table 2, hallucina-340

tion detection methods that show promise under341

ROUGE often suffer a substantial performance342

drop when re-evaluated with LLM-as-Judge. For343

instance, Perplexity sees its AUROC score plum-344

met by as much as 45.9% for the MISTRAL model345

on NQ-Open. Similarly, Eigenscore’s perfor-346

mance erodes by 19.0% and 30.4% for LLAMA347

and MISTRAL, respectively, on the same dataset.348

Even eRank, which posts impressive ROUGE-349

based scores, experiences a sharp decline of 30.6%350

and 36.4% under the LLM-as-Judge paradigm.351

Moreover, when evaluated using PR-AUC, we ob-352

serve even larger performance discrepancies across353

all methods (see Tables 11 and 12 in the Appendix354

H.3); this amplifies the impact of class imbalance355

in the QA setup, as further evidenced by the low356

QA accuracies reported in Table 8.357

Correlation This systematic discrepancy, visu-358

ally underscored by the scatter plot in Figure 3,359

points to a fundamental inadequacy in ROUGE’s360

ability to reflect true hallucination detection perfor-361

mance. The moderate Pearson correlation coeffi-362

cient (r = 0.55) between the AUROC scores de-363

rived from these two evaluation approaches further364

Figure 3: ROUGE and human-aligned evaluations
show weak correlation across detection methods.
Correlation between ROUGE and LLM-as-Judge AU-
ROC scores for the MISTRAL model, with each point
representing a metric’s performance on specific dataset.

suggests that methods may be inadvertently opti- 365

mized for ROUGE’s lexical overlap criteria rather 366

than genuine factual correctness. Notably, among 367

the evaluated detection techniques, only Semantic 368

Entropy maintains a degree of relative stability, 369

exhibiting more modest performance variations be- 370

tween the two evaluation frameworks. 371

5.3 Impact of Few-Shot Examples on 372

Evaluation Reliability 373

Our analysis of few-shot versus zero-shot settings 374

reveals three key patterns in how examples affect 375

evaluation stability (Table 3). 376

Improved Metric Stability Few-shot settings 377

consistently yield more reliable evaluations across 378

metrics. For LLAMA, the discrepancy between 379

ROUGE and LLM-as-Judge narrows significantly 380

with few-shot examples. For instance, eRank’s per- 381

5



formance drop (for LLAMA) reduces from −16.7%382

in zero-shot to just −4.2% in few-shot settings.383

This suggests that few-shot examples help standard-384

ize response formats with more consistent evalua-385

tion.386

Table 3: Few-shot examples reduce but don’t elimi-
nate evaluation biases. Performance comparison show-
ing relative differences between ROUGE and LLM-as-
Judge in both settings.

Model Metric
Few-Shot Zero-Shot

ROUGE LLM ∆(%) ROUGE LLM ∆(%)

LLAMA

Perplexity 0.783 0.784 0.0 0.715 0.725 1.5
LN-Entropy 0.738 0.759 2.8 0.547 0.617 12.8
SE 0.742 0.773 4.2 0.751 0.760 1.1
Eigenscore 0.761 0.747 -1.9 0.763 0.686 -10.0
eRank 0.707 0.678 -4.2 0.765 0.638 -16.7

MISTRAL

Perplexity 0.806 0.645 -20.0 0.747 0.579 -22.4
LN-Entropy 0.754 0.659 -12.5 0.679 0.633 -6.8
SE 0.750 0.732 -2.4 0.782 0.712 -8.9
Eigenscore 0.760 0.694 -8.7 0.817 0.656 -19.7
eRank 0.829 0.697 -15.9 0.773 0.612 -20.8

Model-Specific Effects The impact of few-shot387

examples varies notably between models. MIS-388

TRAL shows pronounced degradation in zero-shot389

settings, with performance drops up to 45.9%390

(Perplexity), while LLAMA maintains more con-391

sistent performance, with some metrics showing392

minimal degradation. This variation suggests that393

the architecture and pre-training may influence the394

effectiveness of few-shot calibration.395

Metric Robustness Different metrics show vary-396

ing levels of stability across settings. Semantic397

Entropy maintains the most consistent perfor-398

mance in both settings, while traditional metrics399

like Perplexity or LN-Entropy show higher sen-400

sitivity to setting changes.401

Implications While few-shot examples generally402

improve evaluation reliability, the degree of im-403

provement varies significantly across models and404

metrics. This suggests that robust hallucination de-405

tection systems should be validated under both con-406

ditions to ensure consistent performance across de-407

ployment scenarios. Of particular note is that few-408

shot examples reduce evaluation discrepancies by409

providing answer formats that more closely align410

with gold-standard responses. This indicates that411

some of the apparent improvements in few-shot set-412

tings may come from better format matching rather413

than enhanced factual assessment.414

5.4 Evaluating beyond ROUGE415

While ROUGE remains a widely adopted metric,416

its limitations underscore broader concerns about417

the reliability of reference-based evaluation meth- 418

ods. To assess whether alternative metrics fare 419

better, we extended our analysis to several others 420

frequently used or proposed for text evaluation, in- 421

cluding BERTScore (Zhang et al., 2020), BLEU 422

(Papineni et al., 2002), SummaC (Laban et al., 423

2022), and UniEval-fact (Zhong et al., 2022). We 424

evaluated these metrics in both few-shot and zero- 425

shot settings, benchmarking their outputs against 426

our LLM-as-Judge labels, which show strong align- 427

ment with human judgments (see Table 1). 428

Table 4: All metrics show limited alignment with
human-like judgment, underscoring their shortcom-
ings in capturing factual correctness. Agreement of
different correctness metrics with LLM-as-Judge labels
in zero-shot settings. The results averaged across three
QA datasets: NQ-Open, SQuAD, and TriviaQA.

Model Metric PRAUC AUROC F1 Precision Recall

LLAMA

BERTScore 0.735 0.769 0.723 0.609 0.934
BLEU 0.758 0.624 0.673 0.539 0.982
ROUGE 0.891 0.878 0.812 0.728 0.926
SummaC 0.826 0.782 0.725 0.616 0.944
UniEval 0.828 0.830 0.762 0.739 0.804

MISTRAL

BERTScore 0.736 0.730 0.725 0.586 0.990
BLEU 0.799 0.682 0.712 0.573 0.996
ROUGE 0.865 0.825 0.757 0.629 0.971
SummaC 0.836 0.778 0.758 0.648 0.950
UniEval 0.720 0.706 0.693 0.674 0.746

Performance of Alternative Metrics As shown 429

in Table 4, these alternative metrics also exhibit 430

substantial shortcomings in reliably detecting hallu- 431

cinations in QA tasks, particularly under zero-shot 432

conditions. For example, BERTScore—despite 433

leveraging contextual embeddings—often failed to 434

outperform simpler lexical metrics in aligning with 435

our LLM-as-Judge labels. BLEU and UniEval-fact 436

similarly demonstrated limited effectiveness. 437

Implications These results suggest that the inad- 438

equacies of ROUGE are not isolated, but indicative 439

of a broader challenge: current reference-based 440

metrics struggle to capture factual consistency, of- 441

ten favoring surface-level similarity or structural 442

features such as length. Even when employing 443

few-shot prompting (see Table 13 in the Appendix 444

I), which can help with answer formatting, these 445

metrics remain fundamentally constrained in their 446

ability to assess factual correctness. 447

6 The Length Factor: A Hidden Signal in 448

Hallucination Detection 449

Our analysis reveals a surprising and significant 450

finding: response length alone serves as a powerful 451
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signal for detecting hallucinations. This discovery452

challenges conventional wisdom about hallucina-453

tion detection and raises fundamental questions454

about the complexity needed in detection methods.455

Our investigation demonstrates that: (1) Simple456

length statistics can serve as surprisingly effective457

hallucination detectors, often matching or exceed-458

ing more sophisticated methods; (2) The strong459

influence of length on current evaluation methods460

raises concerns about their ability to assess factual461

correctness independently of response verbosity;462

(3) This relationship may provide insights into the463

underlying mechanisms of how LLMs generate in-464

correct information.465

6.1 Length Patterns in Hallucinated466

Responses467

Figure 4: Hallucinations have a distinct length signa-
ture in model outputs. Distribution of answer lengths
for MISTRAL in a few-shot settings with LLM-as-Judge
labels, showing incorrect answers tend to be longer.

Analysis of response distributions using LLM-as-468

Judge labels reveals a striking pattern: hallucinated469

responses tend to be consistently longer and show470

greater length variance. This pattern holds true not471

only in our primary datasets but also extends to the472

HaluEval dataset (Figure 6 in Appendix J), suggest-473

ing a fundamental relationship between verbosity474

and hallucination.475

This tendency toward longer responses likely re-476

flects two key mechanisms. First, models attempt477

to maintain coherence while generating incorrect478

information, leading to additional context and elab-479

oration. Second, initial errors often cascade into480

further mistakes, creating a "snowball effect" of481

increasing verbosity (Zhang et al., 2023)482

6.2 Length Correlations with Existing483

Methods484

To quantify this relationship, we examined corre-485

lations between response length and various hal-486

lucination detection metrics. Our analysis reveals487

two critical findings. First, established methods488

show unexpectedly strong length correlations (see489

Table 5): Eigenscore and eRank exhibit particu-490

larly high correlations, suggesting these supposedly491

Figure 5: ROUGE’s bias against long responses un-
dermines its reliability. Distribution of answer length
versus ROUGE score for MISTRAL in few-shot set-
tings, revealing a strong correlation between length and
ROUGE scores.

sophisticated methods may be primarily detecting 492

length variations rather than semantic features. Sec- 493

ond, ROUGE scores demonstrate systematic length 494

bias: As shown in Figure 5, responses exceed- 495

ing 100 tokens consistently receive scores below 496

the 0.3 threshold, regardless of factual accuracy. 497

This aligns with prior observations of hallucina- 498

tion snowballing (Zhang et al., 2023), where LLMs 499

compound initial errors with additional mistakes. 500

Table 5: Sophisticated detection methods primarily
capture length effects. Pearson correlation coefficients
between metrics and length, showing unexpectedly high
values.

Method Llama Mistral

LogDet -0.185 0.311
Perplexity 0.841 -0.423
eRank 0.763 0.803
Eigenscore 0.826 0.894
LN-Entropy 0.305 -0.753
Semantic Entropy 0.436 0.631

These correlations raise fundamental questions 501

about whether current hallucination detection meth- 502

ods are truly capturing semantic features or simply 503

leveraging length-based patterns. 504

6.3 Length as a Competitive Baseline 505

Given these strong correlations, we developed three 506

simple length-based metrics: the raw length of a 507

single generation (Len), the average length across 508

multiple generations (Mean-Len), and the standard 509

deviation of lengths across generations (Std-Len). 510

Evaluation results (Table 6) demonstrate that 511

these straightforward metrics achieve surprisingly 512

competitive performance. The Mean-Len metric 513

matches or outperforms sophisticated approaches 514

like Eigenscore and LN-Entropy across multiple 515
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datasets. Response length variability proves to be516

a key indicator, with Std-Len showing particular517

effectiveness at identifying hallucinations. Per-518

haps most surprisingly, even the simple Len metric519

achieves competitive performance, challenging the520

fundamental need for complex detection methods.521

Table 6: Simple length-based metrics achieve com-
petitive performance with sophisticated detection
methods. Hallucination detection performance (AU-
ROC) compared across datasets and models using LLM-
as-Judge since it shows better alignment with human
judgements.

Model Metric NQ-Open SQuAD Trivia-QA Mean

LLAMA Perplexity 0.767 0.758 0.826 0.784
LN-Entropy 0.732 0.717 0.829 0.759
SE 0.730 0.741 0.849 0.773
Eigenscore 0.744 0.733 0.762 0.747
eRank 0.714 0.681 0.638 0.678
Len 0.686 0.687 0.640 0.671
Mean-Len 0.730 0.716 0.716 0.721
Std-Len 0.727 0.721 0.806 0.751

MISTRAL Perplexity 0.632 0.636 0.637 0.635
LN-Entropy 0.619 0.667 0.692 0.659
SE 0.734 0.698 0.765 0.732
Eigenscore 0.686 0.691 0.706 0.694
eRank 0.698 0.690 0.703 0.697
Len 0.664 0.685 0.729 0.693
Mean-Len 0.683 0.705 0.750 0.713
Std-Len 0.577 0.589 0.665 0.610

6.4 The Repetition Experiment: Validating522

Length Effects523

To isolate the impact of length on evaluation met-524

rics, we conducted a controlled experiment using525

systematic repetition. We modified model outputs526

by iteratively duplicating sentences while maintain-527

ing the same factual content. Results in Table 7528

reveal a concerning trend: AUROC scores con-529

sistently improve with increased repetition, even530

though information content remains unchanged.531

This experiment highlights a critical distinction:532

while verbose or repetitive responses may be in-533

efficient, they aren’t necessarily hallucinations if534

the core information is correct. However, current535

evaluation approaches, including both ROUGE and536

length-based metrics, fail to make this distinction.537

Table 7: ROUGE scores can be manipulated through
simple repetition. AUROC measurements for MIS-
TRAL when repeating the same content multiple times.

Dataset 0 1 2 4

NQ-Open 0.852 0.935 (+9.7) 0.955 (+12.1) 0.964 (+13.1)
SQuAD 0.842 0.894 (+6.2) 0.909 (+8.0) 0.948 (+12.6)
Trivia-QA 0.843 0.901 (+6.9) 0.907 (+7.6) 0.919 (+9.0)

7 Discussion 538

Our results reveal a clear misalignment between 539

reference-based metrics, such as ROUGE, and hu- 540

man judgments in identifying hallucinations in 541

QA. Despite the short, focused nature of QA an- 542

swers—where n-gram overlap might seem suffi- 543

cient—these metrics consistently reward fluent yet 544

factually incorrect responses. While ROUGE is 545

widely used, we further evaluated more sophisti- 546

cated metrics — BERTScore, BLEU, and UniEval- 547

fact — against judgments from a strong LLM- 548

based evaluator, and similarly observed substantial 549

disagreement, underscoring the limitations of these 550

metrics in capturing factual consistency. While 551

careful prompt engineering or dataset-specific post- 552

processing techniques might offer marginal im- 553

provements in ROUGE scores, these approaches 554

often lack scalability and generalizability across 555

different models and datasets. As demonstrated 556

in our experiments, models frequently disregarded 557

explicit brevity instructions (see prompts in Ap- 558

pendix D), making the pursuit of an optimal, univer- 559

sally applicable prompt non-trivial endeavor. The 560

fundamental limitation of these reference-based 561

metrics—their general insensitivity to factual ve- 562

racity when masked by superficial lexical similar- 563

ity—persists. This is further underscored by our 564

finding that simple response length can often be 565

a more effective indicator of hallucinations than 566

some sophisticated detection methods, question- 567

ing the current trajectory of detector development. 568

These collective observations necessitate a shift 569

towards more robust and semantically aware evalu- 570

ation paradigms. 571

8 Conclusions 572

We demonstrate that prevailing overlap-based met- 573

rics systematically overestimate hallucination de- 574

tection performance in QA, leading to illusory 575

progress. LLM-as-Judge evaluation, validated 576

against human judgments, exposes steep perfor- 577

mance drops across all methods when judged by 578

factual accuracy. Moreover, because simple sig- 579

nals like answer length can match complex detec- 580

tors, we caution against over-engineering: effec- 581

tive baselines are essential for meaningful advance- 582

ment. 583

Limitations 584

While our study provides valuable insights into 585

the limitations of ROUGE for hallucination detec- 586
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tion, several constraints should be acknowledged.587

First, our analysis primarily focuses on a subset of588

LLMs and datasets, which may not fully capture589

the diversity of models and tasks in the field. Con-590

sequently, the generalizability of our findings to591

other contexts remains to be validated. Second, al-592

though we propose response length as a simple yet593

effective heuristic for detecting hallucinations, this594

approach may not account for nuanced cases where595

longer responses are factually accurate. Addition-596

ally, our reliance on LLM-as-Judge as a benchmark597

for human-aligned evaluation, while more robust598

than ROUGE, is not without its own biases and599

limitations. Future work should explore alternative600

evaluation metrics and expand the scope of analysis601

to include a broader range of models and datasets.602

Finally, while our controlled experiments highlight603

the potential for manipulation of ROUGE scores,604

further research is needed to develop metrics that605

are both robust to such manipulations and aligned606

with human judgment. The primary risk is that607

over-reliance on length-based heuristics and poten-608

tially biased human-aligned metrics could lead to609

inaccurate assessments of hallucination detection610

methods, resulting in the deployment of LLMs that611

may not reliably ensure factual accuracy in high-612

stakes applications.613
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Appendix850

A Licenses and Computational Resources851

A.1 Datasets, models license852

The datasets and models used in this study are sub-853

ject to specific licenses. NQ-Open, TriviaQA, and854

SQuAD are available under licenses that permit855

academic use. The LLAMA3.1-8B-INSTRUCT and856

MISTRAL-7B-INSTRUCT-V0.3 models are open- 857

source and can be accessed under their respec- 858

tive licenses, which allow for research and non- 859

commercial use.3 860

A.2 Hardware Specifications 861

We generated data using Nvidia A40 with 40GB 862

VRAM. For the remaining computations, we used 863

CPU. 864

B Human Involvement and Ethics 865

B.1 Annotator Recruitment and Consent 866

Participants were recruited through personal net- 867

works (friends and acquaintances) and participated 868

voluntarily without financial compensation. They 869

were informed of the study’s purpose and data 870

usage beforehand. Verbal consent was obtained, 871

and no personally identifiable information was col- 872

lected. Participants had the right to withdraw at 873

any time. 874

B.2 Demographics 875

All annotators were residents of Poland. No system- 876

atic collection of age, gender, or other demographic 877

information was conducted. 878

C Use of AI Assistance 879

AI assistants such as ChatGPT were utilized in var- 880

ious aspects of the research, including coding, data 881

analysis, and writing tasks. These tools helped to 882

automate repetitive tasks, generate initial drafts, 883

and assist in exploring potential solutions. How- 884

ever, all AI-generated outputs were reviewed and 885

refined by researchers to ensure accuracy and co- 886

herence. 887

D Prompts 888

We used the following prompt formats to elicit 889

responses from the models: 890

• QA (Zero-shot): Minimal prompt with no 891

examples (Listing 1) 892

• QA (Few-shot): Adapted from (Kossen et al., 893

2024), includes multiple QA examples (List- 894

ing 2) 895

• LLM-as-Judge: Evaluation prompt with cor- 896

rectness labels, adapted from (Orgad et al., 897

2024) (Listing 3) 898

3For detailed license information, please refer to the re-
spective dataset and model documentation.
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Listing 1: Zero-shot prompt template
899

Answer the following question as briefly900
as possible.901

902
Question: {question}903
Answer:904905

Listing 2: QA (Few-shot) prompt template
906

Answer the following question as briefly907
as possible.908

909
Here are several examples:910

911
Question: What is the capital of France?912
Answer: Paris913

914
Question: Who wrote Romeo and Juliet?915
Answer: William Shakespeare916

917
Question: What is the boiling point of918

water in Celsius?919
Answer: 100920

921
Question: How many continents are there922

on Earth?923
Answer: Seven924

925
Question: What is the fastest land926

animal?927
Answer: Cheetah928

929
Question: {question}930
Answer:931932

Listing 3: LLM-as-Judge prompt template
933

Answer the following question as briefly934
as possible.935

936
Here are several examples:937

938
Question: who is the young guitarist who939

played with Buddy Guy?940
Ground Truth: Quinn Sullivan , Eric Gales941
Model Answer: Ronnie Earl942
Correctness: incorrect943

944
Question: What is the name of the actor945

who plays Iron Man in the Marvel946
movies?947

Ground Truth: Robert Downey Jr.948
Model Answer: Robert Downey Jr. played949

the role of Tony Stark/Iron Man in950
the Marvel Cinematic Universe films.951

Correctness: correct952
953

Question: What is the capital of France?954
Ground Truth: Paris955
Model Answer: I don 't have enough956

information to answer this question.957
Correctness: refuse958

959
Question: Who was the first person to960

walk on the moon?961
Ground Truth: Neil Armstrong962
Model Answer: I apologize , but I cannot963

provide an answer without verifying964
the historical facts.965

Correctness: refuse 966
967

Question: {question} 968
Ground Truth: {gold} 969
Model Answer: {prediction} 970
Correctness: 971972

E Additional Analysis of Human 973

Evaluation 974

For the human evaluation component of our study 975

(Section 4), we intentionally curated a dataset of 976

instances where ROUGE and our LLM-as-Judge 977

metric provided conflicting assessments regarding 978

the presence of hallucinations. This targeted se- 979

lection strategy was employed to enable a focused 980

examination of ROUGE’s specific failure modes. 981

By concentrating on these points of disagreement, 982

we aimed to gain deeper insights into the scenarios 983

where ROUGE’s reliance on lexical overlap demon- 984

strably misaligns with human judgments of factual 985

accuracy and overall response quality. 986

F Evaluation Metrics and Hallucination 987

Detection 988

F.1 eRank 989

eRank leverages eigenvalue-based entropy estima- 990

tion in hidden states: 991

eRank = exp

(
−

m∑
k=1

pk log pk

)
(1) 992

where pk = λk∑m
j=1 λj

, and λk are the eigenvalues of 993

the covariance matrix Σ = ZTZ computed on the 994

hidden states Z. 995

We use Effective Rank (eRank) as a proxy for 996

how “spread out” or “diverse” the final-layer hid- 997

den representations are (however, we can also the 998

the hidden representation from middle-layer). In- 999

tuitively, if the model’s representation space col- 1000

lapses to fewer dimensions (i.e., low eRank), it may 1001

indicate that the model is relying on less context or 1002

ignoring crucial input signals—often manifesting 1003

as hallucinations. Conversely, a higher eRank sug- 1004

gests a richer, more nuanced encoding of the input, 1005

which typically correlates with more grounded and 1006

accurate responses. This approach builds on prior 1007

work (Sriramanan et al., 2024b) (LogDet), which 1008

computes the log-determinant of the covariance 1009

matrix. 1010

While initial evaluations under ROUGE sug- 1011

gested some promise, we found that eRank did 1012
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not consistently correlate with hallucination rates1013

across all datasets and settings when assessed us-1014

ing human-aligned metrics. This ’negative results’1015

illustrate how ROUGE’s limitations can mislead1016

method development.1017

G Understanding ROUGE’s Failure1018

Modes1019

Through detailed error analysis, we identify three1020

critical limitations in ROUGE’s evaluation ap-1021

proach: (1) sensitivity to response length, (2) inabil-1022

ity to handle semantic equivalence, and (3) over-1023

reliance on exact lexical matches. Our analysis1024

reveals that these limitations lead to both false neg-1025

atives—factually correct responses marked as in-1026

correct—and false positives—incorrect responses1027

receiving high scores. As shown in Figure 2, these1028

errors occur frequently across different datasets and1029

models.1030

G.1 Length-Based Penalties1031

Question: When was Pride and Prejudice writ-
ten?
Prediction: “Pride and Prejudice was written
by Jane Austen and published in 1813.”
Gold Answer: “1813’

1032

ROUGE systematically penalizes factually cor-1033

rect but verbose answers. In this example, despite1034

providing accurate information with helpful con-1035

text, the response receives a low score purely due1036

to length mismatch. As shown in Figure 5, this bias1037

affects longer responses regardless of their factual1038

accuracy, with responses exceeding 100 tokens con-1039

sistently scoring below our 0.3 threshold. Notably,1040

this is the most frequent type of error ROUGE1041

makes.1042

G.2 Semantic Equivalence Failures1043

Question: What is one element a topographic
map shows?
Prediction: “Elevation”
Gold Answer: “Relief”

1044

ROUGE fails to recognize semantic equivalence1045

between different phrasings. Here, despite "ele-1046

vation" and "relief" being contextually equivalent1047

terms in topography, ROUGE assigns a lower score1048

due to lexical mismatch. This limitation systemati-1049

cally undervalues responses that use valid alterna-1050

tive terminology.1051

G.3 False Lexical Matches 1052

Question: “How many episodes of Grey’s
Anatomy season 14?”
Prediction: “23 episodes.”
Gold Answer: “24 episodes.”

1053

ROUGE can assign high scores to factually in- 1054

correct answers that share surface structure with 1055

the reference. Despite the critical numerical error, 1056

the response receives a relatively high score due to 1057

matching surrounding words. This creates a dan- 1058

gerous bias toward structurally similar but factually 1059

wrong answers. 1060

H Quantitative Results 1061

H.1 QA Accuracy Across Settings 1062

Table 8 presents the accuracies on the QA datasets. 1063

These accuracies are computed by selecting the 1064

most likely answer at a low temperature setting and 1065

comparing it to labels derived from either ROUGE 1066

or LLM-as-Judge evaluations. 1067

Table 8: Accuracies of different models, datasets, and
prompts for the QA task.

Accuracy

Dataset Model Prompt # Refused ROUGE LLM

NQ-Open Llama Few-Shot 692 28.1% 29.2%
NQ-Open Llama Zero-Shot 139 24.2% 43.2%
NQ-Open Mistral Few-Shot 117 20.9% 35.8%
NQ-Open Mistral Zero-Shot 72 7.8% 39.0%

SQuAD Llama Few-Shot 924 22.0% 18.3%
SQuAD Llama Zero-Shot 447 20.2% 25.0%
SQuAD Mistral Few-Shot 230 16.0% 22.6%
SQuAD Mistral Zero-Shot 116 5.8% 25.3%

Trivia-QA Llama Few-Shot 95 63.7% 69.4%
Trivia-QA Llama Zero-Shot 39 58.8% 71.1%
Trivia-QA Mistral Few-Shot 11 53.8% 69.7%
Trivia-QA Mistral Zero-Shot 2 29.0% 64.8%

H.2 Metric Evaluation: AUROC 1068

Tables 9 and 10 present comprehensive results com- 1069

paring LLM-based and ROUGE-based evaluation 1070

metrics across three datasets: NQ-Open, SQuAD, 1071

and Trivia-QA. We evaluate nine different metrics 1072

using AUROC evaluation metric for both Llama 1073

and Mistral models under zero-shot and few-shot 1074

settings. 1075

H.3 Metric Evaluation: PR-AUC 1076

Tables 11 and 12 provide PR-AUC scores under 1077

the same conditions. 1078
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Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.709 0.700 -1.2 0.703 0.687 -2.4 0.733 0.789 7.2 0.715 0.725 1.2
Llama LN-Entropy 0.521 0.605 13.9 0.558 0.611 8.7 0.563 0.636 11.5 0.547 0.617 11.4
Llama SE 0.778 0.742 -4.8 0.707 0.705 -0.2 0.769 0.832 7.6 0.751 0.760 0.9
Llama Eigenscore 0.816 0.686 -19.0 0.720 0.638 -12.7 0.752 0.734 -2.5 0.763 0.686 -11.4
Llama eRank 0.825 0.632 -30.6 0.754 0.621 -21.4 0.717 0.660 -8.6 0.765 0.638 -20.2
Llama Len 0.834 0.616 -35.3 0.777 0.622 -24.9 0.760 0.691 -10.0 0.790 0.643 -23.4
Llama LogDet 0.511 0.515 0.7 0.521 0.536 2.7 0.604 0.509 -18.6 0.545 0.520 -5.1
Llama Mean-Len 0.825 0.654 -26.1 0.743 0.643 -15.7 0.771 0.743 -3.8 0.780 0.680 -15.2
Llama Std-Len 0.711 0.644 -10.5 0.664 0.627 -6.0 0.759 0.754 -0.7 0.711 0.675 -5.7

Mistral Perplexity 0.852 0.584 -45.9 0.516 0.500 -3.2 0.843 0.627 -34.4 0.737 0.570 -27.8
Mistral LN-Entropy 0.718 0.645 -11.3 0.734 0.657 -11.7 0.586 0.596 1.8 0.679 0.633 -7.1
Mistral SE 0.836 0.729 -14.7 0.784 0.701 -11.9 0.726 0.707 -2.6 0.782 0.712 -9.7
Mistral Eigenscore 0.873 0.669 -30.4 0.803 0.648 -24.0 0.775 0.652 -18.9 0.817 0.656 -24.4
Mistral eRank 0.925 0.678 -36.4 0.518 0.511 -1.3 0.851 0.645 -31.9 0.765 0.611 -23.2
Mistral Len 0.934 0.634 -47.2 0.860 0.624 -37.8 0.929 0.673 -37.9 0.908 0.644 -41.0
Mistral LogDet 0.628 0.508 -23.6 0.562 0.518 -8.5 0.843 0.606 -39.2 0.678 0.544 -23.8
Mistral Mean-Len 0.890 0.643 -38.4 0.828 0.626 -32.2 0.875 0.667 -31.3 0.864 0.645 -34.0
Mistral Std-Len 0.516 0.512 -0.7 0.540 0.505 -6.9 0.613 0.572 -7.2 0.556 0.530 -4.9

Table 9: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in zero-shot setting using AUROC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.

I Ground Truth Labeling Metrics1079

To evaluate and compare automatic labeling strate-1080

gies, we examined the agreement between various1081

evaluation metrics and the LLM-as-Judge annota-1082

tions (Table 13). This analysis provides insight1083

into the reliability of proxy labeling methods for1084

hallucination detection.1085

J HaluEval Answer Length Distribution1086

Figure 6 illustrates answer lengths across the1087

HaluEval dataset (Li et al., 2023).1088
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Figure 6: Length-based hallucination patterns gen-
eralize across datasets. Answer length distribution for
HaluEval tasks, showing consistent patterns.
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Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.814 0.767 -6.1 0.736 0.758 2.9 0.800 0.826 3.1 0.783 0.784 -0.0
Llama LN-Entropy 0.753 0.732 -2.9 0.663 0.717 7.5 0.799 0.829 3.6 0.738 0.759 2.7
Llama SE 0.738 0.730 -1.1 0.688 0.741 7.1 0.800 0.849 5.7 0.742 0.773 3.9
Llama Eigenscore 0.813 0.744 -9.3 0.725 0.733 1.2 0.745 0.762 2.3 0.761 0.746 -1.9
Llama eRank 0.794 0.714 -11.2 0.708 0.681 -4.0 0.620 0.638 2.8 0.707 0.678 -4.1
Llama Len 0.761 0.686 -10.9 0.694 0.687 -1.0 0.620 0.640 3.1 0.692 0.671 -2.9
Llama LogDet 0.729 0.690 -5.6 0.659 0.636 -3.7 0.590 0.618 4.5 0.659 0.648 -1.6
Llama Mean-Len 0.799 0.730 -9.4 0.713 0.716 0.4 0.681 0.716 4.8 0.731 0.721 -1.4
Llama Std-Len 0.777 0.727 -7.0 0.705 0.721 2.2 0.783 0.806 2.9 0.755 0.751 -0.6

Mistral Perplexity 0.804 0.632 -27.1 0.782 0.636 -23.0 0.744 0.637 -16.7 0.777 0.635 -22.3
Mistral LN-Entropy 0.727 0.619 -17.4 0.785 0.667 -17.7 0.750 0.692 -8.3 0.754 0.659 -14.5
Mistral SE 0.772 0.734 -5.3 0.737 0.698 -5.6 0.741 0.765 3.1 0.750 0.732 -2.6
Mistral Eigenscore 0.789 0.686 -15.0 0.775 0.691 -12.2 0.717 0.706 -1.5 0.760 0.694 -9.6
Mistral eRank 0.874 0.698 -25.1 0.829 0.690 -20.1 0.786 0.703 -11.8 0.830 0.697 -19.0
Mistral Len 0.879 0.664 -32.2 0.857 0.685 -25.1 0.858 0.729 -17.7 0.865 0.693 -25.0
Mistral LogDet 0.737 0.663 -11.2 0.687 0.631 -8.9 0.612 0.630 2.9 0.679 0.641 -5.7
Mistral Mean-Len 0.834 0.683 -22.1 0.822 0.705 -16.5 0.806 0.750 -7.4 0.821 0.713 -15.3
Mistral Std-Len 0.609 0.577 -5.6 0.629 0.589 -6.8 0.663 0.665 0.3 0.634 0.610 -4.0

Table 10: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in few-shot setting using AUROC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.

Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.833 0.680 -22.4 0.863 0.823 -4.8 0.594 0.514 -15.6 0.763 0.672 -14.3
Llama LN-Entropy 0.717 0.611 -17.4 0.793 0.773 -2.6 0.570 0.652 12.5 0.693 0.679 -2.5
Llama SE 0.845 0.695 -21.5 0.864 0.829 -4.1 0.575 0.533 -7.9 0.761 0.686 -11.2
Llama Eigenscore 0.850 0.670 -26.8 0.866 0.809 -7.1 0.565 0.574 1.6 0.760 0.684 -10.8
Llama eRank 0.782 0.607 -28.9 0.820 0.783 -4.6 0.674 0.760 11.3 0.759 0.717 -7.4
Llama Len 0.865 0.681 -27.2 0.885 0.820 -8.0 0.605 0.548 -10.4 0.785 0.683 -15.2
Llama LogDet 0.852 0.659 -29.2 0.873 0.810 -7.8 0.602 0.562 -7.1 0.776 0.677 -14.7
Llama Mean-Len 0.851 0.658 -29.3 0.870 0.808 -7.7 0.573 0.568 -0.9 0.765 0.678 -12.6
Llama Std-Len 0.825 0.647 -27.6 0.846 0.802 -5.5 0.562 0.570 1.4 0.744 0.673 -10.6

Mistral Perplexity 0.664 0.536 -23.8 0.951 0.754 -26.0 0.690 0.752 8.3 0.768 0.681 -13.8
Mistral LN-Entropy 0.882 0.664 -32.8 0.920 0.790 -16.4 0.625 0.633 1.3 0.809 0.696 -16.0
Mistral SE 0.956 0.725 -31.8 0.964 0.819 -17.7 0.808 0.510 -58.3 0.909 0.685 -35.9
Mistral Eigenscore 0.957 0.698 -37.1 0.965 0.804 -20.0 0.818 0.544 -50.3 0.913 0.682 -35.8
Mistral eRank 0.658 0.506 -30.0 0.955 0.755 -26.4 0.534 0.704 24.2 0.716 0.655 -10.7
Mistral Len 0.964 0.682 -41.4 0.973 0.803 -21.0 0.849 0.536 -58.4 0.929 0.674 -40.3
Mistral LogDet 0.964 0.699 -37.9 0.950 0.753 -26.1 0.847 0.550 -54.1 0.920 0.667 -39.4
Mistral Mean-Len 0.958 0.671 -42.8 0.966 0.786 -22.9 0.833 0.548 -52.1 0.919 0.668 -39.3
Mistral Std-Len 0.891 0.583 -52.8 0.889 0.724 -22.7 0.755 0.605 -24.8 0.845 0.637 -33.4

Table 11: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in zero-shot setting using PR-AUC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.
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Model Metric
NQ-Open SQuAD Trivia-QA Mean

ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆% ROUGE LLM ∆%

Llama Perplexity 0.844 0.824 -2.4 0.861 0.891 3.4 0.551 0.502 -9.8 0.752 0.739 -2.9
Llama LN-Entropy 0.810 0.796 -1.8 0.828 0.874 5.3 0.525 0.522 -0.5 0.721 0.731 1.0
Llama SE 0.814 0.802 -1.5 0.842 0.879 4.3 0.536 0.506 -6.1 0.731 0.729 -1.1
Llama Eigenscore 0.829 0.802 -3.4 0.852 0.876 2.7 0.511 0.542 5.7 0.731 0.740 1.7
Llama eRank 0.746 0.726 -2.8 0.711 0.762 6.8 0.679 0.737 7.9 0.712 0.742 4.0
Llama Len 0.834 0.806 -3.5 0.856 0.884 3.1 0.522 0.571 8.7 0.737 0.754 2.8
Llama LogDet 0.817 0.800 -2.1 0.859 0.882 2.6 0.526 0.582 9.6 0.734 0.755 3.4
Llama Mean-Len 0.825 0.798 -3.4 0.852 0.878 2.9 0.509 0.553 7.9 0.729 0.743 2.5
Llama Std-Len 0.820 0.794 -3.2 0.846 0.873 3.1 0.526 0.524 -0.3 0.731 0.730 -0.1

Mistral Perplexity 0.506 0.520 2.7 0.624 0.673 7.4 0.740 0.778 4.9 0.623 0.657 5.0
Mistral LN-Entropy 0.508 0.505 -0.6 0.587 0.615 4.5 0.759 0.825 8.0 0.618 0.648 4.0
Mistral SE 0.872 0.754 -15.7 0.898 0.843 -6.5 0.609 0.538 -13.3 0.793 0.712 -11.8
Mistral Eigenscore 0.873 0.738 -18.4 0.902 0.842 -7.2 0.598 0.567 -5.5 0.791 0.716 -10.4
Mistral eRank 0.515 0.526 2.0 0.855 0.789 -8.4 0.606 0.736 17.8 0.659 0.684 3.8
Mistral Len 0.897 0.735 -22.1 0.918 0.848 -8.3 0.687 0.530 -29.7 0.834 0.704 -20.0
Mistral LogDet 0.895 0.734 -21.9 0.869 0.793 -9.5 0.673 0.561 -19.8 0.812 0.696 -17.1
Mistral Mean-Len 0.879 0.734 -19.7 0.907 0.844 -7.5 0.629 0.548 -14.7 0.805 0.709 -14.0
Mistral Std-Len 0.827 0.683 -20.9 0.873 0.808 -8.0 0.546 0.608 10.1 0.749 0.700 -6.3

Table 12: Full comparison of LLM-based and ROUGE-based evaluation metrics across different datasets (NQ-Open,
SQuAD, and Trivia-QA) for Llama and Mistral models in few-shot setting using PR-AUC evaluation metric. The
∆% columns show the relative percentage difference between LLM and ROUGE scores. Mean columns present the
averaged scores across all datasets.
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Table 13: Few-Shot Evaluation Metrics agreement with
LLM-as-Judge labels. The results averaged across three
QA datasets: NQ-Open, SQuAD, and TriviaQA.

Model Metric PRAUC AUROC F1 Precision Recall

LLAMA

BERTScore 0.810 0.848 0.776 0.742 0.859
BLEU 0.775 0.536 0.699 0.576 0.976

ROUGE 0.935 0.921 0.883 0.866 0.906
SummaC 0.850 0.776 0.760 0.653 0.977
UniEval 0.943 0.933 0.862 0.868 0.868

MISTRAL

BERTScore 0.764 0.770 0.749 0.637 0.958
BLEU 0.784 0.627 0.707 0.581 0.987

ROUGE 0.903 0.878 0.820 0.738 0.932
SummaC 0.855 0.795 0.758 0.657 0.957
UniEval 0.813 0.801 0.754 0.751 0.778
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