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ABSTRACT

This paper investigates unsupervised learning of Full-Waveform Inversion (FWI),
which has been widely used in geophysics to estimate subsurface velocity maps
from seismic data. This problem is mathematically formulated by a second order
partial differential equation (PDE), but is hard to solve. Moreover, acquiring ve-
locity map is extremely expensive, making it impractical to scale up a supervised
approach to train the mapping from seismic data to velocity maps with convolu-
tional neural networks (CNN).We address these difficulties by integrating PDE
and CNN in a loop, thus shifting the paradigm to unsupervised learning that only
requires seismic data. In particular, we use finite difference to approximate the
forward modeling of PDE as a differentiable operator (from velocity map to seis-
mic data) and model its inversion by CNN (from seismic data to velocity map).
Hence, we transform the supervised inversion task into an unsupervised seismic
data reconstruction task. We also introduce a new large-scale dataset OpenFWI,
to establish a more challenging benchmark for the community. Experiment results
show that our model (using seismic data alone) yields comparable accuracy to the
supervised counterpart (using both seismic data and velocity map). Furthermore,
it outperforms the supervised model when involving more seismic data.

Figure 1: Schematic illustration of our proposed method, which comprises a CNN to learn an inverse
mapping and a differentiable operator to approximate the forward modeling of PDE.

1 INTRODUCTION

Geophysical properties (such as velocity, impedance, and density) play an important role in various
subsurface applications including subsurface energy exploration, carbon capture and sequestration,

∗Equal contribution.
Dataset is available at https://openfwi-lanl.github.io.
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(a) (b)

Figure 2: An example of (a) a velocity map and (b) seismic measurements (named shot gather in
geophysics) and the 1D time-series signal recorded by a receiver.

estimating pathways of subsurface contaminant transport, and earthquake early warning systems
to provide critical alerts. These properties can be obtained via seismic surveys, i.e., receiving re-
flected/refracted seismic waves generated by a controlled source. This paper focuses on recon-
structing subsurface velocity maps from seismic measurements. Mathematically, the velocity map
and seismic measurements are correlated through an acoustic-wave equation (a second-order partial
differential equation) as follows:

∇2p(r, t)− 1

v(r)2

∂2p(r, t)

∂t2
= s(r, t) , (1)

where p(r, t) denotes the pressure wavefield at spatial location r and time t, v(r) represents the
velocity map, and s(r, t) is the source term. Full-Waveform Inversion (FWI) is a methodology that
determines high-resolution velocity maps v(r) of subsurface via matching synthetic seismic wave-
forms to raw recorded seismic data p(r̃, t), where r̃ represents the locations of seismic receivers.

A velocity map describes the wave propagation speed in the subsurface region of interest. An exam-
ple in 2D scenario is shown in Figure 2a. Particularly, the x-axis represents the horizontal offset of a
region, and the y-axis stands for the depth. The regions with the same geologic information (veloc-
ity) are called a layer in velocity maps. In a sample of seismic measurements (termed a shot gather
in geophysics) as depicted in Figure 2b, each grid in the x-axis represents a receiver, and the value
in the y-axis is a 1D time-series signal recorded by each receiver.

Existing approaches solve FWI in two directions: physics-driven and data-driven. Physics-driven
approaches rely on the forward modeling of Equation 1, which simulates seismic data from velocity
map by finite difference. They optimize velocity map per seismic sample, by iteratively updating
velocity map from an initial guess such that simulated seismic data (after forward modeling) is close
to the input seismic measurements. However, these methods are slow and difficult to scale up as the
iterative optimization is required per input sample. Data-driven approaches consider FWI problem
as an image-to-image translation task and apply convolution neural networks (CNN) to learn the
mapping from seismic data to velocity maps (Wu & Lin, 2019). The limitation of these methods
is that they require paired seismic data and velocity maps to train the network. Such ground truth
velocity maps are hardly accessible in real-world scenario because generating them is extremely
time-consuming even for domain experts.

In this work, we leverage advantages of both directions (physics + data driven) and shift the paradigm
to unsupervised learning of FWI by connecting forward modeling and CNN in a loop. Specifically,
as shown in Figure 1, a CNN is trained to predict a velocity map from seismic data, which is followed
by forward modeling to reconstruct seismic data. The loop is closed by applying reconstruction loss
on seismic data to train the CNN. Due to the differentiable forward modeling, the whole loop can
be trained end-to-end. Note that the CNN is trained in an unsupervised manner, as the ground
truth of velocity map is not needed. We name our unsupervised approach as UPFWI (Unsupervised
Physics-informed Full-Waveform Inversion).

Additionally, we find that perceptual loss (Johnson et al., 2016) is crucial to improve the overall
quality of predicted velocity maps due to its superior capability in preserving the coherence of the
reconstructed waveforms comparing with other losses like Mean Squared Error (MSE) and Mean
Absolute Error (MAE).
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Mean Squared Error (MSE) Structural Similarity (SSIM)

Figure 3: Unsupervised UPFWI (ours) vs. Supervised H-PGNN+ (Sun et al., 2021). Our method
achieves better performance, e.g. lower Mean Squared Error (MSE) and higher Structural Similar-
ity (SSIM), when involving more unlabeled data (>24k).

To encourage fair comparison on a large dataset with more complicate geological structures, we
introduce a new synthetic dataset named OpenFWI, which contains 60,000 labeled data (velocity
map and seismic data pairs) and 48,000 unlabeled data (seismic data alone). 30,000 of those velocity
maps contain curved layers that are more challenge for inversion. We also add geological faults with
various shift distances and tilting angles to all velocity maps.

We evaluate our method on this dataset. Experimental results show that for velocity maps with flat
layers, our UPFWI trained with 48,000 unlabeled data achieves 1146.09 in MSE, which is 26.77%
smaller than that of the supervised baseline H-PGNN+ (Sun et al., 2021), and 0.9895 in Struc-
tured Similarity (SSIM), which is 0.0021 higher; for velocity maps with curved layers, our UPFWI
achieves 3639.96 in MSE, which is 28.30% smaller, and 0.9756 in SSIM, which is 0.0057 higher.

Our contribution is summarized as follows:

• We propose to solve FWI in an unsupervised manner by connecting CNN and forward
modeling in a loop, enabling end-to-end learning from seismic data alone.

• We find that perceptual loss is helpful to boost the performance comparable to the super-
vised counterpart.

• We introduce a large-scale dataset as benchmark to encourage further research on FWI.

2 PRELIMINARIES OF FULL-WAVEFORM INVERSION (FWI)

The goal of FWI in geophysics is to invert for a velocity map v ∈ RW×H from seismic measure-
ments p ∈ RS×T×R, where W and H denote the horizontal and vertical dimensions of the velocity
map, S is the number of sources used to generate waves during data acquisition process, T de-
notes the number of samples in the wavefields recorded by each receiver, and R represents the total
number of receivers.

In conventional physics-driven methods, forward modeling is commonly referred to the process
of simulating seismic data p̃ from given estimated velocity maps v̂. For simplicity, the forward
acoustic-wave operator f can be expressed as

p̃ = f(v̂) . (2)

Given this forward operator f , the physics-driven FWI can be posed as a minimization prob-
lem (Virieux & Operto, 2009)

E(v̂) = min
v̂

{
||p− f(v̂)||22 + λR(v̂)

}
, (3)

where ||p − f(v̂)||22 is the the `2 distance between true seismic measurements p and the corre-
sponding simulated data f(v̂), λ is a regularization parameter and R(v̂) is the regularization term
which is often the `2 or `1 norm of v̂. This requires optimization per sample, which is slow as the
optimization involves multiple iterations from an initial guess.

Data-driven methods leverage CNNs to directly learn the inverse mapping as (Adler et al., 2021)

v̂ = gθ(p) ≈ f−1(p) , (4)
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where gθ(·) is the approximated inverse operator of f(·) parameterized by θ. In practice, gθ is
usually implemented as a CNN (Adler et al., 2021; Wu & Lin, 2019). This requires paired seismic
data and velocity maps for supervised learning. However, the acquisition of large volume of velocity
maps in field applications can be extremely challenging and computationally prohibitive.

3 METHOD

In this section, we present our Unsupervised Physics-informed solution (named UPFWI), which
connects CNN and forward modeling in a loop. It addresses limitations of both physics-driven and
data-driven approaches, as it requires neither optimization at inference (per sample), nor velocity
maps as supervision.

3.1 UPFWI: CONNECTING CNN AND FORWARD MODELING

As depicted in Figure 1, our UPFWI connects a CNN gθ and a differentiable forward operator f
to form a loop. In particular, the CNN takes seismic measurements p as input and generates the
corresponding velocity map v̂. We then apply forward acoustic-wave operator f (see Equation 2)
on the estimated velocity map v̂ to reconstruct the seismic data p̃. Typically, the forward modeling
employs finite difference (FD) to discretize the wave equation (Equation 1). The details of forward
modeling will be discussed Section 3.3. The loop is closed by the reconstruction loss between input
seismic data p and reconstructed seismic data p̃ = f(gθ(p)). Notice that the ground truth of the
velocity map v is not involved, and the training process is unsupervised. Since the forward operator
is differentiable, the reconstruction loss can be backpropagated (via gradient descent) to update the
parameters θ in the CNN.

3.2 CNN NETWORK ARCHITECTURE

We use an encoder-decoder structured CNN (similar to Wu & Lin (2019) and Zhang & Lin (2020))
to model the mapping from seismic data p ∈ RS×T×R to velocity map v ∈ RW×H . The encoder
compresses the seismic input and then transforms the latent vector to build the velocity estimation
through a decoder. See the implementation details in Appendix A.1.

3.3 DIFFERENTIABLE FORWARD MODELING

We apply the standard finite difference (FD) in the space domain and time domain to discretize
the original wave equation. Specifically, the second-order central finite difference in time do-
main (∂

2p(r,t)
∂t2 in Equation 1) is approximated as follows:

∂2p(r, t)

∂t2
≈ 1

(∆t)2
(pt+1

r − 2ptr + pt−1
r ) +O[(∆t)2] , (5)

where ptr denotes the pressure wavefields at timestep t, and pt+1
r and pt−1

r are the wavefields at
t+ ∆t and t−∆t, respectively. The Laplacian of p(r, t) can be estimated in the similar way on the
space domain (see Appendix A.2). Therefore, the wave equation can then be written as

pt+1
r = (2− v2∇2)ptr − pt−1

r − v2(∆t)2str , (6)

where∇2 here denotes the discrete Laplace operator.

The initial wavefield at the initial timestep is set to zero (i.e. p0
r = 0). Thus, the gradient of loss L

with respect to estimated velocity at spatial location r can be computed using the chain rule as

∂L
∂v(r)

=

T∑
t=0

[
∂L

∂p(r, t)

]
∂p(r, t)

∂v(r)
, (7)

where T indicates the total number of timesteps.
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3.4 LOSS FUNCTION

The reconstruction loss of our UPFWI includes a pixel-wise loss and a perceptual loss as follows:

L(p, p̃) = Lpixel(p, p̃) + Lperceptual(p, p̃), (8)

where p and p̃ are input and reconstructed seismic data, respectively. The pixel-wise loss Lpixel
combines `1 and `2 distance as:

Lpixel(p, p̃) = λ1`1(p, p̃) + λ2`2(p, p̃), (9)

where λ1 and λ2 are two hyper-parameters to control the relative importance. For the perceptual
loss Lperceptual, we extract features from conv5 in a VGG-16 network (Simonyan & Zisserman,
2015) pretrained on ImageNet (Krizhevsky et al., 2012) and combine the `1 and `2 distance as:

Lperceptual(p, p̃) = λ3`1(φ(p), φ(p̃)) + λ4`2(φ(p), φ(p̃)), (10)

where φ(·) represents the output of conv5 in the VGG-16 network, and λ3 and λ4 are two hyper-
parameters. Compared to the pixel-wise loss, the perceptual loss is better to capture the region-wise
structure, which reflects the waveform coherence. This is crucial to boost the overall accuracy of
velocity maps (e.g. the quantitative velocity values and the structural information).

4 OPENFWI DATASET

We introduce a new large-scale geophysics FWI dataset OpenFWI, which consists of 108K seismic
data for two types of velocity maps: one with flat layers (named FlatFault) and the other one with
curved layers (named CurvedFault). Each type has 54K seismic data, including 30K with paired
velocity maps (labeled) and 24K unlabeled. The 30K labeled pairs are splitted as 24K/3K/3K for
training, validation and testing respectively. Samples are shown in Appendix A.3.

The shape of curves in our dataset follows a sine function. Velocity maps in CurvedFault are de-
signed to validate the effectiveness of FWI methods on curved topography. Compared to the maps
with flat layers, curved velocity maps yield much more irregular geological structures, making in-
version more challenging. Both FlatFault and CurvedFault contain 30,000 samples with 2 to 4 layers
and their corresponding seismic data. Each velocity map has dimensions of 70×70, and the grid size
is 15 meter in both directions. The layer thickness ranges from 15 grids to 35 grids, and the veloc-
ity in each layer is randomly sampled from a uniform distribution between 3,000 meter/second and
6,000 meter/second. The velocity is designed to increase with depth to be more physically realistic.
We also add geological faults to every velocity map. The faults shift from 10 grids to 20 grids, and
the tilting angle ranges from -123◦ to 123◦.

To synthesize seismic data, five sources are evenly placed on surface with a 255-meter spacing, and
seismic traces are recorded by 70 receivers at each grid with an interval of 15 meter. The source is
a Ricker wavelet with a central frequency of 25 Hz (Wang, 2015). Each receiver records time-series
data for 1 second, and we use a 1 millisecond sample rate to generate 1,000 timesteps. Therefore, the
dimensions of seismic data become 5×1000×70. Compared to existing datasets (Yang & Ma, 2019;
Moseley et al., 2020), OpenFWI is significantly larger. It includes more complicated and physically
realistic velocity maps. We hope it establishes a more challenging benchmark for the community.

5 EXPERIMENTS

In this section, we present experimental results of our proposed UPFWI evaluated on the OpenFWI.

5.1 IMPLEMENTATION DETAILS

Training Details: The input seismic data are normalized to range [−1, 1]. We employ
AdamW (Loshchilov & Hutter, 2018) optimizer with momentum parameters β1 = 0.9, β2 = 0.999
and a weight decay of 1× 10−4 to update all parameters of the network. The initial learning rate is
set to 3.2 × 10−4, and we reduce the learning rate by a factor of 10 when validation loss reaches a
plateau. The minimum learning rate is set to 3.2× 10−6. The size of a mini-batch is set to 128. All
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Supervision Method
FlatFault CurvedFault

MAE ↓ MSE ↓ SSIM ↑ MAE ↓ MSE ↓ SSIM ↑

Supervised
InversionNet 15.83 2156.00 0.9832 23.77 5285.38 0.9681
VelocityGAN 16.15 1770.31 0.9857 25.83 5076.79 0.9699

H-PGNN+
(our implementation)

12.91 1565.02 0.9874 24.19 5139.60 0.9685

Unsupervised
UPFWI-24K (ours) 16.27 1705.35 0.9866 29.59 5712.25 0.9652
UPFWI-48K (ours) 14.60 1146.09 0.9895 23.56 3639.96 0.9756

Table 1: Quantitative results evaluated on OpenFWI in terms of MAE, MSE and SSIM. Our
UPFWI yields comparable inversion accuracy comparing to supervised baselines. For H-PGNN+,
we use our network architecture to replace the original one reported in their paper, and an additional
perceptual loss between seismic data is added during training.

Ground Truth InversionNet VelocityGAN H-PGNN+ UPFWI-24K (Ours) UPFWI-48K (Ours)

Figure 4: Comparison of different methods on inverted velocity maps of FlatFault (top) and
CurvedFault (bottom). For FlatFault, our UPFWI-48K reveals more accurate details at layer
boundaries and the slope of the fault in deep region. For CurvedFault, our UPFWI reconstructs
the geological anomalies on the surface that best match the ground truth.

trade-off hyper-parameters λ in our loss function are set to 1. We implement our models in Pytorch
and train them on 8 NVIDIA Tesla V100 GPUs. All models are randomly initialized.

Evaluation Metrics: We consider three metrics for evaluating the velocity maps inverted by our
method: MAE, MSE and SSIM. Both MAE and MSE have been employed in existing methods (Wu
& Lin, 2019; Zhang & Lin, 2020) to measure pixel-wise errors. Considering the layered-structured
velocity maps contain highly structured information, degradation or distortion can be easily per-
ceived by a human. To better align with human vision, we employ SSIM to measure perceptual
similarity. Note that for MAE and MSE calculation, we denormalize velocity maps to their original
scale while we keep them in normalized scale [-1, 1] for SSIM according to the algorithm.

Comparison: We compare our method with three state-of-the-art algorithms: two pure data-driven
methods, i.e., InversionNet (Wu & Lin, 2019) and VelocityGAN (Zhang & Lin, 2020), and a physics-
informed method H-PGNN (Sun et al., 2021). We follow the implementation described in these
papers and search for the best hyper-parameters for OpenFWI dataset. Note that we improve H-
PGNN by replacing the network architecture with the CNN in our UPFWI and adding perceptual
loss, resulting in a significant boosted performance. We refer our implementation as H-PGNN+,
which is a strong supervised baseline. Our method has two variants (UPFWI-24K and UPFWI-
48K), using 24K and 48K unlabeled seismic data respectively.

5.2 MAIN RESULTS

Results on FlatFault: Table 1 shows the results of different methods on FlatFault. Compared to
InversionNet and VelocityGAN, our UPFWI-24K performs better in MSE and SSIM, but is slightly
worse in MAE score. Compared to H-PGNN+, there is a gap between our UPFWI-24K and H-
PGNN+ when trained with the same amount of data. However, after we double the size of unlabeled
data (from 24K to 48K), a significant improvement is observed in our UPFWI-48K for all three
metrics, and it outperforms all three supervised baselines in MSE and SSIM. This demonstrates the
potential of our UPFWI for achieving higher performance with more unlabeled data involved.
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(a) (b)

Ground Truth pixel-`2 pixel-`1`2
pixel-`1`2+
perceptual

Figure 5: Comparison of UPFWI with different loss functions on (a) waveform residual and
their corresponding inversion results (ground truth provided in the first column), and (b) single trace
residuals recorded by the receiver at 525 m offset. Our UPFWI trained with pixel-wise loss (`1+`2
distance) and perceptual loss yields the most accurate results. Best viewed in color.

The velocity maps inverted by different methods are shown in the top row of Figure 4. Consistent
with our quantitative analysis, more accurate details are observed in the velocity maps generated
by UPFWI-48K. For instance, we find in the visualization results that both InversionNet and Ve-
locityGAN generate blurry results in deep region, while H-PGNN+, UPFWI-24K and UPFWI-48K
yield much clearer boundaries. We attribute this finding as the impact of seismic loss. We further
observe that the slope of the fault in deep region is different from that in the shallow region, yet only
UPFWI-48K replicates this result as highlighted by the green square.

Results on CurvedFault: Table 1 shows the results of CurvedFault. Performance degradation is ob-
served for all models, due to the more complicated geological structures in CurvedFault. Although
our UPFWI-24K underperforms the three supervised baselines, our UPFWI-48K significantly boosts
the performance, outperforming all supervised methods in terms of all three metrics. This demon-
strates the power of unsupervised learning in our UPFWI that greatly benefits from more unlabeled
data when dealing with more complicated curved structure.

The bottom row of Figure 4 shows the visualized velocity maps in CurvedFault obtained using dif-
ferent methods. Similar to the observation in FlatFault, our UPFWI-48K yields more accurate details
compared to the results of supervised methods. For instance, only our UPFWI-24K and UPFWI-
48K precisely reconstruct the fault beneath the curve around the top-left corner as highlighted by
the yellow square. Although some artifacts are observed in the results of UPFWI-24K around the
layer boundary in deep region, they are eliminated in the results of UPFWI-48K. More visualization
results are shown in Appendix A.3.

5.3 ABLATION STUDY

Loss Velocity Error Seismic Error

pixel-`2 pixel-`1 perceptual MAE ↓ MSE ↓ SSIM ↑ MAE ↓ MSE ↓ SSIM ↑
X 32.61 10014.47 0.9735 0.0167 0.0023 0.9978

X X 21.71 2999.55 0.9775 0.0155 0.0025 0.9977

X X X 16.27 1705.35 0.9866 0.0140 0.0021 0.9984

Table 2: Quantitative results of our UPFWI with different loss
function settings.

Loss Terms: We study the con-
tribution of each loss term in our
loss function: (a) pixel-wise `2
distance (MSE), (b) pixel-wise
`1 distance (MAE), and (c) per-
ceptual loss. All experiments
are conducted on FlatFault using
24,000 unlabeled data.

Figure 5a shows the predicted velocity maps for using three loss combinations (pixel-`2, pixel-`1`2,
pixel-`1`2+perceptual) in UPFWI. The ground truth seismic data and velocity map are shown in the
left column. For each loss option, we show the difference between the reconstructed and the input
seismic data (on the top) and predicted velocity (on the bottom). When using pixel-wise loss in l2
distance alone, there are some obvious artifacts in both seismic data (around 600 millisecond) and
velocity map. These artifacts are mitigated by introducing additional pixel-wise loss in l1 distance.
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Method
Marmousi Salt

MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑
InversionNet 149.67 45936.23 0.7889 25.98 8669.98 0.9764

UPFWI 221.93 125825.75 0.7920 150.34 164595.28 0.7837

Table 3: Quantitative results of our UPFWI evaluated on
Marmousi and Salt datasets.

Network MAE↓ MSE↓ SSIM↑
CNN 16.27 1705.35 0.9866

ViT 41.44 11029.01 0.9461

MLP-Mixer 22.32 4177.37 0.9726

Table 4: Quantitative results of our UP-
FWI with different architectures.

With perceptual loss added, more details are correctly retained (e.g. seismic data from 400 millisec-
ond to 600 millisecond, velocity boundary between layers). Figure 5b compares the reconstructed
seismic data (in terms of residual to the ground truth) at a slice of 525 meter offset (orange dash line
in Figure 5a). Clearly, the combination of pixel-wise and perceptual loss has the smallest residual.

The quantitative results are shown in Table 2. They are consistent with our observation in qualitative
analysis (Figure 5a). In particular, using pixel-wise loss in `2 distance has the worst performance.
The involvement of `1 distance mitigates velocity errors but is slightly worse on MSE and SSIM
of seismic error. Adding perceptual loss boosts the performance in all metrics by a clear margin.
This shows perceptual loss is helpful to retain waveform coherence, which is correlated to velocity
boundary, and validates our proposed loss function (combining pixel-wise and perceptual loss).

σ

(10−4)
FlatFault CurvedFault

PSNR MAE↓ MSE↓ SSIM↑ PSNR MAE↓ MSE↓ SSIM↑
0.5 61.60 15.68 1343.21 0.9888 61.72 23.78 3704.00 0.9751

1.0 58.70 24.84 4010.78 0.9733 58.70 24.84 4010.78 0.9733

5.0 51.58 44.33 7592.57 0.9681 51.68 46.90 10415.38 0.9441

Table 5: Quantitative results of our UPFWI tested on seismic
inputs with different noise levels.

More Challenging Datasets: We
further evaluate our UPFWI on two
more challenging tests including
Marmousi and Salt (Yang & Ma,
2019) datasets and achieve solid re-
sults. For Marmousi dataset, we fol-
low the work of Feng et al. (2021)
and employ the Marmousi velocity
map as the style image to construct a low-resolution dataset. Table 3 shows the quantitative results
on both datasets. Although our UPFWI achieves good results on Salt dataset with preserved sub-
surface structures, it has clearly larger errors than the supervised InversionNet. This is due to two
reasons: (a) Salt dataset has a small amount of training data (120 samples), which is very chal-
lenging for unsupervised methods; (b) the variability between training and testing samples is small,
providing a significantly larger favor to supervised methods than the unsupervised counterparts. The
visualization of results on Marmousi dataset and Salt data are shown in Appendix A.4.

Missing
Traces

FlatFault CurvedFault
MAE↓ MSE↓ SSIM↑ MAE↓ MSE↓ SSIM↑

4 (5%) 21.23 1772.05 0.9868 41.33 6914.12 0.9622

7 (10%) 33.66 3504.25 0.9814 61.72 12445.90 0.9453

17 (25%) 85.21 16731.69 0.9457 121.06 36770.77 0.8853

Table 6: Quantitative results of our UPFWI tested on
seismic inputs with missing traces.

Other Network Architectures: We fur-
ther conducted experiments by using Vision
Transformer (ViT, Dosovitskiy et al., 2020)
and MLP-Mixer (Tolstikhin et al., 2021) to
replace CNN as the encoder. Table 4 further
shows the quantitative results. Solid results
are obtained for both network architectures,
indicating our proposed method is model-
agnostic. Visualization results are shown in Appendix A.4.

Robustness Evaluation: We validate the robustness of our UPFWI models by two additional tests:
(1) testing data contaminated by Gaussian noise and (2) testing data with missing traces. The quan-
titative results are shown in Table 5 and Table 6, respectively. We observe that in both experiments
our model is robust to a certain level of noise and irregular acquisition. Visualization results are
shown in Appendix A.4.

6 DISCUSSION

Our UPFWI has two major limitations. Firstly, it needs further improvement on a small number of
challenging velocity maps where adjacent layers have very close velocity values. We find that the
lack of supervision is not the cause as our UPFWI yields comparable or even better results compared
to its supervised counterparts. Another limitation is the speed and memory consumption for forward
modeling, as the gradient of finite difference (see Equation 6) need to be stored for backpropagation.
We will explore different loss functions (e.g. adversarial loss) and methods that can balance the
requirement of computation resources and the accuracy in the future work. We believe the idea
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of connecting CNN and PDE to solve full-waveform inversion has potential to be applied to other
inverse problems with a governing PDE such as medical imaging and flow estimation.

7 RELATED WORK

Physics-driven Methods: In the past few decades, many regularization techniques have been pro-
posed to alleviate the ill-posedness and non-linearity of FWI (Hu et al., 2009; Burstedde & Ghattas,
2009; Ramı́rez & Lewis, 2010; Lin & Huang, 2017; 2015b;a; Guitton, 2012; Treister & Haber,
2016). Other researchers focused on multi-scale techniques and decomposed the data into different
frequency bands (Bunks et al., 1995; Boonyasiriwat et al., 2009).

Data-driven Methods: Recently, some researchers employed neural networks to solve FWI. Those
methods can be further divided into supervised and unsupervised methods.

Supervised: One type of supervised methods require labeled samples to directly learn the inverse
mapping, and they can be formulated as:

v̂(p) = gθ∗(p) s.t. θ∗(Φs) = arg min
θ

∑
{vi,pi}∈Φs

L(gθ(pi), vi), (11)

where p denotes the seismic measurements, v is the velocity map, θ represents the trainable weights
in the inversion network gθ(·), f(·) is the forward modeling, andL(·, ·) is a loss function. One exam-
ple of supervised methods is the fully connected network proposed by Araya-Polo et al. (2018). Wu
& Lin (2019) developed an encoder-decoder structured network to handle more complex velocity
maps. Zhang & Lin (2020) adopted GAN and transfer learning to improve generalizability. Li et al.
(2020) designed SeisInvNet to solve misaligned issue when dealing sources from different locations.
In Yang & Ma (2019), a U-Net architecture was proposed with skip connections. Feng et al. (2021)
proposed a multi-scale framework by considering different frequency components. Rojas-Gómez
et al. (2020) developed an adaptive data augmentation method to improvegeneralizability. Sun et al.
(2021) combined the data-driven and physics-based methods and proposed H-PGNN model.

Another type of supervised methods GANs to learn a distribution from velocity maps in training set
as a prior (Richardson, 2018; Mosser et al., 2020). They can be formulated as:

v̂(z∗) = gθ∗(z∗) s.t. z∗(p) = arg min
z

L(f(gθ∗(z)),p),

θ∗(Φv) = arg min
θ

∑
vi∈Φv

LGAN(gθ(αi),vi),
(12)

where Φv is a training dataset including numerous velocity maps. z and αi are tensors sampled
from the normal distribution. The iterative optimization is then performed on z to draw a velocity
map sampled from the prior distribution.

Unsupervised: The existing unsupervised methods follow the iterative optimization paradigm and
perform FWI per sample. They employ neural networks to reparameterize velocity maps. The
networks serve as an implicit regularization and are required to be pretrained on an expert initial
guess. Those methods can be formulated as:

v̂(p) = gθ∗(p)(a) s.t. θ∗(p) = arg min
θ
L(f(gθ(a)),p), (13)

where a is a random tensor. Different network architectures have been proposed including CNN-
domain FWI (Wu & McMechan, 2019) and DNN-FWI (He & Wang, 2021). Zhu et al. (2021)
developed NNFWI which does not need pretraining ahead, but the initial guess is still required to be
fed into the PDE with estimated velocity maps.

8 CONCLUSION

In this study, we introduce an unsupervised method named UPFWI to solve FWI by connecting CNN
and forward modeling in a loop. Our method can learn the inverse mapping from seismic data alone
in an end-to-end manner. We demonstrate through a series of experiments that our UPFWI trained
with sufficient amount of unlabeled data outperforms the supervised counterpart on our dataset. The
ablation study further substantiates that perceptual loss is a critical component in our loss function
and has a great contribution to the performance of our UPFWI.
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A APPENDIX

A.1 NETWORK ARCHITECTURE

Since the number of receivers R and the number of timesteps T in seismic measurements are unbal-
anced (T � R), we first stack a 7×1 and six 3×1 convolutional layers (with stride 2 every the other
layer to reduce dimension) to extract temporal features until the temporal dimension is close to R.
Then, six 3×3 convolutional layers are followed to extract spatial-temporal features. The resolution
is down-sampled every the other layer by using stride 2. Next, the feature map is flattened and a
fully connected layer is applied to generate the latent feature with dimension 512. The decoder first
repeats the latent vector by 25 times to generate a 5×5×512 tensor. Then it is followed by five 3×3
convolutional layers with nearest neighbor upsampling in between, resulting in a feature map with
size 80×80×32. Finally, we center-crop the feature map (70×70) and apply a 3×3 convolution
layer to output a single channel velocity map.

All the aforementioned convolutional and upsampling layers are followed by a batch normaliza-
tion (Ioffe & Szegedy, 2015) and a leaky ReLU (Nair & Hinton, 2010) as activation function.

A.2 DERIVATION OF FORWARD MODELING IN PRACTICE

Similar to the finite difference in time domain, in 2D situation, by applying the fourth-order central
finite difference in space, the Laplacian of p(r, t) can be discretized as

∇2p(r, t) =
∂2p

∂x2
+
∂2p

∂z2
,

≈ 1

(∆x)2

2∑
i=−2

cip
t
x+i,z +

1

(∆z)2

2∑
i=−2

cip
t
x,z+i

+O[(∆x)4 + (∆z)4] ,

(14)

where c0 = − 5
2 , c1 = 4

3 , c2 = − 1
12 , ci = c−i, and x and z stand for the horizontal offset and the

depth of a 2D velocity map, respectively. For convenience, we assume that the vertical grid spacing
∆z is identical to the horizontal grid spacing ∆x.

Given the approximation in Equations 5 and 14, we can rewrite the Equation 1 as

pt+1
x,z = (2− 5α)ptx,z − pt−1

x,z − (∆x)2αstx,z + α

2∑
i=−2
i 6=0

ci(p
t
x+i,z + ptx,z+i) , (15)

where α = (v∆t
∆x )2.

During the simulation of the forward modeling, the boundaries of the velocity maps should be care-
fully handled because they may cause reflection artifacts that interfere with the desired waves. One
of the standard methods to reduce the boundary effects is to add absorbing layers around the original
velocity map. Waves are trapped and attenuated by a damping parameter when propagating through
those absorbing layers. Here, we follow Collino & Tsogka (2001) and implement the damping
parameter as

κ = d(u) =
3uv

2L2
ln(R) , (16)

where L denotes the overall thickness of absorbing layers, u indicates the distance between the
current position and the closest boundary of the original velocity map, and R is the theoretical

12
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reflection coefficient chosen to be 10−7. With absorbing layers added, Equation 6 can be ultimately
written as

pt+1
x,z = (2− 5α− κ)ptx,z − (1− κ)pt−1

x,z − (∆x)2αstx,z + α

2∑
i=−2
i 6=0

ci(p
t
x+i,z + ptx,z+i) . (17)

A.3 OPENFWI EXAMPLES AND INVERSION RESULTS OF DIFFERENT METHODS

Velocity
Seismic Measurements in Five Channels

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

Figure 6: More examples of velocity maps and their corresponding seismic measurements in Open-
FWI dataset.
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Ground Truth InversionNet VelocityGAN H-PGNN+
UPFWI-24K

(Ours)
UPFWI-48K

(Ours)

Figure 7: Comparison of different methods on inverted velocity maps of FlatFault. The details
revealed by our UPFWI are highlighted.
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Ground Truth InversionNet VelocityGAN H-PGNN+
UPFWI-24K

(Ours)
UPFWI-48K

(Ours)

Figure 8: Comparison of different methods on inverted velocity maps of CurvedFault. The details
revealed by our UPFWI are highlighted.
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A.4 ADDITIONAL EXPERIMENT RESULTS

Ground Truth Ground Truth Prediction Prediction

Figure 9: Results of low-resolution Marmousi Dataset. This dataset contains low-resolution ve-
locity maps generated using style tranfer with the Marmousi velocity map as the style images. Our
UPFWI model yields good results in shallow regions, and it also captures some geological structures
in deeper regions. Similar phenomenon is also observed in the prediction of the smoothed Marmousi
velocity map (bottom-right corner).

Figure 10: Results of salt bodies dataset. This dataset contains more complicated velocity maps.
Our UPFWI model yields good velocity map prediction (bottom) on both salt bodies and background
geological structures compared to the ground truth (top).
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Ground Truth CNN MLP-Mixer ViT

Figure 11: Results of UPFWI with different network architectures. We replace the CNN in our
model with Vision Transformer (ViT) and MLP-Mixer as the encoder and test them on the FlatFault
dataset. Both models yield reasonable velocity maps. This demonstrates that our proposed learning
paradigm is model-agnostic.
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Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean PSNR=61.60dB PSNR=58.70dB PSNR=51.58dB

Figure 12: Results of adding Gaussian noise to FlatFault. The model is trained on the clean data
(without noise) and tested on different levels (PSNR) of Gaussian noises. Clearly, our method is
robust to the noise although slight degradation is observed when noise level increases.

Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean PSNR=61.72dB PSNR=58.70dB PSNR=51.68dB

Figure 13: Results of adding Gaussian noise to CurvedFault. The model is trained on the clean
data (without noise) and tested on different levels (PSNR) of Gaussian noises. Similar to the results
of FlatFault, our method is robust to the noise although slight degradation is observed when noise
level increases.
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Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean 7 Missing 10 Missing 17 Missing

Figure 14: Results of randomly missing traces on FlatFault. The model is trained on the clean
data (without missing traces) and tested on multiple missing rates from 5% to 25%. Our method is
robust to the missing traces. Although the higher missing rate leads to shifts in velocity values, the
geological structures are well preserved.

Seismic Input

Velocity Map

Seismic Input

Velocity Map

Ground Truth Clean 7 Missing 10 Missing 17 Missing

Figure 15: Results of randomly missing traces on CurvedFault. The model is trained on the clean
data (without missing traces) and tested on multiple missing rates from 5% to 25%. Similar to the
results of FlatFault, our method is robust to the missing traces. Although the higher missing rate
leads to shifts in velocity values, the geological structures are well preserved.
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Additional experiments to investigate generalization. We conducted two additional experiments:
(1) training our model on the CurvedFault dataset and further testing on the FlatFault dataset (visu-
alization results are listed in Figure 16, and quantitative results are shown in Table 7); (2) testing our
model on time-lapse imaging problems (visualization results are listed in Figure 17). The results
demonstrate that our proposed model yields generalization ability to a certain degree.

Training Dataset Test Dataset MAE↓ MSE↓ SSIM↑
FlatFault FlatFault 14.60 1146.09 0.9895

CurvedFault FlatFault 50.80 17627.65 0.9253

Table 7: Quantitative results of our UPFWI models evaluated on FlatFault.

Ground Truth

Prediction

Figure 16: Results on generalization across datasets. The test is performed on FlatFault by apply-
ing a UPFWI model that is trained on CurvedFault dataset. Although the artifact is not negligible,
the fault structures and velocity values are well preserved. This demonstrates that our model has
generalizability to a certain degree.

Ground Truth

Prediction

Ground Truth

Prediction

t = 0 t = 1 t = 2 t = 3

Figure 17: Results on generalizability over geological anomalies. The test is performed on a
dataset where we add additional geological anomalies to simulate time-lapse imaging problems.
The velocity maps containing those anomalies are not included during training. However, our model
captures the spatial and temporal dynamics of anomalies in prediction. This demonstrates that our
model has generalizability to a certain degree.
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