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ABSTRACT

Recent advances in Large Language Models (LLMs) have enabled researchers
to focus on practical repository-level tasks in software engineering domain. In
this work, we consider a cornerstone task for automating work with software
repositories—environment setup, i.e., a task of configuring a repository-specific
development environment on a system. Existing studies on environment setup in-
troduce innovative agentic strategies, but their evaluation is often based on small
datasets that may not capture the full range of configuration challenges encoun-
tered in practice. To address this gap, we introduce a comprehensive environment
setup benchmark ENVBENCH. It encompasses 329 Python and 665 JVM-based
(Java, Kotlin) repositories, with a focus on repositories that present genuine con-
figuration challenges, excluding projects that can be fully configured by simple
deterministic scripts. To enable further benchmark extension and usage for model
tuning, we implement two automatic metrics: a static analysis check for miss-
ing imports in Python and a compilation check for JVM languages. We demon-
strate the applicability of our benchmark by evaluating three environment setup
approaches, including a simple zero-shot baseline and two agentic workflows, that
we test with two powerful LLM backbones, GPT-4o and GPT-4o-mini. The best
approach manages to successfully configure 6.69% repositories for Python and
29.47% repositories for JVM, suggesting that ENVBENCH remains challenging
for current approaches. Our benchmark suite is publicly available at https:
//github.com/JetBrains-Research/EnvBench. The dataset and ex-
periment trajectories are available at https://jb.gg/envbench.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have enabled their application across many
domains, including software engineering (Fan et al., 2023). Their capabilities in reasoning and
interaction with external environments (Liu et al., 2024b; Wang et al., 2024b), as well as in efficient
processing of large amounts of information (Wang et al., 2024a), have allowed researchers to tackle
practical repository-level software engineering tasks, such as code generation (Liu et al.; Zhao et al.,
2024), code editing (Jimenez et al., 2024), and code understanding (Ma et al., 2024; Luo et al., 2024;
Liu et al., 2024a).

In this work, we focus on another repository-level task that programmers face regularly—
environment setup, i.e., configuring the system to work with an arbitrary software project, for in-
stance, a freshly cloned GitHub repository. It usually entails installing the dependencies but might
include arbitrary project-specific steps, such as installing additional system packages, setting the
correct environment variables, and more. A well-maintained project should be straightforward to
set up, however, in practice, it is not always the case. For instance, setting up the repository is per-
ceived to be the most challenging part of reproducing Natural Language Processing (NLP) research
results, according to Storks et al. (2023), it may take up to several hours. Similarly, a survey con-
ducted by Aghajani et al. (2020) reveals that incomplete documentation of installation, deployment,
and release processes is considered a significant issue by 68% of developers, and 63% report inap-
propriate installation instructions as a prevalent concern. Moreover, automating environment setup

∗Work done during internship at JetBrains Research.

1

mailto:alexandra.eliseeva@jetbrains.com
https://github.com/JetBrains-Research/EnvBench
https://github.com/JetBrains-Research/EnvBench
https://jb.gg/envbench


Published as a conference paper at ICLR 2025

      Language Model

      AI Agent

Repository

src
tests

Make�le
pyproject.toml

README.md

reqs-dev.txt

Evaluation Results

     Script completed w/o errors

Pyright output: 

     Missing Packages:

distutils, torch, numpy

apt-get install libpq-dev
make dev
pyenv global 3.13.1
pip install -e .[all]
pip install -r reqs-dev.txt

Generated Script     Environment Setup

Figure 1: Overview of the workflow with ENVBENCH. The process begins with cloning a target
repository. Next, the repository is passed as an input to an environment setup approach, which then
produces a shell script to set up the repository as an output. Internally, it could be, for instance, a
single LLM request or an AI agent building a script dynamically. Finally, in our evaluation suite,
we execute the produced script and verify the environment is correctly configured through static
analysis and compilation checks.

could enable scaling of the execution-based benchmarks, which currently often require significant
manual effort to select a set of executable repositories (Jimenez et al., 2024).

As of now, few studies have considered environment setup as a standalone task. There are numerous
works that include environment setup as a part of a larger task—for instance, scientific reproduc-
tion (Siegel et al., 2024; Bogin et al., 2024) or solving machine learning problems (Tang et al.,
2024). However, to the best of our knowledge, there are only two works specifically on environment
setup concurrent to ours (Milliken et al., 2024; Bouzenia & Pradel, 2024). While these works rep-
resent important progress in automating environment setup, they primarily focus on novel agentic
strategies rather than on comprehensive benchmarking. That manifests in a limited number of the
software projects and technologies covered in the respective datasets. For instance, the dataset from
Milliken et al. (2024) features 40 Python repositories, and Bouzenia & Pradel (2024) includes 10
repositories for each of the considered languages (Python, Java, C, C++, and JavaScript).

Taking this into consideration, we introduce a novel environment setup benchmark—ENVBENCH.
It features a diverse set of projects, covering Python (329 repositories) and JVM languages such
as Java and Kotlin (665 repositories in total). We implement two automatic metrics to verify that
the environment is set up correctly — static analysis to obtain the number of missing imports (i.e.,
the number of import statements across the codebase that couldn’t be resolved via static analysis
due to the corresponding package not being installed) for Python and a compilation check for JVM
languages. We ensure that the projects included in our benchmark present genuine configuration
challenges by implementing simple deterministic shell scripts and excluding repositories that can be
correctly configured by these scripts alone. Finally, we evaluate three environment setup approaches
with two powerful LLMs, GPT-4o and GPT-4o-mini. Our set of baselines includes a simple zero-
shot setting, a ReAct (Yao et al., 2023) agentic workflow with access to the Bash terminal similar
to Bouzenia & Pradel (2024) (Bash Agent), and an agentic setting following Milliken et al. (2024)
(Installamatic Agent).

Our findings show that the Bash Agent with GPT-4o achieves the highest success rates, correctly
configuring 29.47% of the JVM repositories and 6.69% of the Python repositories. Although en-
vironment setup for Python remains challenging, LLM-based approaches still reduce the number
of missing imports compared to the deterministic script for many repositories, demonstrating their
potential. Additionally, we observe that LLM-based approaches that are not explicitly provided with
error feedback commonly produce erroneous environment setup scripts. This aligns with previous
findings (Milliken et al., 2024) that several generation attempts with error feedback significantly
improve environment setup capabilities.

Our benchmark suite is publicly available at https://github.com/
JetBrains-Research/EnvBench. The dataset and experiment trajectories are avail-
able at https://jb.gg/envbench.

2 RELATED WORKS

Environment setup, i.e., creating a functioning development environment for a software repository, is
a vital task in software development. The steps involved vary a lot between programming languages
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and even between different repositories coming from the same technology stack, thus complicating
the automation of this task. Moreover, obtaining a subset of executable repositories from a vast
dataset is a common step for execution-based benchmarks. In most recent benchmarks, a check if
a repository is executable is done semi-automatically, with a significant amount of manual work
required (Jimenez et al., 2024; Jain et al., 2024; Tang et al., 2024; Zhao et al., 2024).

Approaches. Given the inherent variability of environment setup of arbitrary repositories, non-ML
automatic approaches are limited and usually tied to a specific ecosystem. For instance, there are
tools that can gather external dependencies from the source code of Python repositories (Gruber &
Fraser, 2023; Vadim Kravcenko, 2014), yet configuring the system to ensure successful installation
is out of their scope. Recently, two AI agents for environment setup were introduced. Milliken et al.
(2024) propose INSTALLAMATIC capable of successfully setting up 21 out of 40 considered Python
repositories. Bouzenia & Pradel (2024) introduce EXECUTIONAGENT that correctly configures
33 out of 50 considered repositories across 5 programming languages (Python, Java, C, C++, and
JavaScript).

Benchmarks. Several recent works have tackled scientific reproduction (Siegel et al., 2024; Bogin
et al., 2024) or solving machine learning problems (Tang et al., 2024) — while both tasks may in-
clude environment setup, the evaluation is conducted in an end-to-end fashion, offering little insight
into the challenges the current LLMs face during environment setup. To the best of our knowledge,
there are two existing benchmarks tailored specifically for the environment setup task — we’ll refer
to them by the names of accompanying approaches, INSTALLAMATICbench (Milliken et al., 2024)
and EXECUTIONAGENTbench (Bouzenia & Pradel, 2024), respectively. INSTALLAMATICbench con-
tains 40 Python repositories. Milliken et al. (2024) manually inspect the repositories and provide
ground truth installation-relevant context and an exemplar Dockerfile for each. The expected output
is a Dockerfile, and the success metric is for at least one test to pass with the generated Dockerfile.
EXECUTIONAGENTbench covers 5 programming languages (Python, Java, C, C++, and JavaScript)
with 10 repositories for each programming language. Bouzenia & Pradel (2024) select the repos-
itories with CI logs available, providing the ground truth results of test suite execution for each
repository. The expected outputs are both a Dockerfile that specifies system configuration and a
shell script that sets up the environment and runs tests. For evaluation, the authors consider three
metrics: success build rate, success test rate, and deviation from the ground truth in terms of the
number of passing, failing, and skipped tests. The first two metrics require manual inspection. In
addition, both works focus on rather popular projects: Milliken et al. (2024) consider repositories
with at least 1000 stars on GitHub, while Bouzenia & Pradel (2024) — with at least 100.

Our contributions. Compared to existing benchmarks, our benchmark covers a broader range of
994 repositories across three programming languages (Python, Java, Kotlin) and two distinct ecosys-
tems (Python and JVM). We apply more relaxed star filters (minimum 10) and exclude repositories
that can be configured using simple deterministic scripts, ensuring genuine environment setup chal-
lenges. Unlike benchmarks relying on test execution, we use static analysis (Python) and compi-
lation checks (JVM) to verify successful setup. Similar to Bouzenia & Pradel (2024), we employ
shell script output format for the environment setup approaches, however, we provide predefined
Dockerfiles to ensure that base system configuration remains consistent across all approaches.

3 ENVBENCH BENCHMARK

In this section, we describe ENVBENCH—our benchmark for environment setup task. We con-
sider repositories written in Python or in the JVM-based languages (specifically, Java and Kotlin),
representing two popular1 yet fundamentally different technology stacks. Refer to Appendix A.1
for additional information about the repositories in our benchmark. ENVBENCH is available
at https://jb.gg/envbench. Our evaluation suite and other associated code are available
at https://github.com/JetBrains-Research/EnvBench.

1For instance, from GitHub’s Octoverse report from October 2024, Python is the most used lan-
guage on GitHub, and Java is the 4th: https://github.blog/news-insights/octoverse/
octoverse-2024/
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3.1 TASK DEFINITION

We present an overview of the expected workflow within our benchmark in Figure 1.

Input and output. In our benchmark, the input for an environment setup approach is the full
repository contents, and the expected output is a shell script that configures the repository. Both the
processing of repository contents and the script generation method are integral to the approach. For
example, the process could involve a single LLM request, where the repository context is gathered
using a predefined algorithm, or an LLM agent that dynamically explores the repository and executes
shell commands via provided tools to generate the script.

Evaluation metrics. Given the differences between Python and JVM languages, we implement
two distinct metrics to evaluate whether the repository environment was configured correctly. For
Python, we run a popular static analysis tool pyright (Microsoft, 2019) and count the number of
reported errors related to missing dependencies (specifically, of reportMissingImports type).
For JVM languages, we try to build the repository via either Gradle (gradle build command)
or Maven (mvn compile command), check if the attempt was successful (for both), and report the
number of errors in build tool output (for Maven) . In the process of the benchmark construction,
we verify that the included JVM-based repositories use either Gradle or Maven build tools based
on the presence of the configuration files. Both metrics can finish execution with non-zero exit
codes if the script for configuring a repository is incorrect. In most of the considered configurations,
our metrics allow both a binary success indicator (zero exit code and zero reported errors) and a
continuous measure based on the reported errors per repository that could mitigate the presence of
the repositories that are objectively infeasible to set up successfully.

In contrast with our approach, the previous works on environment setup adopted test suite-based
metrics (Milliken et al., 2024; Bouzenia & Pradel, 2024) that can be considered closer to the real
use-cases. Following Bouzenia & Pradel (2024), execution-based metric for the environment setup
could consist of three criteria: successfully building (or installing) the project, being able to run
the test suite, and test suite working as expected. Each step depends on all the previous finishing
successfully. In our formulation, we cover build (installation) step, discovering most problems that
environment setup approaches could face except those that only appear during runtime. Our metrics
are more lightweight compared to test suite-based, enabling us to scale our benchmark while our
experiments demonstrate that ENVBENCH remains challenging even for powerful LLM-based en-
vironment setup approaches (refer to Section 5 for the results of our experiments). As environment
setup methods advance, ENVBENCH could be extended with test suite-based metrics, ensuring it
remains challenging and closely aligned with real-world use cases.

3.2 EVALUATION SUITE

Environment setup inherently means performing actions that modify system configuration. To pre-
vent automated approaches from possibly corrupting a host system, we implement an evaluation
suite where solutions for each repository are launched in a Docker container (Docker, Inc., 2013).
The overall evaluation process for each repository is as follows. Evaluation suite expects as an in-
put the name of the repository, the revision at which the repository should be considered, and the
environment setup shell script for the repository, supposedly, produced by an environment setup
approach in advance. We clone the repository into a Docker container, execute the provided shell
script, and, if the script execution finishes successfully, execute the metric for the corresponding
language. We release two base Docker images, for Python and for JVM languages, that provide a
minimal set of relevant tools. More details about our evaluation suite Docker configuration can be
found in Appendix A.2.

3.3 DATA COLLECTION AND FILTERING

Data Collection. To construct ENVBENCH, we start by obtaining a diverse list of GitHub repos-
itories using a dedicated tool GitHub Search (Dabic et al., 2021). Our selection criteria include
the primary language of the repository being either Python, Java, or Kotlin, repository having a
permissive license, and a set of quality filters designed to exclude projects that might introduce bi-
ases (Kalliamvakou et al., 2014): at least 1000 commits; at least 10 issues; at least 10 contributors;
at least 10 stars; last commit made not earlier than January 1st, 2024. That way, we focus on ma-
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ture and active projects, but include both popular and those that have received less recognition. We
then clone the source code of the repositories that are still available at the time of July 2024, which
resulted in 2,590 repositories for Python and 1,688 for JVM languages.

Filtering by Contents. We study the configuration files present in the repositories and observe
that the majority of Python projects use either pip (Python Packaging Authority, 2008) or Po-
etry (Python Poetry, 2018) to manage the dependencies, and the presence of other dependency
managers is negligible. Similarly, the majority of JVM projects use either Gradle (Gradle, Inc.,
2010) or Maven (Apache Software Foundation, 2004) build tools. So, as the next step, we filter out
the repositories that either do not contain configuration files associated with the respective depen-
dency managers in their root directory or contain several. This way, we avoid including monorepos
— i.e., repositories that contain several different projects from the point of view of configuration —
from our sample, as setting up a monorepo is a more challenging task, where evaluation can be quite
ambiguous. After this step, we retain 743 repositories for Python and 1,487 for JVM languages.

Additionally, we filter out repositories that contain configuration files related to Docker (Docker,
Inc., 2013) (e.g., Dockerfile or docker-compose.yml). We rely on Docker to sandbox
evaluation and experiments (more details in Section 3.2 and Section 4, respectively), and running
Docker within a Docker container poses significant technical challenges. Furthermore, Docker is of-
ten employed to simplify and encapsulate environment setup, potentially bypassing key challenges.
Following this filtering step, we obtain 391 repositories for Python and 977 for JVM languages.

Baseline Filtering. Intuitively, for many repositories environment setup can be as simple as running
pip install -r requirements.txt. To ensure that our benchmark remains non-trivial,
we implement two fully deterministic shell scripts, one for Python and one for JVM languages (refer
to Appendix A.3 for details). At the core, the algorithms are similar: (1) analyze configuration files
to determine the required dependency manager and Python/Java version; (2) verify if the correct
Python/Java version is installed, and install it if necessary; and (3) install packages using the spec-
ified dependency manager (for Python; for JVM, project builds are excluded as they occur during
evaluation).

We run the baseline scripts and assess their performance using the evaluation suite outlined in Sec-
tion 3.2. For Python, the script successfully (as defined in Section 3.1) sets up 62 repositories
(15.9%), while for JVM languages — 309 repositories (31.6%). From the sample obtained on
the previous step, we were unable to process 3 repositories. After filtering out these unprocessable
repositories, as well as those successfully configured by the baseline scripts, we obtain a final dataset
of 329 Python repositories and 665 JVM repositories.

4 EXPERIMENTAL SETUP

4.1 DATASET & METRICS

Our dataset, ENVBENCH, features 329 Python and 665 JVM repositories. Its construction is de-
scribed in details in Section 3. We implemented two language-specific metrics that rely on either
static analysis (for Python) or compilation check (for JVM languages) to confirm if the repository
was configured correctly (refer to Section 3.1). These metrics output the number of observed er-
rors, however, depending on a shell script produced by an environment setup approach, they might
also exit prematurely with a non-zero exit code. We consider two metrics: pass@1, a binary mea-
sure of success—where success is defined as both the exit code and reported errors being zero—
and avgErrs—the average number of reported errors per repository—which quantifies the extent to
which the setup was completed. Note that avgErrs can only be computed for the repositories where
the environment setup script finished execution with a zero exit code.

4.2 BASELINES

We consider three LLM-based baselines in our experiments. For each baseline, we run experiments
with two proprietary LLMs: GPT-4o and GPT-4o-mini. Refer to Appendix B for implementation
details of each baseline.
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Zero-shot LLM. We construct a prompt with information about a repository (including a directory
structure, README contents, and the contents of the configuration files) and system configuration
for our evaluation suite (Section 3.2) and send a single request to an LLM, asking it to generate a
shell script that correctly configures the environment for the given repository.

Installamatic Agent. We consider environment setup agent INSTALLAMATIC introduced by Mil-
liken et al. (2024). INSTALLAMATIC comprises two stages: (1) a search phase, where the agent
explores the repository contents, and (2) a build/repair phase, where the agent generates and tests
a Dockerfile, with several regeneration attempts allowed in case of failure. We slightly adapt
INSTALLAMATIC to match our evaluation setup (refer to Section 3.2 for details) by asking the agent
to generate a shell script instead of a Dockerfile, providing agent with extra information about the
system configuration for our evaluation suite, and crafting a separate prompt for JVM repositories.
We also do not allow regeneration attempts and report the results with the first version of the script
produced by the agent, which is one of the settings considered by Milliken et al. (2024). In this
formulation, INSTALLAMATIC can be considered an extension of Zero-shot LLM that employs an
agent for context gathering instead of a predefined prompt template; however, shell script generation
is still conducted as a single LLM request.

Bash Agent. We consider a ReAct (Yao et al., 2023) agent that approaches the tasks iteratively,
producing thoughts and actions at each step based on previous observations. As the available ac-
tions, we provide a single execute bash command tool that allows interaction with the system
via shell commands. Due to safety considerations, we execute the commands issued by the agent
inside a Docker container. Compared to Zero-shot LLM and INSTALLAMATIC, this baseline unites
both context gathering and shell script generation in an iterative and dynamic process fully con-
trolled by an LLM agent. Additionally, Bash Agent can be considered as a simplified version of
the EXECUTIONAGENT introduced by Bouzenia & Pradel (2024), as it is similar, but lacks a few
components such as meta-prompting and summarization of the shell commands output.

5 RESULTS & DISCUSSION

Baseline Model
JVM Python

pass@1 ↑ avgErrs ↓
(Maven)

pass@1 ↑ avgErrs ↓
(overlap)

Zero-shot LLM
GPT-4o 8.57%

57/665

480.50
30

5.47%
18/329

54.89

GPT-4o-mini 11.13%
74/665

202.97
72

4.56%
15/329

151.30

Installamatic Agent
GPT-4o 1.35%

9/665

21.43
65

4.86%
16/329

108.93

GPT-4o-mini 3.01%
20/665

33.53
32

2.74%
9/329

83.57

Bash Agent
GPT-4o 29.47%

196/665

26.84
216

6.69%
22/329

52.00

GPT-4o-mini 26.77%
178/665

24.77
205

5.47%
18/329

79.89

Table 1: Main experimental results. pass@1 — percentage of correctly set up repositories, i.e.,
repositories where our metric returned zero exit code and reported zero issues. avgErrs — average
number of the reported errors per repository. For JVM, we only report avgErrs for repositories
using Maven build tool. Note that avgErrs for each baseline can be calculated only over the reposi-
tories where the environment setup script from the corresponding baseline finished with a zero exit
code. For Python, we report avgErrs calculated on 44 repositories where all baselines were able
to produce scripts finishing with a zero exit code. For JVM, there are no such repositories, so we
specify the number of the repositories across which avgErrs is calcualted for each baseline. The
symbol ↑ indicates that higher values in the current column are better, while ↓ indicates that lower
values are better.
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We present the primary results of our experiments in Table 1. Bash Agent with GPT-4o as a back-
bone is the best-performing environment setup approach in terms of pass@1 both for JVM and for
Python, successfully setting up 29.47% and 6.69% of the considered repositories, respectively (with
GPT-4o). Zero-shot LLM is significantly worse for JVM repositories (11.13% with GPT-4o-mini)
and slightly worse for Python (5.47% with GPT-4o). Although Installamatic Agent incorporates
more advanced context gathering than Zero-shot LLM, it ranks as the lowest baseline among con-
sidered, with 3.01% pass@1 (with GPT-4o-mini) for JVM and 4.86% (with GPT-4o) for Python. We
hypothesize that the underlying reason might be that the prompts in Installamatic mostly encourage
considering natural language documents, and those are likely to be of higher quality in the original
dataset considered by Milliken et al. (2024) due to the popularity filter (the average number of stars
is 19k as compared to 1.9k in our dataset).

Our second metric, avgErrs, indicates 52.00 missing imports per repository for the best-performing
Python baseline, Bash Agent with GPT-4o, and 21.43 errors per repository for Installamatic Agent
with GPT-4o for JVM repositories that use Maven build tool. However, avgErrs can only be com-
puted in cases when baseline-produced environment setup scripts finished execution without errors.
We study the exit codes of the produced shell scripts for both Python and JVM and observe that the
considered baselines can struggle to achieve that, complicating the comparison via avgErrs (see Ap-
pendix C.3 for more details). This problem is more prominent for JVM than for Python.

Baseline Model
Repositories Avg.

decrease ↑ Avg.
increase ↓

Less ↑ Same More ↓

Zero-shot LLM GPT-4o 53%
76/144

34%
50/144

13%
18/144

59% 487%

GPT-4o-mini 39%
67/172

42%
73/172

19%
32/172

56% 589%

Installamatic Agent GPT-4o 42%
61/145

34%
49/145

24%
35/145

63% 286%

GPT-4o-mini 31%
36/115

46%
53/115

23%
26/115

54% 303%

Bash Agent GPT-4o 31%
71/228

52%
119/228

17%
38/228

53% 206%

GPT-4o-mini 41%
92/226

41%
93/226

18%
41/226

51% 211%

Table 2: Comparison of missing imports per repository for the considered baselines on the Python
sample, relative to the deterministic script described in Section 3.3. Less, Same, and More indicate
the number of repositories where the baseline approach resulted in fewer, the same, or more missing
imports, respectively. Avg. decrease and Avg. increase columns represent the average percentage
reduction or increase in missing imports for repositories where the baseline outperformed (Less) or
underperformed the deterministic script (More). Statistics are calculated only on repositories where
both the baseline and the deterministic script exited with a zero exit code, with the set of repositories
varying for each baseline. The symbol ↑ indicates that higher values in the current column are better,
while ↓ indicates that lower values are better.

To further break down the performance of the environment setup baselines for Python, we compare
them with expert-produced scripts as an upper bound and with a simple deterministic script that
we implemented during benchmark construction as a lower bound. For the former, we consider
30 randomly sampled repositories and observe a significant gap between expert-produced scripts
and all the considered baselines (see Appendix D for more details). Our expert-produced scripts
achieve a pass@1 of 66.7% on that sample as compared to 10.0% pass@1 achieved by the best
baseline. For the latter, we report the comparison results in Table 2. For a relatively small percentage
of repositories (from 24% for Installamatic Agent with GPT-4o to 13% for Zero-shot LLM with
GPT-4o), the scripts produced by the baseline methods result in more missing imports than the
deterministic script. However, the average increase in the number of missing imports per repository
relative to the deterministic script in this case is significant, at least 200% for all the considered
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baselines. These repositories could provide valuable insights into the limitations of current methods
and serve as a basis for developing more robust environment setup strategies in future work.

On the other hand, the percentage of the repositories where the scripts produced by the considered
baselines outperform the deterministic script is higher for all the considered baselines (from 31%
for Bash Agent with GPT-4o to 53% for Zero-shot LLM with GPT-4o). In this case, the average
decrease in the number of missing imports per repository relative to the deterministic script is around
50%-60% for all the considered baselines. Overall, while fully correct environment setup for Python
remains challenging, the considered baselines show potential compared to a simple deterministic
script.

6 LIMITATIONS

Our work has several important limitations that we list below.

Docker Support. We explicitly exclude projects that require Docker for their setup from our bench-
mark. While Docker is increasingly common in modern development workflows, including such
projects would add complexity to our evaluation setup and metrics. Future work could explore
extending our approach to handle a wider range of projects.

Data Contamination. Data contamination is another potential concern, as the LLMs we use were
trained on public code repositories that may overlap with our benchmark dataset. This could lead
to the models having prior exposure to setup instructions for some of the repositories during pre-
training. However, given that environment setup guidelines are often not explicitly documented, and
even when they exist, they require advanced reasoning capabilities to interpret and follow correctly,
we believe this does not significantly impact our findings. As the construction of our benchmark
does not require significant manual effort, it can be updated in the future by incorporating newer
repositories, thereby reducing the risk of data contamination as LLM training datasets evolve.

OSS Code Quality. The quality of open-source code and documentation varies significantly across
repositories. Some repositories may have incomplete or outdated documentation, making environ-
ment setup particularly challenging. Others may be completely invalid or impossible to set up due
to missing critical files, broken dependencies, or incompatible configurations. Our results may be
influenced by this inherent variability in code quality and repository validity, though this reflects
real-world conditions that automated tools need to handle. To mitigate this concern, we employ
both a binary success metric and the number of reported errors per repository that quantifies the
extent to which the environment setup was completed. As a part of future work, our benchmark
could be further manually verified to identify and remove invalid samples.

Static Analysis and Compilation. Our evaluation relies on static analysis for Python and compila-
tion checks for JVM languages rather than actual execution metrics like test suite runs. While this
provides a reasonable proxy for environment setup success, it may miss runtime issues that would
only appear during execution. However, this approach allows us to evaluate environment setup for
a larger number of repositories efficiently while avoiding the complexity of test suite execution,
which makes our benchmark more representative and allows possibly reusing the built infrastruc-
ture for further research that might involve not only evaluation but training of environment setup
approaches. Additionally, we validate the robustness of the proposed metrics by manually imple-
menting setup scripts for 30 randomly sampled Python repositories and studying metrics’ behavior
(see Appendix D for more details).

7 CONCLUSION

This work presents ENVBENCH—a benchmark for evaluating automated environment setup meth-
ods, addressing the limited scale of previous environment setup datasets by covering 329 Python and
665 JVM repositories. Our evaluation suite is based on static analysis for Python and compilation
checks for JVM, enabling a systematic assessment of environment setup strategies.

We evaluate three environment setup methods, including two AI agents, with two powerful LLMs
as the backbones. Our results demonstrate that environment setup remains challenging for those
methods, with the best-performing method successfully configuring only 29.47% of JVM and 6.69%
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of Python repositories. One key challenge is the generation of erroneous scripts, and we leave further
investigation and mitigation to future work.

Our benchmark and the associated code are publicly available, providing a scalable platform for
further research. In the future, it could be additionally manually verified and extended to incorporate
new software repositories, more programming languages, and runtime-based evaluation metrics.
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A BENCHMARK

In this section, we provide further details about ENVBENCH, evaluation suite, and the deterministic
scripts we used for benchmark construction.

A.1 BENCHMARK STATISTICS

Additional information about the repositories in our benchmark is presented in Table 3.

Table 3: Statistics for the repositories from our benchmark.

Language General Statistics Dependency Managers Distribution
Avg. Stars Avg. # Files Pip Poetry Gradle Maven

Python 1469 779 82.06%
270/329

17.94%
59/329

– –

JVM 2079 2647 – – 59.70%
397/665

40.30%
268/665

A.2 DOCKER ENVIRONMENT

We use Docker (Docker, Inc., 2013) for both evaluation suite and experiments to safely isolate the
execution of LLM-produced scripts from the host system. We implement two Docker environments,
one for Python and one for JVM languages, where we preinstall commonly needed tools. We use
preconfigured universal Docker images since it saves time by having standard tools preinstalled,
ensures that all approaches operate in the same reproducible environment, and mitigates common
issues (e.g., our preliminary experiments showed that all the considered approaches struggle to in-
stall Android SDK if it is not available on the system beforehand). We base the Docker images on
ubuntu:22.04 and use non-interactive mode for all tools. The Dockerfiles are available in our
GitHub repository: https://github.com/JetBrains-Research/EnvBench.

Python Environment: We preinstall:

• pyenv with Python 3.8-3.13

• Poetry for dependency management

• uv for package installation

• pyright for static analysis

• pipenv

• conda/miniconda

JVM Environment: We preinstall:

• sdkman with Java 11.0.20-tem

• Maven

• Gradle

• Node.js and npm

• Android SDK
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A.3 DETERMINISTIC SCRIPTS

We implement two deterministic scripts that can handle the simplest environment setup cases. The
scripts rely on repository contents to determine the required dependency manager and Python/Java
version requirements. The exact scripts are available in our GitHub repository: https://
github.com/JetBrains-Research/EnvBench.

Python Script:

• Detects environment type by checking for environment.yml (Conda), uv.lock (uv), or po-
etry.lock (Poetry)

• Creates and activates the appropriate virtual environment
• Installs dependencies by searching for requirements.txt, setup.py, pyproject.toml, setup.cfg,

or Pipfile
• Exits with error code if no recognized configuration is found

JVM Script:

• Detects build system by checking for pom.xml (Maven) or build.gradle (Gradle)
• Determines Java version from build files or defaults to Java 11
• Runs appropriate build command (mvn install or gradle build)
• Handles common build flags like skipping tests or offline mode
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B LLM BASELINES IMPLEMENTATION DETAILS

In this section, we share details on the implementations of the considered LLM-based environment
setup baselines. The implementations are available in our repository: https://github.com/
JetBrains-Research/EnvBench.

For Zero-shot LLM, we first follow predefined steps to collect relevant context for each reposi-
tory. Specifically, for both languages, we provide the following information: directory structure
(tree, ls -R), documentation contents (README, installation guides, Markdown files), envi-
ronment information (Dockerfile), deterministic script (described in Appendix A.3) for correspond-
ing language as an example. For Python, we provide: common configuration files (setup.py,
pyproject.toml), dependency specifications (requirements.txt), Python version re-
quirements (if present in configuration files), contents of init .py files. For JVM, we provide:
build files (pom.xml, build.gradle, settings.gradle), dependency and lock files, Java
version requirements (if present in build files), build tool wrapper scripts, module-info.java
files.

After collecting the context, we employ it to prompt LLM to generate an environment setup shell
script.

Bash Agent is a ReAct (Yao et al., 2023) agent that is provided access to a terminal of a Docker
container to perform environment setup (refer to Appendix A.2 for details about Docker configu-
ration). The agent is equipped with a single execute bash command tool that accepts a com-
mand and returns stdout contents and stderr contents after the command execution. We use Lang-
Graph (LangChain) framework to implement Bash Agent. The agent is allowed up to 30 iterations,
and the execution finishes prematurely if the LLM does not use the tool in its response. We set a
360 seconds timeout for the execution of each issued command. We allow up to 5000 characters in
the output of each command to avoid overly long non-informative contexts and return the first and
the last half of the output in case it exceeds this value. To obtain a resulting shell script, we include
all the executed commands that finished with exit code zero.

For Installamatic Agent, we follow the original setting (Milliken et al., 2024) excluding the repair
stage: the agent is allowed one full Documentation Gathering stage iteration and one full Dockerfile
Build stage iteration. During Documentation Gathering stage, Installamatic Agent explores the
repository via given tools until finish search tool is called, and the expected output is the list
of the files considered to be installation-relevant. During Dockerfile Build stage, the agent is allowed
to explore installation-relevant files via the same set of tools until submit summary tool is called;
via this tool, the agent produces a natural language summary of the information required to set
up the current repository, and afterwards, the agent generates a Dockerfile. We reuse the original
prompts, however, reformulate the task to generate a shell script instead, and extend the prompts
with information about our evaluation suite Docker configuration. We use LangGraph (LangChain)
framework to implement Installamatic Agent.
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C EVALUATION RESULTS

In this section, we provide additional results from our experiments.

C.1 CASE STUDY

In this section, we present examples of the scripts generated by the agents and the zero-shot LLM.
In Figure 2, we compare the performance of the baselines for the Python project tablib that is a
format-agnostic tabular dataset library.

jazzband/tablib 2121267

Bash Agent
Exit: 0 Issues: 0

eval "$(pyenv init -)"
ls -R
cat pyproject.toml
cat tests/requirements.txt
pyenv versions
pyenv global 3.10.13
pip install -e .[all]
python -c 'import tablib'

Zero-shot LLM
Exit: 0 Issues: 2

PYTHON_VERSION="3.13.1"
pyenv install -f $PYTHON_VERSION
pyenv global $PYTHON_VERSION
python -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -e .
if [ -f "tests/requirements.txt" ]; then

pip install -r tests/requirements.txt
fi

Installamatic
Exit: 100 Issues: N/A

PYTHON_VERSION="3.8.18"
pyenv install -f $PYTHON_VERSION
pyenv global $PYTHON_VERSION
pip install -e .
apt-get update -y && apt-get install -y \

odfpy \
openpyxl \
pandas \
pyyaml \
tabulate \
xlrd \
xlwt

Figure 2: Baselines comparison for the Tablib repository. GPT-4o-mini is used for all baselines. The
commented lines have been removed for brevity.

The tablib repository represents a typical Python project setup scenario where:

• No explicit installation instructions are provided in the README
• No separate setup.py or installation script exists
• Dependencies and project metadata are managed through pyproject.toml
• Optional dependencies are defined as ”extras” that can be installed with .[group name]

This common configuration requires the installation tool to properly parse the pyproject.toml
file to determine Python version requirements and dependencies.

The Bash Agent successfully installs the package by:

• Reading pyproject.toml to determine Python version requirements (≥ 3.9)
• Installing all optional dependencies via .[all], which includes all file format support
• Using minimal necessary steps without superfluous operations

The Zero-shot LLM approach finishes without errors but misses optional dependencies:

• Uses Python 3.13.1, which is compatible (≥ 3.9)
• Adds unnecessary complexity with virtual environment creation and pip upgrade
• Locates and installs test requirements that are not needed in this case

The Installamatic Agent fails (exit code 100) by:

• Using Python 3.8.18, which violates the package’s requirement of ≥ 3.9
• Installing dependencies through apt instead of using pip, which results in a non-zero exit

code

This example illustrates common challenges in automated environment setup for Python projects.
Even with a relatively standard project structure using modern tooling (pyproject.toml), multi-
ple failure points exist around version compatibility, dependency resolution, and installation method
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selection. The lack of standardized installation procedures across Python projects, combined with
the variety of dependency management approaches, makes automated setup a complex task requiring
careful consideration of project-specific requirements and configurations.

C.2 COSTS

Table 4 presents the token usage and cost statistics for our experiments, calculated using OpenAI
API prices as of February 6, 2025. Analysis of these statistics reveals two key patterns.

Agent vs Zero-shot Token Usage. Agent-based approaches consume 5-10x more tokens compared
to zero-shot LLM approaches, due to their need to reason about the environment state and process
command outputs.

Language-specific Differences. JVM projects require significantly more tokens than Python
projects across all approaches. This disparity primarily stems from the more verbose build and
dependency resolution logs produced by JVM environments.

Despite these variations in token consumption, the overall costs remain reasonable - even the most
token-intensive agent-based approach averages only $0.25 per repository.

Baseline Model # tokens Cost
Avg. Total Avg. Total

JV
M

Zero-shot LLM GPT-4o 15.6k 10.1M $0.042 $26.98
GPT-4o-mini 15.5k 10.2M $0.002 $1.60

Bash Agent GPT-4o 77k 51M $0.20 $132.8
GPT-4o-mini 135k 90M $0.02 $13.8

Installamatic Agent GPT-4o 98k 65M $0.25 $168.7
GPT-4o-mini 56k 37M $0.01 $6.1

Py
th

on

Zero-shot LLM GPT-4o 11.0k 3.6M $0.030 $10.00
GPT-4o-mini 10.8k 3.6M $0.002 $0.57

Bash Agent GPT-4o 59k 18M $0.15 $47.4
GPT-4o-mini 97k 32M $0.01 $4.9

Installamatic Agent GPT-4o 57k 19M $0.15 $50.1
GPT-4o-mini 37k 12M $0.01 $2.0

Table 4: Usage statistics. Avg. refers to average number per one repository.

C.3 EXIT CODES

We report the results of the considered baselines in terms of exit codes of the produced environment
setup scripts in Table 5. Here, we also include the results from the simple deterministic scripts
described in Section 3.3 for comparison. We observe that the scripts finishing execution prematurely
with a non-zero exit code is a relatively frequent issue for the considered baselines. For JVM, the
deterministic script failed for only 1.35% of repositories, while LLM-based scripts showed higher
failure rates, ranging from 17.74% (Bash Agent with GPT-4o) to 81.20% (Zero-shot LLM with
GPT-4o). For Python, the deterministic script failed for 28.57% of repositories, but Bash Agent
with GPT-4o reduced this to 5.78%, outperforming it by 22.79%.

We qualitatively explore a small sample of the generated environment setup scripts to identify pos-
sible root causes. For Python, the failures are at times due to the missing system dependencies or a
mismatch in Python versions (e.g., if a project relies on an older Python version than the one used on
the system and vice versa). Similarly, mismatch in Java versions is a common cause for a non-zero
exit code for JVM environment setup scripts. For both languages, the most common reason why
the scripts produced by Zero-shot LLM and Installamatic Agent fail is the usage of tools that are
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Baseline Model Exit Codes (JVM) Exit Codes (Python)
Zero ↑ Non-Zero ↓ Zero ↑ Non-Zero ↓

Deterministic Script — 98.65%
656/665

1.35%
9/665

71.43%
235/329

28.57%
94/329

Zero-shot LLM GPT-4o 18.80%
125/665

81.20%
540/665

47.42%
156/329

52.58%
173/329

GPT-4o-mini 27.97%
186/665

72.03%
479/665

55.62%
183/329

44.38%
146/329

Installamatic Agent GPT-4o 33.83%
225/665

66.17%
440/665

50.76%
167/329

49.24%
162/329

GPT-4o-mini 27.82%
185/665

72.18%
480/665

41.64%
137/329

58.36%
192/329

Bash Agent GPT-4o 82.26%
547/665

17.74%
118/665

94.22%
310/329

5.78%
19/329

GPT-4o-mini 77.29%
514/665

22.71%
151/665

93.31%
307/329

6.69%
22/329

Table 5: Distribution of the exit codes for the environment setup scripts produced by the considered
baselines and the deterministic scripts described in Section 3.3. Zero exit code indicates that the
environment setup script finished without errors, however, it is not enough to consider a repository
to be set up correctly. The number of successfully set up repositories is reported in Table 1. By
design of our benchmark, the deterministic scripts successfully set up none of the repositories. The
symbol ↑ indicates that higher values in the current column are better, while ↓ indicates that lower
values are better.

unavailable on the system. Compared to those two approaches, Bash Agent can receive immedi-
ate error feedback and either install the required tool or consider using another. However, we still
observe that it sometimes fails to recover and continues trying to attempt the same failing action
repeatedly.

C.4 SHELL SCRIPTS ANALYSIS

Baseline Model Avg. # Lines Avg. Execution Time
JVM Python JVM Python

Zero-shot LLM GPT-4o 53.36 56.78 176.22 302.35
GPT-4o-mini 33.59 40.46 221.09 294.32

Installamatic Agent GPT-4o 26.83 29.08 97.22 270.95
GPT-4o-mini 33.71 22.13 221.08 225.94

Bash Agent GPT-4o 13.09 9.64 200.55 180.11
GPT-4o-mini 18.30 14.64 242.84 203.35

Table 6: Statistics for the environment setup shell scripts produced by the environment setup base-
lines. Average execution time is reported in seconds.

In Table 6, we provide additional statistics about the environment setup scripts generated by the
considered approaches. The best-performing Bash Agent tends to produce the shortest scripts among
considered baselines. Additionally, for Bash Agent with GPT-4o, we provide the list of the most
frequently executed Bash commands across all repositories in our dataset (Python in Figure 3, JVM
in Figure 4). For both languages, agents actively use file system exploration commands (e.g., cat
and ls). There are also a lot of language-specific commands: Python agent uses pyenv, pip,
python and poetry a lot, while JVM agent runs sdk, ./gradlew and maven.
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pyenv cat pip python ls source apt-get poetry conda pytest python3 cd sed import cp npm yarn
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200
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400
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Figure 3: Most frequent Bash commands executed by Bash Agent with GPT-4o on Python dataset.
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sdk cat ./gradlew ls mvn source true sed git echo grep xmlstarlet curl apt-get ./mvnw
0

500
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1500
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Figure 4: Most frequent Bash commands executed by Bash Agent with GPT-4o on JVM dataset.

D EXPERT-PRODUCED SCRIPTS

We manually investigate the robustness of our proposed environment setup metric for Python on a
small sample. Specifically, two authors with professional Python software development experience
produce curated scripts for 30 randomly selected repositories from our Python sample, and we run
our evaluation suite (Section 3.2) with those scripts. The results are presented in Table 7, and the
exact outcomes for each repository are available in Table 8. For all the considered repositories the
expert scripts finished with zero exit code and achieved pass@1 of 66.7%2 and avgErrs of 9.8,
outperforming all considered environment setup baselines. Finally, we employ bootstrap resam-
pling (10,000 iterations) to mitigate the small size of the manually processed sample and share the
histogram of the distribution of the avgErrs for expert-produced scripts and for Bash Agent with
GPT-4o-mini in Figure 5, which further confirms a wide gap between manually curated scripts and
scripts generated by automatic environment setup methods.

2Issues that prevented successful setup include the presence of obsolete dependencies (e.g., a legacy Python
2.x module in a Python 3.x codebase) and dynamically resolved imports can’t be correctly processed via a static
type checker.
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Baseline Model pass@1 avgErrs Zero
Exit Code

Expert — 66.7% 9.8 100%
30/30

Zero-shot LLM GPT-4o 10.0% 12.0 43%
13/30

GPT-4o-mini 6.7% 26.1 43%
13/30

Installamatic Agent GPT-4o 6.7% 34.9 57%
17/30

GPT-4o-mini 6.7% 52.9 33%
10/30

Bash Agent GPT-4o 0.0% 42.8 93%
28/30

GPT-4o-mini 10.0% 16.9 93%
28/30

Deterministic Script — 0% 45.9 67%
20/30

Table 7: The results of the environment setup baselines, deterministic script and expert-produced
environment setup scripts for 30 randomly sampled Python repositories.

0 5 10 15 20 25 30 35
avgErrs

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

Bootstrap Distribution of avgErrs
(Successful runs only)

Expert Setup
Bash Agent GPT-4o-mini
Mean Expert: 1.68
Mean Agent: 16.93

Figure 5: Histograms for avgErrs—the average number of missing errors per repository—for
expert-produced scripts and for scripts from Bash Agent with GPT-4o-mini obtained via bootstrap
resampling (10,000 iterations).

18



Published as a conference paper at ICLR 2025

Repository Expert Zero-shot LLM Installamatic Agent Bash Agent
GPT-4o-mini GPT-4o GPT-4o-mini GPT-4o GPT-4o-mini GPT-4o

biopsykit 2 - - - - 4 2
cookiecutter 0 - - - 60 0 51
client 8 36 - - - 36 82
mov-cli 0 - 5 5 5 5 5
section-properties 0 95 - 4 - 6 6
skrub 1 - 36 - 9 56 96
python-holidays 0 0 0 0 0 0 14
guardrails 4 - - - 41 41 41
hydra 25 84 - 84 26 25 81
duckdb engine 1 - - - 3 3 3
pytest-xdist 0 - - - 0 1 1
lobsterpy 0 0 0 - - 7 8
lhotse 0 61 - - - 61 61
mpmath 0 1 1 - - 1 1
spectrum-access-system 2 - - - - 39 39
adaptix 0 - 0 0 - 94 144
ansible-zuul-jobs 0 - 4 - 6 6 6
photutils 0 5 - 142 - 2 138
stopstalk-deployment 248 - - - - - -
cheroot 0 - - 27 - - -
unixmd 0 - - - 50 13 2
extension-helpers 0 - 3 - 3 3 3
elife-bot 0 - - - 265 1 265
spotpy 2 11 - - - 8 60
bread 0 - 8 9 9 5 5
hazm 2 - 79 - - 19 19
django-registration 0 1 1 - 1 1 1
custodian 0 7 9 17 106 9 13
lifelines 0 23 - 241 3 0 23
smart open 0 15 10 - 7 28 28

Table 8: The number of missing imports for 30 randomly samples Python repositories for the expert-
produced scripts and environment setup baselines.
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