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Abstract—The dynamic information of the joints, such as the
movement amplitude, is critical for forecasting precise human
joint trajectories. Existing methods adopt global modeling in
which all joints are treated as a whole to extract features for
movement coordination. Though global modeling can exploit
hidden relationships between joints, it also inevitably introduces
undesired trajectory dependencies, which weakens the dynamic
information effects and simplifies the constraints and kinetics
model of joints. Therefore, we propose a dynamic pattern-
based collaborative modeling framework (DPnet) that contains
a keyframe enhanced module (KEM) and multi-channel feature
extractor blocks (MFE-block). The KEM tackles the discontinuity
between the last frame of observation and the first predicted
one by duplicating the decisive frame. The MFE-block utilizes a
multi-channel graph structure to enrich the dynamic information
effects and recessive constraints of joints. To distinguish the
dynamic information of each joint, we calculate the movement
amplitude of the joints and propose three dynamic patterns,
including active, inactive, and static patterns. We also propose
a dynamic pattern-guided feature extractor (DP-FE) to alleviate
the trajectory dependencies between joints with different dy-
namic patterns. We evaluate our approach on three standard
benchmark datasets, including H3.6M [8], CMU-Mocap [44], and
3DPW [45]. Our approach achieves impressive results in both
short-term and long-term predictions, confirming its effectiveness
and efficiency.

Index Terms—collaborative modeling, multi-graph structure,
multi-dynamic pattern, human motion prediction.

I. INTRODUCTION

Human motion prediction is a classic task in the field of
computer vision. The task is to predict future human motion
sequences based on the observations of past sequences, which
can be applied to service robots [1], [2], virtual reality [3],
[4], and other fields. The biggest challenge is to reasonably
refine the pattern of human dynamic features and generate the
following rational and natural human poses as possible.
For learning the spatial correlation of joints, many encoder

and decoder strategies have been proposed in previous works.
Those strategies focus on adjusting the order and changing the
scales of joints. Liu et al. [5] represented a new joint order
which concentrated upper and lower limb joints to learn the
relationship of adjacent joints. Li et al. [6] processed human
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(a) Multiscale encoder strategy.

(b) Progressive transformer decoder.

(c) Our pattern-guided encoder.

Fig. 1. Encoder-decoder strategies in human motion prediction. (a) A
multiscale encoder is designed to model the global spatial correlation. (b)
A progressive transformer decoder is designed based on global modeling.
(c) Our collaborative modeling of joints with similar dynamic information
alleviates the involvement and refines recessive correlation.

joint trajectories into three scales: joint level, body part level,
and limb level, as shown in Fig. 1(a). Although each scale
modeling adopted different GCN [46] streams to model the
corresponding spatial correlation, it still involved all the joints
as global modeling. Cai et al. [7] proposed to use RNN to
recursively fill the human body pose starting from body center
to limb extremity (Fig. 1(b)). In this way, the network can
effectively deal with joint features within the corresponding
scale, meaning static torso joint features are first generated and
then active extremity joint features. However, the mentioned
works focus more on the body’s physical constraints and
treat all joints as a whole to model the movement without
explicitly exploiting the movement coordination and relations
at the same movement amplitude pattern joints, like distal
joints. For example, the movement amplitude of the ankles
is much larger than the head in the action of “Running” as
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Fig. 2. Illustration of our motivation. In “Running” action, the joints from
torso, limbs, and limb extremities present different movement amplitudes,
leading to their different contribution to human motion prediction.

shown in Fig. 2. Though the global modeling can exploit
hidden relationships between ankle and head, it also inevitably
introduces undesired trajectory constraints from the head to
the ankle, which weakens the dynamic information effects
and simplifies kinetics model of joints. On the contrary,
collaborative multi-dynamic pattern modeling can explicitly
exploit the relations at the same dynamic pattern joints, like
the relation between the ankle and wrist.
In a joint movement, the movement amplitude is often

affected by the kinematic connection. Since the movement
amplitude of the limb extremity joints is usually larger than
that of the torso joints, the corresponding trajectories of the
active joints often contain more dynamic information and
have a greater impact on the prediction. As mentioned, global
modeling may introduce mutual involvement constraints and
relations, ignoring the unique dynamic information of each
joint. To quantify the dynamic information of various joints
in the human body, we calculate the movement amplitude to
differentiate the dynamic patterns of the joints in the H3.6M
dataset [8]. That is, calculate the displacement of the joints
as ∆x between adjacent frames. As shown in Fig. 3, the
ordinate indicates the mean trajectory movement amplitude
of the corresponding joint or action category. In Fig. 3(a), the
large movement amplitude joints like “Toe” of the human body
are distributed at the extremities as expected, while the small
movement amplitude joints like “Neck” are all distributed
near the torso. In Fig. 3(b), sequences from the big-move
actions like “Walking Dog” has obviously larger movement
amplitude than some small-move actions like “Smoking.”
This motivates our multi-dynamic patterns to distinguish the
diverse dynamic information of joints. As shown in Fig. 4,
the joints are distinguished into different dynamic patterns,
namely active, inactive and static patterns. Meanwhile, three
graphs are constructed based on the joint dynamic patterns
to exploit the relations or constraints at the same dynamic
pattern. Finally, our collaborative multi-dynamic pattern graph
convolutional network is constructed, which models collabo-
rative movements within the pattern corresponding joints of a
motion sequence effectively.
For further utilizing the key frame information, many works

(a) Mean movement amplitude of joints.

(b) Mean movement amplitude of actions.

Fig. 3. Movement amplitude statistics on H3.6M dataset. Calculates ∆x to
indicate motion trajectory amplitude. The active joints mainly distribute at
wrists and toes compared with static joints that distribute at torso. The active
actions mainly consist of big moves like “Walking” compared with small
moves like “Sitting.” This suggests that active joints contribute more motion
patterns in big moves.

focused on enhancing the key frame temporal features. Mar-
tinez et al. [9] proposed to use the residual connection at the
end of the RNN to introduce the positional information of
the last observed frame, which effectively solved the pose
discontinuity problem between the observed sequence and the
predicted sequence. Lebailly et al. [10] used 1D convolutional
layers with different kernel sizes to extract temporal features of
cropped sub-sequences. Among them, the convolutional layer
with a smaller kernel is dedicated to extracting features of
recent frames, placing more emphasis on the recent frames
than the older ones. Consequently, the information from the
latest observed frames helps the model deduce the future
poses.
Generally, the latest observed frames often contain a more

explicit inertial pattern. For example, when we predict a
motion from 10 minutes observed sequence, the last few
observed frames apparently have a higher value than the
beginning ones. Since the prediction comes from the inference
of the last observed frame, we enhance the features of the last
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Fig. 4. Schematic of joint dynamic patterns. The joints are divided into red
active pattern, orange inactive pattern, and blue static pattern according to
motion amplitude as shown in the figure. Different movement amplitudes of
joint trajectories in different dynamic patterns.

few observed frames, particularly the last observed frame, to
keep the continuity between the last frame of observation and
the first predicted one.
The main contributions are summarized as follows: 1)

To distinguish the dynamic information of each joint, we
propose three dynamic patterns based on the joints’ movement
amplitude, including active, inactive, and static patterns. 2)
To promote finer feature extraction, we propose a dynamic
pattern-based collaborative modeling framework that contains
a keyframe enhanced module (KEM) and multi-channel fea-
ture extractor blocks (MFE-block). In MFE-block, we use the
multi-graph structure to alleviate the trajectory dependencies
between joints with different dynamic patterns.

II. RELATED WORK
Human motion prediction. A human motion sequence can

be regarded as serial frames of human poses. Thus many works
[7], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]
implement RNN to model the temporal sequence effectively.
Fragkiadaki et al. [11] early proposed a sequence to sequence
RNN to synthesize human future poses temporally. Ghosh et
al. [18] proposed a 3-layer LSTM network, which effectively
exploited the temporal features and reduced the accumulation
of correlated error. Al-aqel et al. [20] implemented an attention
mechanism to RNN for focusing on keyframes. Compared
with temporal feature refining by RNN, many CNN-based
models [5], [22], [23], [24], [25], [26] show effectiveness in
learning spatio-temporal coupling features by enlarging the
convolution receptive field to a proper size. TrajectoryNet
[5] constructed multiple trajectory blocks to extract the dy-
namic features of a motion sequence. Cui et al. [23] adopted

temporal convolution to increase the receptive field of the
network on the time dimension, and the adversarial training
strategy effectively improved the long-term modeling ability.
In recent works [6], [27], [28], [29], [30], [31], [32], [33],
[34], the utilization of GCN [46] has become famous since
the coordinates and joint connections can constitute the nodes
and edges of a graph structure. Mao et al. [31] proposed to
model joint-wise trajectories by graph convolutional layers to
strengthen the spatial correlation. Li et al. [32] successfully
calculated graph spectrum attention to learn the rich spectral
representation of a motion sequence.
Multi-level graph modeling. In recent years, many works

[34], [35], [36], [37], [38], [39], [40] from both human motion
prediction and skeletal action recognition have proved the ef-
fectiveness of modeling human motion patterns in multi-level
by cropping or down-sampling human pose sequences. Yan
et al. [40] proposed ST-GCN for modeling spatial-temporal
correlations adaptively by first constructing a joint-level graph
and connecting frame-level nodes afterward. Dang et al. [34]
proposed an hourglass model to down-sample human pose
into multiple spatial scales, which helps extract features in
multiple granularities. For enriching input modalities, Song
et al. [37] split the human body into five parts according
to kinematic connection. Each part was down-sampled and
modeled respectively to compute spatial attention weights,
which effectively provided an explanation for the classification
results. While existing works fail to implement differential
modeling by joint-wise trajectory characteristics, making it
difficult for the network to perceive the pattern of the active
joints, which holds more significance when synthesizing or
recognizing an action.
Temporal feature augmentation. Many works [9], [10],

[30], [41] have emphasized that recently observed frames are
often more valuable for human motion prediction. Mao et al.
[30] narrowed the output length of the predicting sequence and
proposed to recurrently learn human dynamics by absorbing
previous output sequences to inherit the newly represented
pattern. Compared with enhancing the features of the latest
frames of an input sequence, Tang et al. [41] achieved human
velocity prediction and directly pointed out that the last frame
is the most decisive one for deducing future poses. Therefore,
properly enhancing the recently observed information can
effectively improve the pattern consistency of the network
input and output sequences.

III. METHODOLOGY
A. Overview
Human motion prediction task is to generate the future

pose sequence under the observation sequence. Since there
are ambiguities in human posture represented in angle space
according to [31] and [10], our study mainly discusses the
methodology in 3D coordinate space. In Table I, we first
enumerate some necessary notations and variables in this paper
to help readers better understand this work. Composed by
frames of human pose, the observed sequence and the pre-
dicted sequence can be denoted by O = {P1, P2, ..., PT } and
Ŝ =

{
P̂T+1, P̂T+2, ..., P̂T+L

}
, where T and L represent the
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Fig. 5. Architecture. The framework is mainly constructed by KEM and MFE-blocks. The KEM enhances the temporal features by encoding the observation
to different length sub-sequences. The DP-FE is adapted to congregate trajectories within the same dynamic pattern and modeled by symmetric residual graph
convolution blocks. Moreover, a global branch is utilized over the DP-FE for introducing global spatial features to the next DP-FE and the output. “B”
denotes the batch size.

number of observed frames and predicted frames respectively.
The ground truth sequence can be correspondingly denoted as
S = {PT+1, PT+2, ...PT+L}. The i-th frame of the observed
frame Pi is composed of N joint coordinate tuples, which is
Pi = {J1,i, J2,i, ..., JN,i}. Meanwhile, the k-th joint tuple can
be denoted as Jk,i = {xk,i, yk,i, zk,i} in 3D coordinate space.
Consequently, the shapes of matrix O and Ŝ are (T,N, 3)
and (L,N, 3). The trajectory of a joint along an axis in 3D
coordinate space during T frames can be represented by a
matrix of (T, 1, 1).

Our dynamic pattern-based collaborative modeling frame-
work includes two key components, as shown in Fig. 5,
including the keyframe enhanced module (KEM) and multi-
channel feature extractor blocks (MFE-block). KEM extracts
the sequence’s temporal features at the first stage, encoding
hidden features by temporal dimension and enhancing the lat-
est frame significance of the observation sequence. According
to the mentioned joint-wise static, inactive and active patterns,
we build three graph structures to exploit the joints’ relations
and constraints at the same dynamic pattern respectively.
Based on the mentioned three graph structures, we propose a
novel module called dynamic pattern-guided features extractor
(DP-FE), which is a three-channel GCN block for extracting
the hidden features at the same dynamic pattern. Finally, a

fully connected layer gives the final prediction results. The
network details are discussed below.

B. Keyframe Enhanced Module (KEM)
To generate natural-looking poses, especially keeping the

continuity of the first predicted frame. We adopt a keyframe-
enhanced module (KEM) to enhance the features of the
keyframes inspired by [10]. Lebailly et al. [10] mentioned
the latest frames of a human motion sequence often play
the dominant role in the prediction task and also contains
more inertia pattern in the motion. Following [10], we firstly
clipper the input sequence intoM sub-sequences, and them-th
sub-sequence noted as Om = {PT−Tm+1, PT−Tm+2, ..., PT }
(Framed in green in Fig. 5), Tm represents the number of
frames in sub-sequence Om. Therefore, these sub-sequences
can be described as [O1,O2, ...,OM ] Each sub-sequence
segment will be encoded by a 1D convolutional layer as Eq.
(1).

Fm = Cov1(Om) (1)

According to V-CMU [41], the position information contained
in the last frame of a motion sequence is the most decisive one.
To enhance features of the last observed frames, we created a
new sequence by duplicating the last observed frame T times,
noted as Okey (Framed in red in Fig. 5). Then, features of this
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TABLE I
NOTATIONS AND DEFINITIONS.

Number Notations Explanations
1 O The observed motion sequence, the shape is T ×N × 3.
2 Pi The i-th frame of the observed position sequence.
3 T The number of observed frames.
4 Ŝ The predicted motion sequence.
5 P̂T+l The predicted l-th frame of the position sequence.
6 L The number of predicted frames.
7 Jk,i The k-th joint tensor in the frame i.
8 xk,i, yk,i, zk,i The 3D coordinate of the k-th joint in the i-th frame.
9 N The number of human skeletal joints used.
10 S The corresponding ground truth of the prediction.
11 M The number of clipped sub-sequences in KEM.
12 Tm The number of frames in the m-th sub-sequence.
13 Om The m-th sub-sequence, preserving the recent Tm frames.
14 Okey The key sequence created by duplicating the last observed frame.
15 Fm The output encoder of 1D convolutional layer from Om

16 Fkey The output encoder of 1D convolutional layer from Okey

17 FKEM The temporal reinforced features generated by KEM.
18 X The serial number of MFE-block.
19 GX

g (·) The graph convolutional function of GS-FE branch in the X-th MFE-block.
20 GX

d (·) The graph convolutional function of DP-FE branch in the X-th MFE-block.
21 FX

out The features generated by the X-th MFE-block.
22 FX

pa The features of different pattern pa in the X-th MFE-block. pa ∈ {sta, ina, act}
23 sta, ina, act Static, inactive, active pattern of human joint trajectories.
24 N1, N2, N3 The number of joints in static, inactive, active pattern.

copied sequence Fkey were encoded by a 1D convolutional
layer. Finally, the output encoders of M subsequences and the
Okey are concatenated together along the time dimension as
the temporal features of the joint, which can be illustrated by
Eq. (2):

FKEM = Concat(F1,F2, ...,FM ,Fkey) (2)

Compared with the traditional GCN encoder, which expands
the time dimension as the channels to a fixed length, our KEM
encodes temporal features more efficiently in a controllable
manner and correspondingly enhances the feature of the last
few frames, especially the latest frame in the sequence.

C. Multi-channel Feature Extractor block (MFE-block)
In Fig. 5, nine MFE-blocks are stacked together to acquire

more deep information. Each MFE-block has two branches:
the dynamic pattern-guided feature extractor (DP-FE) branch
and the global spatial feature extractor (GS-FE) branch.
Specifically, given the X-th MFE-block, the corresponding
graph convolutional function of DP-FE and GS-FE branches

can be presented as GX
d (·), GX

g (·) respectively. The output
of the X-th MFE-block is presented as FX

out, which can be
computed as Eq. (3).

FX
out =

{
GX

g

(
FX−1
out

)
+GX

d

(
FX−1
out

)
, 2 ≤ X ≤ 9

GX
g (FKEM ) +GX

d (FKEM ) , X = 1
(3)

Dynamic Pattern-guided Feature Extractor (DP-FE)
branch. Our collaborative multi-dynamic pattern modeling
strategy is shown in Fig. 5. As mentioned in the section
Introduction, the calculation of movement amplitude of dif-
ferent joint trajectories shows that each joint trajectory is
affected by the human body’s kinematic connection. In relative
coordinates, joints that close to the center of the body trunk
are often carrying weak dynamic pattern, yet the motion
pattern of the body extremity joints are often active. There-
fore, collaborative modeling of joints with similar patterns
helps the network refine recessive correlation on different
limbs. We achieve the corresponding forward modeling of
joint trajectories at different dynamic patterns by connecting
several DP-FE branches. In the DP-FE branch, the joints are
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congregated into the following three patterns according to
the kinematic structure and movement amplitude: (1) static
pattern, (2) inactive pattern, and (3) active pattern. Therefore,
the input features of the X-th MFE-block FX−1

out can be
described as three patterns features in Eq. (4):

FX−1
out =

{
FX−1
sta ,FX−1

ina ,FX−1
act

}
(4)

Then, the graph convolutional layers are adopted to learn the
joint trajectory pattern in a three-channel structure.
In graph convolutional layers, we make use of a sym-

metric residual graph convolution structure for modeling of
human dynamics efficiently. Following the notations in [31],
when modeling a joint set as a fully-connected graph of
Ni (i = 1, 2, 3) nodes (N1, N2, N3 represents the number of
joints in static, inactive, active pattern, respectively), a graph
convolutional layer can be formulated as Eq. (5):

H(p+1) = σ
(
A(p)H(p)W (p)

)
(5)

where W (p) represents the learnable weights of the p-th graph
convolutional layer. Noted in the X-th MFE-block, the first
graph convolutional layer H(1) = FX

pa , pa ∈ {sta, ina, act}.
And a set of learnable parameters A(p) is utilized to learn
the strength of the edges in the graph H(p) as the adjacency
matrix. Each layer is followed with an activation function σ(·)
and a dropout option. To this end, each graph convolutional
layer models both hidden features and graph connectivity
of input joint nodes though the joints are not directly con-
nected in the human body. When stacking graph convolutional
layers, we use symmetric residual connections instead of
equidistant residual connections as in Fig. 6. Compared with
the traditional equidistant connection, the symmetric residual
connection adopted in our work provides a closer distance
between output and input, and introduces shallower dynamic
features to the end of the module. Consequently, the following
DP-FE branches can inherit the initial features by the first
symmetric residual connection of the previous DP-FE in each
channel, enriching the multi-granularity features.

(a) Equidistant residual connection.

(b) Symmetric residual connection. (Noted as “SRes-GCN” in Fig. 5)

Fig. 6. Residual graph convolution block. Compared with traditional equidis-
tant residual connections, our symmetric residual connection transmits richer
features from different depths and delivers the initial features of a block.

In the training phase, the learnable weights of the graph
convolution layers can simulate the motion dynamic pat-
tern. Therefore, a multi-channel graph structure is used to
model the trajectory features with different levels of dynamic
respectively, which reduces the complexity of the motion
pattern to be simulated by the network compared with the
undifferentiated modeling methods. On the other hand, our
collaborative modeling uses a smaller adjacency matrix, and
makes it easier to establish spatial correlation within the
same dynamic pattern. Finally, the three-channel features are
restored to match the global features according to the joint
order before the previous pattern congregating to ensure the
spatial consistency of the subsequent feature coupling.
Global spatial feature extractor (GS-FE) branch. An-

other problem is that the multi-channel modeling cannot obtain
the global spatial connection relations of all adjacent joints.
This results in the deficiency of global spatial information
as the network deepens. Therefore, our network uses an
additional branch to introduce global spatial features to DP-FE
branch. In the X-th MFE-block, the preliminary global spatial
feature is denoted as FX−1

out , and this branch adopts three
graph convolutional layers to produce shallow global spatial
features, which is represented as GX

g (FX−1
out ). In this way, the

utilization of shallow features introduces global spatial fea-
tures and helps avoid gradient disappearance. Consequently,
as the network goes deeper, the global branch prevents weak
coupling when restoring trajectory features from the different
dynamic patterns.

D. Fully connected layer
For the output of stacked MFE-blocks FX

out, we apply a full
connection to produce the predicted motion sequence Ŝ, noted
FC(·) is a fully connected operator, which can be described
in Eq. (6):

Ŝ = FC(FX
out), X = 9 (6)

IV. EXPERIMENTS
A. Baselines
We compare our model with recent effective state-of-the-

art methods in 3D coordinate space, including RNN-based
[7], [9], CNN-based [5], [22] and GCN-based [6], [10], [31],
[34]. Specifically, we compare the effectiveness of our multi-
dynamic patterns with [5], [7], [34]. Liu et al. [5] adopted
a closely spaced joint arrangement in the input sequence to
refine the spatial feature. Cai et al. [7] utilized a transformer-
based method to decode the joint spatial features from torso to
limb extremities. Dang et al. [34] extracted the spatial features
by multiple levels and implemented intermediate supervisions
for multi-level modeling. We compare the effectiveness of our
graph convolution with [6], [10], [31], [34] to evaluate the
overall graph modeling performance.

B. Implementation Details
We implement our model with Pytorch [42] on NVIDIA

2080ti GPU. Each graph convolutional layer in our residual
block is followed with Leaky-Relu [47] activation and dropout
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TABLE II
SHORT-TERM RESULTS ON H3.6M. RESULTS AT 80MS, 160MS, 320MS, AND 400MS IN THE FUTURE ARE SHOWN. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Walking Eating Smoking Discussion
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res sup [9] 23.8 40.4 62.9 70.9 17.6 34.7 71.9 87.7 19.7 36.6 61.8 73.9 31.7 61.3 96.0 103.5
Seq2Seq [22] 17.1 31.2 53.8 61.5 13.7 25.9 52.5 63.3 11.1 21.0 33.4 38.3 18.9 39.3 67.7 75.7
LTD [31] 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1

DMGNN [6] 9.3 15.1 28.6 35.2 8.5 15.4 37.2 46.8 8.5 14.4 27.1 30.4 10.2 20.8 39.7 46.3
Traj [5] 8.2 14.9 30.0 35.4 8.5 18.4 37.0 44.8 6.3 12.8 23.7 27.8 7.5 20.0 41.3 47.8
TIM [10] 9.3 15.9 30.1 34.1 8.4 18.5 38.1 46.6 6.9 13.8 24.6 29.1 8.8 21.3 40.2 45.5
LPJP [7] 7.9 14.5 29.1 34.5 8.4 18.1 37.4 45.3 6.8 13.2 24.1 27.5 8.3 21.7 43.9 48.0
MSR [34] 8.7 15.5 28.3 32.3 8.3 17.7 36.3 43.6 7.5 15.4 27.3 31.4 9.3 22.1 40.6 45.6
DPnet 7.3 15.2 30.1 32.6 8.6 18.3 36.4 43.5 6.9 13.5 24.3 28.7 8.2 20.1 38.2 43.0

Directions Greeting Phoning Posing
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res sup [9] 36.5 56.4 81.5 97.3 37.9 74.1 139.0 158.8 25.6 44.4 74.0 84.2 27.9 54.7 131.3 160.8
Seq2Seq [22] 22.0 37.2 59.6 73.4 24.5 46.2 90.0 103.1 17.2 29.7 53.4 61.3 16.1 35.6 86.2 105.6
LTD [31] 12.6 24.4 48.2 58.4 14.5 30.5 74.2 89.0 11.5 20.2 37.9 43.2 9.4 23.9 66.2 82.9

DMGNN [6] 12.9 26.2 48.8 58.0 14.3 29.6 74.5 87.8 11.2 18.6 37.1 45.8 9.0 23.6 67.3 84.2
Traj [5] 9.7 22.3 50.2 61.7 12.6 28.1 67.3 80.1 10.7 18.8 37.0 43.1 6.9 21.3 62.9 78.8
TIM [10] 11.0 22.3 48.4 59.3 13.7 29.1 72.6 88.9 11.5 19.8 38.5 44.4 7.5 22.3 64.8 80.8
LPJP [7] 11.1 22.7 48.0 58.4 13.2 28.0 64.5 77.9 10.8 19.6 37.6 46.8 8.3 22.8 65.6 81.8
MSR [34] 11.4 22.0 45.9 56.2 13.5 26.5 68.8 86.2 11.8 20.6 37.6 41.8 8.5 21.7 61.1 76.3
DPnet 10.1 21.0 45.8 56.7 12.7 27.1 65.6 82.9 10.2 17.4 35.7 41.3 7.4 21.9 63.5 78.8

Purchases Sitting Sitting Down Taking Photo
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res sup [9] 40.8 71.8 104.2 109.8 34.5 69.9 126.3 141.6 28.6 55.3 101.6 118.9 23.6 47.4 94.0 112.7
Seq2Seq [22] 29.4 54.9 82.2 93.0 19.8 42.4 77.0 88.4 17.1 34.9 66.3 77.7 14.0 27.2 53.8 66.2
LTD [31] 19.6 38.5 64.4 72.2 10.7 24.6 50.6 62.0 11.4 27.6 56.4 67.6 6.8 15.2 38.2 49.6

DMGNN [6] 19.8 37.7 62.8 74.3 10.5 24.3 49.8 61.9 12.8 28.4 55.2 69.1 8.2 15.6 38.9 53.7
Traj [5] 17.1 36.1 64.3 75.1 9.0 22.0 49.4 62.6 10.7 28.8 55.1 62.9 5.4 13.4 36.2 47.0
TIM [10] 19.0 39.2 65.9 74.6 9.3 22.3 45.3 56.0 11.3 28.0 54.8 64.8 6.4 15.6 41.4 53.5
LPJP [7] 18.5 38.1 61.8 69.6 9.5 23.9 49.8 61.8 11.2 29.9 59.8 68.4 6.3 14.5 38.8 49.4
MSR [34] 18.9 38.7 64.5 72.5 11.3 26.6 56.2 69.3 11.0 28.2 56.2 66.8 6.6 15.7 40.5 52.9
DPnet 17.8 37.0 62.1 65.6 9.1 23.0 48.1 62.8 9.7 24.2 49.7 62.0 5.7 14.4 35.6 47.9

Waiting Walking Dog Walking Together Average
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res sup [9] 29.5 60.5 119.9 140.6 60.5 101.9 160.8 188.3 23.5 45.0 71.3 82.8 30.8 57.0 99.8 115.5
Seq2Seq [22] 17.9 36.5 74.9 90.7 40.6 74.7 116.6 138.7 15.0 29.9 54.3 65.8 19.6 37.8 68.1 80.2
LTD [31] 9.5 22.0 57.5 73.9 32.2 58.0 102.2 122.7 8.9 18.4 35.3 44.3 12.1 25.0 51.0 61.3

DMGNN [6] 9.0 21.4 56.7 72.8 30.4 57.2 105.6 120.8 8.6 19.0 35.7 45.2 12.2 24.5 51.0 62.1
Traj [5] 8.2 21.0 53.4 68.9 23.6 52.0 98.1 116.9 8.5 18.5 33.9 43.4 10.2 23.2 49.3 59.7
TIM [10] 9.2 21.7 55.9 72.1 29.3 56.4 99.6 119.4 8.9 18.6 35.5 44.3 11.4 24.3 50.4 60.9
LPJP [7] 8.4 21.5 53.9 69.8 22.9 50.4 100.8 119.8 8.7 18.3 34.2 44.1 10.7 23.8 50.0 60.2
MSR [34] 8.9 20.8 53.6 69.7 24.4 53.6 95.8 110.6 8.7 18.6 35.4 45.7 11.2 24.2 49.8 60.0
DPnet 8.4 20.5 53.6 69.1 25.7 51.8 94.9 112.3 8.3 18.8 35.6 44.8 10.3 22.9 47.9 58.1

option. Our model is trained with Adam optimizer [43]. In the
training phase, the batch size and learning rate are respectively
set to 16 and 0.0005.
Our experiments are carried out in 3D coordinate space.

Thus we use mean per joint position error (MPJPE) [8] as the
loss function to train our model, as illustrated in Eq. (7).

loss = MPJPE =
1

L ∗N

L∑
i=1

N∑
k=1

∥Ĵk,i − Jk,i∥2 (7)

MPJPE is widely utilized as the evaluation matrix in human
motion prediction tasks [10], [31], [34]. It calculates the
average Euclidean distance error between the predicted joint
and the corresponding ground truth joint of the sequence.
And we also evaluate our model by MPJPE in the following
analysis.
To be consistent with the literature, we evaluate our results

on both short-term and long-term predictions. The length
of input frames is set to 10, and the output lengths are
respectively set to 10 (400ms) and 25 (1000ms) on both

H3.6M dataset [8] and CMU-Mocap dataset [44]. And the
output length on 3DPW [45] is 30 (1000ms).

C. Datasets

H3.6M. H3.6M [8] is the most commonly used dataset on
human motion prediction, containing 3.6 million motion se-
quences on 15 activities performed by 7 professional subjects.
There are 32 joints in each pose, and 22 are used in our training
phase following [31]. Specifically, subject 1, 6, 7, 8, 9 are used
as training data, and subject 5 is used as testing data. Each
sequence is down-sampled by 2.
CMU-Mocap. CMU-Mocap [44] provides 2,235 human

motion sequences. Each pose contains 38 joints. Following
baselines in [31], we preserve 25 joints to train our model, and
8 actions are selected from 5 categories: “locomotion”, “phys-
ical activities & sports”, “common behaviors and expressions”
and “communication gestures and signals.” The same dataset
splits for training and testing are also the same with [31].
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TABLE III
LONG-TERM RESULTS ON H3.6M. RESULTS AT 560MS, AND 1000MS IN THE FUTURE ARE SHOWN. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Walking Eating Smoking Discussion Directions Greeting Phoning Posing
Milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
Res sup [9] 73.8 86.7 101.3 119.7 85.0 118.5 120.7 147.6 - - - - - - - -
Seq2Seq [22] 59.2 71.3 66.5 85.4 42.0 67.9 84.1 116.9 - - - - - - - -
LTD [31] 42.2 51.3 56.5 68.6 32.3 60.5 70.4 103.5 85.8 109.3 91.8 87.4 65.0 113.6 113.4 220.6
Traj [5] 37.9 46.4 59.2 71.5 32.7 58.7 75.4 103.0 84.7 104.2 91.4 84.3 62.3 113.5 111.6 210.9
TIM [10] 39.6 46.9 56.9 68.6 33.5 61.7 68.5 97.0 80.1 105.7 97.4 90.6 64.2 111.5 107.8 218.7
MSR [34] 42.1 43.5 57.1 71.5 35.1 62.3 75.6 113.4 78.6 101.7 100.2 95.2 63.6 113.8 103.1 219.6
DPnet 40.5 48.6 56.5 69.6 32.8 59.9 66.3 96.7 80.2 103.5 93.7 85.6 61.4 113.9 105.9 205.6

Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
Milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
Res sup [9] - - - - - - - - - - - - - - - -
Seq2Seq [22] - - - - - - - - - - - - - - - -
LTD [31] 94.3 130.4 79.6 114.9 82.6 140.1 68.9 87.1 100.9 167.6 136.6 174.3 57.0 85.0 78.5 114.3
Traj [5] 84.5 115.5 81.0 116.3 79.8 123.8 73.0 86.6 92.9 165.9 141.1 181.3 57.6 77.3 77.7 110.6
TIM [10] 93.8 131.6 68.4 106.8 87.4 144.7 79.1 97.8 98.1 170.7 135.9 175.1 56.4 78.0 77.8 113.7
MSR [34] 86.5 125.3 83.0 103.8 83.2 146.1 72.5 95.8 100.7 164.4 144.5 193.7 55.6 84.5 78.8 115.6
DPnet 94.2 123.2 72.5 106.9 84.6 131.0 74.0 83.2 96.7 167.7 136.7 174.9 59.8 78.1 77.0 109.9

TABLE IV
RESULTS ON CMU-MOCAP. RESULTS AT 80MS, 160MS, 320MS, 400MS, AND 1000MS IN THE FUTURE ARE SHOWN. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Basketball Basketball Signal Directing Traffic
Milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res sup [9] 18.4 33.8 59.5 70.5 106.7 12.7 23.8 40.3 46.7 77.5 15.2 29.6 55.1 66.1 127.1
LTD [31] 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.3 7.4 15.1 31.7 42.2 152.4

DMGNN [6] 13.6 24.9 49.4 62.0 105.7 3.3 5.9 13.1 15.6 55.5 7.6 14.5 30.9 41.6 148.3
Traj [5] 11.1 19.7 43.9 56.8 114.1 1.8 3.5 9.1 13.0 49.6 5.5 10.9 23.7 31.3 105.9
LPJP [7] 11.6 21.7 44.4 57.3 90.9 2.6 4.9 12.7 18.7 75.8 6.2 12.7 29.1 39.6 149.1
TIM [10] 12.7 22.6 44.6 55.6 102.0 3.0 5.6 11.6 15.5 57.0 7.1 14.1 31.1 41.4 138.3
MSR [34] 12.6 22.9 44.5 54.5 89.7 2.7 4.8 11.1 14.7 49.1 6.9 14.5 30.1 39.7 117.7
DPnet 10.7 17.8 38.4 49.5 98.4 2.6 4.4 10.0 13.4 61.2 5.9 11.8 26.6 33.5 143.3

Jumping Running Soccer
Milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res sup [9] 36.0 68.7 125.0 145.5 195.5 15.6 19.4 31.2 36.2 43.3 20.3 39.5 71.3 84.0 129.6
LTD [31] 16.9 34.4 76.3 96.8 164.6 25.5 36.7 39.3 39.9 58.2 11.3 21.5 44.2 55.8 117.5

DMGNN [6] 16.6 34.0 74.6 95.8 162.4 25.1 38.3 39.5 39.9 59.7 11.9 21.4 44.5 56.1 115.8
Traj [5] 12.2 28.8 72.1 94.6 166.0 17.1 24.4 28.4 32.8 49.2 8.1 17.6 40.9 51.3 126.5
LPJP [7] 12.9 27.6 73.5 92.2 176.6 23.5 34.2 35.2 36.1 43.1 9.2 18.4 39.2 49.5 93.9
TIM [9] 14.8 31.1 71.2 91.3 163.5 24.5 37.0 39.9 41.9 62.6 11.2 22.1 45.1 58.1 122.1
MSR [34] 15.1 30.6 73.2 95.3 160.5 20.4 26.4 26.9 28.0 34.1 8.4 15.9 36.0 46.1 108.9
DPnet 12.4 28.3 70.2 89.2 166.1 16.7 18.4 19.6 25.1 40.1 9.0 17.1 35.8 48.7 115.0

Walking Washing Window Average
Milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res sup [9] 8.2 13.7 21.9 24.5 32.2 8.4 15.8 29.3 35.4 61.1 16.8 30.5 54.2 63.6 96.6
LTD [31] 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3 11.5 20.4 37.8 46.8 96.5

DMGNN [6] 8.3 12.4 21.9 23.6 41.0 5.8 11.5 29.7 39.3 76.8 11.5 20.3 38.0 46.7 95.5
Traj [5] 6.5 10.3 19.4 23.7 41.6 4.5 9.7 29.9 41.5 89.9 8.3 15.6 33.4 43.1 92.8
LPJP [7] 6.7 10.7 21.7 27.5 37.4 5.4 11.3 29.2 39.6 79.1 9.8 17.6 35.7 45.1 93.2
TIM [10] 7.1 11.1 19.9 22.8 39.3 5.9 12.3 32.1 42.6 80.4 10.8 19.5 36.9 46.2 95.7
MSR [34] 6.5 10.5 18.0 21.6 34.9 5.3 11.3 29.8 39.7 82.2 9.7 17.1 33.7 42.5 84.6
DPnet 5.8 9.0 17.2 21.4 34.1 4.5 9.8 27.3 36.7 72.1 8.4 14.5 30.6 39.7 91.3

3DPW. 3DPW [45] consists of indoor and outdoor actions
such as shopping, doing sports, and hugging, including 60
sequences and more than 51k frames. Each pose is composed
of 24 joints. We use the official split sets for experiments for
fair comparison.

D. Results
Results on H3.6M. Our results for short-term and long-

term prediction MPJPE on H3.6M dataset are shown in
Table II and Table III. Significantly, our method gives much
better prediction results than the other 3 GCN-based methods.
Specifically, TIM [10] performs better than LTD [31], and

MSR [34] performs better than TIM [10], but our method is
the best on all prediction time steps. And our method also
outperforms the RNN-based [7].
To explain the effectiveness of our KEM in detail, TIM

[10] conducts multi-channel modeling on different temporal
observation lengths, placing more significance on the latest
observed frames than LTD [31]. Our KEM introduces an
additional channel for modeling a new sequence composed
by copying the last input frame. Thus, the gain comes from
placing more significance on the last frame. More discussion
will be given in Ablation Study.
To explain the effectiveness of our DP-FE in detail, the
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(a) Phoning.

(b) Walking.

Fig. 7. Quality comparison on H3.6M dataset. The 1st line represents the ground truth. The 2nd to the 4th lines represent the baselines. The last line represents
the DPnet results. The results indicate that our method generates more realistic joint trajectories on body extremities.

main idea of MSR [34] is to predict human motion in multiple
spatial scales. The fine to coarse scales are designed according
to human kinematic connections. However, each spatial scale
still contains both active and static joint trajectories, making
the corresponding GCN blocks harder to estimate the dynamic
pattern than our DP-FE. Therefore, our pattern collaboration
benefits the graph convolutional layer to model the dynamic
pattern within different dynamic scales. Cai et al. [7] also
proposed to model human dynamics from torso trajectory
to extremity trajectory progressively. Its transformer-based
network converts the traditional temporal prediction task to a
spatial inpainting task in the decoding phase, but the recurrent
modeling suffers from losing global spatial features compared
with our global branch that introduces global spatial features.

Unfortunately, our short-term prediction on 80ms has a
slight gap with Traj [5], though other predictions of DP-
net achieve lower MPJPE, including 560ms and 1000ms.
From methodology, it can be concluded that CNN-based
TrajectoryNet [5] achieves better local perception and shorter
temporal channels than DPnet, which benefits the most recent

prediction.

In Fig. 7, we give our examples of quality comparison
on H3.6M dataset [8]. In the “Phoning” action, the subject
maintains the motion of holding the phone with his right
arm, walks forward with his legs and moves his left arm
in coordination. At this time, the accuracy of our prediction
results in the extremity of the leg and left arm is better than
other methods. In the “Walking” action, the torso remains
relatively static, and the limbs swing in coordination. Our
method achieves the closest prediction results to the ground
truth, verifying the importance of collaboration modeling of
active joints.

Results on CMU-Mocap and 3DPW. Our prediction re-
sults on CMU-Mocap and 3DPW datasets are shown in Table
IV and Table V. Our method still outperforms most GCN-
based methods. Yet Traj [5] shows lower MPJPE again on
80ms prediction in CMU-Mocap, which confirms our analysis
of weakness in H3.6M dataset [8]. It is worth mentioning
that our DPnet achieves the best accuracy for “Walking” and
“Running” actions on all time steps in Table IV. That explains
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TABLE V
RESULTS ON 3DPW. RESULTS AT 200MS, 400MS, 600MS, 800MS, AND 1000MS IN

THE FUTURE ARE SHOWN. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Milliseconds 200 400 600 800 1000
Ressup [9] 113.9 173.1 191.9 201.1 210.1

Seq2Seq [22] 71.6 124.9 155.4 174.7 187.5
LTD [31] 35.6 67.8 90.6 106.9 117.8

DMGNN [6] 37.3 70.1 94.5 109.7 123.6
DPnet 29.5 58.0 84.7 103.1 109.3

TABLE VI
ABLATION STUDY ON KEM. RESULTS AT 80MS, 160MS, 320MS, AND 400MS IN THE

FUTURE ARE SHOWN. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Milliseconds 80 160 320 400
w/o lf 11.1 24.3 50.1 60.6

w/o trimming 10.8 24.1 49.7 60.0
DPnet 10.3 22.9 47.9 58.1

the effectiveness of DP-FE for modeling the regular dynamic
pattern of persistent movements.

E. Ablation Study
In this section, we carry out ablation experiments on our

main proposed components, and discuss the effectiveness of
different experiment settings.
Effectiveness of KEM. The ablation structures are shown

in Fig. 8. Firstly, we remove the duplicate channel in the KEM
to analyze the importance of the last frame, noted as “w/o lf”
(Fig. 8(b)). As shown in Table VI, the MPJPE is higher than
the origin KEM, confirming the dominance of the last frame.
Secondly, we cancel the recent frame trimming to analyze the
effectiveness of temporal focusing, noted as “w/o trimming”
(Fig. 8(c)). It means the input length of each stream is 10. It
is found that the observation of total sequence in each stream
disturbs the key information of a motion sequence, though
“w/o trimming” keeps the coping stream. Consequently, the
results support the effectiveness of the recent frames, which
is also emphasized in TIM [10].
Effectiveness of GS-FE. To verify the effectiveness of our

global spatial stream, we conduct an ablation experiment on

TABLE VII
ABLATION STUDY ON GS-FE. RESULTS AT 80MS, 160MS, 320MS, AND 400MS IN
THE FUTURE ARE SHOWN. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Milliseconds 80 160 320 400
w/o GS-FE 12.0 26.0 53.2 63.8
DPnet 10.3 22.9 47.9 58.1

TABLE VIII
ABLATION EXPERIMENTS ON DIFFERENT DYNAMIC PATTERN COLLABORATIONS IN
DP-FE. RESULTS AT 80MS, 160MS, 320MS, AND 400MS IN THE FUTURE ARE

SHOWN. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Milliseconds 80 160 320 400
Sta+Ina, Act 10.6 23.6 49.0 59.2
Ina+Act, Sta 10.7 23.5 49.3 59.7
Sta+Act, Ina 10.6 23.2 48.7 59.1
Sma, Lar 10.9 23.8 49.7 60.0
DPnet 10.3 22.9 47.9 58.1

removing our proposed global spatial feature extractor (GS-
FE) in Fig. 5. The results of “w/o GS-FE” denotes the structure
of removing the residual GS-FE of each DP-FE, which are
shown in Table VII. The result of “w/o GS-FE” on each
prediction length shows lower accuracy than DPnet that using
GS-FE. This confirms that the global spatial features help
reinforce the human dynamic as the network goes deeper.
The GS-FE focuses on modeling the global joint trajectories
and the DP-FE focuses on modeling the pattern-wise joint
trajectories. Hence, the collaborative modeling strategy allows
greater depth of our DPnet for sufficient extracting human
dynamics.
Effectiveness of DP-FE. To verify the effectiveness of

our collaboration modeling strategy, we conduct experiments
on different dynamic scales. The results of “Sta+Ina, Act”,
“Ina+Act, Sta” and “Sta+Act, Ina” denote the structure of
fusing three streams of DP-FE in pairs for forwarding mod-
eling. And “Sma, Lar” denotes splitting human joints into
two dynamic levels based on their motion amplitude: small
range level and large range level. And the results are shown
in Table VIII. Results verify the effectiveness of our three-
stream modeling strategy compared with other settings. It can
be inferred that the joints from Ina have a unique dynamic
pattern, and the dynamic features are deranged when combing
Ina with other levels. Moreover, when splitting features evenly
into Sta level and Act level according to the joint distances
to the human torso as “Sma, Lar”, the network performs the
worst accuracy. The results again confirmed the necessity of
distinguishing the Ina pattern. Therefore, it is necessary to
build the dynamic pattern of each dynamic level in three
streams.

V. CONCLUSION
In this paper, we propose a new human body representation

based on our dynamic patterns and the dynamic pattern-based
collaborative modeling framework to predict future 3D poses.
We use Dynamic Pattern-guided Feature Extractor (DP-FE) to
congregate joint-wise trajectory features, modeling more com-
prehensive relations, especially the recessive spatial relations
of indirectly connected joints. Moreover, KEM is proposed to
enhance the latest observed information, advancing the inertial
pattern of the temporal features. Experiment results on three
common benchmark datasets prove that the dynamic pattern
collaboration modeling and temporal reinforcing strategies
lower the human motion prediction error.
Our future work will focus on optimizing the DP-EF

to autonomously distinguish human dynamic patterns from
trajectory features. Compared with fixing the same dynamic
pattern of each channel, adaptive exploiting different patterns
of spatial features may improve the network flexibility on
different datasets.
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(a) KEM. (b) w/o lf. (c) w/o trimming.

Fig. 8. Ablation study on KEM. “w/o lf” removes the key sequence Okey . And “w/o trimming” preserves all frames of the sub-sequences.

(a) Sta, Ina, Act. (DPnet). (b) Sta+Ina, Act.

(c) Ina+Act, Sta. (d) Sta+Act, Ina.

Fig. 9. Different dynamic pattern collaborations in DP-FE. Compared with
“Sta, Ina, Act” utilized in DPnet, the other three strategies fuse the dynamic
patterns in pairs to conduct two-channel modeling in DP-FE.
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