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Abstract. The trace tr(q(L+4ql)™!), where L is a symmetric diagonally
dominant matrix, is the quantity of interest in some machine learning
problems. However, its direct computation is impractical if the matrix
size is large. State-of-the-art methods include Hutchinson’s estimator
combined with iterative solvers, as well as the estimator based on random
spanning forests (a random process on graphs). In this work, we show two
ways of improving the forest-based estimator via well-known variance
reduction techniques, namely control variates and stratified sampling.
Implementing these techniques is easy, and provides substantial variance
reduction, yielding comparable or better performance relative to state-
of-the-art algorithms.

Keywords: trace estimation, graph signal processing, sampling, ran-
dom spanning forests

1 Introduction

Randomized methods are useful to approximate the trace of a matrix if the
matrix is not explicitly known. These methods come into play in various prob-
lems [21] in which A € R"*" is typically a large matrix (e.g. n > 10°) and
tr(f(A)) is the quantity of interest. In this work, we focus on calculating the
trace of f(L) = q(L + ¢ql)~! without taking the matrix inverse when L is a sym-
metric diagonally dominant (SDD) matrix i.e. Vi, [L; ;| > >, [Li ;|- A natural
use case of tr(g(L + gl)~1) arises in graph Tikhonov regularization problem [17]
where L is the graph Laplacian. In this problem, we are given a noisy signal over
n vertices y = [y1,¥a2,- - ,yn]T and we aim to recover the original signal x by
solving the following problem:

% = argming|ly — 2|3 +2z"Lz, ¢>0 (1)
zcR”™
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where the hyper-parameter ¢ > 0 controls the regularization. The explicit solu-
tion % reads Ky where K = ¢(L + ¢l)~!. Notice that the recovery error, i.e. ||x —
%||3, highly depends on ¢ and there are several methods to automatically choose
the value of ¢ such that the solution X approaches to x. Many of them, such
as generalized cross-validation (GCV), Akaike or Bayesian information criteria,
use the measurements y and tr(K) as a measure of the degrees of freedom of
the linear smoother K [7]. For example, GCV computes the following score for
evaluating different choices of ¢:

1 (N~ %=
GCV(q) = —= — .
@) =5 (Zl 1 (tr(K)/n)>
As in this example, along with the solution X, one needs to access the diagonal
entries of K for computing the trace.

State-of-the-art. The standard estimator for tr(K) is due to Hutchinson [9].
Given N samples of a Bernoulli random vector a € {1,—-1}" with Vi, P(a; =
+1) = 1/2, Hutchinson’s estimator is defined as h = & SN | a® " Ka®. where
a()s are samples of the random vector a. The estimator k is an unbiased estima-
tor of tr(K). Note that one can change the law of a to any distribution satisfying
Ela] = 0 and Var(a) = | (e.g. Girard’s estimator [6] arises when a is Gaussian
with zero mean and unit variance).

Computing Ka is expensive due the matrix inverse. Even leveraging the spar-
sity by using Cholesky decomposition has a time complexity O(n?) in the worst
case. For large n, this cost becomes prohibitive. The state-of-the-art that avoids
this cubic cost consists of (preconditioned) conjugate gradient [16], algebraic
multigrid [15], polynomial approximations. Specific to inverting SDD matrices,
there are graph-based preconditioners [18] that speeds up the convergence of
iterative algorithms, yielding a nearly linear time algorithm with m (See [19]
for a detailed survey). They compute Ka with very small error, often much less
than the Monte Carlo error induced by Hutchinson’s estimator, and they scale
linearly with the number of edges m.

RSF estimator. In [2], we proposed an alternative method to estimate tr(K)
when L is a SDD matrix. This method is based on random spanning forests
(RSF) [1], a random process on graphs. We showed that the number of roots is
an unbiased estimator for tr(K).

Our contributions. In this work, we improve the efficiency of the RSF-based
estimator by well-known variance reduction (VR) techniques from the Monte
Carlo literature. The main results of this paper are listed as follows:

e We show two novel ways of applying VR techniques to the RSF-based esti-
mator,

e The additional computations remain in the time complexity O(m) and come
with practical implementations,

e Empirical evidence on various graphs shows that the proposed methods per-
form at least as well as Hutchinson’s estimator, while outperforming it in
many settings.
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2 Background

In this section, we introduce our notation and revisit some theoretical properties
of RSFs.

Graph theory. Consider an undirected, weighted graph G = (V, &, w) with
[V| = n nodes and |€] = m edges. The weight function w : V X ¥V — Rxg
maps & to positive weights and for (i,5) € £, w(i, j) equals to 0. The (weighted)
adjacency matrix of a graph is the matrix A = [w(,7)];; € R"*™. Degree of
anode i is d; = 37\, w(i,j) where N (i) is the neighborhood of i. We form
the degree matrix as D = diag(d). Finally, the graph Laplacian L = D — W is a
useful object with many applications in graph combinatorics, machine learning
and graph signal processing [17].

Random spanning forests. A tree is a cycle-free subgraph of G. It is a spanning
tree if it reaches all vertices of G. A rooted tree is a directed tree whose edges are
oriented towards a special node called a root. A rooted spanning forest, denoted
by ¢, is a set of disjoint rooted trees on G whose union reaches all vertices. Let
us denote the set of all spanning forests by F. We define an RSF @, as a random
object that is defined over F and has the following distribution:

P(®q = ¢) o ¢” DN T[ w(ig), q>0. (2)
(i.4)€9

where p(¢) is the root set of ¢. Although |F| can be very large, a modified version
of Wilson’s algorithm [20] can be used to sample a forest [1]. The algorithm is
based on loop-erased random walks on G. Thus, the time complexity of the
algorithm is reported as the expected number of steps until it terminates which
is equal to tr(K(14 ¢D)) < n+ 22 [11] "

The random object @, has fascinating theoretical properties that connect
various concepts [1]. An important example for this paper is E[|p(®,)|], which
equals tr(K). Previously, we deployed |p(®,)| as an unbiased estimate of tr(K).
According to experiments performed on various graphs, this estimator is compet-
itive and outperforms in some cases Girard’s estimator in terms of the required
time for reaching a certain precision. In this work, we improve the expected error
of the RSF estimator by VR techniques for Monte Carlo estimators.

3 Proposed Methods

Two VR methods are applicable to the RSF estimator: The control variate (CV)
technique and stratified sampling.? Moreover, generalizing these methods to SDD
matrices is straightforward [2]. Both methods use some additional information
(e.g. a statistic with a known mean) on the estimator to reduce variance. The

b tr(K) + 1 tr(KD) <7+ § tr(KD) < n+ ¢ tr(D) = n+ 2.
2 We omit the main motivations behind these methods due to space limitations but
we refer the reader to [10] for more details.
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difficulty in applying such methods is to find which additional statistic will be
both fast to estimate and provide a substantial decrease in the variance. This
paper shows practical ways to adapt these techniques for the RSF estimator.

3.1 Control Variates

We give two RSF based unbiased estimators for K in [14]. Both relies on the
root relation ry : V — p(@,) which maps every node to its root in ¢. The first
estimator is S = [I(re,(i) = j)ls,; and verifies E[S] = K since P(re, (i) = j) =
K; ;. An improved version of this estimator with the CV method is [13]:

Z=S—a(KS—1) (3)

Since E[Z] = K, we find a unbiased trace estimator:
§ = tr(Z) = [p(Py)| — ac, (4)

where

= n=lp@) = 3 wli, e, () # 1)

Cicp@,)

JEN (i)
The random variable ¢ is called the “control variate”, and its mean is n. To
calculate ¢, one only needs to count the neighbors of each root i that are not
rooted in . For |p(&@,)| <« n, the computational cost remains negligible, whereas,
in the worst case, it might require traversing every edge of the graph. One can
also adapt these calculations for the second estimator in [14]. To do so, let us
recall this estimator in matrix form; the trees of @, depict a random partition

P={Vi,Va,...,Vp@,)} over V = ULp:(f")‘Vi. We enumerate these components
from 1 to |p(®,)| and consider a mapping ¢ from each vertex ¢ to the number

of the component that 7 belongs to. Then, the second estimator takes the form:
g _ |:]I(i€v1,(j))

. So, one has:
Wi L,j ’

5= p(e,)| - ac, (5)
where ¢ =n — |p(Pq)| — % > ey Siqw(i,j)I(re,(j) # 4). In this case, the con-
JEN (i)

trol variate requires keeping track of partition sizes and neighbors at partition
boundaries. While the former can be done in O(n), the latter requires travers-
ing all edges. However, it provides more variance reduction than the previous
option(See Prop. 1 and 2 in [14]).

How to choose a. As can be deduced from Prop. 2 in [13], a safe value of
a, t.e. a value that guarantees variance reduction, is ﬁflﬁ where d,,q2 1S the
maximum degree in G. We also observe that ﬁ is usually a good estimate
of a* where dqy4 is the average degree in G.
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3.2 Stratified Sampling

Stratification reduces the Monte Carlo error by dividing the sample space into
sub-parts, each called a stratum, based on another random variable. Stratified
sampling can substantially decrease approximation error when applicable. In
the following, we give a way of applying stratification to the RSF-based trace
estimator.

Stratification for the RSF estimator. Consider the root set that are sampled
at the first visit of random walks in Wilson’s algorithm. Let us denote them
by p'(9,) and define a random variable R; = I(i € p/(®,)) where I is the
indicator function. Notice that each R; is an independent Bernoulli variable with
P(R; = 1) = 7. Building on this, we propose to use the cardinality [p'(®,)[ =
> ey Ri €{0,1,...,n} to apply stratification on the RSF estimator as follows;
i/ take disjoint K-fold strata C1,...,Ck verifying Ufil C; ={0,1,...,n}, i/

get N; samples of @, ||p'(P,)| € C; for each stratum C;, iii/ compute the following

weighted sum:

K N;
1 : ,
se=d | 2 @I BA @) € ). (6)
i=1 j=1
lo' (69)|€Cs

For N = Zfil N; samples, sg gives an unbiased estimation of tr(K) due to the
law of conditional expectation. Moreover, given a fixed N, certain settings of
N;’s provide lower theoretical variance, e.g. N; = NP(|p'(®,)| € C;) [10].

Implementation. We address two issues in implementing stratified sampling.
The first one is the calculation of the probabilities P(|p'(®q)| € C;). We ap-
proximate the distribution of |p/(®,)| by a normal distribution with a mean
1= ey giq and a variance o=y ﬁ to avoid expensive calcula-
tions of the exact methods [8]. The second is to sample the random variable

[0(Po)]|10 (Pg)| € C;. Given a set X C V verifying |X| € C;, we can easily adapt

Wilson’s algorithm for sampling ®4|p'(®,) = X with two modifications; i/ we
pass X as the initial root set of @, ii/ we prevent any node i ¢ X being a root
at the first visit of walks in Wilson’s algorithm. For the generation of the fixed
set X', we use rejection sampling [3] which is fast if Vi, P(|p/(@,)| € C;) > 0.

4 Experiments

We empirically compare the proposed methods to Hutchinson’s estimator over
various graphs by following a similar procedure to [2]. Notice that all estimators
here are Monte Carlo. Therefore, the asymptotic relation between the variance of
a Monte Carlo estimator over a single sample o1, and N samples oy, i.e. oy =
~i7z» applies to all the estimators in the comparison 3. We leverage this fact to

3 This holds for the stratified sampling with N; = NP(|p'($4)| € C;) for all i. However,
it is not necessarily true for other choices of N;’s.
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Fig. 1. Effective Runtime vs tr(K)/n.

compare the effective runtimes of all methods i.e. the time needed to reach a fixed
relative error e. First, we run all methods with N = 100. This gives us the average
runtime for the computation per sample and the sample variance 6%,. Then, we
approximate 6, = v/ Nén for each method. By using this approximation, we
solve € = m for e = 0.002 to calculate the number of iterations k£ needed
for reaching e error. Finally, we calculate the effective runtime per method by
multiplying k& by the average time for generating a single sample.

In Hutchinson’s estimator, we compute Ka using; Algebraic Multigrid (AMG) 4,
Conjugate Gradient (CG) 5, CG with AMG preconditioning, and finally sparse
Cholesky decomposition using CHOLMOD [4]. Here, the CG methods benefit
from block implementations [12]. We compare these with our proposed methods
over various graphs. For s and 35, we set o = ﬁ. In stratified sampling, we
divide the sample space into 5 strata C1, .. ., Cs verifying P(|p'(®,)| € Cx) ~ 0.2
for all k=1,...,5. We set Ny = NP(|p/(®,4)| € Ci) per stratum k. The graphs
that we use in these experiments are:

4 https://github.com/JulialinearAlgebra/AlgebraicMultigrid.jl
® https://docs.juliahub.com/KrylovMethods
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e Barabasi-Albert: A random graph generated by Barabasi-Albert model
(k = 10) with n = 10* and m = 99900,

e K-random regular: A random regular graph with n = 10* and m = 10°
(k = 20),

e Collab-CM: A collaboration network of n = 21363 authors in Arxiv on
condense matter physics with m = 91342 links,

e Citation-HEP: A citation network of n = 34401 in Arxiv on high energy
physics with m = 420828 links.

e 3D Grid: 3-dimensional grid with n = 50% = 125000 nodes and m = 375000
edges.

e Amazon: A real-life network over n = 262111 products in Amazon with
m = 899792. A link between two products indicates that the same client
purchases these two products.®

We choose 8 logarithmically spaced values of ¢ such that the ratio tr(K)/n takes
values up to 65%. All experiments are implemented in Julia and run in a single
thread of a laptop.

Fig. 1 summarizes the results. For relatively small and sparse graphs, such
as Collab-CM, the direct method gives the best performance, closely followed
by the RSF methods. However, the approximate ones beat the direct method
when the graphs become larger or denser. In these cases, the proposed methods
give either the best or a comparable performance with the other state-of-the-art
methods. A comparison between the regular and highly irregular graphs, e.g. K-
regular vs Barabasi-Albert, shows that the CV estimators § and 5 gives small
expected error in regular cases. This is an expected result since ¢ and ¢ have lower
variances on regular graphs as they are summations over the neighbors of the
roots. In irregular graphs, the stratified sampling estimator often outperforms
state-of-the-art.

5 Conclusion

The rich theoretical properties of RSFs give us several ways to improve the RSF
trace estimator. In the future, we plan to develop estimators for other Laplacian
based quantities, such as the elements of K, or the effective resistances. We also
note that we use relatively naive implementations for the stratified sampling
method, e.g. the normal approximation for the Poisson-Binomial distribution
can be improved by using e.g. Cornish-Fisher or saddlepoint approximations [5].
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