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Abstract. Despite recent progress of automatic medical image segmen-
tation techniques, fully automatic results usually fail to meet the clinical
use and typically require further refinement. In this work, we propose a
quality-aware memory network for interactive segmentation of 3D med-
ical images. Provided by user guidance on an arbitrary slice, an inter-
action network is firstly employed to obtain an initial 2D segmentation.
The quality-aware memory network subsequently propagates the initial
segmentation estimation bidirectionally over the entire volume. Subse-
quent refinement based on additional user guidance on other slices can
be incorporated in the same manner. To further facilitate interactive
segmentation, a quality assessment module is introduced to suggest the
next slice to segment based on the current segmentation quality of each
slice. The proposed network has two appealing characteristics: 1) The
memory-augmented network offers the ability to quickly encode past
segmentation information, which will be retrieved for the segmentation
of other slices; 2) The quality assessment module enables the model to
directly estimate the qualities of segmentation predictions, which allows
an active learning paradigm where users preferentially label the lowest-
quality slice for multi-round refinement. The proposed network leads to
a robust interactive segmentation engine, which can generalize well to
various types of user annotations (e.g., scribbles, boxes). Experimental
results on various medical datasets demonstrate the superiority of our
approach in comparison with existing techniques.
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1 Introduction

Accurate segmentation of organs/lesions from medical imaging data holds the
promise of significant improvement of clinical treatment, by allowing the extrac-
tion of accurate models for visualization, quantification or simulation. Although
recent deep learning based automatic segmentation engines [21,34,29,16] have
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achieved impressive performance, they still struggle to achieve sufficiently accu-
rate and robust results for clinical practice, especially in the presence of poor
image quality (e.g., noise, low contrast) or highly variable shapes (e.g., anatomi-
cal structures). Consequently, interactive segmentation [18,32,33,2,28,27] garners
research interests of the medical image analysis community, and recently became
the choice in many real-life medical applications.

In interactive segmentation, the user is factored in to play a crucial role in
guiding the segmentation process and in correcting errors as they occur (often
in an iteratively-refined manner). Classical approaches employ Graph Cuts [1],
GeoS [4] or Random Walker [6,5] to incorporate scribbles for segmentation. Yet,
these methods require a large amount of input from users to segment targets with
low contrast and ambiguous boundaries. With the advent of deep learning, there
has been a dramatically increasing interest in learning from user interactions.
Recent methods demonstrate higher segmentation accuracy with fewer user in-
teractions than classical approaches. Despite this, many approaches [11,26,22]
only focus on 2D medical images, which are infeasible to process ubiquitous
3D data. Moreover, 2D segmentation does not allow the integration of prior
knowledge regarding the 3D structure, and slice-by-slice interactive segmenta-
tion will impose extremely high annotation cost to users. To address this, many
works [3,20,13,28,27] carefully design 3D networks to segment voxels at a time.
While these methods enjoy superior ability of learning high-order, volumetric
features, they require significantly more parameters and computations in com-
parison with the 2D counterparts. This necessitates compromises in the 3D net-
work design to fit into a given memory or computation budget.

To address these issues, we take a novel perspective to explore memory-
augmented neural networks [25,12,23,14] for 3D medical image segmentation.
Memory networks augment neural networks with an external memory compo-
nent, which allows the network to explicitly access the past experiences. They
have been shown effective in few-shot learning [23], contrastive learning [7,29],
and also been explored to solve reasoning problems in visual dialog [25,12]. The
basic idea is to retrieve the relevant information from the external memory to
answer a question at hand by using trainable memory modules. We take inspi-
ration from these efforts to cast volumetric segmentation as a memory-based
reasoning problem. Fundamental to our model is an external memory, which en-
ables the model to online store segmented slices in the memory and later mine
useful representations from the memory for segmenting other slices. In this way,
our model makes full use of context within 3D data, and at the same time, avoids
computationally expensive 3D operations. During segmentation, we dynamically
update the memory to maintain shape or appearance variations of the target.
This facilitates easy model updating without extensive parameter optimization.
Based on the memory network, we propose a novel interactive segmentation
engine with three basic processes: 1) Initialization: an interaction network is em-
ployed to respond to user guidance on an arbitrary slice to obtain an initial 2D
segmentation of a target. 2) Propagation: the memory network propagates the
initial mask to the entire volume. 3) Refinement: the physician could provide
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Fig. 1. Illustration of the proposed 3D interactive segmentation engine. (a) Simplified
schematization of our engine that solves the task with an interaction network (fIn) and
a quality-aware memory network (fMem). (b) Detailed network architecture of fMem.
© denotes the concatenation operation. Zoom in for details.

extra guidance on low-quality slices for iterative refinement if the segmentation
results are unsatisfactory.

Our contributions are three-fold: First, we propose a memory-augmented
network for volumetric interactive segmentation. It is able to incorporate rich
3D contextual information, while avoiding expensive 3D operations. Second, we
equip the memory network with a quality assessment module to assess the quality
of each segmentation. This facilitates automatic selection of appropriate slices
for iterative correction via human-in-the-loop. Third, our approach outperforms
previous methods by a significant margin on two public datasets, while being
able to handle various forms of interactions (e.g., scribbles, bounding boxes).

2 Methodology

Let V ∈ Rh×w×c be a volumetric image to be segmented, which has a spatial
size of h × w and c slices. Our approach aims to obtain a 3D binary mask
S ∈ {0, 1}h×w×c for a specified target by utilizing user guidance. As shown
in Fig. 1 (a), the physician is asked to provide an initial input on an arbitrary
slice Ii ∈ Rh×w, where Ii denotes the i-th slice of V . Then, an interaction network
(fIn, §2.1) is employed to obtain a coarse 2D segmentation Si ∈ [0, 1]h×w for Ii.
Subsequently, Si is propagated to all other slices with a quality-aware memory
network (fMem, §2.2) to obtain S. Our approach also takes into account iterative
refinement so that segmentation performance can be progressively improved with
multi-round inference. To aid the refinement, the memory network has a module
that estimates the segmentation performance on each slice and suggests the user
to place guidance on the slice with the worst segmentation quality.

2.1 Interaction Network

The interaction network takes the user annotation at an interactive slice Ii to
segment the specified target (or refine the previous result). At the tth round, its
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input consists of three images: the original gray-scale image Ii, the segmentation
mask from the previous round St−1

i , and a binary image Mi ∈ {0, 1}h×w that
encodes user guidance. Note that in the first round (i.e., t=0), the segmentation
mask S−1

i is initialized as a neutral mask with 0.5 for all pixels. These inputs are
concatenated along the channel dimension to form an input tensor Xt

i∈Rh×w×3.
The interaction network fIN conducts the segmentation for Ii as follows:

St
i = fIn(Xt

i) ∈ Rh×w. (1)

Region-of-interest (ROI). To further enhance performance and avoid mis-
takes in case of small targets or low-contrast tissues, we propose to crop the
image according to the rough bounding-box estimation of user input, and ap-
ply fIN only to the ROI. We extend the bounding box by 10% along sides to
preserve more context. Each ROI region is resized into a fixed size for network
input. After segmentation, the mask made within the ROI is inversely warped
and pasted back to the original location.

2.2 Quality-Aware Memory Network

Given the initial segmentation St
i, our memory network learns from the interac-

tive slice Ii and segments the specified target in other slices. It stores previously
segmented slices in an external memory, and takes advantage of the stored 3D
image and corresponding segmentation to improve the segmentation of each 2D
query image. The network architecture is shown in Fig. 1(b). In the following
paragraphs, the superscript ‘t’ is omitted for conciseness unless necessary.

Key-Value Embedding. Given a query slice Ik, the network mines useful
information from memoryM for segmentation. Here, each memory cellMj ∈M
consists of a slice Imj and its segmentation mask Smj , where mj indicates the
index of the slice in the original volume. As shown in Fig. 1(b), we first encode
the query Ik as well as each memory cellMj ={Imj

, Smj
} into pairs of key and

value using dedicated encoders (i.e., query fQ
Enc and memory encoder fM

Enc):

KQ
k ,V

Q
k = fQ

Enc(Ik), (2)

KM
mj

,VM
mj

= fM
Enc(Imj

,Smj
). (3)

Here, KQ
k ∈RH×W×C/8 and VQ

k ∈RH×W×C/2 indicate key and value embedding
of the query Ik, respectively, whereas KM

vj and VM
vj

correspond to the key and
value of the memory cellMj . H, W and C denote the height, width and channel
dimension of the feature map from the backbone network, respectively. Note that
for each memory cell, we apply Eq. (3) to obtain pairs of key and value embed-
ding. Subsequently, all memory embedding are stacked together to build a pair of
4D key and value features (i.e.,KM ∈RN×H×W×C/8 and VM ∈RN×H×W×C/2),
where N = |M| denotes memory size.
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Memory Reading. The memory read controller retrieves relevant information
from the memory based on the current query. Following the key-value retrieval
mechanism in [12,25], we first compute the similarity between every 3D location

p ∈ R3 in KM with each spatial location q ∈ R2 in KQ
k with dot product:

sk(p, q) =
KM (p) ·KQ

k (q)

‖KM (p)‖‖KQ
k (q)‖

∈ [−1, 1], (4)

where KM (p)∈RC/8 and KQ
k (q)∈RC/8 denote the features at the pth and qth

position of KM and KQ
k , respectively. Next, we compute the read weight wk by

softmax normalization:

wk(p, q) = exp(sk(p, q))/
∑

o
exp(sk(o, q)) ∈ [0, 1]. (5)

Here, wk(p, q) measures the matching probability between p and q. The memory
summarization is then obtained using the weight to combine the memory value:

Hk(q) =
∑

p
wk(p, q)VM (p) ∈ RC/2. (6)

Here, VM (p)∈RC/2 denotes the feature of the pth 3D position in VM . Hk(q)
indicates the summarized representation of location q. For all H × W loca-
tions in KQ

k , we independently apply Eq. (6) and obtain the feature map Hk ∈
RH×W×C/2. To achieve a more comprehensive representation, the feature map
is concatenated with query value VQ

k to compute a final representation Fk =

cat(Hk,V
Q
k ) ∈ RH×W×C .

Final Segmentation Readout. Fk is leveraged by a decoder network fDec to
predict the final segmentation probability map for the query slice Ik:

Sk = fDec(Fk) ∈ [0, 1]h×w. (7)

Quality Assessment Module. While the memory network provides a com-
pelling way to produce 3D segmentation, it does not support human-in-the-loop
scenarios. To this end, we equip the memory network with a lightweight quality
assessment head, which computes a quality score for each segmentation mask. In
particular, we consider mean intersection-over-union (mIoU) as the basic index
for quality measurement. For each query Ik, we take the feature Fk and the
corresponding segmentation Sk together to regress a mIoU score hk:

hk = fQA(Fk,Sk) ∈ [0, 1], (8)

where Sk is firstly resized to a size of H×W and then concatenated with Fk for
decoding. The slice with the lowest score is curated for next-round interaction.
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2.3 Detailed Network Architecture

We follow [31] to implement the interaction network fIn(·) as a coarse-to-fine
segmentation network, however, other network architectures (e.g., U-Net [21])
can also be used here instead. The network is trained using the cross-entropy loss.
For the quality-aware memory network, we utilize ResNet-50 [8] as the backbone

network for both fQ
Enc (Eq. (2)) and fM

Enc (Eq. (3)). The res4 feature map of
ResNet-50 is taken for computing the key and value embedding. For fDec(·),
we first apply Atrous Spatial Pyramid Pooling module after the memory read
operation to enlarge the receptive field. We use three parallel dilated convolution
layers with dilation rates 2, 4 and 8. Then, the learned feature is decoded with a
residual refinement module proposed in [19]. The quality-aware module, fQA(·),
consists of three 3×3 convolutional layers and three fully connected layers.

3 Experiment

Experimental Setup. Our experiments are conducted on two public datasets:
MSD [24] includes ten subsets with different anatomy of interests, with a total
of 2,633 3D volumes. In our experiments, we study the most challenging lung
(64/32 for train/val) and colon (126/64 for train/val) subsets. KiTS19 [9]
contains 300 arterial phase abdominal CT scans with annotations of kidney and
tumor. We use the released 210 scans (168/42 for train/val) for experiments.

For comparison, we build a baseline model, named Interactive 3D nnU-Net,
by adapting nnU-Net [10] into an interactive version. Specifically, we use the
interaction network (§2.1) to obtain an initial segmentation, and this segment
is then concatenated with the volume as the input of 3D nnU-Net. The quality-
aware iterative refinement is also applied. In addition, we compare with a state-
of-the-art method DeepIGeoS [28]. Several non-interactive methods are also in-
cluded.

Interaction Simulation. Our approach can support various types of user in-
teractions, which facilitates use in clinical routine. We study three common in-
teractions: Scribbles provide sparse labels to describe the targets and rough
outreach, Bounding Boxes outline the sizes and locations of targets, whereas
Extreme Points [15] outline a more compact area of a target by labeling its
leftmost, rightmost, top, bottom pixels. To simulate scribbles, we manually label
the data in KiTS19 and MSD, resulting in 3,585 slices. Bounding boxes and ex-
treme points can be easily simulated from ground-truths with relaxations. We
train an independent fIn for each of these interaction types. In the first interac-
tion round, we compute a rough ROI according to user input. Then we treat all
the pixels out of the enlarged ROI as the background, and the pixels specified
by scribbles, or in regions of bounding boxes and extreme points as foreground.
We encode user guidance as a binary image M (§2.1) for input.
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Table 1. Quantitative results (DSC %) on (left) MSD [24] and (right) KiTS19 [9] val.

method lung cancer colon cancer

non-interactive methods:

C2FNAS [30] 70.4 58.9
3D nnU-Net [10] 66.9 56.0

interactive methods:

Interactive 3D nnU-Net [10]

scribbles 73.9 68.1
bounding boxes 74.7 68.5
extreme points 75.1 69.8

DeepIGeoS [28]

scribbles 76.6 72.3
bounding boxes 77.2 73.0
extreme points 77.5 73.2

Ours

scribbles 80.9 79.7
bounding boxes 81.5 79.3
extreme points 82.0 80.4

method kidney (organ) kidney (tumor)

non-interactive methods

Mu et al. [17] 97.4 78.9
3D nnU-Net [10] 96.9 85.7

interactive methods

Interactive 3D nnU-Net [10]

scribbles 94.5 86.3
bounding boxes 95.3 86.8
extreme points 95.6 87.6

DeepIGeoS [28]

scribbles 95.7 87.6
bounding boxes 96.4 88.5
extreme points 96.7 88.9

Ours

scribbles 96.9 88.2
bounding boxes 97.0 88.4
extreme points 97.0 89.1

(a) (b) (c) (d) (e)

User Inputs Ground-Truths Results of Interactive 3D nnU-Net Our Results

Fig. 2. Qualitative results of our approach v.s. Interactive 3D nnU-Net on two samples
in MSD-Lung (row #1) and KITS19 (row #2), using scribbles and extreme points as
supervision, respectively. (a) Interactive slices; (b) Results of interactive slices using
the interaction network; (c)-(e) Results of other slices. Zoom in for details.

Training and Testing Details. Our engine is implemented in PyTorch. We use
the same settings as [31] to train fIn (§2.1). The quality-aware memory network
fMem (§2.2) is trained using Adam with learning rate 1e-5 and batch size 8 for 120
epochs. To make a training sample, we randomly sample 5 temporally ordered
slices from a 3D image. During training, the memory is dynamically updated by
adding the slice and mask at the previous step to the memory for the next slice.

During inference, simulated user hints are provided to fIN for an initial seg-
mentation of the interactive slice. Then, for each query slice, we put this inter-
active slice and the previous slice with corresponding segmentation mask into
the memory as the most important reference information. In addition, we save a
new memory item every N slices, where N is empirically set to 5. We do not add
all slices and corresponding masks into memory to avoid large storage and com-
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Table 2. Ablation study of the quality assessment module in terms of DSC (%).

variant MSD (lung) MSD (colon) KiTS19 (tumor)

oracle 81.4 80.4 89.1
random 80.1 77.5 86.8

quality assess. 81.3 79.7 88.6

1 2 4 6 8 10 12 14 16
[MSD-Lung] Number of Interactions (Rounds)

76

78

80

82

84

DS
C 

(%
)

Scribbles
Bounding Boxes
Extreme Points

1 2 4 6 8 10 12 14 16
[MSD-Colon] Number of Interactions (Rounds)

70

74

78

82

86

DS
C 

(%
)

Scribbles
Bounding Boxes
Extreme Points

Fig. 3. The impact of number of interactions on MSD Lung (left) and Colon (right).

putational costs. In this way, our memory network achieves the effect of online
learning and adaption without additional training.

Quantitative and Qualitative Results. Table 1 (left) reports segmentation
results of various methods on MSD val. For interactive methods, we report
results at the 6th round which well balances accuracy and efficiency. It can be
seen that our method leads to consistent performance gains over the baselines.
Specifically, our approach significantly outperforms Interactive 3D nnU-Net by
more than 7% for lung cancer and 10% for colon cancer, and outperforms
DeepIGeoS [28] by more than 4% and 7%, respectively. Moreover, for different
types of interaction, our method produces very similar performance, revealing its
high robustness to user input. Table 1 (right) presents performance comparisons
on KiTS19 val. The results demonstrate that, for kidney tumor segmentation,
our engine generally outperforms the baseline models. The improvements are
lower than seen for the MSD dataset due to the fact that the initial segmentation
is already of high quality resulting in smaller dice score gains for adjustments.

Fig. 2 depicts qualitative comparisons of our approach against Interactive
3D nnU-Net on representative examples from MSD and KITS19. As seen, our
approach produces more accurate segmentation results than the competitor.

Efficacy of Quality Assessment Module. The quality assessment module
empowers the engine to automatically select informative slices for iterative cor-
rection. To prove its efficacy, we design two baselines: ‘oracle’ selects the worst
segmented slice by comparing the masks with corresponding ground-truths, while
‘random’ conducts random selection. As reported in Table 2, our method (i.e.,
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quality assessment module) significantly outperforms ‘random’ across three sets,
and is comparable to ‘oracle’, proving its effectiveness.

Impact of Multi-Round Refinement. Fig. 3 shows DSC scores with growing
number of interactions on lung and colon subsets of MSD. We observe that multi-
round refinement is crucial for achieving higher segmentation performance, and
the performance becomes almost marginal at the 16th round.

Runtime Analysis. For a 3D volume with size 512×512×100, our method
needs 5.13 s on average for one-round segmentation on a NVIDIA 2080Ti GPU,
whereas Interactive 3D nnU-Net needs 200 s. Hence our engine enables a signif-
icant increase in inference speed.

4 Conclusion

This work presents a novel interactive segmentation engine for 3D medical vol-
umes. The key component is a memory-augmented neural network, which em-
ploys an external memory for accurate and efficient 3D segmentation. Moreover,
the quality-aware module empowers the engine to automatically select informa-
tive slices for user feedback, which we believe is an important added value of
the memory network. Experiments on two public datasets show that our engine
outperforms other alternatives while having a much faster inference speed.
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