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Abstract
Unpaired point cloud completion is crucial for
real-world applications, where ground-truth data
for complete point clouds are often unavailable.
By learning a completion map from unpaired
incomplete and complete point cloud data, this
task avoids the reliance on paired datasets. In
this paper, we propose the Unbalanced Optimal
Transport Map for Unpaired Point Cloud Comple-
tion (UOT-UPC) model, which formulates the
unpaired completion task as the (Unbalanced)
Optimal Transport (OT) problem. Our method
employs a Neural OT model learning the UOT
map using neural networks. Our model is the
first attempt to leverage UOT for unpaired point
cloud completion, achieving competitive or su-
perior performance on both single-category and
multi-category benchmarks. In particular, our ap-
proach is especially robust under the class im-
balance problem, which is frequently encoun-
tered in real-world unpaired point cloud comple-
tion scenarios. The code is available at https:
//github.com/LEETK99/UOT-UPC.

1. Introduction
The three-dimensional (3D) point cloud is a fundamental
representation in 3D geometry processing (Guo et al., 2020).
However, acquiring complete point cloud data of real-world
objects remains a significant challenge due to the limita-
tions of the scanning process (Yuan et al., 2018). Conse-
quently, diverse approaches have been proposed for point
cloud completion, which aims to reconstruct a complete
(full) point cloud from incomplete (partial) data (Yu et al.,
2021; Wang et al., 2022; Tchapmi et al., 2019; Chen et al.,
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2020; Hong et al., 2023). Existing approaches can be cat-
egorized into paired (supervised) and unpaired (unsuper-
vised) methods. The paired methods rely on training data
that explicitly aligns incomplete point clouds with their
corresponding complete versions (Yu et al., 2021; Wang
et al., 2022; Tchapmi et al., 2019; Xia et al., 2021; Zhou
et al., 2021). However, acquiring such paired datasets can
be both expensive and challenging. To address these limita-
tions, the unpaired point cloud completion has emerged.
These approaches aim to train a completion model from
the independently sampled incomplete and complete point
clouds without explicit one-to-one correspondence. This is
achieved by leveraging shared semantic information, such
as object class (Ma et al., 2023; Chen et al., 2020; Wen
et al., 2021), or through domain adaptation using paired
synthetic data (Liu et al., 2024). However, existing unpaired
approaches primarily rely on heuristic techniques without a
rigorous theoretical formulation of the unpaired point cloud
completion problem.

In this paper, we formulate this unpaired point cloud com-
pletion through the Optimal Transport Map (OT Map)
problem. The OT Map is defined as the cost-minimizing
transport map that bridges two probability distributions. Re-
cently, several works proposed methods for learning the OT
Map using neural networks (Neural OT) (Rout et al., 2022;
Fan et al., 2022; Choi et al., 2024a). These models have been
applied to various machine learning tasks, such as generative
modeling (Choi et al., 2023) and image-to-image translation
(Fan et al., 2022; Gazdieva et al., 2024). A key compo-
nent of Neural OT is the cost function, which determines
how each input x is transported to T (x). However, existing
approaches mainly focus on variants of the quadratic cost
function l2 (Rout et al., 2022; Fan et al., 2022; Choi et al.,
2024a; 2023). To address this limitation, we analyze vari-
ous candidate cost functions for unpaired completion task
and show that this theoretical analysis closely aligns with
experimental results.

Based on this OT Map formulation, we propose a novel
unpaired point cloud completion model based on the Un-
balanced Optimal Transport (UOT) framework. We refer
to our model as the Unbalanced Optimal Transport Map
for Unpaired Point Cloud Completion (UOT-UPC). Our
experiments demonstrate that UOT-UPC achieves state-of-
the-art performance on unpaired point cloud completion
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benchmarks across both single-category and multi-category
settings. Furthermore, UOT-UPC exhibits particularly ro-
bust performance under class imbalance, where incomplete
and complete distributions consist of multiple categories
in different proportions. The UOT framework provides our
model with inherent robustness against class imbalance, fur-
ther enhancing its effectiveness in real-world scenarios. Our
contributions are summarized as follows:

• UOT-UPC is the first unpaired point cloud completion
model based on the Unbalanced Optimal Transport
framework, formulating the task as finding the optimal
transport map.

• We provide a comprehensive analysis of suitable cost
functions and prove a strong alignment between theo-
retical insights and empirical results.

• UOT-UPC attains state-of-the-art performance on both
single-category and multi-category benchmarks.

• UOT-UPC shows robust performance under severe
class imbalance problem between incomplete and com-
plete point clouds.

Notations and Assumptions Let X , Y be two compact
complete metric spaces, µ and ν be probability distributions
on X and Y , respectively. µ and ν are assumed to be ab-
solutely continuous with respect to the Lebesgue measure.
Throughout this paper, we denote the source distribution
as µ and the target distribution as ν. Since the focus of
this paper is on point cloud completion, µ and ν repre-
sent the distributions of the incomplete and complete
point clouds, respectively. For a measurable map T , T#µ
represents the pushforward distribution of µ. Π(µ, ν) de-
note the set of joint probability distributions on X × Y
whose marginals are µ and ν, respectively. Additionally,
f∗ indicates the convex conjugate of a function f , i.e.,
f∗(y) = supx∈R{⟨x, y⟩ − f(x)} for f : R → [−∞,∞].

2. Preliminaries
Optimal Transport The Optimal Transport (OT) problem
investigates the task of transporting the source distribution
µ ∈ P(X ) to the target distribution ν ∈ P(Y). This prob-
lem was initially formulated by Monge (1781) using a de-
terministic transport map T : X → Y such that T#µ = ν:

C(µ, ν) := inf
T#µ=ν

[∫
X
c(x, T (x))dµ(x)

]
. (1)

Intuitively, Monge’s OT problem explores the optimal trans-
port map T ∗ that connects two distributions while minimiz-
ing a given cost function c(x, T (x)). Although Monge’s
OT problem offers an intuitive framework, it has theoretical
limitations: this formulation is non-convex and the optimal
transport map T ∗ may not exist depending on the conditions
on µ and ν (Villani et al., 2009). To address these issues,

Kantorovich introduced a relaxed formulation of the OT
problem (Kantorovich, 1948). Formally, this Kantorovich
formulation is expressed in terms of a coupling π rather than
a transport map T , as follows:

Cot(µ, ν) := inf
π∈Π(µ,ν)

[∫
X×Y

c(x, y)dπ(x, y)

]
. (2)

where c is a cost function and π ∈ Π(µ, ν) is a coupling of
µ and ν. In contrast to the Monge problem, the minimizer
π⋆ of Eq 2 always exists under some mild assumptions on
(X , µ), (Y, ν) and the cost function c (Villani et al., 2009).
Note that under our assumptions that µ and ν are absolutely
continuous with respect to the Lebesgue measure, the op-
timal transport map T ∗ exists and the optimal coupling is
given by π⋆ = (Id× T ⋆)#µ (Villani et al., 2009).

Rout et al. (2022); Fan et al. (2023) proposed a method for
learning the optimal transport map T ⋆ using the semi-dual
formulation of OT. This neural network-based approach
for learning the OT Map is referred to as Neural Optimal
Transport (Neural OT). In specific, these models parametrize
the potential function v and the transport map T as follows:

Lvϕ,Tθ
= sup

vϕ

[∫
X
inf
Tθ

[c (x, Tθ(x))− vϕ (Tθ(x))] dµ(x)

+

∫
X
vϕ(y)dν(y)

]
. (3)

Unbalanced Optimal Transport The classical OT prob-
lem assumes an exact transport between two distributions
µ and ν, i.e., π0 = µ, π1 = ν. However, this exact match-
ing constraint results in sensitivity to outliers (Balaji et al.,
2020; Séjourné et al., 2022) and vulnerability to class im-
balance in the OT problem (Eyring et al., 2024). To mitigate
this issue, a new variation of the OT problem is introduced,
called Unbalanced Optimal Transport (UOT) (Chizat et al.,
2018; Liero et al., 2018b). Formally, the UOT problem is
expressed as follows:

Cuot(µ, ν) = inf
π∈M+(X×Y)

[∫
X×Y

c(x, y)dπ(x, y)

+DΨ1
(π0|µ) +DΨ2

(π1|ν)
]
, (4)

where M+(X × Y) denotes the set of positive Radon
measures on X × Y . DΨ1

and DΨ2
represents two f -

divergences generated by convex functions Ψi, and are
defined as DΨi(πj |η) =

∫
Ψi

(
dπj(x)
dη(x)

)
dη(x). These f -

divergences penalize the discrepancies between the marginal
distributions π0, π1 and µ, ν, respectively. Hence, in the
UOT problem, the two marginal distributions are softly
matched to µ, ν, i.e., π0 ≈ µ and π1 ≈ ν. Intuitively,
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Figure 1: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x), and three complete point
clouds yci (x) that minimize the cost c(x, yci (x)) for two cost functions: cdl2 and InfoCD, in the multi-category setting.

the UOT problem can be seen as the OT problem between
π0 ≈ µ and π1 ≈ ν, rather than between the exact distri-
butions µ and ν (Choi et al., 2023). This flexibility offers
robustness to outliers (Balaji et al., 2020) and adaptability
to class imbalance problem between µ and ν (Eyring et al.,
2024) to the UOT problem (See Sec 4.2 for details). We
refer to the optimal transport map T ⋆ from π0 to π1 as the
unbalanced optimal transport map (UOT Map). Note that,
under our assumption that the source and target distributions
are absolutely continuous, the existence of this UOT Map is
guaranteed (Liero et al., 2018a, Thm. 3.3).

Choi et al. (2023) introduced a Neural OT model for the
UOT problem into generative modeling, called UOTM (See
Sec 4.2 for details). In this paper, we adapt the UOT Map
to the task of unpaired point cloud completion. Unlike gen-
erative modeling, in unpaired point cloud completion, each
incomplete source sample x should be transported to its
corresponding complete target sample y. Therefore, it is
important to set an appropriate cost function c(x, y) in Eq
4, because this cost governs how each x is transported to y.
In Sec 4.1, we compare diverse cost functions to ensure that
the UOT Map works as a valid completion model.

3. Related Works
Point cloud completion has been investigated through vari-
ous approaches. The paired (supervised) methods leverage
explicit correspondences between incomplete and comple-
tion point clouds to train their models, such as ASFM-Net
(Xia et al., 2021) and PVD (Zhou et al., 2021). In contrast,
the unpaired (unsupervised) approaches suggest methods
that do not rely on paired data. In this regard, unpaired
point cloud completion is a more general and challenging
problem.

Unpaired (Chen et al., 2020) is one of the first approaches for
unpaired point completion. This model introduced a GAN-

based model that maps the latent features of the incomplete
point cloud to those of the complete point cloud. Wu et al.
(2020) proposed a conditional GAN model that generates
multiple plausible complete point clouds, conditioned on
the incomplete point cloud. ShapeInv (Zhang et al., 2021)
employed an optimization-based GAN-inversion approach
(Xia et al., 2022). ShapeInv finds the optimal input noise
to reconstruct the complete point cloud from the given in-
complete point cloud. This is conducted by minimizing the
distance between the input incomplete point cloud, which
is for completion, and the partial point cloud, which is ob-
tained by degrading the generator’s output. Cycle4 (Wen
et al., 2021) proposed two cyclic transformations between
the latent spaces of incomplete and complete point clouds,
utilizing missing region coding. USSPA (Ma et al., 2023)
proposed a symmetric shape-preserving method based on
GAN.

Unlike prior heuristic-driven methods, our work is the first
to provide a theoretical formulation of unpaired point cloud
completion as the OT Map problem. Based on this formu-
lation, we propose a theoretically grounded UOT approach
for unpaired point cloud completion.

4. Method
In this paper, our key idea is to train our model to learn
the UOT Map from the incomplete point cloud distribu-
tion µ to the complete point cloud distribution ν. In Sec
4.1, we formulate unpaired point cloud completion as an
(U)OT Map problem and present an extensive comparison
to identify the most suitable cost function. In Sec 4.2, we
introduce our max-min learning objective. In Sec 4.3, we
provide implementation details, such as training algorithm.
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Table 1: Cost function evaluation by comparing the cost-minimizer gc1(x) and the ground-truth completion ygt(x)
for each incomplete point cloud x. We evaluate the suitability of each cost function for UOT-UPC by measuring the L1
Chamfer distance (cdl1 × 102(↓)) between gc1(x) and ygt(x).

(a) Multi-category

Cost Function AVG chair table trash bin TV cabinet bookshelf sofa lamp bed tub

USSPA 8.64 7.40 8.88 9.13 8.70 11.48 7.61 6.52 10.01 8.72 8.30

l2 23.97 12.52 31.21 29.17 26.65 22.29 22.96 20.51 24.64 27.03 21.80
cdl2 9.78 8.07 7.69 14.00 5.91 18.86 7.88 7.34 6.23 8.76 7.07

cdl2fwd 8.87 9.48 8.62 9.38 7.80 10.55 7.73 5.63 14.59 10.32 7.28
InfoCD 8.46 7.43 6.41 11.69 5.69 17.35 6.52 6.25 2.70 6.91 4.92

(b) Single-category

Cost Function AVG chair table trash bin TV cabinet bookshelf sofa lamp bed tub

USSPA 7.18 7.44 7.15 6.98 6.08 10.02 7.00 6.12 8.35 7.90 4.79

l2 14.88 11.21 12.52 22.37 8.29 20.46 17.87 8.69 11.57 19.55 7.07
cdl2 6.65 7.17 7.35 8.35 5.46 10.59 5.77 6.39 3.70 6.46 5.28

cdl2fwd 6.12 7.29 7.41 7.23 5.18 9.03 6.45 4.64 2.82 6.75 4.44
InfoCD 5.58 6.84 5.90 6.91 5.29 7.86 4.37 5.75 2.72 5.78 4.51

Table 2: Class imbalance in the USSPA benchmark dataset (Ma et al., 2023). The Incomplete and Complete rows indicate
the proportion of each class in the respective datasets. The Ratio represents the proportion ratio (incomplete/complete). A
Ratio ̸= 1 indicates the presence of class imbalance.

class chair table trash bin TV cabinet bookshelf sofa lamp bed tub

Incomplete 43% 21.3% 8.0% 6.4% 6.0% 6.1% 3.9% 1.1% 2.9% 1.2%
Complete 22.2% 22.2% 1.9% 6.1% 8.7% 2.5% 17.6% 12.9% 1.3% 4.7%

Ratio 1.94 0.96 4.21 1.05 0.69 2.44 0.22 0.09 2.23 0.26

4.1. Motivation

Task Formulation as OT Map We begin by defining our
target task: Unpaired point cloud completion. Consider two
sets of point cloud data: the incomplete set X = {xi | xi ∈
X , i = 1, · · · , N} and the complete set Y = {yj | yj ∈
Y, j = 1, · · · ,M}. Note that X and Y are unpaired, i.e.,
X and Y are independently sampled from µ and ν. In real-
world scenarios, obtaining incomplete-complete pairs of
point clouds is prohibitively expensive, making this unpaired
approach essential. For instance, one can train a model on
incomplete real-world objects with complete synthetic data,
then perform completion on real-world inputs (Ma et al.,
2023). Formally, our objective is to train a completion model
T from the unpaired datasets:

T : X → Y x 7→ T (x). (5)

where x and T (x) denote the input incomplete point cloud
and its corresponding completion. This completion model
T must satisfy the following two conditions:

(i) T should generate a complete point cloud sample.
(ii) T should transport each incomplete point cloud to its

appropriate complete counterpart y.

In this regard, the optimal transport map (Eq. 1) is suitable
for the point completion model. By definition, the optimal
transport map T ⋆ is (1) a generator of the complete point

cloud samples, i.e., T (x) ∼ ν for x ∼ µ that (2) optimally
minimizes the given cost function c(x, T (x)). Therefore,
condition (i) is inherently satisfied. The key remaining ques-
tion is:

Q. Can we induce the OT Map to satisfy condition (ii) by
selecting an appropriate cost function c(·, ·)?

If we can identify such cost function c(·, ·) that induces an
explicit bias in T ⋆ to satisfy condition (ii), then T ⋆ can serve
as the point cloud completion model.

Cost Function Comparison By definition, the OT Map
T ⋆ is the cost minimizer among all target distribution gener-
ators (Eq. 1). Hence, in order to satisfy condition (ii), the
chosen cost function c(·, ·) should assign a lower cost to
c(x, T (x)) when T (x) is the correct completion of x and
a higher cost to c(x, y) when y is not the correct correspond-
ing completion. In this regard, we test various cost function
candidates, including l2, L2-Chamfer distance (cdl2) (Fan
et al., 2017), one-directional L2-Chamfer distance (cdl2fwd),
and InfoCD (Lin et al., 2024). For an incomplete (partial)
point cloud xi = {xin ∈ R3} and complete point cloud
yj = {yjm ∈ R3}, each cost function is defined as follows:

• l2(xi, yj) =
∑

n ∥xin − yjn∥22.

• cdl2(xi, yj)

=
∑

n minm ∥xin−yjm∥22+
∑

m minn ∥xin−yjm∥22.
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• cdl2fwd(xi, yj) =
∑

n minm ∥xin − yjm∥22.

• InfoCD(xi, yj) = ℓInfoCD(xi, yj) + ℓInfoCD(yj , xi).
where ℓInfoCD (xi, yj)

= − 1
|yj |
∑

m log

{
exp{− 1

τ′ minn d(xim,yjn)}∑
m exp{− 1

τ minn d(xim,yjn)}

}
For each partial point cloud x and a given cost function c,
we select k-nearest complete samples yci (x) for 1 ≤ i ≤ k
based on c(x, ·) on the target (completion) dataset. Then,
we compare them with the ground-truth completion ygt(x).
Our goal is to evaluate each cost function by testing whether
the k-nearest neighbor yci (x) is indeed similar to the ground-
truth completion ygt(x). If so, this suitable cost function
can be exploited to train our OT-based completion model via
the optimal transport map. The experiment is conducted on
paired completion data from ShapeNet (Chang et al., 2015).

Fig. 1 visualize the incomplete point cloud x, the ground-
truth completion ygt(x), and the 3-nearest neighbor yc3(x)
for the cdl2 and InfoCD cost functions (See Appendix B
for additional results for the single-category setting). Fig.
1 show that selecting the cost-minimizing pair based on
InfoCD retrieves an appropriate yc3(x), which closely
resembles ygt(x), in the multi-category setting. Table 1
presents similar results. Table 1 reports the L1 chamfer dis-
tance between ygt(x) and the nearest neighbor yc1(x) for
each cost function. The results indicate that the l2 cost per-
forms the worst. This result shows that l2 cost is unsuitable
for the point cloud completion task. In contrast, the InfoCD
achieves competitive results, performing comparably or bet-
ter than USSPA on the majority of datasets. Therefore, in
Sec 4.2, we propose an OT Map approach using the In-
foCD cost function for the point cloud completion task,
based on our investigation of the most suitable cost func-
tion. Furthermore, we conduct an ablation study on the cost
function in Sec 5.3 to demonstrate how this cost function
comparison closely aligns with the completion performance
of UOT-UPC.

UOT Map for Class Imbalance Problem In this para-
graph, we clarify the motivation for adopting the UOT Map,
instead of the classical OT Map. Our goal is unpaired point
cloud completion, where the training data X and Y are
not provided as paired samples. This inherently introduces
the class imbalance problem. For instance, consider point
cloud data consisting of the ’Chair’ and ’Table’ categories,
where incomplete and complete point clouds originate from
different sources, such as real-world scans and synthetic
datasets. In this case, the ratio of these two classes may
differ between the incomplete point cloud distribution µ and
the complete point cloud distribution ν. For example, while
the incomplete point cloud data might consist of 50% ’Chair’
and 50% ’Table,’ the complete point cloud data could be
composed of 70% ’Chair’ and 30% ’Table.’

Unfortunately, the standard OT problem (Eq. 1) is suscep-
tible to this class imbalance problem (Eyring et al., 2024).
The standard OT Map transports each source sample x ∼ µ
to a target sample y ∼ ν without rescaling. Consequently,
in this class imbalance case, 20% of the ’Table’ incomplete
point cloud data would be transported to 20% of the ’Chair’
complete point cloud. This behavior is undesirable for a
completion model. In practice, this class imbalance prob-
lem is prevalent in the unpaired point cloud completion
benchmark (Table 2). The proportion of some categories,
e.g., ’lamp’ and ’trash bin’ classes, significantly differs by
more than threefold between the incomplete and complete
datasets. To address this, we propose using the UOT Map
as our point cloud completion model. The robustness of
UOT to class imbalance will be explained in Sec 4.2 and
empirically validated through experiments in Sec 5.2.

4.2. Proposed Method

In this section, we introduce our unpaired point cloud com-
pletion model, which is based on the UOT Map, called
UOT-UPC. Our approach is to learn the UOT Map T ⋆ from
the incomplete point cloud distribution µ to the complete
point cloud distribution ν using a neural network Tθ. To
achieve this, we adopt the UOTM framework (Choi et al.,
2023), which is based on the semi-dual formulation (Eq. 6)
of the UOT problem (Vacher & Vialard, 2023)).

Cuot(µ, ν) = sup
v∈C

[∫
X
−Ψ∗

1 (−vc(x))) dµ(x)

+

∫
Y
−Ψ∗

2(−v(y))dν(y)

]
, (6)

where the c-transform of v is defined as vc(x) =
inf
y∈Y

(c(x, y)− v(y)). We refer to the optimal maximizer

v⋆ of Eq. 6 as the optimal potential function for the UOT
problem. Following prior approaches for learning the opti-
mal maps (Korotin et al., 2021; Fan et al., 2022; Rout et al.,
2022; Choi et al., 2023), we introduce Tθ to approximate
the UOT Map T ⋆ as follows:

Tθ(x) ∈ arginf
y∈Y

[c(x, y)− v(y)]

⇔ vc(x) = c (x, Tθ(x))− v (Tθ(x)) , (7)

Note that the UOT Map T ∗ satisfies the above conditions
(Eq. 7) with the optimal potential v⋆ (Choi et al., 2023). By
parametrizing the optimal potential v⋆ with a neural network
vϕ and substituting vc using the right-hand side of Eq. 7, we
arrive at the following learning objective Lvϕ,Tθ

:
Lvϕ,Tθ

= inf
vϕ

∫
X
Ψ∗

1

(
− inf

Tθ

[c (x, Tθ(x))− vϕ (Tθ(x))]

)
dµ(x)

+

∫
Y
Ψ∗

2 (−vϕ(y)) dν(y). (8)
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Algorithm 1 Training algorithm of UOT-UPC

Require: The mixture of the incomplete and complete
point cloud distribution µ. The complete point cloud
distribution ν. Ψ∗

i (x) = Softplus(x). Generator net-
work Tθ and the discriminator network vϕ. dl is density
loss. Total iteration number K.

1: for k = 0, 1, 2, . . . ,K do
2: Sample a batch X ∼ µ, Y ∼ ν.
3: LT = 1

|X|
∑

x∈X c (x, Tθ(x)) − vϕ (Tθ(x)) +

dl (Tθ(x))
4: Update θ by minimizing the loss LT .
5: Lv=

1
|X|
∑

x∈X Ψ∗
1 (−c (x, Tθ(x)) + vϕ (Tθ(x))) +

1
|Y |
∑

y∈Y Ψ∗
2(−vϕ(y))

6: Update ϕ by minimizing the loss Lv .
7: end for

Note that the learning objective Lvϕ,Tθ
reduces to the stan-

dard OT Map when Ψ∗
i is the identity function (Eq. 3),

which is equivalent to setting Ψi as the convex indicator
function at {1}. Hence, the UOT Map is a generalization of
the OT Map. Furthermore, the UOT Map can be interpreted
as the OT Map between the rescaled distributions π0(x) =
Ψ∗

1
′(−v⋆c(x))µ(x) and π1(y) = Ψ∗

2
′(−v⋆(y))ν(y), where

v⋆ denotes the optimal potential (Choi et al., 2023). These
rescaling factors Ψ∗

i
′(·) offer the flexibility of the UOT

map to handle the class imbalance problem, which is
a key challenge in unpaired point cloud completion
(Eyring et al., 2024).

4.3. Implementation Details

As described in Algorithm 1, Lvϕ,Tθ
can be computed by

the Monte Carlo approximation with mini-batch samples
from the incomplete point cloud x and the complete point
cloud y. Intuitively, our learning objective is similar to the
adversarial training in GANs (Goodfellow et al., 2020). Our
potential vϕ and completion model Tθ play similar roles as
the discriminator and generator in GANs, respectively. This
is because the minimization with respect to Tθ in Eq 8 is
equivalent to the maximization of Lvϕ,Tθ

1.

We parametrize the generator and discriminator using the
similar backbone network as USSPA (Ma et al., 2023) (See
Appendix A for the implementation details). InfoCD(·, ·)
(Lin et al., 2024) is adopted as the cost function c(·, ·) in the
learning objective Lvϕ,Tθ

. Moreover, in practice, we set the
source distribution µ̃ as a mixture of the incomplete point
cloud distribution µ and complete point cloud distribution
ν, with a mixing probability of 50%, i.e., µ̃ = 0.5µ+ 0.5ν.
Then, we train the UOT Map between µ̃ and ν. This mixture
trick helps our generator to produce high-fidelity complete

1Since we assume Ψi to be convex and non-negative, its convex
conjugate Ψ∗

i is an increasing function.

point clouds. We conducted ablation studies on the mix-
ture trick and the cost function in Sec 5.3.

5. Experiments
In this section, we evaluate our model from various per-
spectives. For implementation details of experiments, please
refer to Appendix A.

• In Sec 5.1, we evaluate our model on the unpaired point
cloud completion benchmarks, considering both single-
category and multi-category settings.

• In Sec 5.2, we demonstrate our model’s robustness to the
class imbalance problem.

• In Sec 5.3, we conduct ablations studies to investigate the
effect of different cost functions and the source mixture
trick.

5.1. Unpaired Point Completion Benchmark

We assess our UOT-UPC model on the unpaired point cloud
completion benchmarks under two settings: (1) Real Data
Completion (USSPA dataset (Ma et al., 2023)) and (2) Syn-
thetic Data Completion (PCN dataset (Yuan et al., 2018)).
For quantitative evaluation, we measure the L1 Chamfer
distance (Fan et al., 2017) (cdl1) and F-scores (Tatarchenko
et al., 2019) (F 0.1%

score and F 1%
score). These scores assess the

quality of the completion results by comparing them against
the ground-truth completions in the test dataset.

Real Data Completion The primary advantage of un-
paired point cloud completion is its ability to train models
using incomplete and completion point cloud data from
different sources. In this respect, USSPA (Ma et al., 2023)
introduced a benchmark, where incomplete point clouds
are obtained from real scans, while complete point clouds
come from synthetic data. This dataset consists of ten object
categories, including chairs, trash bins, lamps, etc. We eval-
uate our model in two settings: the single-category setting,
where performance is assessed separately for each object
category, and the multi-category setting, where the model
is trained and tested across all categories combined. The
multi-category setting is particularly challenging, as the
model should learn to complete partial point clouds from
diverse categories. Our UOT-UPC is compared to diverse
paired (PoinTr, Disp3D, and TopNet) and unpaired models
(ShapeInv, Unpaired, Cylce4, and USSPA). For the paired
approaches, each model is trained using the paired label
provided in the USSPA dataset.

Fig. 2 illustrates completion samples in the single category
setting (See Appendix C.1 for qualitative results in the multi-
category setting). Table 3 and 4 presents the L1 Chamfer
distance (cdl1) and F-scores (F 0.1%

score and F 1%
score). The AVG

column in Table 3 indicates the average cdl1 scores across
all ten categories. Across almost all settings and metrics, our
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Figure 2: Comparison of generated samples from UOT-UPC and USSPA on USSPA dataset in the single-category setting.

Table 3: Point cloud completion comparison on USSPA dataset in the single-category setting, assessed by L1 Chamfer
Distance (cdl1 × 102 (↓)). The boldface denotes the best performance among unpaired methods. All scores are taken from
(Ma et al., 2023).

Method AVG chair table trash bin TV cabinet bookshelf sofa lamp bed tub

Paired
PoinTr (Yu et al., 2021) 14.37 13.65 12.52 15.26 12.69 17.32 13.99 12.36 17.05 15.13 13.77

Disp3D (Wang et al., 2022) 7.78 6.24 8.20 7.12 7.12 10.36 6.94 5.60 14.03 6.90 5.32
TopNet (Tchapmi et al., 2019) 7.07 6.39 5.79 7.40 6.26 8.37 7.02 5.94 8.50 7.81 7.25

Unpaired

ShapeInv (Zhang et al., 2021) 21.39 17.97 17.28 33.51 15.69 26.26 25.51 14.28 16.69 32.33 14.43
Unpaired (Chen et al., 2020) 10.47 8.41 7.52 12.08 6.72 17.45 9.95 6.92 19.36 10.04 6.22

Cycle4 (Wen et al., 2021) 11.53 9.11 11.35 11.93 8.40 15.47 12.51 10.63 12.25 15.73 7.92
USSPA (Ma et al., 2023) 8.56 8.22 7.68 10.36 7.66 10.77 7.84 6.14 11.93 8.20 6.75

UOT-UPC (Ours) 7.60 7.51 6.33 8.83 6.07 11.54 7.32 6.61 7.30 9.00 5.45

Table 4: Point cloud completion comparison on USSPA
dataset in the single-category setting and the multi-category
setting, assessed by L1 Chamfer Distance (cdl1 × 102 (↓))
and F-scores (F 0.1%

score × 102, F 1%
score × 102 (↑)).

Method Single-category (AVG) Multi-category

F 0.1%
score ↑ F 1%

score ↑ cdl1 ↓ F 0.1%
score ↑ F 1%

score ↑

Paired
PoinTr - - 14.37 18.35 80.41
Disp3D - - 7.78 30.29 78.26
TopNet - - 7.07 12.33 80.37

Unpaired

ShapeInv 15.58 66.53 19.35 16.98 69.66
Unpaired 12.20 64.33 10.12 10.86 66.68
Cycle4 9.98 60.14 12.00 8.61 56.57
USSPA 17.49 73.41 8.96 16.88 72.31

UOT-UPC 18.43 75.59 8.96 19.25 71.52

model outperforms other unpaired models. In particular, in
the single-category setting, our model attains the best results
across all metrics in the AVG column. In the multi-category
setting, our model achieves the best performance in cdl1

and F 0.1%
score , while showing comparable results in F 1%

score (See
Appendix C.2 for qualitative results on the real-world KITTI
dataset (Geiger et al., 2012)).

Synthetic Data Completion We also evaluate our UOT-
UPC on the PCN dataset (Yuan et al., 2018). Similar to the
USSPA dataset, we compare our model with the same paired
and unpaired approaches. Table 5 reports the results for the

Table 5: Point cloud completion comparison on the PCN
dataset in the single-category setting, assessed by L1 Cham-
fer Distance (cdl1 × 102 (↓)).

Method AVG chair table cabinet sofa lamp

Paired
PoinTr 5.49 5.61 5.68 6.08 5.67 4.44
Disp3D 2.51 2.42 2.30 2.38 2.44 3.00
TopNet 5.92 6.34 5.45 6.06 5.80 5.95

Unpaired

ShapeInv 19.05 23.18 15.66 17.14 22.85 16.40
Unpaired 14.87 12.87 8.14 14.30 18.23 20.82
Cycle4 17.60 14.25 15.73 21.06 21.54 15.40
USSPA 12.63 13.52 9.66 8.89 15.51 15.57

UOT-UPC 7.87 9.96 8.74 6.41 7.83 6.42

single-category setting. Our model significantly outperforms
other unpaired approaches, such as USSPA (Ma et al., 2023).
Note that the unpaired approaches tackle a more challeng-
ing problem, as they do not rely on the pair information
between incomplete and complete point clouds. As a result,
paired approaches generally achieve higher scores compared
to unpaired methods. Nevertheless, our UOT-UPC model
achieves competitive performance.

5.2. Robustness to Class Imbalance of UOT approach

In this section, we explore the robustness of our model in
class-imbalanced settings. Specifically, we examine how
the performance of existing point cloud completion models
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Table 6: Comparison of class imbalance robustness
(cdl1 × 102 (↓)) on (Data1, Data2) = (TV, Table).

r 0.3 0.5 0.7 1

USSPA 7.60 6.97 8.08 7.97
OT-UPC 23.77 23.74 29.79 27.21

Ours 6.86 6.75 6.75 6.94

Table 7: Ablation study on the cost c(·, ·) (cdl1 × 102 (↓)).

Cost function Multi-category trash bin TV

l2 24.16 45.57 23.71
cdl2 10.12 10.40 6.47

cdl2fwd 13.58 10.16 7.39

InfoCD 8.96 8.83 6.07

changes with different class imbalance ratios. We select
two categories of datasets: Data1 (category: TV) and Data2
(category: Table). These categories are selected because of
their relatively abundant training samples and the distinct
differences in their shape. For the incomplete point cloud
samples, we use the entire training data for both Data 1
and Data2, maintaining their ratio of 6.4 : 21.3 in Table 2.
For the complete point cloud samples, we manipulate the
imbalance ratio r, i.e., Data1 and Data2 are sampled at a
ratio of 6.4 : 21.3× r.

(Data1 : Data2) = (6.4 : 21.3) → (6.4 : 21.3× r).

Then, each model is evaluated across diverse values of r
to explore the effects of class imbalance. We compare our
model to (i) the OT counterpart of our model (OT-UPC) and
(ii) USSPA, the state-of-the-art method for unpaired point
cloud completion. Note that, as discussed in Sec. 4.2, our
model reduces to the OT counterpart when Ψ∗

i = Id. For
detailed hyperparameter settings, See Appendix A.

As shown in Table 6, our model outperforms the two alter-
native models across various class imbalance settings. (See
Table 9 in the Appendix for results on other class combi-
nations.) Note that we tested r ≤ 1, because Data2 has a
significantly larger total number of training samples, more
than three times that of Data1 (Table 2). Hence, setting r > 1
would result in discarding too many training data samples.
Our model consistently demonstrates stable performance,
ranging between 6.75 and 6.94 across various class imbal-
ance ratios r, while USSPA shows considerably greater
variance. In contrast, the standard OT generally performs
poorly. We hypothesize that this phenomenon occurs due to
the unstable training dynamics of the standard OT. The sta-
ble training dynamics in learning the transport map is also
another advantage of the UOT over OT (Choi et al., 2024b).
In summary, these results indicate that our UOT-UPC offers
strong robustness to class imbalance.

Table 8: Ablation study on the source mixture trick, i.e.,
the complete input.

Category Complete Input cdl1 ↓ F 0.1%
score ↑ F 1%

score ↑

Single 7.94 18.12 73.49
✓ 7.60 18.43 75.59

Multi 8.98 18.04 71.75
✓ 8.96 19.25 71.52

5.3. Ablation Study

Effect of Appropriate Cost Functional We conduct an
ablation study by modifying the cost function c(·, ·) in our
model (Eq. 8). Each model is evaluated in the multi-category
setting and in the single-category settings for the ’trash
bin’ and ’TV’ classes. Table 7 demonstrates that our model
achieves the best performance using the InfoCD cost func-
tion, followed by (cdl2fwd, cdl2), and l2 (See Table 10 for the
cost ablation results on the PCN dataset). Note that this rank-
ing closely aligns with our cost function analysis in Table
1. This consistency suggests a strong correlation between
our theoretical cost function evaluation (Table 1) and actual
model performance. Furthermore, these findings suggest
that further exploration of alternative cost functions could
potentially enhance our model’s performance. We leave this
exploration for future work.

Add Complete Sample to Source As described in Sec 4.3,
we introduce the source mixture trick into our model, where
the source distribution is given as a mixture of incomplete
and complete point cloud data with a 50% mixing proba-
bility. Here, we conduct an ablation study to evaluate the
effect of this source mixture trick. The results are presented
in Table 8. Across both single-category and multi-category
experiments, our model almost consistently exhibits im-
provements in both cdl1 and F scores when utilizing the
source mixture trick. Intuitively, this trick aims to assist the
transport map in generating the target distribution better.
Specifically, when given complete point cloud inputs, the
optimal transport map should ideally learn an identity map-
ping, which is relatively easier compared to completing an
input incomplete point cloud. We hypothesize this property
encourages the training process, enabling the model to gen-
erate higher-fidelity complete point clouds more efficiently.

6. Conclusion
In this paper, we introduced UOT-UPC, an unpaired point
cloud completion model based on the UOT map. We for-
mulated the unpaired point cloud completion task as the
(Unbalanced) OT problem and investigated the cost function
for this task. Our experiments demonstrated a strong corre-
lation between cost function selection and completion per-
formance. Our UOT-UPC attains competitive performance
compared to both unpaired and paired point cloud comple-
tion models. Moreover, our experiments showed that UOT-
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UPC presents robustness to the class imbalance problem,
which is prevalent in the unpaired point cloud completion
tasks. One limitation of our work is that while we explored
various candidate cost functions, there may exist better cost
functions for this task, e.g., parametrized using neural net-
works. We leave this exploration for future work. Also, our
model sometimes exhibits unstable training dynamics due to
adversarial training, which is commonly observed in GAN
models.
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A. Implementation Details
Unless otherwise stated, our implementation follows the experimental settings and hyperparameters of USSPA (Ma et al.,
2023).

A.1. Network

We adopt the generator and discriminator architectures from the USSPA framework as completion model Tθ and potential vϕ.
For the potential vϕ, the final sigmoid layer of the discriminator is omitted to allow for the parameterization of the potential
function, enabling outputs to assume any real values. Additionally, we remove the feature discriminator to streamline
the architecture. In the potential vϕ, we implement the encoder proposed by (Yuan et al., 2018) in their Point Cloud
Networks (PCN). Following the encoder, we employ an MLPConv layer specified as MLPConv(Cin, [C1, . . . , Cn]) =
MLPConv(1024, [256, 256, 128, 128, 1]), which indicates that the output y is computed as follows:

y = Conv1DC4=128,C5=1(ReLU(. . .ReLU(Conv1DCin=1024,C1=256(x)) . . .)) (9)

Here, Conv1DCin,Cout represents a 1D convolutional layer with Cin input channels and Cout output channels.

The completion model Tθ receives as input a concatenation of the incomplete point cloud and a complete point
cloud. These inputs are processed independently to generate distinct complete point cloud samples. The completion model
Tθ follows an Encoder-Decoder architecture, augmented by an upsampling refinement module (upsampling module) in
sequence. The upsampling module is implemented using a 4-layer MLPConv network, where the final MLPConv layer is
responsible for refining and adding detailed structures to the output (Ma et al., 2023). Specifically, the inputs to the last
MLPConv layer are composed of the skeleton point cloud produced by the Encoder-Decoder structure and the features
extracted from the third MLPConv layer.

A.2. Implementation detail

Motivation - Optimal Cost Function The incomplete and complete point clouds utilized in the optimal cost function
outlined in Sec 4.1 are sourced from the dataset proposed by (Ma et al., 2023). This dataset consists of paired incomplete
and complete point clouds. For a fair comparison, we shuffle the complete point clouds to create an unpaired setting. We
then use these shuffled point clouds as artificial complete data to train the USSPA model.

Training Concerning the loss function Lv,T . We employ Infocd as the cost function c with a coordinate value of τ = 0.044.
For the hyperparameters of InfoCD, we set τinfocd to 2 and λInfoCD to 1.0× 10−7. The functions Ψ∗

1 and Ψ∗
2 are defined

using the Softplus activation, SP(x) = 2 log(1 + ex)− 2 log 2.2 As a regularization term, we incorporate the density loss
dl proposed by (Ma et al., 2023), and we designate a coordinate value of 10.5 for dl. The objective of Potential vϕ is to
assign high value to target sample y while assigning lower values to generated sample ŷ. We utilize the Adam optimizer with
β1 = 0.95, β2 = 0.999 and learning rates of 1.0× 10−5 for both the potential vϕ and completion model Tθ, respectively.
The training is conducted with a batch size 4. The maximum epoch of training is 480. We report the final results based on
the epoch that yields the best performance.

Ablation study - Effect of Appropriate Cost Functional We set cost function coordinate value τ = 100 for cost function
cdl2fwd, cd

l2 and l2.

Ablation study - Add Complete Sample to Source For a fair comparison, we set the learning rates of 2.0× 10−5 for
both the potential vϕ and completion model Tθ, respectively, when not using the source mixture trick.

2The softplus function is translated and scaled to satisfy SP(0) = 0 and SP′(0) = 1.
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Evaluation Metrics

• L1-Chamfer Distance cdl1 (Fan et al., 2017)

cdl1(xi, yj) =
1

2

(
1

|xi|
∑
m

min
n

∥xim − yjn∥2 +
1

|yj |
∑
n

min
m

∥xim − yjn∥2.

)
(10)

where each of xi, yj is point cloud

• F score Fα
score (Tatarchenko et al., 2019)

Fα
score =

2× P (α)×R(α)

P (α) +R(α)
(11)

where P (α) =
|{xim∈xi|minn(∥xim−yjn∥2)<α}|

|xi| measures the accuracy of xi,

and R(α) =
|{yjn∈yj |minm(∥xim−yjn∥2)<α}|

|yj | measures the completeness of xi.

A.3. OT-UPC

For the potential vϕ, we implement MLPConv(512, [128, 128, 1]) following the PCN encoder (Yuan et al., 2018). We
incorporate R1 regularization (Roth et al., 2017) and R2 regularization (Mescheder et al., 2018) to the loss function Lv,T .
Both regularization terms are assigned coordinate values r1 = r2 = 0.2. The density loss dl is excluded from the Lv,T .
A gradient clipping value of 1.0 is applied. We use Adam optimizer with β1 = 0.9, β2 = 0.999 and a learning rate
lrTθ

= 5.0 × 10−5 for the completion model Tθ. In addition, we use Adam optimizer with β1 = 0.9, β2 = 0.999 and
learning rate lrvϕ = 1.0× 10−7 for the potential vϕ. All other settings not explicitly mentioned follow those of our model,
UOT-UPC.
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B. Cost Function Evaluation
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Figure 3: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x), and the three complete
point clouds yci (x) that minimize the cost c(x, yci (x) for two cost functions: cdl2 and InfoCD, in the single-category
setting.
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Figure 4: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x), and the three complete
point clouds yci (x) that minimize the cost c(x, yci (x)) for two cost functions: cdl2fwd and l2, in the single-category setting.
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Figure 5: Visualization of the incomplete point cloud x, the ground-truth completion ygt(x), and the three complete
point clouds yci (x) that minimize the cost c(x, yci (x)) for two cost functions: cdl2fwd and l2, in the multi-category setting.
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C. Additional Results
C.1. Additional Qualitative Results

ch
ai

r
Incomplete GT USSPA UOT-UPC

ta
bl

e
tra

sh
 b

in
TV

ca
bi

ne
t

Figure 6: Comparison of generated samples from our UOT-UPC and USSPA in the single-category setting.
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Figure 7: Comparison of generated samples from our UOT-UPC and USSPA in the single-category setting.
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Figure 8: Comparison of generated samples from our UOT-UPC and USSPA in the multi-category setting.
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Figure 9: Comparison of generated samples from our UOT-UPC and USSPA in the multi-category setting.
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C.2. Qualitative comparison between our UOT-UPC and existing methods on the KITTI dataset.

Input

UOT-UPC

Input

UOT-UPC

Figure 10: Point cloud completion results of the UOT-UPC model on the KITTI dataset (Geiger et al., 2012). The
model is trained on the ShapeNet dataset under the car category and tested on partial point clouds from the KITTI dataset
without fine-tuning. From the qualitative comparison with previous approaches (Fig 11), our UOT-UPC model achieves
higher-fidelity point cloud completion, demonstrating better global structure and more evenly distributed points.

K
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Input ShapeInv. OptDE ACL-SPC Input ShapeInv. OptDE ACL-SPC

Figure 11: Point cloud completion results of previous models on the KITTI dataset (Geiger et al., 2012). The generated
samples are taken from ACL-SPC (Hong et al., 2023), which is a self-supervised model. The others are unsupervised
approaches: ShapeInv (Zhang et al., 2021) and OptDE (Gong et al., 2022).
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C.3. Comparison of class imbalance robustness for diverse class combinations.

Table 9: Comparison of class imbalance robustness (cdl1 × 102 (↓)) between UOT-UPC (ours), USSPA, and OT-UPC on
diverse class combinations (Data1, Data2). Our UOT-UPC consistently outperforms other models across a wide range of
class imbalance ratios in both additional class settings.

(a) (Data1, Data2) = (Lamp, Trash bin) with sample count = (1.1 : 8.0 * r).

r 0.3 0.5 0.7 1

USSPA 10.16 9.49 10.21 10.21
OT 25.68 21.95 28.41 25.36

Ours 9.42 9.48 9.57 9.44

(b) (Data1, Data2) = (Lamp, Bed) with sample count = (1.1 : 2.9 * r).

r 0.3 0.5 0.7 1

USSPA 9.64 9.78 9.27 9.79
OT 18.99 21.23 19.27 22.12

Ours 8.95 8.91 8.98 8.73

C.4. Additional experimental results on the PCN dataset

Table 10: Ablation study on the cost function c(·, ·) on the PCN dataset (cdl1 × 102 (↓)). The results are consistent with
Table 7. InfoCD achieved the best performance, while the L2 distance yielded the worst results.

Cost function cabinet sofa lamp

l2 23.86 19.92 19.22
cdl2 8.85 8.40 7.07

cdl2fwd 13.53 11.32 12.78

InfoCD 6.41 7.83 6.42
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C.5. Ablation study on cost-intensity τ

We evaluate the robustness of our model with respect to the cost-intensity hyperparameter τ , defined as c(x, y) = τ ×
InfoCD(x, y). Specifically, we tested our model on the multi-category setting and the single-category settings of the
’bookshelf’ and ’lamp’ classes, while changing τ ∈ {0.02, 0.025, 0.044, 0.1, 0.25}. Note that we impose challenging
conditions by setting the maximum τ to τmax = 0.25 and the minimum τ to τmin = 0.02, resulting in a ratio of
τmax/τmin > 10. As depicted in Fig. 12, our model shows moderate performance across various τ values. In particular, the
sweet spot of τ lies roughly between 0.044 and 0.1. The performance deteriorates by approximately 10% when τ is either
too large (τmax) or too small (τmin).

Figure 12: Ablation study on the cost intensity τ (cdl1 × 102 (↓)).
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