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Abstract001

Coreference resolution is a fundamental task002
in natural language processing that involves003
linking different references to the same entity004
within a text. However, existing models often005
struggle to reliably identify referential relation-006
ships in contexts with extensive length or com-007
plex modifiers. This study proposes a data aug-008
mentation technique adding adjective phrases009
and employing a prompt-based adversarial fil-010
tering pipeline to address these challenges.011
Specifically, we generated and inserted contex-012
tually appropriate adjective phrases through the013
interaction between GPT-4o-mini based Few-014
shot Prompting and a Discriminative Language015
Model. The grammatical and semantic consis-016
tency of these phrases was validated via human017
evaluation and inter-annotator agreement (IAA)018
procedures. The generated synthetic dataset019
was integrated with existing data, leading to020
enhanced model performance. On the LitBank021
dataset, the CoNLL-F1 score increased by up022
to 2.4%, while the synthetic dataset improved023
linguistic diversity and the complexity of ref-024
erential structures. The proposed pipeline rep-025
resents a significant step towards developing026
coreference resolution models capable of better027
capturing linguistic variety and demonstrating028
robustness under challenging conditions.029

1 Introduction030

Coreference resolution (Karttunen, 1969) is a fun-031

damental challenge in natural language processing,032

requiring the accurate identification and linking033

of multiple mentions referring to the same entity034

within a document. It plays a crucial role in appli-035

cations such as pronoun resolution, information re-036

trieval, document summarization, question answer-037

ing, and dialogue systems. While recent advances038

in pre-trained Large Language Models based on039

the Transformer architecture (Vaswani et al., 2017)040

significantly improve performance, challenges re-041

main, particularly in scenarios requiring long-range042

contextual reasoning or the interpretation of com- 043

plex lexical structures. Existing coreference res- 044

olution datasets (Pradhan et al., 2013; Bamman 045

et al., 2020) often consist of relatively simple sen- 046

tence structures, limiting models’ ability to learn 047

linguistically diverse patterns—particularly those 048

involving adjectival and adverbial modifiers. These 049

more intricate expressions are especially prevalent 050

in literary texts, and the inability to learn them 051

effectively can substantially impair the general- 052

ization performance of a model. This limitation 053

is further exacerbated in real-world applications, 054

where models frequently encounter highly modi- 055

fied and contextually complex language, making 056

robust coreference resolution even more challeng- 057

ing. 058

To address these issues, recent studies explore 059

data augmentation (Feng et al., 2021) and adver- 060

sarial filtering (Bras et al., 2020). Data augmen- 061

tation is a well-established technique that exposes 062

models to a variety of linguistic patterns, reducing 063

their reliance on specific expressions or biased fea- 064

tures. Adversarial filtering, in contrast, generates 065

and curates sophisticated example variants, encour- 066

aging models to learn linguistic cues and complex 067

relationships that might otherwise be overlooked. 068

There is also growing interest in combining adver- 069

sarial filtering with data augmentation to systemat- 070

ically adjust dataset difficulty and mitigate model 071

weaknesses (Bhargava and Ng, 2022). 072

However, existing research often focuses on 073

techniques such as synonym substitution, sentence 074

reordering, and noise injection to generate chal- 075

lenging examples, even within adversarial filter- 076

ing frameworks. While these techniques are ef- 077

fective for generating difficult-to-distinguish ex- 078

amples, they fall short in tasks like coreference 079

resolution, where context preservation, referential 080

integrity, and entity recognition are crucial. For 081

instance, a model cannot inherently recognize that 082

“the city” and “the breathtakingly vibrant city” re- 083
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fer to the same entity. This highlights the need084

for methods that deliberately incorporate syntactic085

modifiers, such as adjectives and adverbials, to en-086

rich coreferential expressions and better reflect nat-087

ural linguistic variation. This approach enables the088

model to perform coreference resolution based on089

contextual understanding and referential reasoning090

rather than relying on simple keyword matching.091

Based on this perspective, this work presents a092

dataset that is augmented with complex adjective093

phrases, and proposes a prompt-based adversarial094

filtering pipeline to generate complex adjectival095

variants for coreferent mentions. The main contri-096

butions of this study are as follows: (1) To com-097

plement the monotonous representation of existing098

coreference resolution datasets, we introduce ex-099

amples with modifier phrases to expand learning100

opportunities for complex coreference relations. (2)101

We design a Prompting-based Adversarial Filtering102

pipeline that utilizes GPT-4o-mini (Brown et al.,103

2020) as a Generator Language Model, proposing104

a data selection method that considers both con-105

textual relevance and difficulty. The augmented106

dataset is validated through Inter-Annotator Agree-107

ment following human evaluation. (3) We construct108

a synthetic dataset by integrating the augmented109

dataset with the original data and fine-tune a pre-110

trained language model, which significantly im-111

proves the F1 score of coreference resolution mod-112

els. By integrating data augmentation techniques113

into coreference resolution research, this study in-114

troduces a novel approach that simultaneously en-115

hances model performance and data quality.116

2 Related Works117

2.1 Coreference Resolution118

Coreference resolution refers to identifying and119

linking multiple expressions that denote the same120

entity within a text (Karttunen, 1969). It is typi-121

cally categorized into entity and event coreference.122

In this study, we focus on entity coreference res-123

olution, which involves identifying groups of ex-124

pressions that refer to the same real-world entity125

(Haghighi and Klein, 2010). The process gener-126

ally comprises two stages: mention detection and127

mention linking (Pradhan et al., 2012). The former128

detects expressions that can serve as mentions of129

entities, while mention linking groups them into130

coreference clusters (Lee et al., 2017).131

Several benchmark datasets are widely used for132

coreference resolution, including CoNLL 2012133

(Pradhan et al., 2012), GAP (Webster et al., 2018), 134

LitBank (Bamman et al., 2020), and WikiCoref 135

(Ghaddar and Langlais, 2016). CoNLL 2012 cov- 136

ers multiple languages, including English, Chi- 137

nese, and Arabic, and spans various text genres. 138

GAP comprises sentence pairs containing gender- 139

ambiguous pronouns extracted from Wikipedia ar- 140

ticles. LitBank provides fine-grained coreference 141

annotations for literary texts, whereas WikiCoref 142

includes annotated with both entity types and coref- 143

erence links from Wikipedia corpora. 144

Coreference resolution models can be broadly 145

categorized based on their learning paradigms 146

into mention-pair classifiers (Haghighi and Klein, 147

2010), entity-level models (Clark and Man- 148

ning, 2016), latent-tree models (Fernandes et al., 149

2014), and mention-ranking models (Wiseman 150

et al., 2016). More recently, deep learning and 151

transformer-based large language models (Vaswani 152

et al., 2017) are introduced to further enhance coref- 153

erence resolution performance. However, chal- 154

lenges remain in handling complex contextual de- 155

pendencies and modifier phrases. 156

2.2 Adversarial Filtering 157

Adversarial filtering is a technique designed to sys- 158

tematically increase the difficulty of a dataset in 159

order to effectively evaluate the limitations of ma- 160

chine learning models. This method involves using 161

a weak model to make predictions on data sam- 162

ples, discarding those that are easily answered cor- 163

rectly, and retaining only the samples for which the 164

model produces incorrect answers or expresses un- 165

certainty. Such a process prevents models from 166

relying on superficial patterns or dataset biases 167

and encourages the development of deeper reason- 168

ing capabilities and improved generalization. This 169

method proves particularly useful in enhancing data 170

quality in tasks and is employed in the construc- 171

tion of large-scale, challenging datasets such as 172

HellaSwag (Zellers et al., 2019). 173

Recent advancements in adversarial filtering 174

demonstrate its effectiveness in various domains. 175

DISCOSENSE (Bhargava and Ng, 2022) extends 176

the adversarial filtering framework by introducing 177

Controlled Adversarial Filtering, leveraging dis- 178

course connectives to assess commonsense reason- 179

ing abilities and generating adversarial distractors 180

to increase evaluation difficulty. 181

Specifically, we employ GPT-4o-mini (Brown 182

et al., 2020) to generate, insert, and replace adjecti- 183

val phrases in coreference expressions. The modi- 184
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Dataset #Train #Dev #Test
LitBank 80 10 10
PreCo 36,120 500 500

Table 1: Number of documents in LitBank and PreCo
datasets.

Dataset #Best #Worst #Weird
Augmented LitBank 184 128 23
Augmented PreCo 4,029 1,371 1,193

Table 2: Number of augmented cases in LitBank and
PreCo datasets.

fied instances are then filtered via a discriminative185

language model, yielding a more challenging and186

informative dataset. Through this approach, we aim187

to simultaneously enhance both the performance188

and robustness of coreference resolution models by189

exposing them to more complex linguistic patterns.190

3 Methodology191

3.1 Task Description192

Coreference resolution refers identifying and link-193

ing multiple mentions of the same entity within194

a given text (Karttunen, 1969). In this study, we195

generate a difficult dataset by augmenting correctly196

predicted instances with adjectival phrases. The197

adversarial dataset is then combined with the orig-198

inal data to construct the final synthetic dataset.199

Training on this synthetic dataset aims to enhance200

coreference resolution performance.201

3.2 Dataset Format202

OntoNotes Formatting The OntoNotes dataset203

(Pradhan et al., 2013) is structured as a collection204

of documents, each containing multiple sentences.205

Each sentence is represented as a word-level list,206

and a document is formed by aggregating these207

sentence lists. This hierarchical structure facilitates208

contextualization and enables effective modeling209

of document-level coreference relationships.210

Cluster Structure A coreference cluster is defined211

as a set of mention offsets that refer to the same en-212

tity. Each offset specifies the start and end indices213

of a particular word or phrase within a document,214

uniquely identifying its occurrence. Mentions shar-215

ing the same reference are grouped into clusters216

based on their offsets, allowing the model to learn217

and distinguish different coreference relationships.218

Augmented Descriptive Phrase Structure In this219

study, we leverage a generative language model to220

expand the scope and complexity of the dataset by221

incorporating descriptive phrases into coreferential 222

noun phrases. For instance, if the noun phrase "the 223

city" appears in a sentence, an adjectival phrase 224

such as "the beautiful city" is introduced to enhance 225

linguistic diversity while preserving the corefer- 226

ence relationship. 227

3.3 Datasets 228

LitBank (Bamman et al., 2020) is an annotated 229

dataset comprising 100 works of English litera- 230

ture, widely utilized in NLP and computational 231

humanities. It specializes in literary texts, con- 232

taining documents with long contextual spans and 233

complex narrative structures. These characteristics 234

enable a more sophisticated evaluation of coref- 235

erence resolution models that must process long- 236

range dependencies. Unlike general-domain texts 237

such as conversational transcripts or news articles, 238

literary texts are distinguished by their stylistic di- 239

versity, frequent use of metaphors, and long-range 240

dependencies. These features make LitBank par- 241

ticularly well-suited for assessing a model’s long- 242

range inference capabilities and anti-forgetting per- 243

formance in long documents with intricate corefer- 244

ence structures. It has been widely used for tasks 245

such as character tracking, event extraction, rela- 246

tionship modeling, and literary analysis. 247

PreCo (Chen et al., 2018) is a large-scale corefer- 248

ence dataset based on English textbooks, featuring 249

simpler syntax and explicit coreference chains com- 250

pared to the literature-focused LitBank. This do- 251

main contrast allows us to test the generalizability 252

of our method. Despite augmenting only a subset 253

of PreCo due to its size, we still observed CoNLL- 254

F1 improvements, suggesting effectiveness across 255

diverse linguistic settings. 256

Details of the dataset composition and augmen- 257

tation are provided in Table 1 and Table 2. Table 1 258

summarizes the number of training, development, 259

and test instances from LitBank and PreCo used 260

for model fine-tuning, while Table 2 presents the 261

distribution of augmented subsets derived from the 262

respective training sets. The three evaluation cri- 263

teria used in our experiments are described in Ap- 264

pendix B. 265

3.4 Prompting-based Adversarial Filtering 266

The proposed data augmentation pipeline extends 267

adversarial filtering to coreference resolution, em- 268

phasizing the interaction between a discriminative 269

language model and a generator language model. 270

This pipeline is designed to enhance the general- 271
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Figure 1: Overall pipeline. The gray rectangle represents the Prompting-based Adversarial Filtering process. If
the discriminative model succeeds in making a prediction, the process repeats; otherwise, the data is collected and
moved to the human evaluation phase.

Input (Source Sentence):
On either side of this road straggled two uneven rows of
wooden buildings ; the general merchandise stores, the two
banks, the drug store, the feed store, the saloon, the post-
office. On the sidewalk in front of one of the stores sat a little
Swede boy, crying bitterly .
Output (Augmented Sentence):
On either side of this road straggled two uneven rows of
wooden buildings; the general merchandise stores, the two
banks, the drug store, the feed store, the saloon, the post-
office. On the sidewalk in front of one of the various stores
sat a little Swede boy, crying bitterly.

Table 3: Example of Valid Augmented Sentence. Adjec-
tive phrases are added appropriately before nouns.

ization of model performance and robustness by in-272

crementally introducing difficult examples, such as273

descriptive phrases, into the coreference resolution274

dataset through the generator model. This dataset is275

then filtered using the discriminative model, which276

filters the generated data to regulate quality and277

adjust difficulty levels.278

Discriminative models predict coreference re-279

lationships from input data and compare them280

to gold-standard annotations to identify instances281

where the model already makes correct inferences.282

In this study, we employ Maverick-mes (Martinelli283

et al., 2024) as the discriminative model. The gener-284

ator model increases the complexity of the dataset285

by adding or replacing descriptive phrases before286

coreference expressions. The newly generated ex-287

amples are then validated by the discriminative288

Input (Source Sentence):
In accordance with this rule, it can reasonably be assumed
that Boston’s forefathers built their first prison-house some-
where near Cornhill around the same time they established the
earliest burial ground on Isaac Johnson’s land, surrounding
his honored grave. This grave later became the center of all
the tombs gathered in the old churchyard of King’s Chapel.
Output (Augmented Sentence):
In accordance with this rule, it can reasonably be assumed
that Boston’s forefathers built their first prison-house some-
where near Cornhill around the same time they established
the earliest burial ground on Isaac Johnson’s land, surround-
ing his respected honored grave. This grave later became
the center of all the tombs gathered in the old churchyard of
King’s Chapel.

Table 4: Example of Invalid Augmented Sentence. An
adjective phrase has been added after the pronouns un-
naturally.

model. For this purpose, GPT-4o-mini is utilized 289

as the generator model. 290

To ensure that the generator model accurately de- 291

termines the appropriate placement and integration 292

of descriptive phrases, we provide explicit exam- 293

ples within the prompts to facilitate the generation 294

of more natural and contextually appropriate ad- 295

jectival phrases. Furthermore, we develop an auto- 296

mated pipeline to generate modified data based on 297

the prompts, which is subsequently validated and 298

filtered using the discriminative model. Figure 1 il- 299

lustrates the complete process of Prompting-based 300

Adversarial Filtering. Starting with the original 301

dataset, the generator model inserts appropriate 302
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descriptive phrases before coreference expressions.303

Table 3 shows the valid cases of the augmented304

LitBank dataset, and Table 4 shows the invalid305

cases from our augmented LitBank dataset. Al-306

though the underlying format follows OntoNotes,307

we present the examples in standard sentence for-308

mat for readability. The underlined words indicate309

coreference mentions, while bold-faced words rep-310

resent augmented descriptive phrases. An example311

prompt template for adversarial filtering is provided312

in Appendix A.313

3.5 Human Evaluation with Inter-Annotator314

Agreement(IAA)315

We conduct a human evaluation to assess the qual-316

ity of the data generated by the Few-shot Prompt-317

based Adversarial Filtering process. This evalua-318

tion aims to directly assess the grammatical correct-319

ness, semantic appropriateness, and coreference320

relevance of the augmented data. Three researchers321

perform the evaluation based on predefined criteria,322

systematically reviewing all augmented datasets323

produced through the adversarial filtering process.324

The evaluation criteria are shown in Appendix B.325

To ensure the reliability of annotations and as-326

sess the consistency of the data, we measure IAA.327

IAA quantitatively indicates the degree to which328

multiple annotators consistently make judgments329

on the same items. We employ two widely used330

IAA metrics: Fleiss’ Kappa (Krippendorff, 2011)331

and Krippendorff’s Alpha (Fleiss, 1971). Fleiss’332

Kappa measures the agreement level among multi-333

ple raters labeling categorical data; in our case, it334

yields a score of 0.5911, which can be interpreted335

as moderate agreement. Krippendorff’s Alpha, a336

more generalized metric applicable to various data337

types and tolerant of missing values, records a score338

of 0.5915, indicating a level of agreement that re-339

flects acceptable reliability. Given the moderate340

agreement, final labels are determined via majority341

voting. In cases where all labels received an equal342

number of votes, the data is considered uncertain343

and classified as the worst case. Only the best cases,344

those with clear annotator consensus, are included345

in the augmented dataset for further training and346

evaluation.347

4 Experiments348

4.1 Model349

Maverick-incr is a coreference resolution model350

based on the Shift-Reduce Paradigm (Clark and351

Manning, 2016) that incrementally updates the clus- 352

ters formed in the previous step. The model pro- 353

cesses text sequentially and determines whether 354

newly emerged mentions can be linked to exist- 355

ing clusters. If a mention can be included in an 356

existing cluster, it is merged. Otherwise, a new 357

cluster is created to maintain the coreference rela- 358

tionship. Unlike traditional sentence-by-sentence 359

approaches, Maverick-incr favors real-time and se- 360

quential processing, making it particularly well- 361

suited for coreference resolution in streaming data 362

or interactive environments where incremental in- 363

ference is required. 364

Maverick-s2e is a coreference resolution model 365

based on the Coarse-to-Fine method (Lee et al., 366

2017). This approach consists of two steps: men- 367

tion extraction and mention-antecedent classifica- 368

tion. In the mention extraction step, the model iden- 369

tifies potential mentions in the text that can be part 370

of a coreference chain. In the next step, the hidden 371

state corresponding to the start and end tokens of an 372

antecedent candidate mention is compared to clas- 373

sify whether it refers to the same entity. Mentions 374

identified as coreferential are grouped into clus- 375

ters. This two-step approach improves inference 376

efficiency by first narrowing down candidate men- 377

tions before applying a more refined classification, 378

avoiding the need for computationally expensive 379

contextual processing. 380

Maverick-mes follows the same Coarse-to-Fine- 381

based structure as Maverick-s2e but introduces 382

a Multi-Expert Scorer instead of a Mention- 383

Pair Scorer to refine linguistic pattern recogni- 384

tion. Specifically, it defines six linguistic syn- 385

chronization categories—PRON-PRON-C, PRON- 386

PRON-NC, ENT-PRON, MATCH, CONTAINS, 387

and OTHER—, determines which category a men- 388

tion belongs to, and computes a score for each 389

category to form clusters. This approach enhances 390

coreference resolution by pre-typing linguistic fea- 391

tures such as pronoun-pronoun agreement, noun 392

phrase-pronoun relations, and partial inclusion re- 393

lationships. 394

4.2 Comparing Other Discriminative 395

To comprehensively evaluate the proposed aug- 396

mented dataset, this study assesses a total of three 397

discriminative coreference models, including the 398

Maverick and two additional architectures, thereby 399

demonstrating the generalizability and practical ap- 400

plicability of the approach across model variants. 401

LingMess (Otmazgin et al., 2023) is an encoder- 402
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only model based on Longformer, designed to ef-403

ficiently process extended contexts and capture404

long-range dependencies through a sparse atten-405

tion mechanism optimized for long documents. It406

has exhibited strong performance on literary text-407

based datasets and serves as a suitable baseline for408

evaluating the effect of adjective insertion within409

extended contexts.410

wl-coref (Dobrovolskii, 2021) is a lightweight411

model that predicts word-level links using a412

RoBERTa(Zhuang et al., 2021) backbone and sub-413

sequently extracts mention spans, adopting a dif-414

ferent strategy from the mention-ranking paradigm.415

Despite its structural simplicity, it achieves high416

accuracy in mention detection and is valued for its417

efficiency.418

4.3 Evaluation Metric419

MUC (Mention-Unicon Cross) (Vilain et al.,420

1995) is a metric that evaluates coreference res-421

olution based on the precision and recall of coref-422

erence links. Calculated by comparing the number423

of links between clusters and assessing how accu-424

rately the predicted cluster connections align with425

the gold standard clusters.426

B³ (B-Cubed) (Bagga and Baldwin, 1998) evalu-427

ates coreference resolution by measuring the preci-428

sion and recall of individual mentions and comput-429

ing a weighted average to assess how consistently430

each mention is assigned to the correct cluster. A431

model achieves a high score only if it excels in both432

accurate classification (precision) and error-free re-433

trieval (recall) of mentions.434

CEAFe (Constrained Entity Alignment F-435

Measure) (Luo, 2005) evaluates coreference reso-436

lution based on a one-to-one mapping between clus-437

ters. If a gold-standard cluster is split into multiple438

predicted clusters or merged into a single predicted439

cluster, the score penalization is significant.440

CoNLL-2012 F1 Score is calculated as the mean441

of three F1 scores of above metrics.442

The detailed formulas for the evaluation metrics443

are provided in Appendix C.444

4.4 Setup445

We utilized DeBERTa-v3(He et al., 2023) as the446

document encoder for the discriminative language447

model. DeBERTa improves upon the existing448

BERT architecture by introducing a disentangled449

attention mechanism and enhances contextual un-450

derstanding through an improved lexical embed-451

ding method. For optimization, Adafactor (Shazeer452

and Stern, 2018) was employed with weight decay 453

set to 0.01. The number of training epochs was 454

set to 300, with a learning rate of 3e-4 for the lin- 455

ear layers and 2e-5 for the pretrained encoder. All 456

training was conducted on an RTX 4090 GPU with 457

24GB of VRAM. 458

5 Results 459

We evaluate coreference resolution using MUC, B³, 460

CEAFe, and CoNLL-F1 metrics, each capturing 461

different aspects of performance. Table 5 summa- 462

rizes the results across various training settings, 463

original, fully augmented, and combined datasets. 464

Table 6 presents the experimental results on the 465

PreCo dataset to evaluate the generalization ability 466

of our models on out-of-domain data. In Table 7, 467

we compare the performance of different discrimi- 468

native models on the LitBank dataset using three 469

variations of training data. 470

5.1 MUC (Link-based Evaluation) 471

Among the three models, Maverick-mes exhib- 472

ited the highest relative improvement in the MUC 473

score, with an increase of 1.7%. The MUC metric 474

evaluates coreference resolution by counting the 475

correctly predicted links between mentions within 476

each cluster, emphasizing structural integrity over 477

mention accuracy. Since the proposed augmen- 478

tation strategy introduces more syntactically and 479

semantically rich expressions, without increasing 480

the number of mentions, this qualitative enrichment 481

enhances the model’s ability to capture the under- 482

lying link structures. Maverick-mes, which lever- 483

ages part-of-speech-informed features and linguis- 484

tic cues, benefits significantly from this, especially 485

in resolving pronouns and named entities. These 486

elements are highly sensitive to contextual and syn- 487

tactic nuances, aligning well with the characteris- 488

tics of the augmented data. The pronounced gain in 489

MUC thus suggests that Maverick-mes capitalizes 490

more effectively on the descriptive augmentation. 491

5.2 B³ (Mention-based Evaluation) 492

The Maverick-incr model demonstrated the great- 493

est improvement in the B³ metric, with a notable 494

increase of 3.8%. B³ evaluates the precision and 495

recall of each individual mention, emphasizing fine- 496

grained mention-level alignment across predicted 497

and gold-standard clusters. Incremental models 498

like Maverick-incr construct clusters by progres- 499

sively incorporating mentions in sequential order, 500
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Training set LM Model MUC B³ CEAFe CoNLL-F1

LitBankoriginal DeBERTLarge

Maverickincr 85.1 71.8 68.3 75.1
Mavericks2e 88.1 75.0 65.9 76.3
Maverickmes 86.1 75.7 66.4 76.1

LitBankAugmented DeBERTLarge

Maverickincr 84.2 71.6 67.8 74.5
Mavericks2e 87.5 74.7 67.3 76.5
Maverickmes 84.5 71.5 63.1 73.0

LitBankAugmented
(mean ± std) DeBERTLarge

Maverickincr 82.5 ± 0.87 67.9 ± 2.58 66.9 ± 3.06 71.6 ± 1.45
Mavericks2e 86.9 ± 0.28 73.8 ± 0.55 63.4 ± 1.25 74.7 ± 0.58
Maverickmes 85.1 ± 0.71 72.5 ± 1.65 62.7 ± 1.82 73.5 ± 1.35

LitBankSynthetic DeBERTLarge

Maverickincr 86.7 75.6 70.3 77.5
Mavericks2e 88.5 76.7 68.8 78.0
Maverickmes 87.8 76.5 67.6 77.3

Table 5: Performance on four evaluation metrics for the Maverick model on the LitBank dataset, including the
original, augmented, average-augmented, and synthetic variants. Average-augmented results are computed via
5-fold cross-validation on randomly sampled subsets. For each fold, we sample 80 documents to match the size of
the original training set. The best score for each metric is shown in bold.

Training set LM Model Avg.F1

PreCoOriginal DeBERTLarge
Mavericks2e 87.4
Maverickmes 87.1

PreCoSynthetic DeBERTLarge
Mavericks2e 87.9
Maverickmes 87.4

Table 6: Performance of CoNLL-F1 for the Maverick
model on the PreCo dataset, comparing original and
synthetic training sets.

making them particularly sensitive to the local co-501

herence and compatibility of mentions. As the aug-502

mented data enhances the contextual richness of503

each mention, this facilitates more accurate match-504

ing and disambiguation. Therefore, the substan-505

tial gain in B³ for Maverick-incr reflects its im-506

proved ability to accurately include relevant men-507

tions within each evolving cluster.508

5.3 CEAFe (One-to-One Cluster Alignment)509

CEAFe showed its highest improvement of 2.9%510

in the Maverick-s2e model. This metric computes511

similarity based on optimal one-to-one alignments512

between predicted and ground-truth clusters, re-513

warding holistic cluster-level accuracy. The start-514

to-end architecture of Maverick-s2e evaluates all515

mention pairs within a document and directly mod-516

els their likelihood of belonging to the same cluster,517

which aligns well with the cluster-level perspective518

of CEAFe. The augmentation of descriptive modi-519

fiers appears to support this model in distinguishing520

between ambiguous or overlapping mention sets,521

ultimately leading to more accurate global clus-522

ter structures. This suggests that the augmented523

input not only improves local decisions but also524

enhances the model’s capacity to form cluster as-525

signments that reflect the ground-truth structures526

more faithfully.527

Training set LM Model Avg.F1
LitBankOriginal

LongformerBase LingMess
59.0

LitBankAugmented 59.9
LitBankSynthetic 60.1
LitBankOriginal

RoBERTaLarge wl-coref
63.5

LitBankAugmented 63.3
LitBankSynthetic 66.3
LitBankOriginal

DeBERTLarge Mavericks2e

76.3
LitBankAugmented 76.5
LitBankSynthetic 78.0

Table 7: Comparison between Discriminative model on
LitBank in terms of CoNLL-F1 Score.

5.4 Performance on General Purpose Data 528

PreCo is a dataset that differs from LitBank in 529

both structure and domain, and serves as a com- 530

parative setting to evaluate whether the adjective 531

insertion-based augmentation technique proposed 532

in this study generalizes across diverse linguistic 533

environments. According to the results presented 534

in Table 6, both Maverick-s2e and Maverick-mes 535

exhibit a slight improvement in performance when 536

trained on the augmented PreCo dataset, as mea- 537

sured by CoNLL-F1. Although the magnitude of 538

the improvement is modest, the consistency ob- 539

served across both models provides meaningful 540

evidence supporting the generalizability of the pro- 541

posed augmentation technique. Moreover, while 542

PreCo tends to emphasize explicit mention links 543

during training, the insertion of modifiers appears 544

to guide the model toward learning complementary 545

semantic cues. This suggests that the augmentation 546

strategy remains effective even in domains with 547

relatively low structural variability. 548

5.5 Evaluation on Additional Models 549

Table 7 presents results from additional exper- 550

iments conducted on two models, LingMess, 551

7



which is based on Longformer, and wl-coref,552

a lightweight model using RoBERTa, to assess553

whether the proposed augmentation method gen-554

eralizes beyond the Maverick. Both models ex-555

hibit performance improvements when trained on556

the augmented PreCo dataset, as measured by the557

CoNLL-F1 metric. Notably, wl-coref achieves a558

2.8% gain. These findings suggest that the modifier559

insertion-based augmentation technique is effec-560

tive across diverse model architectures, including561

those with fixed-length input handling and simpli-562

fied linking mechanisms.563

5.6 Semantic Data Validation564

We conduct follow-up analyses to ensure that the565

augmented data is not biased toward specific syn-566

tactic patterns or semantic categories, and that567

it preserves the expressive diversity and logical568

consistency necessary for effective model train-569

ing. First, to assess whether the original mean-570

ing is preserved after modifier insertion, we ap-571

ply a natural language inference (NLI) model to572

determine the logical relationship between each573

original sentence and its augmented counterpart.574

Cases classified as “entailment” or “neutral” are575

treated as meaning-preserving. Additionally, to ver-576

ify that the augmented data is not structurally or577

semantically concentrated around specific patterns,578

we visualize the distribution of sentence embed-579

dings using dimensionality reduction techniques,580

including PCA, t-SNE, and UMAP. These analyses581

confirm that the augmented sentences are broadly582

and evenly distributed across the embedding space,583

without clustering around particular expressions or584

semantic classes. Full results and visualizations are585

provided in Appendix D.586

5.7 Discussion587

In Table 5, the average-augmented dataset was con-588

structed by randomly sampling examples from the589

augmented pool. This allows us to isolate and eval-590

uate the impact of augmentation itself.591

Interestingly, the performance of models trained592

on the augmented data alone is slightly lower than593

those trained on the original data. This is due to594

the adversarial filtering process, which retained595

more challenging examples (e.g., adjectival modi-596

fiers of proper nouns) and filtered out easier ones597

(e.g., adjectives added to common nouns). De-598

spite containing only these harder cases, the aug-599

mented dataset achieves performance comparable600

to the original, demonstrating the robustness of the601

proposed augmentation approach. Finally, the syn- 602

thetic dataset, which includes all types of examples, 603

achieves the best overall performance, confirming 604

that the full augmentation strategy is effective in 605

improving coreference resolution models. Cross- 606

validation is not applied to the synthetic dataset. 607

Similar to the augmentation setting, sampling a 608

subset of the data may lead to training that overfits 609

specific augmented examples. This undermines the 610

intended purpose of augmentation, namely promot- 611

ing diversity and generalizability. To mitigate this 612

issue, all augmented examples are integrated and 613

used collectively during training. 614

6 Conclusion 615

We propose a benchmark dataset for coreference 616

resolution that integrates challenging descriptive 617

phrases through a prompting-based adversarial fil- 618

tering pipeline. This approach combines few-shot 619

prompting using GPT-4o-mini with adversarial fil- 620

tering to generate linguistically diverse and un- 621

derrepresented patterns. Contextually appropri- 622

ate phrases are inserted through interaction with a 623

discriminative language model and validated via 624

human evaluation, resulting in a high-quality syn- 625

thetic dataset. 626

Experimental results demonstrate consistent per- 627

formance improvements across all evaluation met- 628

rics, with CoNLL-F1 gains of up to 2.4% on the 629

LitBank dataset. Notably, similar improvements 630

are observed on the PreCo dataset, highlighting the 631

generalizability of the proposed approach across 632

domains. Model-specific strengths are also identi- 633

fied: Maverick-incr yields the highest gain in B³, 634

while Maverick-s2e performs best on CEAFe. Fur- 635

thermore, additional models, including wl-coref 636

and LingMess, also benefit from the synthetic 637

data, confirming the robustness of the augmenta- 638

tion method across diverse model architectures. 639

In summary, the proposed pipeline enhances 640

both the accuracy and generalization capacity of 641

coreference models by reducing their dependence 642

on overly simplistic patterns and promoting linguis- 643

tic diversity. Future work will focus on scaling up 644

augmentation with more varied descriptive phrases, 645

broader part-of-speech coverage, and extensions to 646

multilingual corpora and other NLP tasks. 647

Limitations 648

Limitations in human evaluation arise due to re- 649

source constraints. While manual assessment plays 650

8



a critical role in ensuring data quality, the involve-651

ment of only three annotators limits the generaliz-652

ability of the findings. Similarly, for the large-scale653

PreCo dataset, only a subset is augmented due to654

limited annotation capacity.655

In addition, due to constraints in our experimen-656

tal setup, we were unable to include the Maverick-657

incr model in the PreCo experiments. Although658

structurally comparable to the other Maverick vari-659

ants, the incremental clustering architecture of660

Maverick-incr requires sequential state updates dur-661

ing inference, resulting in higher computational662

and memory costs. These resource demands cre-663

ated a bottleneck that prevented scaling to the full664

PreCo dataset within our infrastructure, thereby665

limiting the completeness of our cross-model eval-666

uation.667

Future work may address these limitations by in-668

creasing the number of human evaluators for more669

reliable qualitative assessment and by optimizing670

the augmentation ratio to enhance linguistic diver-671

sity and dataset balance.672

Despite these constraints, the proposed dataset673

and augmentation pipeline represent a meaningful674

contribution to improving both linguistic diversity675

and model robustness in coreference resolution.676

They also offer valuable insights for the develop-677

ment of more sophisticated NLP models.678
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• Avoid repeating the same modifier within a868

sentence.869

• Do not use overly generic modifiers.870

• Modifiers should not alter the original mean-871

ing of the sentence.872

The first issue arises from repeating the same873

word, which can make the sentence structure awk-874

ward and potentially grammatically incorrect. Nev-875

ertheless, we excluded repeated modifiers during876

human evaluation to maintain naturalness. The sec-877

ond issue is that overly generic modifiers fail to878

contribute meaningfully to identifying coreference879

mentions, contradicting the purpose of our aug-880

mentation strategy. To address this, we instructed881

annotators to select contextually relevant modifiers882

derived from the given sentence that do not com-883

promise its original meaning. Detailed prompts for884

modifier generation are provided in Table 8.885

B Human Evaluation Criteria for886

Augmented Data887

The Human evaluation criteria are provided in Ta-888

ble 9.889

C Equations of Evaluation Metric890

C.1 MUC (Mention-Unicon Cross)891

MUCPrecision =
TP

TP + FP
892

MUCRecall =
TP

TP + FN
893

MUCF1 = 2 · MUCPrecision ·MUCRecall

MUCPrecision +MUCRecall
894

• TP (True Positives): Correctly predicted links895

in coreference clusters.896

• FP (False Positives): Predicted links that do897

not exist in the gold standard clusters.898

• FN (False Negatives): Links that exist in the899

gold standard clusters but are missing in the900

predictions.901

C.2 B³ (B-Cubed) 902

B3
Precision =

1

N

N∑
i=1

|Ci ∩Gi|2

|Ci|
903

B3
Recall =

1

N

N∑
i=1

|Ci ∩Gi|2

|Gi|
904

B3
F1 = 2 · B3

Precision ·B3
Recall

B3
Precision +B3

Recall

905

• Ci: Predicted cluster containing the i-th men- 906

tion. 907

• Gi: Gold cluster containing the i-th mention. 908

• N : Total number of mentions. 909

• |Ci ∩ Gi|: Number of mentions shared be- 910

tween the predicted and gold clusters. 911

C.3 CEAFe (Constrained Entity Alignment 912

F-Measure) 913

Similarity(C,G) =
∑

(c,g)∈OptimalMatching

ϕ(c, g) 914

CEAFePrecision =
Similarity(C,G)

|C|
915

CEAFeRecall =
Similarity(C,G)

|G|
916

CEAFeF1 = 2· CEAFePrecision · CEAFeRecall

CEAFePrecision + CEAFeRecall
917

ϕ(c, g) =
2 · |c ∩ g|
|c|+ |g|

918

• C: Set of predicted clusters. 919

• G: Set of gold clusters. 920

• |C|: Number of predicted clusters. 921

• |G|: Number of gold clusters. 922

• ϕ(c, g): Similarity between a predicted cluster 923

c and a gold cluster g. 924

C.4 CoNLL-2012 F1 Score 925

CoNLL− 2012F1 =
MUCF1 +B3

F1 + CEAFeF1

3
926

927
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Instructions:
You will be given a sentence in OntoNotes format along with a coreference cluster and its offsets. Your task is to add several
adjectives that aligns with the given coreference term. The adjective must be placed immediately before the term within the
sentence.
Guidelines:
1. Identify the words in the sentence that correspond to each offset.
2. Updated Coreference Offsets should be calculated step by step.
3. For each remaining term (starting from the second), add several adjectives immediately before the term if it adds meaningful
context.
4. Never add articles (‘the’, ‘a’), only adjective.
5. Ensure the adjective does not change the sentence’s original meaning.
6. Avoid repeating the same word multiple times in sequence.
7. Use adjectives that are contextually relevant and meaningful. Avoid using too general adjectives like ‘good’, ‘bad’, ‘nice’, or
nonsensical combinations.
8. Adjectives should enrich the meaning or add useful information without making the description redundant or awkward.
9. If no suitable adjective can be added without disrupting the meaning or creating redundancy, do not add an adjective at all.
10. NEVER VIOLATE THE OUTPUT TEMPLATE.
Input:
- Sentence: ontonotes_sentence
- Coreference Offsets: offsets
- Coreference Words: words
Output Format:
1. Updated Coreference Words : The modified OntoNotes format sentence with adjectives added.
Example:
Input:
- Sentence: [‘Barack’, ‘Obama’, ‘is’, ‘traveling’, ‘to’, ‘Rome’, ‘.’, ‘The’, ‘city’, ‘is’, ‘sunny’, ‘and’, ‘the’, ‘president’, ‘plans’,
‘to’, ‘visit’, ‘its’, ‘most’, ‘important’, ‘attractions’]
- Coreference Offsets: [[5, 5], [7, 8], [17, 17]]
- Coreference Words: [[‘Rome’], [‘The’, ‘city’], [‘its’]]
Correct Output:
1. Updated Coreference Words : [[‘Rome’], [‘The’, ‘picturesque’, ‘city’], [‘its’]]
Explanation:
- ‘picturesque’ was added to ‘city’ to enrich the description without altering the intended meaning.
- No adjective was added to ‘Rome’ or ‘its’ as it was unnecessary.

Table 8: A sample prompt for adversarial filtering.

Case Criteria Original Sentence Augmented Sentence Explanation

High-Quality
(Best)

The sentence must be
grammatically correct
while incorporating de-
scriptive phrases that are
semantically relevant to
the coreferential clusters.

"The man went to
the store."

"The diligent man
went to the store."

A contextually relevant
descriptive phrase, ‘dili-
gent,’ was added before
the coreferential word
‘man’.

Unacceptable
(Worst)

The augmented descrip-
tive phrases are either
grammatically incorrect
or not suitable for coref-
erence clusters.

"My name is Jim." "My name is enchant-
ing Jim."

The descriptive phrase
‘enchanting’ is inappro-
priate, making it difficult
to establish a coreference
cluster with ‘Jim’.

Acceptable but
Semantically
Misaligned
(Weird)

The sentence is grammat-
ically correct, but the de-
scriptive phrases or syn-
onyms used as a replace-
ment are semantically in-
appropriate for the coref-
erential clusters.

"The cat jumped
onto the couch."

"The shiny feline
jumped onto the
couch."

The adjective ‘shiny’ is
contextually inappropri-
ate for the coreferential
word ‘cat,’ and the orig-
inal term has been re-
placed with its synonym
‘feline.’

Table 9: Examples of coreference-based sentence augmentations categorized by quality: best, weird, and worst,
with evaluation criteria and explanations.
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Figure 2: Entailment Prediction Distribution
of LitBank Augmented Dataset

D Augmented Data Quality Analysis928

To verify whether our augmented data is con-929

structed in a balanced and unbiased manner, we930

conducted a series of qualitative analyses, includ-931

ing NLI label distribution and dimensionality re-932

duction techniques such as PCA, t-SNE and UMAP.933

These analyses serve to confirm the semantic sound-934

ness and class distribution of the generated exam-935

ples beyond numerical performance scores.936

D.1 NLI Label Distribution937

To verify whether the inserted adjectival phrases al-938

tered the original meaning, we employed a Natural939

Language Inference (NLI) model, which classifies940

the relationship between a premise and a hypothesis941

into entailment (logical consistency), contradiction942

(logical conflict), or neutral (independence). In our943

setting, the original sentence served as the premise944

and the augmented one as the hypothesis.945

We regarded entailment and neutral as accept-946

able, indicating meaning preservation or harmless947

addition, while contradiction signified semantic in-948

consistency and led to data exclusion.949

As shown in Figure 2, the label distribution con-950

sisted of 130 entailment and 194 neutral cases, with951

no contradictions, demonstrating that the augmen-952

tation maintains logical coherence and avoids se-953

mantic noise.954

D.2 PCA Projection955

The PCA projection of entailment(green) and neu-956

tral(blue) embeddings shows that both categories957

are evenly distributed across the first two princi-958

pal components, without strong clustering or skew.959

The dispersion of points suggests that the model960

does not encode a dominant pattern for one class961

over the other in the embedding space. This rein-962

forces the idea that the augmentation process pro-963

duced a balanced representation between the two964

Figure 3: PCA Projection of Entailment and
Neutral Sentence Embeddings of LitBank
Augmented Dataset

Figure 4: t-SNE Visualization of Entailment
and Neutral Sentence Embeddings of Lit-
Bank Augmented Dataset

classes. The analysis results are shown in Figure 965

3. 966

D.3 t-SNE Visualizations 967

The t-SNE visualizations also demonstrate well- 968

distributed embeddings of entailment(green) and 969

neutral(blue) examples. While there is no sharp 970

boundary between the classes, the fact that the 971

points are broadly and evenly scattered implies that 972

the data captures diverse linguistic and semantic ex- 973

pressions across both classes without introducing 974

structural bias. These findings support the con- 975

clusion that the augmentation method preserved 976

semantic variety and avoided overfitting to narrow 977

templates. The analysis results are shown in Figure 978

4. 979

D.4 UMAP Representation 980

The UMAP representation further confirms the 981

even distribution of entailment(green) and neu- 982

tral(blue) embeddings. Similar to the t-SNE vi- 983

sualizations, the UMAP plot does not show a strict 984

boundary between the two classes, but rather a 985
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Figure 5: UMAP Visualization of Entailment and
Neutral Sentence Embeddings of LitBank Aug-
mented Dataset

Figure 6: Distribution of inserted modifiers over
WordNet supersense categories used during data
augmentation

smooth and overlapping layout. This indicates that986

the semantic space is well-structured and that the987

data reflects a wide range of sentence-level vari-988

ations. The consistent dispersion across the em-989

bedding space suggests that the augmentation pro-990

cess did not introduce artificial clusters or distor-991

tions. The analysis results are shown in Figure 5.992

In summary, the visual and distributional analy-993

ses validate that the augmented dataset is logically994

sound, semantically rich, and free from major bi-995

ases, thus providing a strong foundation for down-996

stream model training.997

D.5 Supersense Category Analysis998

To further analyze the linguistic variety introduced999

by the augmentation, we categorized the inserted1000

adjectival phrases using supersense labels based on1001

the categorization scheme proposed by the Word-1002

Net Domains project (Tsvetkov et al., 2014; Fell-1003

baum, 1998). Figure 6 shows the distribution of to-1004

ken categories. The majority of the added modifiers1005

fall under PERCEPTION, FEELING, and QUAN-1006

TITY, suggesting that the augmentation effectively1007

introduces human-centric and descriptive features,1008

which are common in literary texts and beneficial 1009

for enhancing coreference resolution in such do- 1010

mains. 1011
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