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Abstract

Variational quantum algorithms (VQAs) are leading strategies to reach practi-
cal utilities of near-term quantum devices. However, the no-cloning theorem in
quantum mechanics precludes standard backpropagation, leading to prohibitive
quantum resource costs when applying VQAs to large-scale tasks. To address this
challenge, we reformulate the training dynamics of VQAs as a nonlinear partial
differential equation and propose a novel protocol that leverages physics-informed
neural networks (PINNs) to model this dynamical system efficiently. Given a small
amount of training trajectory data collected from quantum devices, our protocol
predicts the parameter updates of VQAs over multiple iterations on the classical
side, dramatically reducing quantum resource costs. Through systematic numerical
experiments, we demonstrate that our method achieves up to a 30x speedup com-
pared to conventional methods and reduces quantum resource costs by as much
as 90% for tasks involving up to 40 qubits, including ground state preparation of
different quantum systems, while maintaining competitive accuracy. Our approach
complements existing techniques aimed at improving the efficiency of VQAs and
further strengthens their potential for practical applications.

1 Introduction

Modern quantum computers, with a steadily increasing number of high-quality qubits, are approaching
the threshold of practical utility [IH3]. In this pursuit, variational quantum algorithms (VQAs) [4-12]
have emerged as a leading strategy, attributed to their flexibility in accommodating circuit depth
and qubit connectivity among different platforms. In recent years, a wide range of theoretical
and experimental studies have demonstrated the feasibility of VQAs across diverse applications,
such as quantum chemistry [[13H15], optimization [16H18]], and machine learning [[19H23]]. Despite
the progress, they face critical challenges when applied to large-scale problems. In particular,
the no-cloning theorem and the unitary constraints in the quantum universe prohibit the use of
backpropagation techniques common in deep learning [24], requiring VQAs to update sequentially to
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minimize a predefined cost function [25, [26]. This approach imposes substantial and even prohibitive
quantum resource demands, especially in terms of the number of measurements required. Given the
scarcity of quantum computers in the foreseeable future, enhancing the optimization efficiency of
VQAs while minimizing resource consumption is crucial for enabling their practical deployment.

To advance VQAs for large-scale problems, substantial efforts have been devoted to improving the
optimization efficiency. Prior literature in this field can be broadly categorized into three primary
classes (see Sec.[2.1]for details). The first aims to reduce measurement costs in quantum many-body
and chemistry problems by grouping terms in the Hamiltonian to enable simultaneous measurements
[27H29]]. The second harnesses classical simulators or learning models to identify well-initialized
parameters that are close to local minima of the cost landscape for a given VQA, thereby improving
convergence efficiency [30-H32]. The third seeks to predict the dynamics of parameter updates by
revising past optimization trajectories for the given task [33]], as exemplified by methods such as
recurrent neural networks [34,35] and QuACK [36]. Despite significant advancements, no existing
approach effectively balances optimization efficiency and accuracy at scale. In this regard, a critical
question arises: is it possible to achieve both for large-scale VQA systems?

Towards this question, we observe that prior efforts have primarily focused on hardware improvements
and heuristic optimizations, while the potential of approximating training dynamics to alleviate the
quantum resource burden remains underexplored. In response, we introduce a fresh perspective by
utilizing Taylor expansion to reformulate the parameter optimization process in VQAs as a nonlinear
partial differential equation (PDE). In this way, the evolution of this nonlinear PDE corresponds
to the trajectory of parameter updates during training. Building on this formulation, we devise
a protocol, dubbed PALQO, that employs a physics-informed neural network (PINN) [37, 38] to
approximate solutions to the PDE, where high-order terms in the Taylor expansion serve as boundary
conditions. The proposed framework is generic, which encompasses the quantum neural tangent
kernel (QNTK) as a special case [39-41]]. Besides, we prove that a polynomial number of training
samples is sufficient to ensure that PALQO attains a satisfactory generalization ability.

We then conduct extensive numerical simulations on different ground state preparation tasks, including
the transverse-field Ising model, Heisenberg model, and multiple molecule systems, to investigate the
effectiveness of PALQO. Simulation results up to 40 qubits indicate that by learning from a limited set
of initial parameter updates obtained from quantum devices, PALQO, which is deployed on classical
hardware, can accurately predict future parameter updates. These results indicate the effectiveness of
reducing the number of quantum measurements required during optimization. Numerical experiments
on ground state preparation tasks across large-scale systems, involving up to 40 qubits, validate
the effectiveness of PALQO. Moreover, we show that the proposed PALQO is complementary to
existing approaches for improving the optimization efficiency of VQAs. To support the community,
we release our source code at [42]]. These results open a new avenue for leveraging the power of
PINNS to enhance the efficiency of VQAs and advance the frontier of practical quantum computing.

Contributions. For clarity, we summarize our main contributions below. (1) To our best knowledge,
we establish the first general framework between the optimization trajectory of VQAs and PDE,
thereby enabling the employment of various PINNs to advance the optimization efficiency of large-
scale VQAs. (2) We propose PALQO, an effective PINN oriented to reduce the required number of
measurements when training large-scale VQAs, and prove its generalization ability. (3) Unlike prior
studies that mainly focus on small-scale tasks, we conduct extensive numerical studies to validate
the advancements of PALQO up to 40 qubits, providing valuable insights to further improve the
optimization efficiency of VQAs at scale.

2 Preliminaries

In this section, we provide a concise overview of the basic concepts of quantum computing, variational
quantum algorithms and physics-informed neural networks to set the stage for their integration in
accelerating the quantum optimization process. Please refer to Appendix[A for more details.

Basics of Quantum Computing. Quantum state, quantum circuit, and quantum measurement are
three key components in quantum computing [43} 44]]. In particular, an n-qubit quantum state is
mathematically represented as a unit vector u € CV in Hilbert space, where Z;VQOI lu;|?=1,N =
2", Here we follow conventions to use Dirac notation to represent u and its transpose conjugate u' ,



i.e., |u) and (u|. For a quantum circuit, it serves as a computational model consisting of a sequence
of quantum gates that describes operations on the given input state. The most widely used quantum
gates are Pauli gates, i.c., X = (94),Z=(§ %), Y= (9 3’). According to the Solovay-Kitaev
theorem [43], arbitrary operation can be approximated by a quantum circuit U = [] j U; where each
gate U; is drawn from a finite universal gate set, such as {CNOT, H, S,R.(6),R.(6)}. Concretely,

CNOT = [0)(0] @ 1+ |1){1] @ X, H = 1/v2(1 1, ), Ro(6) = e X, R, (6) = e 97, § = VZ.

For quantum measurement, it is the process that collapses a quantum state into a definite classical
outcome. In this study, we are interested in the expectation value of the measurement outcomes with a
given observable O, a Hermitian operator, on quantum state |u), i.e. (u|O|u). Suppose the observable
presents as an n-qubit Hamiltonian that characterizes energy structure of the target quantum system in

the form of H = Z;v:Hl ¢; P;, where P is a tensor product of Pauli matrices, i.e. P; € {I,X,Y,Z}®".
To experimentally estimate (u|O|u) within error ¢, we typically perform M ~ O(1/€?) repeated
measurements for each P; on multiple copies of the state |u) and get the outcomes {Mflk} k=1,..,M>
then approximate the expectation value by statistical averaging (u|Olu) = 1/(MNy) 3_; ; ¢; Mi*,

Variational Quantum Algorithms. Variational quantum algorithms (VQAs) algorithms designed for
machine learning tasks are called quantum neural networks (QNNs) [4 1} 45H52]], while those applied
to many-body physics and quantum chemistry are typically known as variational quantum eigensolvers
(VQEs) [53H60]]. The primary objective of VQE is to optimize a parameterized state |¢)(6)) =

U(0)|¢) to minimize the energy function £ defined by a given Hamiltonian H = Z;V:Hl ¢; Pj.
Mathematically, the energy function to be minimized in VQEs takes the form of

min&(6) = (¥(6)|H|¢(0)). (D

A common and widely adopted approach to complete this optimization problem is utilizing a gradient-
based optimizer, like gradient descent, to iteratively adjust the parameters 8 according to the partial
derivative Jp&. Because there is no-clone theorem and no backpropagation without exponential
classical overhead in general VQEs [24]], we need to perform the parameter shift rule without
involving other quantum resource overhead, such as ancillary qubits to estimate the partial derivative
[25]]. Concretely, the calculation of the partial derivative with respect to 8; takes the form as

%:%[5 (0i+g)—5(0i—g)} leNsz:cj [Mi,fJFMfﬂ )

J»
where 1, 1_ correspond to state |¢)(0; + 7/2)) and |1)(6; — 7/2)), respectively.

While such a method provides a closed-form expression for gradient estimation without requiring
additional qubits and can be extended to general VQEs, it necessitates evaluating £ twice with shifted
parameter values at the same position to estimate the gradient of a single parameter. Hence, suppose
the dimension of @ is p, it requires to perform O(pNy /e?) measurements to estimate the partial
derivative Jgp&, which becomes computationally prohibitive in large-scale tasks, especially for
large molecules as whose n-qubits second-quantized Hamiltonian has roughly Ny ~ O(n?) terms
[53]. Therefore, it requires substantial resources for estimating updated parameters 6 during the
optimization, which is considered as one major limitation of large-scale VQEs. Similarly, such a
scalability issue also arises in QNNs, where the number of measurements required per iteration scales
linearly with p and the batch size.

Physical-Informed Neural Network. Physics-informed neural networks (PINNs) have become a
promising learning-based tool in approximating the solution of partial differential equations (PDEs)
[61-63]. With the advantages of computational efficiency for solving complex PDE, they have
been widely employed in various practical scenarios such as fluid dynamics, battery degradation
modeling, disease detection, and complex systems simulation [38| [64-67]]. PINNs harness the
core tool, automatic differentiation, of modern machine learning to efficiently enforce the physical
constraints of the underlying PDE.

For a PDE problem, it can be generally written as N [u(zx,t)] = g(x,t) where € D C R? denotes
variables, A represents the differential operators, u(z, t) stands for the solution, and g(z, t) refers to
input or source function. The aim of PINNSs is to build a neural network f,, with parameters w to
approximate the true solution u. Hence, the loss function of PINN for solving a general PDE is based
on residuals, including PDE residual and data residual. The PDE residual measures the difference



between the neural network solution and the true solution, expressed as

EP:Z’N{fw(wéj)7t§j))}—g(w,(,”,t,(,j))r, Z‘fw( e )_ugﬁf. 3)

J

Here, {a:(J ) t,(,j )};Vpl used in Lp are selected collocation points for enforcing PDE structure. For

Lp, the dataset {:c(]) t(J) (J)} with u((ij) = u(a:((i]), t((i])) denote the training data on u(x,t)
[37]. Thus, the total loss is putting all residuals together, i.e. £ = Lp + Lp. By embedding physical
principles into the learning process, PINNs serve as a versatile tool that only requires a small amount
of data to tackle the computationally complex problem.

2.1 Related Works

Prior literature related to improving the optimization efficiency of VQAs can be classified into three
main classes, i.e., measurement grouping, initializer design, and prediction of training dynamics.
Since the first two classes are complementary to PALQO, we defer the explanations to Appendix

The third class aims to harness learning models to approximate the training process. Some works
inspired by meta-learning utilize the recurrent neural network to learn a sequential update rule
in a heuristic manner [34, |35]. Nevertheless, the memory bottleneck and training instability of
the recurrent neural network would lead to it being underwhelming [68]. Recent work proposed
QuACK, involving linear dynamics approximation and nonlinear neural embedding, to accelerate the
optimization [36]]. However, the prediction phase requires estimating the energy loss of each step
to find the optimal parameters, which is not friendly for large-scale problems. To overcome these
limitations, the proposed PALQO uniquely approximates VQA training dynamics using a nonlinear
PDE, embedding the dynamical laws directly into the learning process. In this way, it offers deeper
physical insight and achieves superior performance through principled model-guided optimization.

3 PALQO: physics-informed model for accelerating quantum optimization

In this section, we first formally define the problem of learning the training dynamics of VQAs as
nonlinear PDE problems in Sec. [ﬂ Then, in Sec. @, we introduce PALQO to solve this PDE via a
tailored PINN-based model, where the optimized solutions correspond to the optimization trajectory
of VQAs, followed by a generalization error analysis.

3.1 Reformulating the optimization of VQA as a PDE problem

Recall the optimization of VQEs in Sec. |Z As it is costly in querying 8®) of each step t, it is
demanded to develop a protocol that only learns from a few trajectory data { (210 }7_; to classically
predict future steps, thereby avoiding prohibitive resource costs without compromising accuracy.
To achieve this goal, we start by revisiting the gradient descent dynamics of VQEs. The updating
rules of parameters @ with learning rate 7 at step ¢ is given by 66 = 0t — () = —19£(0) /06,
where 9E(0)/00 is estimated through phase shift rule shown in Eq. (2). Suppose 7 is infinitesimally
small, the following ordinary differential equation, a.k.a., gradient flow, characterizes how parameters
change in continuous time, i.e.,

00 o€
= __Z 4
ot 00 @
Besides, we can similarly define the dynamics of £ in a general form under Taylor expansion as
0E 9EN? OE  OE OE
- = — - = - 5
ot zi:(an +2§;aoaokaa o6, T O )

where the first term of RHS of Eq. (9)) is termed as quantum neural tangent Kernel (QNTK) [39} 40l
69], which captures the sensitivity of outputs to parameter changes, shaping how the gradient flow
evolves in parameter space. The second term involves the Hessian matrix of £ that reflects the local
curvature of the cost function in the optimization landscape. Thus, tackling the problem of learning
optimization trajectory can be recast to solve PDEs presented in Egs. (@) and (3)). This reformulation
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Figure 1: Framework of PALQO. (a) Dataset construction: the tunable angles @ and corresponding loss
& from a VQE over 7 optimization steps are collected, forming a sequential training dataset that captures
the optimization trajectory over time. (b) Model training: A PINN f,, is trained by minimizing the loss
L =Ap,Lp, + Ap,Lp, + ApLp. (c) Prediction: starting with the last step 0(T>, the trained f, is used to
recurrently predict parameters, mimicking the optimization process without access to the quantum device.
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provides a powerful framework and allows us to leverage a rich set of tools developed for PDEs to
understand the underlying behavior of the optimization process in large-scale VQEs.

Remark. In Appendix |C.1] we elucidate the derivation of Eq. (5 and its relation to QNTK. Besides,
the above reformulation can be effectively extended to broader VQAs such as QNNs.

3.2 Implementation of PALQO

In light of the above reformulation, we propose PALQO based on PINN introduced in Eq. to
learn the optimization trajectory of large-scale VQEs. Conceptually, once PALQO attains a low
training error, it can predict the optimization path, which substantially reduces the measurement
cost as considered in large-scale VQESs. As such, it enhances scalability and resource efficiency by
minimizing the need for extensive quantum circuit evaluations while maintaining high fidelity in
modeling complex quantum optimization.

An overview of our protocol is depicted in Fig. [T} which consists of consists of three stages: Dataset
construction, Model training, and Model prediction. In Fig.[T (a), it starts by generating a dataset
S = {6®,£M}7_, corresponding to trajectory data consisting of @ and energy loss £ over 7
optimization steps collected from a quantum device. Then, as shown in Fig. [T (b), PALQO utilizes
the collected S to train a PINN-based model f,, to capture the underlying optimization dynamics.
Given the trained f,,, as shown in Fig.|1|(c), it can recursively predict the parameters 8 of the future
steps until it convergence, i.e. () — (+1)| 4 |£() — £(+1)| < ¢ with ¢ being a small constant.

Dataset construction. To mimic the dynamic of VQE optimization, we need first perform 7 steps
optimization via gradient descent to collect a sequential trajectory as the training data, including
loss {EW, €@ . £} and {61,020} where 0U) = (87 ... 0Y)) € R is the
parameters at j-th epoch. Notably, assume a VQE with a total T" optimization steps, PALQO only
needs 7 < T steps to construct the training dataset S. This is because the PINN-based model
leverages strong inductive biases from the dynamical laws, such that it does not need to infer
fundamental principles from scratch, allowing the model to generalize well from limited data.

Model training. Once the dataset is collected, PALQO employs a deep neural network f, that takes
{(t,0M)}7_, comprising ¢-th time step and trajectory data @(*) as the input, and predict the loss and
parameters for the (¢ 4 1)-th step, i.e.,(£F1D, 8(+1), Refer to Appendix for the details about
the neural architecture of f,,. Denote the prediction of f,, for the ¢-th step as (é(t), £ (t)). Through
leveraging the automatic differentiation capabilities of neural networks, the derivatives of outputs
with respect to inputs, i.e., 00 /Ot and o€ /08, can be efficiently computed on classical devices. This
efficiency enables the direct incorporation of dynamical law constraints, as described in Eqs. (@)
and , into the loss function. In this regard, we devise the loss function of PALQO as

L= pLp+Ap,Lp, +Ap,Lp,, (6)
where {\p, Ap,, Ap, } denote hyperparameters to balance the data-driven loss £p and two PDE
residual losses L£p, and Lp,. In particular, the data residual loss is defined as Lp = >°;_; (€ ® —



EM2 4 ST (M — 1)2, aiming to capture the temporal changes of £ and @ among 7 steps.
Meanwhile, the two PDE residual losses aim to enforce the PINN to capture the evolution of VQE
optimization dynamics through the underlying derivative structure of the loss landscape. Following
Eq. (4), the explicit form of the first PDE loss is Lp, = Z;l(zgzl(aéf)/at + 3€(t)/00§t)))2.
By focusing on the first two orders of the derivatives in Eq. (9)), the second PDE loss yields

T 0E®M L 0EMN2 o Ia o 926D 9EM PEM) N 2
Lp, = — T @) 5 : )
; ( ot ; (80](_'5)) 2 j,kzzl agj(_t)agl(f) 60]@) 80,(:))

The model f,, is optimized by minimizing £ in Eq. (6) via a gradient-based optimizer Adam [70].

Model prediction. As the trained f,, can not only approximate the solution of the underlying PDE
but also capture temporal dependencies of the trajectory data, we are able to recurrently predict the
upcoming updates of the 6. As shown in Fig.|l (c) by passing (7, 6(7)) through the trained f,, and

masking the £(7) node, we can obtain the predicted data 61, and then fed (t+1 0(T+1)) as the
input back to the network to make the followed prediction. It is worth noting that dlrectly making
long-term forecasts to reach the optimal solution of the target problem is exceedingly challenging.
To that end, we employ the non-overlapping sliding windows to enhance the network for long-term
prediction. More details on the prediction process can be found in Appendix

Remark. The second PDE residual loss £ p, can be extended to arbitrary higher orders. Empirical
results indicate that a second-order approximation offers a sufficient balance between accuracy and
computational cost for modeling the optimization dynamics of the VQEs studied herein. Moreover,
while we mainly focus on learning the training process of VQE, our model can be efficiently extended
to more general tasks such as quantum machine learning [[19} 20, [22]], quantum simulation [71-73],
and quantum optimization [74, [75] by slightly modifying the Eqs. (4) and (5). See Appendix [F|for
details.

Building upon prior work on the error analysis of PINNs [76], we conduct the analysis of the Lipschitz
constant bound for PALQO and derive a corollary to establish a generalization bound for PALQO
applied to VQEs. An informal statement of the derived generalization bound is provided below,
where the formal statement and the related proof are deferred to Appendix D,

Corollary 3.1. (Informal) When utilizing PALQO, whose PINN is constructed by a L layer tanh
neural network with most W width of each layer and trained over T data samples, to approximate
the solution of PDE that describes training dynamics of a VQE with p tunable parameters 6, with
probability at least 1 — vy, its the generalization error is upper bounded by

O <\/pL27W2 <ln (%) +In (i))) . ®)

The achieved results indicate that for any € > 0, the number of training examples scales at most
polynomially in p, L, and W is sufficient to guarantee a well-bounded generalization error. This
warrants the applicability of PALQO in large-scale scenarios.

4 Experiments

To evaluate the practical performance of the proposed PALQO framework, we apply it to two
representative quantum applications: finding ground state energy of many-body quantum system
and molecules in quantum chemistry, which have broad applicability in understanding many-body
physical phase transitions [[77H79] and simulation of complex electronic structures of molecular
systems in drug design and discovery [15,180,81]]. The concrete settings are elucidated below.

Many-body quantum system. A many-body quantum system consists of interacting quantum
particles whose collective behavior and correlations lead to complex phenomena beyond single-
particle descriptions. Here, we consider three typical many-body quantum systems. 1) Transverse-
field Ising model (TFIM) describes spin particles on a lattice interacting via nearest-neighbor
coupling and subject to a transverse magnetic field, whose Hamiltonian is typically in a form of
Hreg = —J Zj Z; @ Ljr1 — hzj X, where Z; and X refer to the Pauli matrices Z and X
applied on the j-th qubit, respectively. 2) Quantum Heisenberg model also describes the spin



particles on a lattice, but spin-spin interactions occur along all spatial directions. Its Hamiltonian
can be represented as Hon = —1/2% . (Jo X; X1 + Jy YY1 + J.Z;Zj1 + hZ;). 3) Bond-
alternating XXZ model is an anisotropic variant of the Heisenberg model with unequal coupling
strengths in the transverse and longitudinal directions. The Hamiltonian is given by Hxxz =
2 jmodd (X5 Xjpr + Y51 + 62 7500) + 305 cpen (X X1 + YY1 + 02;Z;41). The
coefficients J, h, Jy, Jy,, J,, J', 6 within the explored Hamiltonians represent the coupling strength
that determines the ground state properties and phase transitions.

Quantum chemistry. The Hamiltonian of a molecule describes the total energy of its electrons and
nuclei and serves as the fundamental operator for determining the molecule’s electronic structure in
quantum chemistry. The general form of the molecule Hamiltonian can be presented as H = 3 ;i P
where P; represents tensor products of Pauli matrices, and h; are the associated real coefficients. Here,
we select a widely studied molecule—LiH, and a relatively large and challenging BeHs molecule as
the target molecules [8, 153, 182]]. We generate these molecule Hamiltonians with Openfermion [83].
Refer to Appendix [E for more details about the molecule experiments.

4.1 Experimental Setup

We employ three standard ansatzes, i.e., hardware-efficient ansatz (HEA) [84-86], Hamiltonian
variable ansatz (HVA) [87H89]], unitary coupled cluster with single and double excitations ansatz
(UCCSD) [90+H92], to implement VQE for the different Hamiltonians mentioned above. These
ansatzes adopt a layered architecture. Refer to Appendix [E.2|for the implementation of these ansatzes.
For all ansatzes, their initial parameters (%) are uniformly sampled from [0, 1], following the strategy
adopted in QUACK [36]. The gradient descent is set as the default optimizer.

For implementing PALQO, we randomly initialize the parameters w of the neural network f,,
from [—1,1] and employ the Adam as the optimizer, where the architectures of f,, are listed in
Appendix [C.2. To improve the training stability and convergence, we utilize a linear decay strategy
to adaptively adjust the learning rate during training. Besides, the weight hyperparameters in loss
function Ap,, Ap,, Ap, are set as 1.0, 1.0 and 10~*, respectively.

Benchmark models. To show the outperformance of PALQO against the state-of-the-art methods,
we introduce the following baseline and benchmark. First, we use a vanilla VQE as the baseline since
it provides a well-established reference point to evaluate improvements in accuracy, convergence,
and efficiency. Second, we select a LSTM-based model [34] as a benchmark since it provides a strong
reference for evaluating methods in modeling the temporal dependencies and iterative dynamics
of optimization trajectories. Third, we pick QuACK [36] as another benchmark as it represents an
advanced approach that learns surrogate dynamics of VQAs by embedding Koopman operator-based
linear representations into nonlinear neural networks. The implementation of these reference models
is deferred to Appendix [E.3]

Evaluation metrics. To quantify the performance of PALQO in accuracy and efficiency, we consider
the following metrics, 1) Accuracy. we define the accuracy as how close the estimated energy Eis
to a given target energy F of a quantum system, i.e. AF = \E — E)|. 2) Efficiency. we define the
speedup ratio as &« = Zp/Zy, where Zp and Zy refer to the number of iterations required by the
baseline method (vanilla VQE) and PALQO or other benchmark models, respectively, to achieve an
acceptable accuracy a. Specifically, we set a < 1073,

4.2 Experimental Results

We next evaluate the performance of PALQO and other reference models when applied to the
aforementioned Hamiltonians under different settings.

PALQO significantly reduces the measurement overhead. Here, we utilize the number
of measurements incurred during the optimization as a quantum resource measure to explore
the performance of PALQO and the other benchmark models when applied to 20 qubits
TFIM with HEA, 20 qubits Heisenberg model with HVA, and 14 qubits BeHy with UCCSD
ansatz, The number of parameters for each case are 120, 180, 90, respectively. As shown in
Tab. [T, PALQO achieves significant quantum resource efficiency in aforementioned tasks, with
around 90% average reduction in measurement overhead while preserving AE around 1073,



These substantial savings Table 1: The number of quantum measurement shots (x 10%) required
stem from two key factors: for TFIM, Heisenberg model, and BeHs.

1) compared to the vanilla
VQE, PALQO leverages PINN SYSTEM SIZE ~ Hrem =20 Huo =20  Hpen, = 14

to predict parameter updates, VANILLA VQE 10.97 21.66 464.3
thereby reducing reliance on LSTM 3.126 14.49 3124
frequent quantum measurements; QUACK 5.217 14.15 461.8
2) the rapid convergence on the PALQO 1.535 5.749 28.01

classical side enables further
reduction in quantum resource

expenditure.
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Figure 2: Performance comparison between PALQO and the reference models in 20 qublts TFIM with HEA,
20 qubits Heisenberg model with HVA, and 14 qubits BeH2 with UCCSD ansatz. Each subplot comprises a
AFE curve over iterations performed on a quantum device, along with a bar chart depicting the speedup ratios
achieved by PALQO and competing models. The left column illustrates results for TFIM with J/h = {2,1,0.5}.
The central column shows results for Heisenberg model with J, = J, = h =1, J, = {0.5,1, 2}. The right
column displays the model performance on BeH2 with the bond length b = {1.3,1.4,1.5}.

PALQO outperforms benchmark models in accuracy and efficiency. The performance compar-
isons of PALQO on 20 qubits TFIM with HEA, 20 qubits Heisenberg model with HVA, and 14 qubits
BeH2 with UCCSD ansatz for varying structural parameters are presented in Fig. [Z. In particular,
we observed that PALQO consistently outperformed, up to 30x speedup and lower AE = |E — F|
around 1073, like the case of TFIM with J /h = 2 and HEA ansatz, compared to the other evaluated
approaches. Furthermore, as the PALOQ predicts the future optimization steps on classical hardware,
it exhibited a faster rate of convergence, achieving a substantial reduction in AFE within fewer
iterations performed on a quantum device, compared to the baseline methods. Although the speedup
ratio of PALQO has a relatively large variance, its minimum value remains comparable to the average
performance of the other approaches. Refer to Appendix [ for the results of XXZ model and LiH.
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Figure 3: Scalability analysis of PALQO on TFIMs. (a) The speedup ratio achieved by PALQO in modeling
VQE training dynamics with a fixed HEA, ranging from 4 to 40 qubits. (b) The speedup ratio of PALQO with a
fixed system size of 12 qubits, assessed under increasing HEA ansatz layers from 2 to 8.
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Scalability of PALQO. We next investigate the scalability of PALQO on the TFIM with HEA,
examining its performance in increasing system sizes (from n = 4 to n = 40) and the number of
ansatz layers (from 2 to 8). In Fig. [3, the results reveal that the speedup of PALQO is contingent
upon the specific system configuration. Nevertheless, as shown in Fig.[3|(a), while the speedup ratio
fluctuates with the number of qubits varying, it still achieves up to 30x speedup when J/h = 0.5.
The lower speedup at J/h = 2 is due to a smaller energy gap between the ground and first excited
states, making the optimization more challenging. Similar behavior also appears in Fig.[3 (b). This
suggests that the performance benefits of PALOQ are maintained as the computational demands grow,
indicating its potential for large-scale quantum optimization.
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Figure 4: Ablation study on the loss function configuration in PALQO. The three panels show the performance
on TFIM with n = 12, 20, 28 qubits, evaluating the impact of the components Lp and Lp, in L.

Ablation studies on loss function. We further evaluate the performance of PALOQ against variants
where specific loss terms in Eq. (6)) are removed in the task of TFIM with HEA ansatz. Specifically,
we carried out separate ablation studies on the PDE residual and data residual components of the loss
function shown in Fig.[d] We noticed that while both the PDE and data residual positively influence
model performance, their contributions are not essential. These findings suggest that adopting low-
order approximations during the construction of PALQO enables the retention of satisfactory speedup
while simultaneously reducing the complexity of downstream model training and preventing the
degradation of higher-order derivative information.
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Figure 5: Performance of PALQO evaluated on the TFIM under different neural network architecture
configurations. (a) Results obtained using 2-layer neural networks with varying hidden layer widths of
W = {50p, 20p, 5p}, where p denotes the number of parameters 6. (b) Results with a fixed hidden layer
width of 20p, varying the number of hidden layers from 2 to 6.

Number of Qubits

Performance on varying the size of PALQO. To investigate the influence of varying neural network
sizes (width W and depth L) within PALQO on its performance, we conducted tests on the TFIM with
HEA ansatz and p = 6n parameters, where n is the system size varying from 4 to 36. In Fig.[5 (a),
we observed that an increase in the width of the hidden layers leads to a corresponding improvement
in speedup ratio. However, an inverse phenomenon occurs in Fig. [5](b), further increasing the neural
network depth does not effectively enhance PALQO’s performance, which may be related to the
vanishing gradient phenomenon, where higher-order derivative information tends to diminish as the
neural network becomes deeper [93]]. These observations provide guidance for the neural network
design in PALQO, indicating that increasing hidden layer width should be prioritized.

The impact of the number of training

samples on model prediction. We per-
formed experiments on 12-qubit TFIMs
with HEA ansatz using various sam-
ple sizes to explore how the number
of training samples affects the perfor-
mance.In Fig.[6] the results validate that
PALQO can achieve satisfactory perfor-
mance even with a limited number of
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training samples. Such data efficiency

arises from the direct integration of the

physical constraints imposed by the governing PDE into the loss function of the neural network, a
core characteristic of PINNs [63].

5 Conclusion

In this study, we devised PALQO towards optimizing large-scale VQAs given restrictive quantum
resources. In contrast to previous studies, we derive PALQO from reformulating the training dynamics
as a nonlinear PDE and using PINN to approximate the solution, and also provide a generalization
analysis. Extensive numerical experiments up to 40 qubits validate the effectiveness of PALQO.
Although it is still uncertain whether PALQO can scale to the regime where quantum hardware
decisively outperforms classical methods, its results at the currently accessible scale are highly
encouraging.

Limitations and future works PALQO reduces the need for repeated quantum gradient evaluations
by learning the optimization path classically. While this lowers the number of quantum queries
compared to vanilla VQE, it may diminish some quantum advantages. Besides, mitigating the high
variance in speedup ratios is crucial for achieving more stable and reliable performance. One future
research direction is to incorporate adaptive strategies and variance reduction techniques to achieve
this goal and further unlock its potential.
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they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: we provide the related computer resources information in Appendix.
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: our work conducted in the paper conform with the NeurIPS Code of Ethics.
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* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: there is no societal impact of the work performed.
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* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: CC-BY 4.0
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: the paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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for what should or should not be described.
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