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ABSTRACT

The success of Transformer-based systems in vision and language-related tasks
led to the development of state-of-the-art approaches in time series. However,
there are several fundamental problems with existing methods and their bench-
marks. Although the real-world data is non-stationary, existing datasets are mostly
presented with stationary data. This entails models’ focus shift towards learning
simple patterns. As a result, models struggle with predicting noisy data, such
as stock data and Brownian Motion. In this work we present TimePatch Diffu-
sion, which is a novel architecture, to deal with complex time-series forecasting
tasks. It is composed of a DDPM encoder and a TPatch decoder. The former
learns time-series noise, while the latter extracts encoded features from captured
representations.

1 INTRODUCTION

Time Series Forecasting (TSF) is a prevalent problem with appli-
cations in various fields, such as healthcare, finance, traffic, and

weather. With the advancement of Deep Neural Networks (DNNGs), 0913 Ftomer. 5
deep learning models have significantly surpassed classical statis- 081 8 Doy
tical models. In particular, Transformer-based models (Vaswani 0.77 - ours
et al.l 2017b; Nie et al., [2023) have created a remarkable perfor- 0.6
mance leap in TSF problems. 03 L
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The core of the Transformer-based model lies in its Self-Attention 0.3 tu """
mechanism (Vaswani et al., 2017b), which enables the capture of 0.2{m”

inter-data correlations. However, it has two fundamental limita- % 1% 336 720

tions for time-series forecasting. The first is permutation invari-
ance, which results in its inability to capture sequential relation-
ships. Most existing models address this by applying different posi-
tional embedding techniques. The second limitation is the computa-
tional complexity of the Self-Attention module. With a complexity
of O(n?), where n is the sequence length, it becomes challenging
for the model to capture long-term relationships. Some existing ap-
proaches Informer (Zhou et al.l 2020), Longformer (Beltagy et al.|
2020) decrease the number of operations by using sparsity, while others Fedformer (Zhou et al.,
2022), Autoformer (Wu et al.||2021) utilize the domain change approach.

Figure 1: MAE on Exchange
Rate. Existing models de-
crease exponentially in per-
formance while ours linearly
decrease.

To address such issues, existing TSF models focus on the fundamental components of the time se-
ries data, such as trend and seasonality. By decomposing the time series into trend and remainder
components, models can achieve state-of-the-art performance. However, these properties are only
distinguishable when the data exhibits certain level of stationarity. As noted in|Zeng et al.|(2022)), in
stationary cases, even simple linear models can produce reasonable results. We found that the ma-
jority of the widely used TSF benchmark datasets are stationary, except for the illness and exchange
rate datasets. This observation highlights a direct relationship between the success of existing TSF
models that utilize decomposition and the stationarity property of the data. However, financial data,
which is highly uncorrelated, is an exception. State-of-the-art TSF models exhibit significant per-
formance drops in predicting long-term exchange rate data, indicating that the exchange rate dataset
lacks obvious trend and seasonality patterns (Liu et al.,|2022).
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To overcome the limitations of attention-based deterministic models when dealing with non-
stationary time series data, we propose a non-deterministic model with uncertainty. Several gen-
erative models can operate with noisy data, including denoising autoencoders (Vincent et al.,|2008)),
generative adversarial networks (Goodfellow et al.,[2020), and diffusion models (Ho et al., | 2020b).
However, the former models often suffer from low fidelity, non-convergence, and mode collapse.
In contrast, diffusion models mitigate these problems by utilizing slow noising and denoising pro-
cesses. Specifically, the forward chain applies noise to the original data until it becomes white noise,
while the reverse process reconstructs the data from the noise using a neural network (Sohl-Dickstein
et al.L 2015). Such a system is highly beneficial in modeling noisy uncorrelated data.

In this paper, we propose a novel approach named TPatch-Diffusion to address the issue of non-
stationary chaotic TSF. The model consists of two primary components: a Denoising Diffusion
Probabilistic Model (DDPM) Ho et al| (2020b) operating as an encoder and a patching module
(TPatch) serving as a new decoder. The diffusion module is designed to introduce uncertainty to
the model and learn the noise inherent representations in the time series data. On the other hand,
NTPatch extracts the structure of the encoded features obtained from diffusion.

Therefore, our contributions are as follows,

* We examine the common TSF benchmark dataset from the standpoint of stationarity and
its impact on existing TSF models.

* We propose a novel TSF method that combines DDPM with a new decoder named TPatch.
* We demonstrate that TPatch-Diffusion outperforms existing models on market datasets.

2 BACKGROUND

2.1 STATIONARITY OF EXISTING TSF METHODS

TSF models that use decomposition divide time series into trend and seasonality, utilizing both
pieces of information while assuming the stationarity of the dataset. Since such existing TSF mod-
els utilize the concept of series decomposition, the data is divided into trend and seasonality, which
enables the learning of patterns in either of the components. The ability to capture meaningful rep-
resentations of the trend and seasonality makes models possible to precisely forecast future values.

Decomposition extracts information on seasonality by smoothing original data with trends. As
a result, the model performs effectively when there is a substantial amount of meaningful in-
formation extracted from the seasonality component. As stationarity is an essential property of
a time series as assumed in the existing TSF model, we aim to analyze the effect of station-
arity on the existing TSF models. To examine the stationarity of the current TSF benchmark
datasets, we conducted simple Augmented Dickey—Fuller (ADF) (Dickey & Fuller, |1979) and
Kwiatkowski—Phillips—Schmidt—Shin (KPSS) (Kwiatkowski et al.,|1992) tests.

Dataset ADF p-value KPSS p-value Conclusion PatchTST MSE Loss
ETThl 0.2456 0.0100 Trend Stationary 0.447
ETTh2 0.1958 0.0100 Trend Stationary 0.379
Electricity 4.8925 - 10717 0.0100 Trend Stationary 0.197
Weather 0.0000 0.1000 Stationary 0.314
Traffic 7.4316 - 10723 0.0100 Trend Stationary 0.432
Illness 0.2717 0.0100 Non-Stationary 1.470
Exchange Rate 0.4331 0.0100 Non-Stationary 0.854
QQQ Stock 0.2975 0.0100 Trend-Stationary 0.250
SPY Stock 0.0550 0.0100 Non-Stationary 1.363
MSFT Stock 0.2380 0.0100 Trend-Stationary 0.662
NFLX Stock 0.7799 0.0100 Non-Stationary 1.363

Table 1: Datasets Stationarity Test Results

Table [T] demonstrates that the majority of the data exhibits stationary characteristics, which is a
significant factor in the success of the existing model with the widely used TSF benchmark dataset.
The values, combined with the results of the tests and the loss values of the PatchTST (Nie et al.,
2023)), clearly indicate that model performance has a direct correlation with the stationarity property
of the data.
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However, upon analyzing the performance of the current TSF model on the non-stationary data in the
dataset, i.e., the exchange rate, it becomes evident that the model’s performance exponentially de-
clines as the prediction horizon increases. Non-stationary data lacks obvious patterns for the model
to learn, resulting in a drop in performance. In an effort to stationarize the data, [Liu et al.| (2022)
suggests using a local stationarization module, which further enhances performance on stationary
datasets but does not improve performance on fully non-stationary data.

Additionally, NLinear (Zeng et al.,[2022)), demonstrates lower loss values than repeating the most
last values, which prompts further analysis of the forecasted values. NLinear incorporates the mo-
mentum characteristic, which utilizes the most recent value and leverages the properties of decom-
position to predict future values. As a result, NLinear is designed to learn perturbations of future
values with respect to the source. In highly non-stationary environments, the learned perturbations
are minimal, causing the model to predict values that are close to the last input value.

Therefore, we shift our focus to the market data, which is a challenging TSF problem, and examine
its characteristics further.

2.2 WHY DOES TRANSFORMER STRUGGLE WITH NON-STATIONARY TSF?

Transformer-based models fundamentally use Multi-Head Self-Attention, Scaled dot product atten-
tion maps, queries (), and sets of key-value K, V" pairs based on the following equation,

QKT
Vi

Multi-head attention allows the model to attend to information from different representation sub-
spaces at different positions, enabling it to learn long-range dependencies (Vaswani et al., [2017al).

Attention(Q, K, V') = softmax(

W. (1)

According to|Liu et al.| (2022), the dot-product used for attention is limited by its correlation-based
similarity nature. This leads to over-stationarization, which makes the Transformer vulnerable to
non-stationary time series data. According to[Zhou et al.[(2020) and |Tsai et al.[(2019), it is evident
that the attention of the i-th query can be defined as a kernel smoother in a probability form as
follows:

q% )
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where k is the asymmetric exponential kernel SM(q, k) = exp(qik;r /+/P) (Choromanski et al.,
2020), which exponentially increases based on the magnitude of the dot product similarity between
q and k, leading to the over-stationarization. This is a limitation due to the nature of correlation-
based similarity.

Further with deep analysis, as noted in Song et al| (2021)), Multi-Head Attention follows spectral
density and can be replaced by RBF kernel (Chen et al.|[2021).

Lemma 2.1 SM(-,-) is a Power Spectral Density (PSD) kernel function. Equivalently, for all in-
tegers n. > 1 and elements {q;}'_; € RP the n-by-n matrix C = SM(Q, Q) is PSD (Chen et al.|
2021)).

4 4 llg:lI? llgi—a;ll° llgs1?

proof SM(as, ay) = exp(%2) = exp(Ill ) exp(— Lo -ll o Ll

Due to the dual property given by Bochner theorem (Reed & Simon, [1975) and with Monte Carlo
(MC) integration, the kernel can be defined as follows (Song et al.| [2021)),

k(z,xl) = /Rd exp(iw ' (z — x/))p(w)dw
e . 3)
- ; exp(iw, (z — x1)).
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As proposed in [Song et al.| (2021), there are various alternatives to such Gaussian kernel (Equation
[3). This study demonstrates that by approximating existing attention mechanisms with kernel func-
tions that have different properties for specific datasets, better performance can be achieved. For
example, Autoformer (Wu et al.||2021)) and FEDformer (Zhou et al.,2022) achieved significant per-
formance gains by extending the attention mechanism with Fourier attention and Discrete Wavelet
transform. However, these approaches only address stationarity, and due to the nature of attention
as it is bounded to the Gaussian kernel, Transformer-based models are still not appropriate for non-
stationary TSF. Therefore, we aim to solve the non-stationary TSF problem using a completely new
approach, Diffusion, without using attention or decomposition in the encoder.

3 PRELIMINARY

Forward Process

The diffusion process consists of two main steps, which are forward and backward processes. The
multivariate time series X = {z1.¢ 1.1}, has C channels, and L length of the sequence. The forward
process q is presented with Gaussian Normal noise, which is sequentially added to the original input.
This can be represented as an autoregressive process of T steps:

q(@1.7|20) : Hq (zt|zi-1)

q(mt,fctq) =N (\/ 1- ﬁtxtfluﬂtl) .

To control the forward process, diffusion models use a positive constant 3; that represents a noise
level. Since there is a need to have a representation of the noisy value at every step of the forward
process, the reparameterization technique is introduced. During this process, x; is parameterized
with the help of the x(, the cumulative product of &; == 1 — ;, and oy = H§:1 ¢;. This allows
representation of z; = \/a;xo + (1 — ay)e, where € ~ N(0,T).

“4)

Reverse Process
The reverse process takes the final result of the forward process x7 and processes it to achieve the
initial input.
T
po(zo.r) = p(ar H (@-1lae),  @r ~N(0,1), )
po(@i—1|zy) = N(It—l;ue(%t),Ue(xut)l)-
Every step of the reverse process is represented with the Gaussian noise with the parameterized

function of mean py and standard deviation oy. To reach a more tractable representation, DDPM
(Ho et al., [2020a)) proposes a specific parameterization of pg(z:—1|z):

1 P
DDPM
t = — T T A N
M e ) = — <xt mee(xt,t)>’

21/2
B (zy, 1) = 5,1, (©)
l1—at—1
Bt — { 1—; t t>1
B t=1.

The following parameterization allows defining denoising function €y, outputs of which are then
compared to the originally added noise in the optimization objective:

min £(0) = minEyyg(a) exaro.n.clle = ol )13 (7)
4 TPATCH-DIFFUSION

According to all aforementioned factors, we propose a novel model TPatch-Diffusion, which is
aimed at solving all the aforementioned problems of both deterministic and probabilistic models.
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Figure 2: DDPM module architecture

It consists of two essential modules DDPM encoder, and NTPatch decoder. The former is targeted
to capture the noise added to the input data, while the focus of the latter is to extract the from the
model, and try to learn meaningful representations from it.

4.1 DDPM

To enable learning from noise technique, we modify a traditional DDPM model. Given the data
x( is 1-dimensional time-series, we set all the U-Net’s convolutional layers to be 1-dimensional,
while excluding pooling layers, to fit the data. Additionally, we empirically found that using tanh
activation function instead of the sequence of batch normalization and ReL U results in better model
performance, which is why we substitute them in all the inner blocks of the model.

Therefore, this module adds predefined noise value € to the original data, and tries to reconstruct it
with 1-dimensional U-Net. Predicted noise values are then output from the model.

Having produced added noise values, similar to the DDPM’s optimization objective. We leverage
L1Loss to match predicted noise values with the originally added. Therefore, optimization objective
is as follows:

Loppm(0) = Et g0, [€ — €g(4,1)]

where € is added noise, and the €y (x;, t) — denoising function.

4.2 NTPATCH

Another essential module, is the NTPatch. This module represents the deterministic part of the
model. There are two basic flows of the model, which are combined with residual connections.
The first one focuses on selecting necesary information from the noisy inputs, while the second one
finalizes the overall result.

The former controls the noise flow. It accepts outputs of the U-Net — ¢y, and segments them into
patches €g (1], - - - ; €0,[N—k:N]» Where k — patch size, and N — sequence length. Each patch is then
processed with a separate block of layers. Every block consists of Positional Encoding, Linear
layer and Softmax activation. Having all blocks produced outputs, they are combined with GRU to
achieve the cumulative noise information.

Given processed noise information, it is then negated from the noisy inputs Z(, which aims to repro-
duce and modify the representation of original values. This representation is then projected to the
output space, where cumulative noise is added to the projection to introduce uncertainty to the model
outputs. This indirectly proves that Diffusion model learns noise in time series latent space. ~Op-
timization process requires both independent, and combined execution. As the TPatch-Diffusion
consists of DDPM encoder and NTPatch decoder, they need additional optimization. Since DDPM
model is a diffusion process, model is aimed to match predicted noise value with the original. To
do so, L1Loss is utilized, which is why, it follows DDPM optimization objective mentioned in the
Section: .11
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Figure 3: NTPatch module. The model accepts noisy input, and the noise. Processes the latter and
sums them together to produce the final output.

NTPatch decoder loss is Mean Squared Error (MSE) Loss between produced results, and the target
forecasting values. Therefore, decoder loss can be depicted in the following manner:

ENTPatch(o) = Ezt,et [Hy - ye(It, Et)Hz}

Finally, global model loss is the combination of KL-divergence between the predicted and the orig-
inal noise, and MSE between predictions and targets:

L =Etap.e [lle = co(ze, )] +Eay e, [lly = yo(ae, )]

Having separate optimization steps, allows to train both independently and in combination.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Baselines. To analyze the performance of the model, six different baselines were chosen. They
are LTSF-Linear (Zeng et al., [2022)), PatchTST (Nie et al., |2023)), FEDformer (Zhou et al., [2022)),
Autoformer (Wu et al.;|2021)), Repeat (Zeng et al., [2022)).

e Autoformer: As a Transformer-based method, Autoformer learns the temporal pattern
of time series by decomposition and Auto-Correlation mechanism through Fast Fourier
Transform (Wu et al., [2021)).

e FEDformer: As a Transformer-based method, FEDformer introduced a Mixture of Ex-
perts (MOE) for seasonal-trend decomposition and frequency-enhanced block/attention
with Fourier or Wavelet Transform (Zhou et al., 2022).

* DLinear: Only using Linear layers, DLinear decomposes the original input into a trend
and remainder components. Then, two linear layers are applied to components respectively,
and the output features are summed up to obtain the final prediction (Zeng et al., 2022).

* NLinear: To overcome the train-test distribution shift in the dataset, NLinear uses a
simple normalization that subtracts the last value from the input and adds it back before
making the final prediction (Zeng et al., 2022).

* PatchTST: As atransformer-based model, PatchTST has two components: segmentation
of time series into subseries-level patches, and channel-independence structure. PatchTST
can capture local semantic information and benefit from longer look-back windows (Nie!
et al.,[2023).

Datasets. To evaluate the model, five non- and trend-stationary datasets were selected.
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Dataset TPatch-Diffusion (ours) DLinear NLinear PatchTST FEDformer-f | FEDformer-w Autoformer Repeat
MSE MAE MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.086 0.213 0.085 0.206 | 0.089 0.208 | 0.082 0.199 | 0.148 0.278 | 0.139 0.276 | 0.197 0.323 | 0.081 0.196
Exchange Rate 192 | 0.170 0.302 0.160 0.294 | 0.180 0.300 | 0.174 0.296 | 0.271 0.380 | 0.256 0.369 | 0.300 0.369 | 0.167 0.289
336 | 0.277 0.397 0.328 0424 | 0.331 0415 | 0.351 0.425 | 0.460 0.500 | 0.426 0.464 | 0.509 0.524 | 0.305 0.396
720 | 0.468 0.525 0.558 0.573 | 1.033 0.780 | 0.847 0.689 | 1.195 0.841 | 1.090 0.800 | 1.447 0.941 | 0.823 0.681
SPY 30 [ 0278 0.247 0.421 0.469 | 0.284 0.234 [ 0.259 0.210 | 0.233 0.192 | 0.233 0.192 | 0.250 0.209 | 0.432 0.243
- 60 | 0.331 0.263 0.663  0.596 | 0.310 0.265 | 0.289 0.241 | 0.264 0.222 | 0.264 0.222 | 0.286 0.240 | 0.488 0.278
30 | 0.272 0.255 0378 0.438 [ 0275 0.233 [ 0250 0.209 | 0.228 0.192 | 0.228 0.192 | 0.244 0.206 | 0.415 0.243
QQQ 60 | 0.598 0.564 0.593 0.556 | 0.284 0.234 | 0.282 0.237 | 0.280 0.235 | 0.258 0.222 | 0.280 0.235 | 0.473 0.277
MSET 30 | 0.410 0.449 0.505 0.518 | 0.610 0.464 | 0.662 0.519 | 1.041 0.781 | 1.04T 0.781 | 0.985 0.757 | 0.915 0.559
60 | 0.660 0.586 0.794 0.657 | 0.689 0.547 | 0.699 0.545 | 1.423 1.027 | 1.423 1.027 | 1.337 0.958 | 0.974 0.572
NFLX 30 | 0.785 0.585 2.006 1.036 | 0.427 0.452 | 0.345 0.410 | 0331 0392 | 0331 0392 | 0414 0.454 | 0436 0.376
60 | 1.343 0.842 3462 1.372 | 1482 0.880 | 1.363 0.878 | 0.363 0.417 | 0.363 0.417 | 0.563 0.530 | 0.481 0.449

Table 2: Quantitative Experiment results.

* Exchange Rate: The collection of the daily exchange rates of eight foreign coun-
tries including Australia, British, Canada, Switzerland, China, Japan, New Zealand, and
Singapore ranging from 1990 to 2016 (Lai et al., 2018)).

e SPY and QQQ: ETF stock datasets, which follows S&P500 and NASDAQ market cor-
respondingly.

* MSFT and NFLX: Individual stock datasets, of Microsoft and Netflix respectively.

5.2 PERFORMANCE ANALYSIS

Quantitative Analysis

First, we compared the performance of TPatch with other state-of-the-art TSF methods through
quantitative evaluation. On the Exchange rate dataset, TPatch demonstrated excellent performance
in long-term prediction, while DLinear outperformed in the short term. When comparing with more
non-stationary real-market data such as SPY and MSFT, TPatch-Diffusion showed the best perfor-
mance except for QQQ dataset. However, the trend-stationarity property of the dataset matches the
performance of existing models with TPatch-Diffusion. Finally, it is important to mention that un-
like existing models, TPatch-Diffusion successfully solves long-term forecasting problems, since its
performance does not plummet with the increase of prediction horizon.

Although, FEDformer and Autoformer models show better quantitative performance, qualitatively
they learn single pattern, which is considered to be optimal, and predict it for all cases. The reason
for this may be frequency decomposition technique used by the models.

Qualitative Analysis

DLinear and NLinear models both belong to the LTSF-Linear family. DLinear decomposes the data
into trend and seasonality fragments and successfully captures the trend, as evidenced by the graph
(f) in Figure @] However, DLinear’s heavy reliance on the trend, leads to significantly different
predictions when the trend of the actual data changes, as shown in (b).

On the other hand, the NLinear model learns based on the last values and introduces noise for
perturbation. Consequently, it only captures small fluctuations and struggles to predict future values
in non-stationary setting, as observed in the graphs (c, g) of Figure ] The same limitation applies
to PatchTST, which is a transformer-encoder-based model that divides the time-series into patches.

6 CONCLUSION

In this study, we address the problem of non-stationary time series forecasting using a diffusion
model, which is a representative generative model. Traditional Transformer-based TSF models are
designed with a decomposition mechanism to perform well on stationary data. Motivated by this,
we analyze the stationarity of existing TSF benchmark datasets and find that the majority of these
datasets consist of stationary data. Therefore, we specifically focus on using stock data, which
is a prominent example of non-stationary time series data. TPatch-Diffusion learns the distribu-
tion of time series data through probabilistic learning in a generative model framework and en-
ables non-stationary time series prediction through the denoising process of DDPM. We verify that
TPatch-Diffusion demonstrates superior performance on market datasets, highlighting the difficulty
of predictions for non-stationary data when existing TSF models excessively rely on decomposition
methods.
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Figure 4: Qualitative Experiments results on Exchange Rate dataset.

6.1 FUTURE WORK

We plan to directly analyze the impact of generative models on non-stationary time series forecast-
ing. Firstly, through a generative model ablation study, we will analyze the differences when using
VAE, GAN, and Diffusion models. Additionally, we aim to find the justification for using the dif-
fusion model through this process. Furthermore, we will analyze stock data from the perspective of
Brownian motion to provide evidence for why this data is non-stationary and why generative models
are necessary.
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