
AdamS: Momentum Itself Can Be A Normalizer
for LLM Pretraining and Post-training

Anonymous ACL submission

Abstract001

We introduce AdamS, a simple yet effective002
alternative to Adam for large language model003
(LLM) pretraining and post-training. By lever-004
aging a novel denominator, i.e., the root of005
weighted sum of squares of the momentum and006
the current gradient, AdamS eliminates the need007
for second-moment estimates. Hence, AdamS008
is efficient, matching the memory and com-009
pute footprint of SGD with momentum while010
delivering superior optimization performance.011
Moreover, AdamS is easy to adopt: it can di-012
rectly inherit hyperparameters of AdamW, and013
is entirely model-agnostic, integrating seam-014
lessly into existing pipelines without modifica-015
tions to optimizer APIs or architectures. The016
motivation behind AdamS stems from the ob-017
served (L0, L1) smoothness properties in trans-018
former objectives, where local smoothness is019
governed by gradient magnitudes that can be020
further approximated by momentum magni-021
tudes. We establish rigorous theoretical conver-022
gence guarantees and provide practical guide-023
lines for hyperparameter selection. Empirically,024
AdamS demonstrates strong performance in var-025
ious tasks, including pre-training runs on GPT-026
2 and Llama2 (up to 13B parameters) and re-027
inforcement learning in post-training regimes.028
With its efficiency, simplicity, and theoretical029
grounding, AdamS stands as a compelling alter-030
native to existing optimizers.031

1 Introduction032

Due to the scaling law (Kaplan et al., 2020) of033

neural networks, it has been enthusiastic in the AI034

community to pre-train large foundation models035

with enormous data over the past years (Touvron036

et al., 2023a; Brown et al., 2020; Zhang et al., 2022;037

Rae et al., 2021; Chowdhery et al., 2022; Du et al.,038

2021; Liu et al., 2024; Dubey et al., 2024; Yang039

et al., 2024). Training such large foundation mod-040

els become super challenging because of tremen-041

dous engineering efforts, computational cost (Rajb-042

0 5 10 15 20 25 30 35
Tokens (Billion)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

 L
os

s

Training Loss of Llama2-7B
Ours: AdamS_lr3e-4_wd0.1_ s(0.9,0.95)
Lion_lr3e-5_wd1.0_ s(0.95,0.98)
AdamW_lr3e-4_wd0.1_ s(0.9,0.95)
Adam-mini_lr3e-4_wd0.1_ s(0.9,0.95)

0 5 10 15 20 25 30 35
Tokens (Billion)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

 L
os

s

Valid Loss of Llama2-7B
Ours: AdamS_lr3e-4_wd0.1_ s(0.9,0.95)
Lion_lr3e-5_wd1.0_ s(0.95,0.98)
AdamW_lr3e-4_wd0.1_ s(0.9,0.95)
Adam-mini_lr3e-4_wd0.1_ s(0.9,0.95)

Figure 1: Training and validation loss curves for pretrain-
ing LLaMA 2–7B models. The proposed AdamS achieves
convergence comparable to or better than baseline methods
under the same hyperparameter settings as LLaMA 2 (Touvron
et al., 2023b), while eliminating the need to store AdamW’s
second-moment estimates.

handari et al., 2019; Guo et al., 2025), and potential 043

training spikes (Zhang et al., 2022; Molybog et al., 044

2023; Chowdhery et al., 2022). 045

One reason for such high cost comes from the 046

widely used optimizer Adam (Kingma and Ba, 047

2014) or AdamW (Loshchilov and Hutter, 2019): 048

the optimizers require storing both the state of mo- 049

mentum and the state of second-moment estimates, 050

which consumes 2 ∼ 4 times GPU memories of 051

the model size, huge for models with hundreds of 052

billions of parameters. In practice, practitioners 053

employ advanced distributed-training frameworks, 054

such as Fully Sharded Data Parallel (FSDP) (Zhao 055

et al., 2023) and DeepSpeed’s ZeRO optimizer (Ra- 056

jbhandari et al., 2019), to shard optimizer state 057

across multiple GPUs and exchange only the nec- 058

essary parameters over high-bandwidth intercon- 059

nects, thereby compensating memory consumption 060

by communication. 061

In this paper, we try to reduce such memory 062

cost by proposing a simple yet effective opti- 063

mizer AdamS, an alternative to AdamW. AdamS 064

eliminates the need for second-moment estimates, 065

by leveraging a novel denominator: the root of 066

weighted sums of squares of the momentum and 067

the current gradient. As a consequence, AdamS 068

matches the memory and compute footprint of 069

1

stochastic gradient descent (SGD) with momen-070

tum while delivering superior performance as good071

as AdamW.072

The design of AdamS is inspired by the obser-073

vation that transformer-based models, which dom-074

inate modern large language models (LLMs), ex-075

hibit unique smoothness properties in their opti-076

mization landscapes. Specifically, the local smooth-077

ness of these objectives is governed by gradient078

magnitudes, which suggests that the learning rate079

should be proportional to the reciprocal of the080

gradient norm at each iteration, explaining why081

Adam optimizer beats SGD on training transformer-082

like architectures (Zhang et al., 2019; Wang et al.,083

2023b). We further employ the fact that momen-084

tum, an exponential average of historical gradients,085

can provide a good and robust estimate of gradi-086

ent magnitude (Cutkosky and Mehta, 2020; Zhang087

et al., 2020) without the need for complex second-088

moment computations. By leveraging this insight,089

AdamS reduces memory cost of the optimizer states090

by half. Such efficiency of AdamS is particularly091

attractive for large-scale training, where even small092

improvements in efficiency can translate into sig-093

nificant cost savings.094

Recognizing this deep-rooted dependency on095

AdamW, we emphasize that AdamS is easy to adopt096

and can serve as a drop-in replacement for AdamW097

for pre- and post-training tasks of LLM. Moreover,098

AdamS is model-agnostic, making it easy to inte-099

grate into existing pipelines without modifications100

to APIs or model architectures. More importantly,101

it inherits AdamW’s hyperparameter configuration,102

thereby mitigating the often prohibitive costs of103

hyperparameter re-tuning and minimizing the risk104

associated with deploying a new optimizer at scale.105

Empirically, AdamS demonstrates strong perfor-106

mance across a wide range of tasks and architec-107

tures, namely the transformer-based next-token pre-108

diction pretraining tasks and GRPO reinforcement109

learning tasks. In pretraining scenarios, it matches110

or exceeds the performance of AdamW on mod-111

els ranging from GPT-2 to Llama2, with parame-112

ter counts up to 13B as shown in Figure 1. This113

scalability is particularly important given the grow-114

ing trend toward even larger models and datasets.115

Additionally, AdamS excels in post-training tasks,116

including reinforcement learning (RL), where it117

achieves state-of-the-art results in tasks such as118

the DeepSeek R1-Zero replication. This versatil-119

ity underscores its potential as a general-purpose120

optimizer for both pretraining and post-training121

paradigms. 122

On the theoretical side, we establish rigorous 123

convergence guarantees that demonstrate the effec- 124

tiveness of AdamS in optimizing non-convex ob- 125

jectives, which are typical in LLM training. These 126

guarantees are derived under realistic assumptions 127

about the smoothness and noise properties of the 128

optimization landscape. 129

Our contributions can be summarized as follows: 130

• Innovative Optimizer Design: We introduce 131

AdamS, which eliminates the need for second- 132

moment estimates by leveraging a novel 133

normalization strategy based on a weighted 134

momentum-gradient combination. This ap- 135

proach reduces the memory footprint of opti- 136

mizers’ state by 50% while maintaining the 137

ease of adoption. 138

• Theoretical Grounding: We rigorously an- 139

alyze the convergence guarantees of AdamS 140

for optimizing non-convex objectives under 141

relaxed smoothness and weak noise assump- 142

tions, which matches the lower bounds of any 143

gradient-based optimizers. 144

• Empirical Validation: Through extensive 145

experiments, e.g., large-scale pretraining on 146

models like GPT-2 and Llama2 (up to 13B 147

parameters) and reinforcement learning post- 148

training tasks such as DeepSeek R1-Zero 149

replication, we demonstrate that AdamS con- 150

sistently matches AdamW, underscoring its 151

versatility across different training paradigms. 152

In the following sections, we detail the motiva- 153

tion and formulation of AdamS. We then present the 154

theoretical analysis and convergence guarantees, 155

followed by an extensive empirical study spanning 156

a variety of tasks and architectures. Through this 157

comprehensive exploration, we aim to establish 158

AdamS as a compelling alternative in the evolving 159

landscape of large language model pretraining and 160

post-training optimization. 161

1.1 Related Works 162

The smoothness property of transformer-like 163

architectures. The seminal work (Zhang et al., 164

2019) introduced the (L0, L1)-smooth condition 165

that assumes local smoothness bounded by the lo- 166

cal gradient norm, which is nicely verified by the 167

optimization landscape of training transformer-like 168

models. Under these assumptions, convergence 169

2

properties of adaptive optimizers, AdaGrad (Faw170

et al., 2023; Wang et al., 2023b), Adam (Wang171

et al., 2022; He et al., 2023; Wang et al., 2023b;172

Li et al., 2023) are established and the benefit over173

SGD is demonstrated. Our design of AdamS is in-174

spired by these local smoothness properties, and175

delivers robust empirical performance, where gra-176

dient magnitudes govern optimization dynamics177

particularly in transformer-like architectures.178

Memory-efficient adaptive learning rate op-179

timizers. In the development of memory-efficient180

adaptive learning rate optimizers, several notable181

methods have been proposed to address the chal-182

lenges of high memory consumption in large-scale183

neural network training. Shazeer and Stern (2018)184

introduced Adafactor, which reduces memory us-185

age by maintaining only per-row and per-column186

sums of the second-moment estimates for weight187

matrices. Anil et al. (2019) proposed SM3, a188

memory-efficient adaptive optimization method189

that approximates second-moment statistics with190

sublinear memory cost by partitioning parame-191

ters and sharing second-moment estimates among192

them. SM3 achieves per-parameter adaptivity with193

reduced memory overhead, facilitating the train-194

ing of larger models and mini-batches. Luo et al.195

(2023) developed CAME to address the instabil-196

ity issues of existing memory-efficient optimiz-197

ers via a confidence-guided adaptive strategy. Lv198

et al. (2023) introduced AdaLomo, which combines199

low-memory optimization techniques with adaptive200

learning rates by employing non-negative matrix201

factorization for second-order moment estimation.202

Zhao et al. (2024) proposed GaLore that projects203

weight gradients onto a low-rank subspace, and up-204

date the model in the low-rank subspace, enabling205

fine-tuning LLM with consumer-grade GPUs with206

24GB memory, where the idea of low-rank projec-207

tion has been initiated in (Yu et al., 2021). Recently,208

Zhang et al. (2024) proposed Adam-mini, an opti-209

mizer that reduces memory usage by partitioning210

model parameters into blocks based on the Hes-211

sian structure and assigning a single learning rate212

to each block, reducing memory consumption of213

optimizer state by approximately 45% to 50%.214

Despite the proliferation of all these advance-215

ments, practitioners often hesitate to move away216

from AdamW because they either need to tune217

more hyperparameters, or require to be aware of218

the model architecture, or do not systematically219

surpassing AdamW in large-scale learning (Kad-220

dour et al., 2023; Hoffmann et al., 2022). In con-221

trast, AdamS offers a model-agnostic solution that 222

seamlessly integrates into existing workflows. It re- 223

quires no additional hyperparameters beyond those 224

used in AdamW, allowing for straightforward adop- 225

tion and tuning. Moreover, AdamS matches the 226

memory efficiency of vanilla SGD with momen- 227

tum while delivering performance comparable to 228

AdamW, making it a practical drop-in replacement 229

that one can enjoy benefits with minimal effort. 230

Adam-mini indeed targets memory efficiency, 231

but it requires architectural awareness (e.g., group- 232

ing parameters), whereas AdamS applies in a 233

model-agnostic way, without model-specific mod- 234

ifications. Adam-mini also maintains a second- 235

moment approximation, albeit coarsely, while 236

AdamS eliminates it entirely. 237

The main claim of Adam-mini paper is that 238

Adam-mini can mimic the performance of AdamW 239

with memory saving of the second moments. 240

Hence it is sufficient to compare AdamS with 241

AdamW given the performance of Adam-mini is 242

fully captured by AdamW. 243

2 Motivation and Design Choices of 244

AdamS 245

This section outlines the motivation behind our opti- 246

mizer design—specifically, the rationale for adopt- 247

ing the root mean square of a properly weighted 248

momentum itself and the current gradient as an 249

adaptive denominator. We then formalize the algo- 250

rithm and analyze its properties. 251

2.1 Motivation and (L0, L1) smoothness 252

In classical optimization settings, gradient de- 253

scent provably decreases the loss at each itera- 254

tion—provided the learning rate is smaller than the 255

inverse of the smoothness constant. However, this 256

principle fails to hold for transformer-based mod- 257

els, where stochastic gradient descent (SGD) with 258

momentum exhibits poor convergence empirically. 259

Recent work by (Zhang et al., 2019) identifies a key 260

observation: Transformer training objectives vio- 261

late standard smoothness assumptions and instead 262

obey a relaxed (L0, L1)-smoothness condition. Un- 263

der this regime, the local smoothness depends on 264

the gradient magnitude, enabling pathological cur- 265

vature that can arbitrarily slow SGD’s progress 266

(Wang et al., 2023a). The (L0, L1)-smoothness 267

assumption is as follows. 268

Assumption 2.1 ((L0, L1)-smooth condition). As- 269

suming that f is differentiable and lower bounded, 270

3

there exist constants L0, L1 > 0, such that271

∀w1,w2 ∈ Rd satisfying ∥w1 −w2∥ ≤ 1
L1

,272

∥∇f(w1)−∇f(w2)∥273

≤(L0 + L1∥∇f(w1)∥)∥w1 −w2∥.274

Assumption 2.1 is a general form of (L0, L1)-275

smooth condition, equivalent to the Hessian-bound276

form (Zhang et al., 2019) when Hessian exists.277

When Assumption 2.1 holds, the local smooth-278

ness of the objective function is bounded by the279

the linear form of the gradient norm (i.e., L(w) ≤280

L0 + L1∥∇f(w)∥. We know that the smoothness281

constant L(w) governs how much the gradient can282

change locally. If L(w) scales with ∥∇f(w)∥,283

the curvature (and thus the risk of overshooting)284

increases with the gradient’s magnitude. This ne-285

cessitates a smaller learning rate when the gradient286

is large and allows a larger rate when the gradient287

is small.288

A brief derivation (see details in Appendix C)289

gives a range of ηt that guarantees decreasing290

function value at each step, i.e., ηt ≤ 1/(L0 +291

L1∥∇f(wt)∥), which ensures convergence by bal-292

ancing the descent and curvature terms. This adap-293

tively scales η inversely with the grad’s magnitude.294

In practice, we do not know the exact values of295

L0 and L1, a typical choice of ηt should be296

ηt =
C

∥∇f(wt)∥+ ϵ
,297

for some constant or scheduled constant C after298

taking account of avoiding explosion near minima.299

Such an argument can be extended to coordinate-300

wise sense, which necessitates per-coordinate adap-301

tive learning rates.302

We note that Adam adapts learning rates using303

second-moment estimates, i.e., the exponential av-304

erage of of the square of historical gradients to305

approximate the gradient magnitude. We draw in-306

spiration from (Zhang et al., 2020), which demon-307

strates that momentum—the exponential moving308

average of historical gradients—can itself serve as a309

robust proxy for gradient magnitudes. Building on310

this insight, we propose replacing second-moment311

estimation with a novel denominator derived from312

a weighted combination of momentum and the cur-313

rent mini-batch gradient. This approach retains314

the benefits of adaptive learning rate tuning while315

eliminating the computational overhead of tracking316

second moment statistics.317

2.2 The Design of AdamS 318

The design of AdamS is given by Algorithm 1.
Specifically, the denominator is

νt ← β2m
⊙2
t−1 + (1− β2)g

⊙2
t .

Algorithm 1 AdamW v.s. AdamS

1: Input: momentum parameter β1, denominator
parameter β2, weight decay λ, learning rate η,
objective f , regularizer ϵ

2: Initialize: w0, m0 ← 0,ν0 ← 0, t← 0
3: while wt not converged do
4: t← t+ 1
5: gt ← ∇wf(wt−1)
6: update state tracking
7: mt ← β1mt−1 + (1− β1)gt
8: AdamW: νt ← β2νt−1 + (1− β2)g

⊙2
t

9: AdamS: νt ← β2m
⊙2
t−1+(1−β2)g

⊙2
t

10: update model parameters
11: wt ← (1− ηtλ)wt−1 − ηt

(
1√
νt+ϵ ⊙mt

)
12: end while
13: return wt

319

2.3 The Properties of AdamS 320

We next compare the behavior of AdamS and that 321

of AdamW. We note that it is very hard to analyze 322

rigorously the update terms for AdamW and AdamS 323

because the correlations between the numerator 324

and the denominator, also the correlations among 325

historical gradients. The analysis here serves as 326

a thought experiment with simplified assumptions 327

(e.g., independence, distributional assumptions) to 328

help illustrate conditions when the denominator of 329

AdamS approximates that of AdamW. 330

Analytical comparison. The numerators of 331

AdamS and AdamW are the same. To illustrate 332

the behavior of denominators for a thought verifi- 333

cation, we consider the following sequence {Xt}, 334

where Xt ∼ N (µ, σ2) are independent. Then the 335

distribution of the exponentially weighted moving 336

average (EMA) of their squared values 337

St = (1− β2)X
2
t + β2St−1, t = 1, 2, . . . , T. 338

follows a weighted sum of noncentral chi-squared 339

distributions. As t becomes large, such a distribu- 340

tion tends to be a non-centered Gaussian distribu- 341

4

tion. We compute the mean and variance of St,342

E[St] = (µ2 + σ2)(1− βt
2),343

Var(St) =
(
2σ4 + 4µ2σ2

) 1− β2
1 + β2

(1− β2t
2).344

Consequently, E[S∞] = (µ2 + σ2), and345

Var(S∞) = (2σ4 + 4µ2σ2)(1− β2)/(1 + β2).346

On the other hand, the distribution of the expo-347

nential moving average of Xt, i.e. Mt = (1 −348

β1)Xt + β1Mt−1, t = 1, 2, . . . , follows a Gaus-349

sian distribution.350

The denominator of AdamS involves the follow-351

ing quantity, Vt := βM2
t−1 + (1 − β)X2

t . Since352

Xt and Mt−1 are independent, Vt is the sum of two353

independent scaled noncentral chi–squared random354

variables with one degree of freedom. We have355

E[V∞] = µ2 + σ2

(
1− 2ββ1

1 + β1

)
,356

Var(V∞) = 2σ4

[
β2

(
1− β1
1 + β1

)2

+ (1− β)2

]
357

+ 4µ2σ2

[
β2 1− β1

1 + β1
+ (1− β)2

]
.358

We note that if µ≫ σ, which can be true when359

the gradient noise becomes considerably small as360

the batch size is extremely large. Alternatively, this361

suggest that the behavior of AdamS could be more362

resemble that of AdamW if the batch size get larger,363

fitting to practical setup in LLM pretraining.364

By comparing E[S∞] and E[V∞], we note that365

if µ ≫ σ, i.e., a regime achievable under large366

batch sizes where gradient noise becomes negligi-367

ble, AdamS’s behavior increasingly resembles that368

of AdamW. This alignment with AdamW’s dynam-369

ics under low-noise conditions mirrors practical370

LLM pretraining setups, where large batch sizes371

are standard.372

Moreover, root operation is non-expansive. the373

denominators of AdamS and AdamW are quite374

close when µ ≫ σ, which could hold for very375

large batch size that is used in practice when train-376

ing extremely large language models. We note that377

β2 cannot be too close to 1.378

For specific β1 = 0.9, β2 = 0.95, we have379

Var[S∞] ≈ 0.0256(2σ4 + 4µ2σ2). The best380

β = 0.95 to minimize the difference between the381

variance of St and Vt, and Var[Vt] = 2σ4 ∗0.005+382

4µ2σ2 ∗ 0.05.383

Empirical comparison between the update384

matrices of AdamS and AdamW. We analyze the385

update matrices of AdamW and AdamS along the 386

training trajectory of a GPT-2 Small model. The de- 387

tailed experimental setup is provided in Section 4.1. 388

To quantify the similarity between the updates, 389

we compute the cosine similarity between the up- 390

date matrices of AdamS and AdamW throughout 391

the training process with AdamW. The results are 392

presented in Figure 2. For comparison, we also 393

include the cosine similarity between AdamW and 394

the recently proposed Adam-mini (Zhang et al., 395

2024). The results show that AdamS exhibits a 396

strong alignment with AdamW, closely matching 397

its update direction. 398

The magnitude of AdamS update. For β1 = 399

0.9, we plot the update magnitude of AdamS when 400

the gradient/momentum values span [−13, 13], 401

covering most values in practice, in Figure 3. We 402

can see that overly large β2 values can destabilize 403

updates by inflating the denominator’s sensitivity 404

to outliers. To mitigate this, we recommend not 405

setting β2 too large, and a typical value of β2 = 406

0.95 works well and aligns with empirical choice 407

of AdamW for LLM pretraining. 408

Memory cost and throughput of AdamS. 409

AdamS effectively reduces optimizer state memory 410

usage by half. However, the extent of improvement 411

in throughput and maximum batch size compared 412

to the original AdamW depends on the model size 413

and GPU type, as the primary bottleneck may be 414

either memory or computation. Notably, as model 415

size increases, the benefits of AdamS become more 416

pronounced, aligning well with practical large lan- 417

guage model (LLM) training scenarios. As shown 418

in Table 1, AdamS can improve over AdamW in 419

terms of throughput by almost 36%, i.e., reducing 420

the time 6.9s to 4.4s of passing a batch of tokens, 421

for GPT2-XL pretraining. 422

Model Optimizer Max batch Throughput

774M
AdamW 10 2.0s
AdamS 10 2.0s

1.5B
AdamW 1 6.9s
AdamS 3 4.4s

Table 1: Memory cost and throughput comparison between
AdamW and AdamS. The maximum batch size (Max batch)
is the largest allowable batch without Out of Memory and the
throughput (Throughput) is measured by the time (in seconds)
for one iteration of passing 480K tokens with gradient accumu-
lation. Experiment setup: 8 A100 GPUs with 40GB memory,
training with GPT2-XL (1.5B) and GPT2-Large (774M).

5

0 20000 40000 60000 80000
Step

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e

Si
m

ila
rit

y

Cosine Similarity vs. Step for All Layers

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12
Layer 13
Layer 14
Layer 15
Layer 16

Layer 17
Layer 18
Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Layer 24
Layer 25
Layer 26
Layer 27
Layer 28
Layer 29
Layer 30
Layer 31
Layer 32
Layer 33

Layer 34
Layer 35
Layer 36
Layer 37
Layer 38
Layer 39
Layer 40
Layer 41
Layer 42
Layer 43
Layer 44
Layer 45
Layer 46
Layer 47
Layer 48
Layer 49

0 20000 40000 60000 80000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity vs. Step for All Layers

Figure 2: The cosine similarities between the update matrices of AdamS and AdamW
(left), Adam-mini and AdamW (right) for all layers of GPT2-Small model. Across the
training trajectory, the update direction of AdamS closely aligns with that of AdamW.

10 5 0 5 10
k=grad/momentum

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ad
am

S
up

da
te

 m
ag

ni
tu

de

2=0.9
2=0.95
2=0.99
2=0.999

Figure 3: The update magnitude
of AdamS for grad/momentum
varying with β1 = 0.9 and β2 =
0.9, 0.95, 0.99, 0.999.

3 Convergence of AdamS423

This section establishes the theoretical convergence424

of AdamS. We first introduce another key assump-425

tion on the gradient noises.426

Assumption 3.1 (Sub-gaussian noise). We as-427

sume that the stochastic noise gt is unbiased, i.e.,428

E|Ftgt = Gt. We further assume gt is centered429

with sub-gaussian norm, i.e., there exists some pos-430

itive constant R, such that P|Ft(∥gt−∇f(wt)∥ ≥431

s) ≤ 2e−
s2

2R2 .432

Assumption 3.1 is one of the weakest assump-433

tions on the noise in existing literature, and gen-434

eralizes bounded gradient assumption (Défossez435

et al., 2022) and bounded noise assumption (Li436

et al., 2023). Based on Assumption 2.1 and 3.1437

Theorem 3.2. Let Assumptions 2.1 and 3.1 hold.438

Then, setting ηt = Õ(1√
T
), β1 = 1− Θ̃(1√

T
), and439

β2 = 1− Θ̃(1
T) with 1−β1

η ≥ C, where C is some440

constant defined in Eq. (4) , we have that AdamS441

in Algorithm 1 satisfies442

E min
t∈[1,T]

∥∇f(wt)∥ ≤ Õ
(

1
4
√
T

)
.443

Proof. The proof is relegated to Appendix D due444

to space constraints.445

The derived convergence rate matches the known446

lower bound of Ω(1/ 4
√
T) for any gradient-based447

optimizer, including AdamW (Arjevani et al.,448

2022). This result not only demonstrates that449

the convergence rate in Theorem 3.2 is tight —-450

achieving the theoretically optimal bound —- but451

also provides a rigorous theoretical guarantee for452

AdamS’s efficiency in optimizing Transformer ar-453

chitectures.454

4 Empirical Performance of AdamS 455

In this section, we apply AdamS for large language 456

model pretraining tasks and post-training tasks to 457

demonstrate that AdamS can achieve performance 458

comparable to AdamW with similar hyperparame- 459

ters while requiring significantly less memory. 460

4.1 GPT2 experiments 461

In this experiment, we demonstrate that AdamS 462

achieves performance comparable to AdamW for 463

pretraining GPT2 (Radford et al., 2019) on the 464

OpenWebText dataset (Gao et al., 2020) using the 465

popular nanoGPT codebase1. We evaluate three 466

variants: GPT2 Small (125M parameters), GPT2 467

Medium (355M parameters), and GPT2 Large 468

(770M parameters). 469

Baselines. We primarily compare AdamS with 470

AdamW (Loshchilov and Hutter, 2019), the most 471

widely used optimizer in language modeling tasks, 472

and Lion (Chen et al., 2023), a recently proposed 473

optimizer that eliminates the need for second- 474

moment estimates, discovered by symbolic search. 475

We adopt typical hyperparameter choices, fol- 476

lowing the settings used in (Zhang et al., 2024; 477

Liu et al., 2023). For AdamW, we set (β1, β2) = 478

(0.9, 0.95) with a weight decay of 0.1, and we use a 479

learning rate of 6×10−4 for the GPT2 Small model 480

and lr = 3×10−4 for the GPT2 Medium and GPT2 481

Large models. For Lion, as suggested by Chen et al. 482

(2023), we use (β1, β2) = (0.95, 0.98), set the 483

learning rate to 0.1× lrAdamW, and choose a weight 484

decay of 10 × weight_decayAdamW. For AdamS, 485

we use the same hyperparameters as AdamW; that 486

is, lr = lrAdamW, (β1, β2) = (0.9, 0.95), and 487

weight_decay = weight_decayAdamW. 488

Implementation. Following standard practices, 489

for all GPT-2 models, we set the context length 490

1https://github.com/karpathy/nanoGPT

6

0 20000 40000 60000 80000 100000
Iteration

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
Lo

ss
Validation Loss of GPT2-Small

Lion_lr6e-5_wd1.0_betas(0.95,0.98)
AdamW_lr6e-4_wd0.1_betas(0.9,0.95)
Ours: AdamS_lr6e-4_wd0.1_betas(0.9,0.95)

0 20000 40000 60000 80000 100000
Iteration

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Validation Loss of GPT2-Medium
Lion_lr6e-5_wd1.0_betas(0.95,0.98)
Ours: AdamS_lr6e-4_wd0.1_betas(0.9,0.95)
AdamW_lr6e-4_wd0.1_betas(0.9,0.95)

0 20000 40000 60000 80000 100000
Iteration

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
Lo

ss

Validation Loss of GPT2-Large
Lion_lr6e-5_wd1.0_betas(0.95,0.98)
AdamW_lr6e-4_wd0.1_betas(0.9,0.95)
Ours: AdamS_lr6e-4_wd0.1_betas(0.9,0.95)

Figure 4: Validation loss curves for pretraining GPT-2 models. Across three different model sizes and with the same
hyperparameters as AdamW, the proposed AdamS achieves convergence comparable to baseline methods—without the need to
store AdamW’s second-moment estimates.

to be 1024 tokens. We use a batch size of 480491

and employ a cosine learning rate schedule, setting492

the final learning rate to 0.1 × lr as suggested by493

Rae et al. (2021). We employ gradient clipping by494

norm with a threshold of 1.0, and we use a fixed495

warm-up period of 2,000 steps. The algorithms496

are implemented in PyTorch (Paszke et al., 2019),497

and training is conducted in float16 precision on498

clusters equipped with Nvidia Ampere or Hopper499

GPUs for the GPT2-Small, Medium, and Large500

models.501

Results. The results are shown in Figure 4. As502

observed in Figure 4, the performance of AdamS503

closely mirrors the AdamW curves across all three504

model sizes throughout the training process. This is505

achieved using the same hyperparameters as those506

for AdamW. Further details and longer training507

steps are provided in Appendix B.508

4.2 Llama2 Pretraining Experiments509

In this experiment, we confirm the behavior of510

AdamS for pretraining an even larger model511

Llama2-7B (Touvron et al., 2023b). It is trained512

with the well-known Torchtitan library2 on the C4513

dataset (Raffel et al., 2020).514

Training setup. We use the same hyperparame-515

ters for Llama2-7B pretraining as those in Touvron516

et al. (2023b). The training setup involves a batch517

size of 1024, a context length of 4096, where the518

batch size is 4M in terms of tokens, and gradi-519

ent clipping with a maximum norm of 1.0. The520

learning rate schedule includes a fixed 2000 step521

warmup followed by linear decay. The training522

is conducted in bfloat16 precision on one node523

equipped with 8 Nvidia Hopper GPUs with 80G524

memory. Due to budget limitations, we train the525

model for 8K steps, which corresponds to process-526

ing over 32B tokens. The validation loss is evalu-527

2https://github.com/pytorch/torchtitan

ated every 200 steps. 528

Other hyperparameter choice. For AdamW, 529

we use (β1, β2) = (0.9, 0.95), a peak learning rate 530

of 3×10−4, and a weight decay of 0.1. For AdamS, 531

Adam-mini, we use the same hyperparameters as 532

AdamW. For Lion, we use the recommended set- 533

tings: lr = 0.1 × lrAdamW and weight_decay = 534

10× weight_decayAdamW. 535

Results. The results are summarized in Fig- 536

ure 1. As shown in Figure 1, AdamS achieves 537

slightly better convergence than other strong base- 538

lines: AdamW, Adam-mini and Lion across the 539

training trajectory under the same default hyper- 540

parameters as in Touvron et al. (2023b). Notably, 541

training with AdamS reduces memory consump- 542

tion by 20% when using a popular training recipe, 543

i.e., Fully Sharded Data Parallel (FSDP) technique 544

(Paszke et al., 2019) on 4 NVIDIA Hopper GPUs. 545

By eliminating the need to communicate second- 546

moment estimates across GPUs and nodes, AdamS 547

alleviates communication bottlenecks, a critical ad- 548

vantage for low-end GPU clusters where inter-card 549

bandwidth is often a limiting factor. 550

Due to space limit, we present a setting of 551

Llama2-13B pretraining with smaller batch size 552

in Appendix B. 553

4.3 RL Post-training of LLMs 554

In this experiment, we leverage the TinyZero 555

project (Pan et al., 2025) that provides a clean, min- 556

imal, and accessible reproduction of the DeepSeek 557

R1-Zero framework (Guo et al., 2025). We choose 558

two models Qwen2.5-3B (Team, 2024) and R1- 559

Distilled-Llama8B (Guo et al., 2025) and evalu- 560

ate the DeepSeek R1-Zero Group Relative Policy 561

Optimization (GRPO) method on the Countdown 562

Numbers Game. In this task, the model is asked to 563

use a set of randomly chosen numbers along with 564

basic arithmetic operations (+,−,×,÷) to reach a 565

7

0 50 100 150 200 250
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Cr

iti
c/

Sc
or

e/
M

ea
n

CountDown task with Qwen2.5-3B

Ours: AdamS_lr1e-6_wd0.01_betas(0.9,0.95)
Baseline: Lion_lr1e-7_wd0.1_betas(0.95,0.98)
Baseline: AdamW_lr1e-6_wd0.01_betas(0.9,0.999)

0 25 50 75 100 125 150 175
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
iti

c/
Sc

or
e/

M
ea

n

CountDown task with DeepSeek-R1-Distill-Llama-8B

Ours: AdamS_lr1e-6_wd0.01_betas(0.9,0.95)
Baseline: AdamW_lr1e-6_wd0.01_betas(0.9,0.999)
Baseline: Lion_lr1e-7_wd0.1_betas(0.95,0.98)

Figure 5: Mean critic scores for reinforcement learning (RL)
post-training using the GRPO algorithm on the CountDown
task are presented for the Qwen2.5-3B and DeepSeek-R1-
Distill-Llama-8B models. The proposed AdamS closely re-
sembles AdamW’s performance trajectory, achieving similar
convergence curves. In contrast, Lion with default hyperpa-
rameters demonstrates significantly slower convergence under
the same conditions.

target number, with each number used only once.566

Hyperparameter choice. For the baseline567

AdamW setup, we use the default learning rate568

of 1× 10−6, (β1, β2) = (0.9, 0.999), and a weight569

decay of 1 × 10−2. We test the Group Relative570

Policy Optimization (GRPO) reinforcement learn-571

ing algorithm (Shao et al., 2024; Guo et al., 2025)572

with all other hyperparameters maintained as in the573

original project. For AdamS, we adopt the same574

hyperparameters as AdamW, except that we set575

β2 = 0.95 for good stability, as explained in Sec-576

tion 2.2 and Figure 3. For Lion, we follow the577

recommendations from the original paper by set-578

ting lr = 0.1 × lrAdamW, weight_decay = 10 ×579

weight_decayAdamW, and (β1, β2) = (0.95, 0.98).580

Implementation. The TinyZero framework im-581

plements the DeepSeek R1-Zero reinforcement582

learning objective, which encourages the models to583

generate an extended chain-of-thought before pro-584

ducing a final answer. This approach aims to guide585

the models in developing a structured reasoning586

process for the Countdown Numbers Game.587

Results. The results are shown in Figure 5.588

Across two distinct base models—Qwen2.5-3B and589

the distilled DeepSeek-R1-Distill-Llama-8B—the590

score curves of AdamS closely align with those of591

AdamW, even occasionally surpassing its valida-592

tion performance. This consistency underscores593

AdamS’s ease of adoption across diverse tasks, re-594

quiring no specialized tuning. In contrast, Lion,595

when applied with its default hyperparameters, ex-596

hibits much slower convergence under identical597

experimental conditions.598

This point holds significant practical value:599

while many optimizers excel in some specific600

scenarios with carefully tuned hyperparameters,601

AdamS’s robust performance easily generalizes to602

unseen tasks without much hyperparameter tuning,603

making it a scalable solution for both current and604

future applications. 605

4.4 Sensitivity to Hyperparameters 606

We ablate the hyperparameter choices of (β1, β2) 607

of AdamS. Table 2 shows the performance sensitiv- 608

ity to (β1, β2) for the GPT2-small pretraining task. 609

The numbers are validation loss after training 100K 610

iterations with other hyperparameters the same as 611

those in Section 4.1.

β1\β2 0.90 0.95 0.98 0.99 0.999

0.90 2.902 2.898 2.904 2.904 2.902
0.95 - 2.897 2.892 2.898 3.460

Table 2: Validation loss for different (β1, β2) pairs of GPT2-
small pretraining with AdamS.

612

These results indicate that AdamS is robust and 613

stable over a wide range of configurations except 614

for very large (β1, β2) pair, supporting its practical 615

use and easy adoption. 616

5 Discussion and Conclusion 617

We have proposed a well-motivated design of LLM 618

optimizer, AdamS, which can serve as the newly 619

default optimizer for training large-scale language 620

model training, because of its efficiency, simplicity, 621

and theoretical rigor. By replacing second-moment 622

estimation with a momentum-weighted root mean 623

square denominator, the method achieves compu- 624

tational parity with SGD while matching the per- 625

formance of Adam-family optimizers in both pre- 626

training and post-training scenarios. Its seamless 627

integration into existing frameworks—enabled by 628

AdamW-compatible hyperparameters and model- 629

agnostic design—removes adoption barriers, offer- 630

ing practitioners a "plug-and-play" upgrade. 631

The theoretical property of AdamS has also been 632

extensively analyzed, including the update mag- 633

nitude estimation and convergence under relaxed 634

smoothness assumption. This theoretical insight, 635

coupled with empirical validation across architec- 636

tures (e.g., GPT-2, Llama2) and training paradigms 637

(e.g., RL post-training), demonstrates robustness 638

to scale and task diversity. Notably, AdamS’s elim- 639

ination of communication overhead for second- 640

moment statistics positions it as a scalable solution 641

for communication-bounded environments. 642

Future work may explore AdamS’s applicability 643

to emerging architectures and its synergies with 644

advanced parallelism strategies for next-generation 645

LLM development. 646

8

Limitations647

While AdamS achieves promising performance648

across tasks and model scales, several limitations649

deserve discussion. First, our experiments were650

constrained by computational resources, partic-651

ularly in pretraining scenarios (e.g., Llama2-7B652

& 13B). Validating AdamS’s efficacy at extreme653

scales—such as models beyond 100B parameters,654

datasets exceeding 1T tokens, or emerging archi-655

tectures like Mixture of Experts (MoE)—remains656

critical for confirming its scalability in production-657

grade pipelines. Such studies would require compu-658

tational resources far beyond our current capacity.659

Second, fairly benchmarking optimizers has in-660

herent challenges due to confounding variables661

like learning rate schedules, weight decay policies,662

optimizer-specific hyperparameters (e.g., AdamS’s663

momentum weighting), and implementation effi-664

ciency. While our work compares AdamS against665

strong baselines (AdamW, Lion) using established666

hyperparameters, we limited exhaustive hyperpa-667

rameter searches across all optimizers to maintain668

parity.669

These limitations underscore the need for670

community-driven standardization of optimizer671

evaluations and deeper exploration of AdamS’s be-672

havior in extreme-scale regimes. To foster repro-673

ducibility, we will release all code, configurations,674

and training protocols to facilitate reproducibility675

and encourage broader investigation.676

Ethical Considerations677

This work addresses the training efficiency of large678

language models, which does not involve ethical679

considerations as far as we concern.680

References681

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram682
Singer. 2019. Memory efficient adaptive optimiza-683
tion. Advances in Neural Information Processing684
Systems, 32.685

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J686
Foster, Nathan Srebro, and Blake Woodworth. 2022.687
Lower bounds for non-convex stochastic optimiza-688
tion. Mathematical Programming, pages 1–50.689

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie690
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind691
Neelakantan, Pranav Shyam, Girish Sastry, Amanda692
Askell, Sandhini Agarwal, Ariel Herbert-Voss,693
Gretchen Krueger, Tom Henighan, Rewon Child,694
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,695

Clemens Winter, Christopher Hesse, Mark Chen, Eric 696
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 697
Jack Clark, Christopher Berner, Sam McCandlish, 698
Alec Radford, Ilya Sutskever, and Dario Amodei. 699
2020. Language models are few-shot learners. arXiv 700
preprint. 701

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, 702
Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, 703
Thang Luong, Cho-Jui Hsieh, et al. 2023. Symbolic 704
discovery of optimization algorithms. arXiv preprint 705
arXiv:2302.06675. 706

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 707
Maarten Bosma, Gaurav Mishra, Adam Roberts, 708
Paul Barham, Hyung Won Chung, Charles Sutton, 709
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 710
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 711
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 712
odkumar Prabhakaran, Emily Reif, Nan Du, Ben 713
Hutchinson, Reiner Pope, James Bradbury, Jacob 714
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 715
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 716
Sunipa Dev, Henryk Michalewski, Xavier Garcia, 717
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 718
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 719
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 720
David Dohan, Shivani Agrawal, Mark Omernick, An- 721
drew M. Dai, Thanumalayan Sankaranarayana Pil- 722
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 723
Rewon Child, Oleksandr Polozov, Katherine Lee, 724
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 725
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 726
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 727
and Noah Fiedel. 2022. Palm: Scaling language mod- 728
eling with pathways. arXiv preprint. 729

Ashok Cutkosky and Harsh Mehta. 2020. Momentum 730
improves normalized SGD. In International confer- 731
ence on machine learning, pages 2260–2268. PMLR. 732

Alexandre Défossez, Leon Bottou, Francis Bach, and 733
Nicolas Usunier. 2022. A simple convergence proof 734
of Adam and Adagrad. Transactions on Machine 735
Learning Research. 736

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 737
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021. All 738
NLP tasks are generation tasks: A general pretraining 739
framework. CoRR, abs/2103.10360. 740

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 741
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 742
Akhil Mathur, Alan Schelten, Amy Yang, Angela 743
Fan, et al. 2024. The llama 3 herd of models. arXiv 744
preprint arXiv:2407.21783. 745

Matthew Faw, Litu Rout, Constantine Caramanis, and 746
Sanjay Shakkottai. 2023. Beyond uniform smooth- 747
ness: A stopped analysis of adaptive sgd. arXiv 748
preprint arXiv:2302.06570. 749

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 750
ing, Travis Hoppe, Charles Foster, Jason Phang, 751
Horace He, Anish Thite, Noa Nabeshima, Shawn 752

9

https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360

Presser, and Connor Leahy. 2020. The Pile: An753
800gb dataset of diverse text for language modeling.754
arXiv preprint arXiv:2101.00027.755

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,756
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,757
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-758
centivizing reasoning capability in llms via reinforce-759
ment learning. arXiv preprint arXiv:2501.12948.760

Meixuan He, Yuqing Liang, Jinlan Liu, and Dongpo761
Xu. 2023. Convergence of adam for non-convex ob-762
jectives: Relaxed hyperparameters and non-ergodic763
case. arXiv preprint arXiv:2307.11782.764

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-765
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-766
ford, Diego de Las Casas, Lisa Anne Hendricks,767
Johannes Welbl, Aidan Clark, et al. 2022. Train-768
ing compute-optimal large language models. arXiv769
preprint arXiv:2203.15556.770

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Min-771
ervini, and Matt Kusner. 2023. No train no gain: Re-772
visiting efficient training algorithms for transformer-773
based language models. In Thirty-seventh Confer-774
ence on Neural Information Processing Systems.775

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.776
Brown, Benjamin Chess, Rewon Child, Scott Gray,777
Alec Radford, Jeff Wu, and Dario Amodei. 2020.778
Scaling laws for neural language models. arXiv779
preprint arXiv:2001.08361.780

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A781
method for stochastic optimization. arXiv preprint.782

Haochuan Li, Ali Jadbabaie, and Alexander Rakhlin.783
2023. Convergence of Adam under relaxed assump-784
tions. arXiv preprint arXiv:2304.13972.785

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,786
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi787
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.788
Deepseek-v3 technical report. arXiv preprint789
arXiv:2412.19437.790

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and791
Tengyu Ma. 2023. Sophia: A scalable stochas-792
tic second-order optimizer for language model pre-793
training. arXiv preprint arXiv:2305.14342.794

Ilya Loshchilov and Frank Hutter. 2019. Decoupled795
weight decay regularization. In International Confer-796
ence on Learning Representations.797

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo798
Jiang, Xin Jiang, and Yang You. 2023. Came:799
Confidence-guided adaptive memory efficient opti-800
mization. arXiv preprint arXiv:2307.02047.801

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and802
Xipeng Qiu. 2023. Adalomo: Low-memory opti-803
mization with adaptive learning rate. arXiv preprint804
arXiv:2310.10195.805

Igor Molybog, Peter Albert, Moya Chen, Zachary De- 806
Vito, David Esiobu, Naman Goyal, Punit Singh 807
Koura, Sharan Narang, Andrew Poulton, Ruan Silva, 808
Binh Tang, Diana Liskovich, Puxin Xu, Yuchen 809
Zhang, Melanie Kambadur, Stephen Roller, and 810
Susan Zhang. 2023. A theory on adam insta- 811
bility in large-scale machine learning. Preprint, 812
arXiv:2304.09871. 813

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, 814
Hao Peng, and Alane Suhr. 2025. Tinyzero. 815
https://github.com/Jiayi-Pan/TinyZero. Accessed: 816
2025-01-24. 817

Adam Paszke, Sam Gross, Francisco Massa, Adam 818
Lerer, James Bradbury, Gregory Chanan, Trevor 819
Killeen, Zeming Lin, Natalia Gimelshein, Luca 820
Antiga, et al. 2019. Pytorch: An imperative style, 821
high-performance deep learning library. In Ad- 822
vances in Neural Information Processing Systems, 823
volume 32. 824

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 825
Dario Amodei, Ilya Sutskever, et al. 2019. Language 826
models are unsupervised multitask learners. OpenAI 827
blog, 1(8):9. 828

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie 829
Millican, Jordan Hoffmann, F. Song, John Aslanides, 830
Sarah Henderson, R. Ring, S. Young, et al. 2021. 831
Scaling language models: Methods, analysis & 832
insights from training gopher. arXiv preprint 833
arXiv:2112.11446. 834

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 835
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 836
Wei Li, and Peter J Liu. 2020. Exploring the lim- 837
its of transfer learning with a unified text-to-text 838
transformer. Journal of machine learning research, 839
21(140):1–67. 840

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 841
and Yuxiong He. 2019. Zero: Memory optimization 842
towards training A trillion parameter models. CoRR, 843
abs/1910.02054. 844

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 845
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan 846
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath: 847
Pushing the limits of mathematical reasoning in open 848
language models. arXiv preprint arXiv:2402.03300. 849

Noam Shazeer and Mitchell Stern. 2018. Adafactor: 850
Adaptive learning rates with sublinear memory cost. 851
In Proceedings of the 35th International Conference 852
on Machine Learning, volume 80 of Proceedings 853
of Machine Learning Research, pages 4596–4604. 854
PMLR. 855

Qwen Team. 2024. Qwen2.5: A party of foundation 856
models. 857

Hugo Touvron, Thibault Lavril, Gautier Izacard, Xavier 858
Martinet, Marie-Anne Lachaux, Timothee Lacroix, 859
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 860

10

https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/2304.09871
https://arxiv.org/abs/2304.09871
https://arxiv.org/abs/2304.09871
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Azhar, et al. 2023a. Llama: Open and effi-861
cient foundation language models. arXiv preprint862
arXiv:2302.13971.863

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-864
bert, Amjad Almahairi, Yasmine Babaei, Nikolay865
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti866
Bhosale, et al. 2023b. Llama 2: Open founda-867
tion and fine-tuned chat models. arXiv preprint868
arXiv:2307.09288.869

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning870
Zheng, and Wei Chen. 2023a. Closing the gap be-871
tween the upper bound and lower bound of adam’s872
iteration complexity. In Thirty-seventh Conference873
on Neural Information Processing Systems.874

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei875
Chen. 2023b. Convergence of adagrad for non-876
convex objectives: Simple proofs and relaxed as-877
sumptions. In The Thirty Sixth Annual Conference878
on Learning Theory, pages 161–190. PMLR.879

Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng,880
Zhi-Ming Ma, Tie-Yan Liu, and Wei Chen. 2022.881
Provable adaptivity in Adam. arXiv preprint882
arXiv:2208.09900.883

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,884
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,885
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-886
nical report. arXiv preprint arXiv:2412.15115.887

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-888
Yan Liu. 2021. Large scale private learning via low-889
rank reparametrization. In International Conference890
on Machine Learning, pages 12208–12218. PMLR.891

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang.892
2020. Improved analysis of clipping algorithms for893
non-convex optimization. Advances in Neural Infor-894
mation Processing Systems, 33:15511–15521.895

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jad-896
babaie. 2019. Why gradient clipping accelerates897
training: A theoretical justification for adaptivity. In898
International Conference on Learning Representa-899
tions.900

Susan Zhang, Stephen Roller, Naman Goyal, Mikel901
Artetxe, Ming-Wei Chen, Shuohui Chen, Christopher902
Dewan, Mona Diab, Xiaodong Li, Xi Victoria Lin,903
et al. 2022. Opt: Open pre-trained transformer lan-904
guage models. arXiv preprint arXiv:2205.01068.905

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding,906
Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and Ruoyu907
Sun. 2024. Adam-mini: Use fewer learning rates to908
gain more. arXiv preprint arXiv:2406.16793.909

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang910
Wang, Anima Anandkumar, and Yuandong Tian.911
2024. Galore: Memory-efficient llm training912
by gradient low-rank projection. arXiv preprint913
arXiv:2403.03507.914

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, 915
Chien-Chin Huang, Min Xu, Less Wright, Hamid 916
Shojanazeri, Myle Ott, Sam Shleifer, et al. 2023. Py- 917
torch fsdp: experiences on scaling fully sharded data 918
parallel. arXiv preprint arXiv:2304.11277. 919

11

A Algorithms: Lion and Adam-mini920

Two related algorithms used as baselines in the paper are presented as follows.

Algorithm 2 Lion Optimizer (Chen et al., 2023)

1: Input: momentum parameters β1, β2, weight decay λ, learning rate η, objective function f
2: Initialize starting point w0, initial m0 ← 0, t← 0
3: while wt not converged do
4: t← t+ 1
5: gt ← ∇wf(wt−1)
6: ### update model parameters
7: ut ← β1mt−1 + (1− β1)gt
8: wt ← wt−1 − ηt(sign(ut) + λwt−1)
9: ### update momentum tracking

10: mt ← β2mt−1 + (1− β2)gt
11: end while
12: return wt

921

Algorithm 3 Adam-mini (Zhang et al., 2024)

1: Input: weight-decay coefficient λ and current step t
2: Partition: Partition params into param_blocks by Principle A.1
3: for param in param_blocks do
4: g = param.grad
5: param = param− ηt · λ · param
6: m = (1− β1) · g + β1 ·m
7: m̂ = m

1−βt
1

8: v = (1− β2) ·mean(g ⊙ g) + β2 · v
9: v̂ = v

1−βt
2

10: param = param− ηt · m̂√
v̂+ϵ

11: end for

Principle A.1 (Zhang et al. (2024) Principle 1). We should partition parameters into blocks, such that922

each parameter block is associated with the smallest dense sub-block in Hessian.923

It is worthy noting that Algorithm 3 requires partition of parameters based on the Hessian structure of924

the architecture, which makes it not able to be model agnostic.925

B More Experiments926

We put more experiments here due to space limit.927

B.1 Llama2-13B Pretraining Experiments928

In this experiment, we confirm the behavior of AdamS for pretraining an even larger model Llama2-929

13B (Touvron et al., 2023b). It is trained with the well-known Torchtitan library3 on the C4 dataset (Raffel930

et al., 2020).931

Training setup. The training setup involves a batch size of 2×8, a context length of 2048, and gradient932

clipping with a maximum norm of 1.0. The learning rate schedule includes a fixed 100-step warmup933

followed by linear decay. The training is conducted in bfloat16 precision on one node equipped with 8934

Nvidia Hopper GPUs with 80G memory. Due to budget limitations, we train the model for 30K steps,935

which corresponds to processing over 0.96B tokens. This follows the setting used in Adam-mini (Zhang936

et al., 2024).937

3https://github.com/pytorch/torchtitan

12

Other hyperparameter choice. For AdamW, we use (β1, β2) = (0.9, 0.95), a peak learning rate of 938

1× 10−4, and a weight decay of 0.1. For AdamS, we use the same hyperparameters as AdamW. 939

Results. The results are summarized in Figure 6. As shown in Figure 6, AdamS achieves performance 940

nearly identical to AdamW across the training trajectory under the same hyperparameters. 941

0.0 0.2 0.4 0.6 0.8 1.0
Tokens 1e9

3

4

5

6

7

8

9

 L
os

s

Training Loss of Llama2-13B
Baseline: AdamW_lr1e-4_wd0.1_betas(0.9,0.95)
Ours: AdamS_lr1e-4_wd0.1_betas(0.9,0.95)

Figure 6: Training and validation loss curves for pretraining LLaMA 2–13B models. The proposed AdamS achieves convergence
comparable to or better than baseline methods under the same hyperparameter settings as AdamW, while eliminating the need to
store AdamW’s second-moment estimates.

B.2 GPT2 Experiments 942

Longer pretraining. In this part, the pretraining setup is the same as Section 4.1, we present the final 943

validation losses after pretraining for 100K and 300K in Table 3. We can see that the performance of 944

AdamS closely mirrors the AdamW curves across all three model sizes throughout the training process. 945

This is achieved using the same hyperparameters as those for AdamW. 946

Model Iterations Optimizer Peak LR Weight decay (β1, β2) Valid. PPL

124M 100K AdamW 6e-4 0.1 (0.9, 0.95) 2.902
Lion 6e-5 1.0 (0.95, 0.98) 2.886

AdamS 6e-4 0.1 (0.9, 0.95) 2.890

300K AdamW 6e-4 0.1 (0.9, 0.95) 2.867
Lion 6e-5 1.0 (0.95, 0.98) 2.847

AdamS 6e-4 0.1 (0.9, 0.95) 2.866

Table 3: Comparison of Lion, AdamW and AdamS on training GPT2 with the OpenWebText dataset.

Comparison with other optimizers. As the Adafactor and SM3 performs strictly inferior to AdamW 947

for GPT2-small pretraining, as shown in Figure 8 of Zhang et al. 2024 (the Adam-mini paper) and we 948

omit the comparison here. 949

We add experiments on GPT2-small pretraining with Adagrad and RMSProp. We note that there are 950

not public training recipes for RMSprop and Adagrad of large language model pretraining. We use the 951

same learning rate and learning rate decay schedule as those of AdamW, and use other hyperparameters 952

as default. The results are shown in below. 953

Metric AdamW Adagrad RMSprop AdamS

Valid loss of GPT-2 small 2.909 3.887 3.089 2.898

Table 4: Validation loss of GPT-2 small after 100K training iterations using different optimizers.

13

C Derivation of the Learning Rate under (L0, L1) Smoothness954

The smoothness constant L(w) governs how much the gradient can change locally. If L(w) scales with955

∥∇f(w)∥, the curvature (and thus the risk of overshooting) increases with the gradient’s magnitude. This956

necessitates a smaller learning rate when the gradient is large and allows a larger rate when the gradient is957

small.958

Here is a brief derivation for the above intuition.959

Descent Lemma: For L(w)-smooth f , the update wt+1 = wt − η∇f(wt) satisfies:960

f(wt+1) ≤f(wt)− η∥∇f(wt)∥2 +
η2L(wt)

2
∥∇f(wt)∥2.961

Substitute L(wt) ≤ L0 + L1∥∇f(wt)∥:962

f(wt+1) ≤ f(wt)− η∥∇f(wt)∥2 +
η2(L0 + L1∥∇f(wt)∥)

2
∥∇f(wt)∥2.963

Ensure Decrease: For f(wt+1) ≤ f(wt), require:964

−η∥∇f(wt)∥2 +
L0 + L1∥∇f(wt)∥

2
η2∥∇f(wt)∥2 ≤ 0.965

Factor out η∥∇f(wt)∥2:966

η∥∇f(wt)∥2
(
−1 + η

L0 + L1∥∇f(wt)∥
2

)
≤ 0.967

This implies:968

η ≤ 2

L0 + L1∥∇f(wt)∥
.969

D Proof of Theorem 3.2970

This section collects the proof of Theorem 3.2. Overall, the proof is inspired by the proof of Theorem 4.2971

in Li et al. (2023), which utilizes stopping time to bound the norm of stochastic gradients.972
In the following proof, we define973

σ
△
= max

{√
2R2 log

T

δ
, L

ηt
1− β1

max{ β1√
β2

,
1− β1√
1− β2

}, 3L0

4L1

}
, (1)974

G
△
= max{3L0

4L1
, 72L1(f(w1)− f∗),

√
72L1σ2ηt((1− β1)T + 1), 60

√
L1R2σ2ηt

√
2T log(1/δ)}, (2)975

F
△
=

G2

3(3L0 + 4L1G)
, (3)976

C
△
=

√
4L2

ε4
(G+ σ + ε). (4)977

We consider the following stopping time:978

τ := min{t | f(wt)− f∗ > F} ∧min{t | ∥∇f(wt)− gt∥ > σ} ∧ (T + 1). (5)979

Due to Lemma D.2 and the definition of F (Eq. (3)), one can easily see that for any t < τ , ∥∇f(wt)∥ ≤980

G.981

Also, as we are dealing with optimizers with coordinate-wise learning rates, we introduce the following982

norm to ease the burden of writing. Specifically, let b ∈ Rd be a vector with each coordinate positive. For983

any a ∈ Rd, we define984

∥a∥b =
√
⟨a⊙ b,a⟩.985

14

D.1 Useful Lemmas 986

The following lemma bounds the change of f through its local second-order expansion. 987

Lemma D.1. Let Assumption 2.1 holds. Then, for any three points w1,w2 ∈ Rd satisfying ∥w1−w2∥ ≤ 988
1
L1

, we have 989

f(w2) ≤ f(w1) + ⟨∇f(w1),w2 −w1⟩+ 1

2
(L0 + L1∥∇f(w1)∥)∥w2 −w1∥2. 990

Proof. By the Fundamental Theorem of Calculus, we have 991

f(w2) 992

=f(w1) +

∫ 1

0
⟨∇f(w1 + a(w2 −w1)),w2 −w1⟩da 993

=f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
⟨∇f(w1 + a(w2 −w1))−∇f(w1),w2 −w1⟩da 994

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
∥∇f(w1 + a(w2 −w1))−∇f(w1)∥∥w2 −w1∥da 995

(⋆)

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+
∫ 1

0
(L0 + L1∥∇f(w1)∥)∥a(w2 −w1)∥∥w2 −w1∥da 996

≤f(w1) + ⟨∇f(w1),w2 −w1⟩+ 1

2
(L0 + L1∥∇f(w1)∥)∥w2 −w1∥2, 997

where Inequality (⋆) uses the fact ∥w2 −w1∥ ≤ 1
L1

, so that Assumption 2.1 can be applied. 998

The proof is completed. 999

The following lemma bounds the gradient norm through the function value when Assumption 2.1 holds. 1000

Lemma D.2. Under Assumptions 2.1, we have ∥∇f(w)∥2≤ 3(3L0 + 4L1 ∥∇f(w)∥)(f(w)− f∗). 1001

Proof. Denot L := 3L0 + 4L1 ∥∇f(w)∥. Let v := w − 1
2L∇f(w). Then one can easily see 1002

∥v −w∥ ≤ 1

2L1
, 1003

and thus Lemma D.1 can be applied. Therefore, we have 1004

f∗ − f(w) ≤ f(v)− f(w) ≤ ⟨∇f(w),v −w⟩+ L

2
∥v −w∥2 = −3L ∥∇f(w)∥2

8
≤ −L ∥∇f(w)∥2

3
. 1005

The proof is completed. 1006

The following lemma bounds the update of AdamS: 1007

Lemma D.3. For any t, let wt be the parameter of AdamS after the t-th iteration. Then, 1008

∥wt+1 −wt∥ ≤ ηt
√
dmax{ β1√

β2
,
1− β1√
1− β2

}. 1009

Therefore, under the hyperparameter selection of Theorem 3.2, we have ∥wt+1 −wt∥ = O(1√
T
). 1010

Proof. We have 1011

∥wt+1 −wt∥ = ηt

∥∥∥∥ 1
√
νt + ε

⊙mt

∥∥∥∥ = ηt

∥∥∥∥∥∥ 1√
β2m

⊙2
t−1 + (1− β2)g

⊙2
t + ε

⊙mt

∥∥∥∥∥∥ . 1012

On the other hand, by Young’s inequality, we have that coordinate-wisely 1013

m⊙2
t ≤ β2

1m
⊙2
t−1 + (1− β1)

2g⊙2
t . 1014

The proof is completed. 1015

15

The following lemma bounds the adaptive conditioner νt.1016

Lemma D.4. If t < τ , we have the i-th coordinate νt,i of νt satisfies1017

0 ≤ √νt,i ≤ G+ σ.1018

Proof. The first inequality is obvious.1019

For the second inequality, one can easily see that gt,i satisfies the same inequality according to the1020

definition of τ . According to the definition of νt, we have1021

νt,i = (1− β2)g
2
t,i + β2((1− β1)

t−1∑
s=0

βt−1−s
1 gs,i)

2.1022

Applying the estimation of gs,i completes the proof.1023

The following lemma provides a rough bound of the gap between∇f(wt) and mt.1024

Lemma D.5. Let ∆t = mt −∇f(wt). If t ≤ τ , we have ∥∆t∥ ≤ 2σ.1025

Proof. We prove this claim by induction. First, note that for t = 1, we have

∥∆1∥ = ∥g1 −∇f(w1)∥ ≤ σ ≤ 2σ.

Now suppose ∥∆t∥ ≤ 2σ for some 2 ≤ t ≤ τ . According to the update rule of mt, we have1026

∆t =β1(∆t−1 +∇f(wt−1)−∇f(wt)) + (1− β1)(gt −∇f(wt)),1027

which implies1028

∥∆t∥ ≤ (1 + β1)σ + ∥∇f(wt−1)−∇f(wt)∥ ≤ (1 + β1)σ + Lηtmax{ β1√
β2

,
1− β1√
1− β2

}
√
d ≤ 2σ,1029

where in the second inequality, we use ∥wt−1 −wt∥ ≤ 1
L1

when T is large enough and thus Assumption1030

2.1 can be applied, and Lemma D.3, and in the last inequality, we use the definition of σ (Eq. 1).1031

As (1− β1)σ = Θ(log T/
√
T), which is large than O(1/

√
T) when T is large enough. The proof is1032

completed.1033

The following lemma bounds the gap between∇f(wt) and mt recursively.1034

Lemma D.6. Let ∆t = mt −∇f(wt). With probability 1− δ,1035

τ−1∑
t=1

(
4(G+ σ + ε)

ε2
∥∆t∥2 − ∥∇f(wt)∥2

)
≤4σ2((1− β1)T + 1) + 20R2σ2

√√√√2

T∑
t=2

log(1/δ)1036

=O(σ2
√
T log(1/δ)).1037

Proof. According to the definition of mt, we have1038

∆t =β1(∆t−1 +∇f(wt−1)−∇f(wt)) + (1− β1)(gt −∇f(wt)). (6)1039

As T is large enough, by Lemma D.3, we have ∥wt −wt−1∥ ≤ 1
L1

. Therefore by Assumption 2.1,1040

∥∇f(wt−1)−∇f(wt)∥ ≤ L∥wt −wt−1∥ ≤
ηL

ε
∥mt−1∥ ≤

ηL

ε
(∥∇f(wt−1)∥+ ∥∆t−1∥) , (7)1041

Therefore,1042

∥(∆t−1 +∇f(wt−1)−∇f(wt))∥21043

≤ 1

β1
∥∆t−1∥2 +

1

1− β1
∥∇f(wt−1)−∇f(wt)∥21044

≤ 1

β1
∥∆t−1∥2 +

1

1− β1

4η2L2

ε2
(∥∇f(wt−1)∥2 + ∥∆t−1∥2)1045

16

where the first inequality uses Young’s inequality, and the second inequality uses Eq. (7). 1046

Due to our choice of β1 and η, we have β2
1

1−β1

4η2L2

ε2
= O(1/

√
T), which is smaller than 1− 1

2(1− β1) 1047

when T is large enough. Therefore, 1048

β2
1∥(∆t−1 +∇f(wt−1)−∇f(wt))∥2 ≤

(
1

2
+

β

2

)
∥∆t∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2. 1049

Therefore, applying the above inequality back to Eq. (6), we have if t ≤ τ , 1050

∥∆t∥2 1051

=β2
1∥∆t−1 +∇f(wt−1)−∇f(wt)∥2 + 2β1(1− β1)⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩ 1052

+ (1− β1)
2∥gt −∇f(wt)∥2 1053

≤1 + β1
2
∥∆t−1∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2 + (1− β1)

2∥gt −∇f(wt)∥2 1054

+ 2β1(1− β1)⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩, (8) 1055

where in the last equation we use Young’s inequality. 1056

On the other hand, note that 1057

β1(1− β1)
τ∑

t=2

⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩ 1058

=β1(1− β1)

T∑
t=2

1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩. 1059

As E|Ft [1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩] = 0, we have that 1060

Vt
△
= 1τ≥t⟨∆t−1 +∇f(wt−1)−∇f(wt), gt −∇f(wt)⟩ 1061

is a martingale difference sequence. Also, according to Lemma D.5, we have when T is large enough, 1062

∥∆t−1 +∇f(wt−1)−∇f(wt)∥ ≤ 3σ, thus by Assumption 3.1, we have Vt is subgaussian with constant 1063

3σR. Then by the Azuma-Hoeffding inequality, we have with probability at least 1− δ/2, 1064

∣∣∣∣∣
T∑
t=2

Vt

∣∣∣∣∣ ≤ 5R2σ2

√√√√2

T∑
t=2

log(1/δ). 1065

Also, due to Assumption 3.1, we have with probability at least 1− δ/2T , 1066

∥gt −∇f(wt)∥2 ≤
√
2R2 log

T

δ
≤ σ. 1067

Applying the above inequalities back to Eq. (8), 1068

1− β1
2
∥∆t−1∥2 ≤

1− β1
2
∥∆t−1∥2 ≤∥∆t−1∥2 − ∥∆t∥2 +

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥2 1069

+ (1− β1)
2∥gt −∇f(wt)∥2 + 2β1(1− β1)Vt. 1070

17

Taking a summation over t from 2 to τ , we have with probability at least 1− δ,1071

1− β1
2

τ−1∑
t=1

(
∥∆t∥2 −

ε2

4(G+ σ + ε)
∥∇f(wt)∥2

)
1072

≤
τ∑

t=2

1− β1
2
∥∆t−1∥2 −

β2
1

1− β1

4η2L2

ε2
∥∇f(wt−1)∥21073

≤∥∆1∥2 − ∥∆τ∥2 + (1− β1)
2σ2T + 10(1− β1)R

2σ2

√√√√2
T∑
t=2

log(1/δ)1074

≤2σ2((1− β1)
2T + 1) + 10(1− β1)R

2σ2

√√√√2

T∑
t=2

log(1/δ),1075

where the first inequality is due to the assumption in Theorem 3.2 that η
1−β1

≥ C, where C is defined in1076

Eq. (4).1077

The proof is completed.1078

D.2 Proof of the full theorem1079

Proof of Theorem 3.2. Recall that by Lemma D.31080

∥wt+1 −wt∥ = O(
1√
T
).1081

When T is large enough, wt and wt+1 will fulfill the requirement of Lemma D.1, which gives1082

f(wt+1)− f(wt) ≤⟨∇f(wt),wt+1 −wt⟩+
L0 + L1∥∇f(wt)∥

2
∥wt+1 −wt∥2.1083

If t < τ , we further have ∥∇f(wt)∥ ≤ G. Therefore, if t < τ , the above inequality can be further1084

bounded by1085

f(wt+1)− f(wt)1086

≤⟨∇f(wt),wt+1 −wt⟩+
L0 + L1G

2
∥wt+1 −wt∥21087

=− ⟨∇f(wt), ηt
1

√
νt + ε

⊙∇f(wt)⟩+ ⟨∇f(wt), ηt
1

√
νt + ε

⊙ (∇f(wt)−mt)⟩1088

+
L0 + L1G

2
η2t

∥∥∥∥ 1
√
νt + ε

⊙mt

∥∥∥∥21089

=− ηt ∥∇f(wt)∥2 1√
νt+ε

+ ⟨∇f(wt), ηt
1

√
νt + ε

⊙ (∇f(wt)−mt)⟩1090

+
L0 + L1G

2
η2t ∥mt∥2 1

(
√
νt+ε)2

1091

(◦)
≤ − ηt ∥∇f(wt)∥2 1√

νt+ε
+

1

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε
1092

+ (L0 + L1G)η2t ∥∆t∥2 1
(
√
νt+ε)2

+ (L0 + L1G)η2t ∥∇f(wt)∥2 1
(
√
νt+ε)2

1093

=− 3

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε
1094

+ (L0 + L1G)η2t ∥∆t∥2 1
(
√
νt+ε)2

+ (L0 + L1G)η2t ∥∇f(wt)∥2 1
(
√
νt+ε)2

1095

where ∆t is defined as ∆t = mt −∇f(wt) and inequality (◦) uses Young’s inequality.1096

18

According to Lemma D.4, we further have 1097

f(wt+1)− f(wt) 1098

≤− 3

4
ηt ∥∇f(wt)∥2 1√

νt+ε
+ ηt ∥∆t∥2 1√

νt+ε
1099

+
(L0 + L1G)η2t

ε
∥∆t∥2 1√

νt+ε
+

(L0 + L1G)η2t
ε

∥∇f(wt)∥2 1√
νt+ε

. 1100

With large enough T , we have ηt ≤ ε
4(L0+L1G) , and thus 1101

f(wt+1)− f(wt) 1102

≤− 1

2
ηt ∥∇f(wt)∥2 1√

νt+ε
+ 2ηt ∥∆t∥2 1√

νt+ε
1103

≤− 1

2(G+ σ + ε)
ηt ∥∇f(wt)∥2 + 2

ηt
ε
∥∆t∥2 1√

νt+ε
1104

≤− 1

2(G+ σ + ε)
ηt ∥∇f(wt)∥2 + 2

ηt
ε2
∥∆t∥2 . 1105

After taking sum over t and rearranging, we have 1106

τ−1∑
t=1

(
∥∇f(wt)∥2 −

2(G+ σ + ε)

ε2
∥∆t∥2

)
≤ 2(G+ σ + ε)

ηt
(f(w1)− f(wτ)) . 1107

Multiplying both sides of the above inequality by 2 and adding the inequality in Lemma D.6, we obtain 1108
with probability at least 1− δ, 1109

τ−1∑
t=1

∥∇f(wt)∥2 ≤2(G+ σ + ε)

ηt
(f(w1)− f(wτ)) + 4σ2((1− β1)T + 1) + 20R2σ2

√√√√2

T∑
t=2

log(1/δ) (9) 1110

=Õ(1/
√
T). 1111

In the following proof, we will bound the probability of the event {τ ≤ T}. Note if we can show 1112

P(τ > T) ≥ 1− δ, the proof is completed, as conditional on {τ > T},
∑τ−1

t=1 ∥∇f(wt)∥2 in the above 1113

inequality will become
∑T

t=1 ∥∇f(wt)∥2. 1114

Obviously, the stopping time τ (eq. (5)) can be decomposed as τ := min{τ1, τ2}, where τ1 and τ2 are 1115

two stopping times defined as 1116

τ1 :=min{t | f(wt)− f∗ > F} ∧ (T + 1), 1117

τ2 :=min{t | ∥∇f(wt)− gt∥ > σ} ∧ (T + 1), 1118

We then bound P(τ1 ≤ T) and P(τ2 ≤ T) respectively. 1119

Bound of P(τ2 ≤ T). We bound this term by a similar practice as Lemma D.6. According to the definition 1120

of τ2 1121

P(τ2 ≤ T) =P

 ⋃
1≤t≤T

{∥∇f(wt)− gt∥ > σ}

 1122

≤
∑

1≤t≤T

P (∥∇f(wt)− gt∥ > σ) 1123

≤2Te−
σ2

2R2 1124

≤δ

2
, 1125

where the last inequality uses the definition of σ. 1126

19

Bound of P(τ1 ≤ T). Simple rearranging of Eq. (9) gives that, with probability 1− δ
2 ,1127

2(G+ σ + ε)

ηt
(f(wτ)− f∗)1128

≤
τ−1∑
t=1

∥∇f(wt)∥2 +
2(G+ σ + ε)

ηt
(f(wτ)− f∗)1129

≤2(G+ σ + ε)

ηt
(f(w1)− f∗) + 4σ2((1− β1)T + 1) + 20R2σ2

√√√√2
T∑
t=2

log(1/δ).1130

Therefore, by dividing both sides of the above inequality, we obtain1131

f(wτ)− f∗1132

≤(f(w1)− f∗) +
ηt

2(G+ σ + ε)
4σ2((1− β1)T + 1) +

ηt
2(G+ σ + ε)

20R2σ2

√√√√2
T∑
t=2

log(1/δ)1133

≤ G2

3(3L0 + 4L1G)
1134

=F,1135

where the last inequality uses the definition of G.1136

Therefore, we have that1137

P(τ1 ≤ T) ≤ P(Eq. 9 fails to hold) ≤ δ

2
.1138

The proof is completed by P(τ ≤ T) ≤ P(τ1 ≤ T) + P(τ2 ≤ T) ≤ δ.1139

1140

20

	Introduction
	Related Works

	Motivation and Design Choices of AdamS
	Motivation and (L0,L1) smoothness
	The Design of AdamS
	The Properties of AdamS

	Convergence of AdamS
	Empirical Performance of AdamS
	GPT2 experiments
	Llama2 Pretraining Experiments
	 RL Post-training of LLMs
	Sensitivity to Hyperparameters

	Discussion and Conclusion
	Algorithms: Lion and Adam-mini
	More Experiments
	Llama2-13B Pretraining Experiments
	GPT2 Experiments

	Derivation of the Learning Rate under (L0,L1) Smoothness
	Proof of Theorem 3.2
	Useful Lemmas
	Proof of the full theorem

