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Abstract

Forecasting is a task that is difficult to evaluate: the ground truth can only be
known in the future. Recent work showing LLM forecasters rapidly approach-
ing human-level performance begs the question: how can we benchmark
and evaluate these forecasters instantaneously? Following the consistency
check framework, we measure the performance of forecasters in terms of the
consistency of their predictions on different logically-related questions. We
propose a new, general consistency metric based on arbitrage: for example,
if a forecasting AI illogically predicts that both the Democratic and Re-
publican parties have 60% probability of winning the 2024 US presidential
election, an arbitrageur could trade against the forecaster’s predictions and
make a profit. We build an automated evaluation system that generates a
set of base questions, instantiates consistency checks from these questions,
elicits the predictions of the forecaster, and measures the consistency of
the predictions. We then build a standard, proper-scoring-rule forecasting
benchmark, and show that our (instantaneous) consistency metrics correlate
strongly with LLM forecasters’ ground truth Brier scores (which are only
known in the future). We also release a consistency benchmark that resolves
in 2028, providing a long-term evaluation tool for forecasting.

1 Introduction

Prediction markets are markets that pay out contingent on an event. For a market such
as “$1 if Jeb Bush is elected President in 2028”, the price reflects the “market estimate”
for the probability of that event. Prediction markets are a promising tool for aggregating
information from disparate sources to arrive at the most correct possible belief after taking
into account all relevant information (Arrow et al., 2008; Hanson, 2002).
Until 2024, LLM forecasters generally performed poorly relative to human forecasters (Zou
et al., 2022b; Schoenegger and Park, 2023). However, recent works (Halawi et al., 2024;
Schoenegger et al., 2024) suggest that LLM-based forecasters can rival human forecasts on
forecasting websites such as Metaculus, PredictIt, and Manifold Markets.
A key question emerges: once LLM forecasters are better than human ones, how can we
efficiently evaluate their predictions? In particular, long-term forecasting questions are very
important for decision-making (Tetlock et al., 2024; Muehlhauser, Luke, 2019), and finding
ground truth for evaluation in such contexts is infeasible by virtue of the questions resolving
far in the future.
One approach, proposed by Fluri et al. (2024), is that even when we cannot evaluate the
correctness of LLM decisions, we can evaluate their logical consistency. For example, if an
LLM forecaster gives probabilities 0.5 and 0.7 to “Will Trump be elected US president?” and
“Will someone other than Trump be elected US president?”, this is necessarily inconsistent.
Fluri et al. (2024) demonstrated that GPT-4 and GPT-3.5-turbo, when asked one-sentence
forecasting questions, were inconsistent on simple logical checks such as negation.
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Our contributions in this work are as follows:
1) Principled metrics for consistency. In Section 2, we introduce a theoretical
framework for measuring consistency violations of binary forecasts, based on two metrics: an
arbitrage metric, based on market arbitrage, and a frequentist metric, based on hypothesis
testing. We apply these metrics to 10 different logical consistency rules (see Table 3):
Negation, Paraphrase, Consequence, AndOr, And, Or, But, Cond, CondCond
and ExpEvidence.
2) A consistency evaluation pipeline for binary forecasters. In Section 3, we
introduce a consistency evaluation pipeline for LLM forecasters. We create two forecasting
datasets with known ground truth resolutions: one scraped from prediction markets, and one
synthetically generated from news articles. Both datasets include only events that happen
past the training data cutoff of all forecasters we test, and resolve before September 2024.
We then generate tuples of forecasting questions satisfying logical consistency rules with
associated consistency metrics.
3) Consistency correlates with ground truth forecasting performance. Our con-
sistency metrics are novel performance metrics for forecasters that can be computed right
away, no matter the time horizon. Of course, forecasters could also be evaluated using
backtesting, asking past questions with known ground truth resolutions. Yet, backtesting
LLM forecasters can be challenging if we do not have clear information about the models’
training data contents. Moreover, there may be new types of questions that we want to
evaluate forecasters on, for which we do not have appropriate past results (e.g., questions
related to pandemics before 2020). It is thus natural to ask: can consistency metrics tell us
anything about future forecasting performance?

In Section 4, we show that for all forecasters we test, our consistency metrics correlate
positively with forecasting performance (as measured by the Brier score) on both our
benchmark datasets. The correlation varies across consistency checks, with some logical
checks (e.g., consistency of conditional probabilities) having over R = 0.9 correlation with
forecasting performance, while other logical tests provide little signal. We hypothesise
that this analysis can extend to smarter forecasters and longer time horizons, to provide
instantaneous feedback on forecaster performance.
4) Scaling inference-time compute can improve consistency for some logical
checks, but fails to generalize. Since we find that consistency correlates with forecasting
performance, it is natural to ask whether we can improve forecasters by making them more
consistent. Unfortunately, we find that natural ways of improving consistency tend to overfit
to specific consistency checks and do not generalize.
Specifically, we design ArbitrageForecaster: a forecaster that “patches” some base fore-
caster’s output by generating logically related questions and “arbitraging” the base forecaster’s
forecasts for these related questions against each other. In Section 5 and Appendix F, we
show that ArbitrageForecaster improves consistency on checks that we optimize against,
but this improvement does not generalize to other held-out consistency checks, nor does it
improve the actual forecasting performance.
5) A long-horizon forecasting consistency benchmark. We create a long-horizon
benchmark of 3,000 consistency checks for forecasts resolving in 2028. Our benchmark
spans questions on various topics for which we will have no ground truth for more than three
years, and thus serves as a nice testing ground for advanced LLM forecasters.

2 A theoretical framework for forecasting consistency

Notation. Let Prop denote the set of forecasting questions we are interested in, Θ denote
the set of possible outcomes/resolutions for an individual questions. In this paper, we focus
on Prop as a set of binary forecasting questions, so Θ = {⊤,⊥}. A Forecaster is then a
map F : Prop→ [0, 1]. One special forecaster is the ground truth resolutions θ : Prop→ Θ,
returning 1 and 0 probability for {⊤,⊥}, respectively.
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For conditional questions that can resolve to None, we also have optional resolutions Θ′ :=
Θ ∪ {None} = {⊤,⊥, None}. We focus on binary questions following Halawi et al. (2024),
but our methods could in principle be extended to study consistency between any types
of probability distributions (see Gooen (2024) for some work on eliciting more general
probability distributions from LLMs.)

2.1 Consistency checks and inconsistency metrics

In line with Fluri et al. (2024), a consistency check is conceptualized as a pair of n-ary
relations: R : Propn → {⊤,⊥} in question space, S : [0, 1]n → {⊤,⊥} in forecast space, and a
predicate for F such thatR(x1, . . . xn) =⇒ S(F(x1), . . . F(xn)). In particular, this assertion
must be satisfied by all feasible θ, and also any “correct” forecasts generated by a world
model that accurately accounts for aleatoric uncertainty. Violation of consistency is measured
by some violation metric V : [0, 1]n → R which must satisfy V(F(x1), . . . F(xn)) = 0 ⇐⇒
S(F(x1), . . . F(xn)). For example, intuitively, the “negation” check Negation is given
by the relation R(x1, x2) := x1 = ¬x2 on questions, and the relation S(F(x1), F(x2)) :=
F(x1) + F(x2) ≈ 1 on forecasts. The full table of the consistency checks we use is given in
Appendix B.
Improving upon Fluri et al. (2024), we derive V from R in a principled way, handling all
types of logical consistency checks simultaneously. We introduce two new inconsistency
metrics: the arbitrage metric and the frequentist metric for measuring logical inconsistency
in probabilistic forecasts.

2.1.1 Arbitrage metric

The arbitrage metric is conceptualized as the minimum profit that an arbitrageur can be
guaranteed making bets against the forecaster’s predictions. More precisely: suppose that the
forecaster’s probabilities F(x1), . . . F(xn) were prices offered by a logarithmic market maker
1 with market subsidy parameter $1. If these probabilities are inconsistent, then there are
prices p1, . . . pn that an arbitrageur could bring to the market such that it is guaranteed to
make a profit against the market-maker, no matter the outcome of each question. We define
V(F(x1), . . . F(xn)) as the maximum achievable “minimum profit” that the arbitrageur can
guarantee by choosing appropriate p1, . . . pn. We further denote by A(F(x1), . . . F(xn)) the
set of prices p1, . . . pn that maximize the minimum profit:

(arg max, max)
p∈[0,1]n

min
ω∈Ω

n∑
i=1

(log pi − log F(xi)) δω(i)=⊤ + (log (1− pi)− log (1−F(xi))) δω(i)=⊥ (1)

Here Ω := {ω ∈ Θ′n | R(ω)} is the set of all possible consistent resolutions of this tuple. A
more general version of 1 is given in Appendix C, along with specific worked-out examples
of the arbitrage metric for each consistency check, and details on how we compute it; as an
example, the arbitrage metric for the Negation Check can be derived exactly (Appendix C.2):

V(F(x), F(¬x)) = −2 log
(√

F(x)(1−F(¬x)) +
√
(1−F(x))F(¬x)

)

To illustrate: V(0.5, 0.6) ≈ 0.01, V(0.5, 0.51) ≈ 10−4. The metric gets stricter for prob-
abilities very close to 0 or 1, due to the logarithmic market maker. In our evals, for all
types of checks, we say that a sampled check does not pass if V ≥ 0.01. We have to pick
some hyperparameter as an inconsistency threshold; we set it to correspond to giving 110%
probability in total to the events of Republican and Democratic parties winning the US
presidential election.

1A logarithmic market maker with subsidy w is a market maker who adjusts prices in response
to trades such that the trader’s reward for moving the probability of a true-resolving sentence from
p0 to p′ is w log p′ − w log p0. For further background on scoring rules and the associated market
makers, see Appendix C, Berg and Proebsting (2009), or Hanson (2002).
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2.1.2 Frequentist metric

We also compute a different, frequentist consistency metric. Consider a Monte Carlo forecaster
that samples a world model n times, and for any event, returns the fraction of samples in
which the event occurs. The frequentist metric is the number of standard deviations a given
tuple forecast is off from the mean Monte Carlo forecast, scaled to be independent of n. We
say that a consistency violation happened if the number of standard deviations away from
the mean of the null is at least as in the (0.5, 0.6) case described in Section 2.1.1. The full
description is given in Appendix D.

3 Pipeline overview

We illustrate the steps in our data collection pipeline below, and provide more details on
each individual steps:

Online platforms, news, topics
synthetic−−−−−−→
+scraping

P
tuple−−−−−−−−→

instantiation
(P , Q)

F−→ (p, q)
V−→ V(p, q)

• (· · · −→ P ) We first prepare datasets of base questions in multiple ways:
(a) Scraping questions from online platforms such as Manifold and Metaculus;
(b) A ground-truth resolved dataset synthetically generated from news articles;
(c) Synthetic generation on questions on a list of topics such as Politics, Science,

Economics, etc.
For the first two of the above, we also include the ground truth resolution for each
question. We discuss all of these in more detail in Section 3.1.

• (P −→ (P , Q)) The base questions are synthetically instantiated into tuples that
must satisfy certain consistency checks. For example, every single base question P
is instantiated into a tuple (P ,¬P ); and pairs of mutually relevant base questions
P , Q are instantiated into tuples like (P , Q, P ∧Q, P ∨Q).

• ((P , Q)
F−→ (p, q)) The forecaster is separately queried to elicit forecasts on each

question, resulting in forecast tuples that should, if the forecaster is consistent,
satisfy consistency properties. For example, for a size-two tuple where Q = ¬P , it
should satisfy p + q = 1.

• ((p, q)
V−→ V(p, q)) We score each tuple of forecasts for consistency with both of our

violation metrics.

Examples of data at each step of the pipeline are given in Appendix A. The prompts and
LLM calls used in each step before forecasting are given in Appendix G.

3.1 Generating and scraping forecasting questions

Forecasting question format. Each forecasting question includes a title that states the
main question, a body that provides detailed resolution criteria, and a resolution date, along
with optional fields such as metadata and creation date.

Real prediction market questions. We scrape questions from two forecasting platforms,
Metaculus and Manifold Markets, and only use questions that both resolved and were initially
set to resolve between May 1, 2024, and August 15, 2024. This leaves us with over 500
questions, of which 242 pass our verification step (see end of this subsection). An example
of a processed question, including its relevant details, is provided in Appendix A.1.

Generating forecasting questions from NewsAPI articles. To generate forecasting
questions with known resolutions, we use articles sourced from NewsAPI2. We focus on
articles describing concrete events rather than opinion pieces. To mitigate biases towards

2https://newsapi.org/
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positive resolutions (as most questions derived from an article would typically resolve to
True), we employ reference class spanning - using an LLM to modify key entities in the
questions while keeping the overall thematic structure intact. Each question’s ground-truth
resolution is verified using the Perplexity API with internet access, yielding ground truth
resolution labels with less than a 5% error rate in our testing. We compile a total of 2,621
ground-truth resolved forecasting questions resolving between July 1, 2024, and August
21, 2024. Of these, we use a subset of 1,000 to test the relationship between consistency
violation and accuracy. Further details regarding the pipeline can be found in Appendix J.

Synthetic question generation. We generate questions by few-shot prompting, we
sample six examples of forecasting questions, as style examples, as well as a set of tags
(Brazil, NBA...) to diversify the generated questions. We generate question titles, deduplicate
them using text-embedding-3-small embeddings from OpenAI, and then for each title we
use gpt-4o to create the question body and resolution date. With this method we create
1,000 forecasting questions that resolve either by or in 2028. More details are in Appendix G.

Verification and improvement from human feedback. In all of the above steps, we
filter generated questions in using gpt-4o to check for properties such as the coherence
between the body and title, the clarity and precision of the resolution criteria, and whether
the question is about actual world events. Questions failing this step are discarded. To
develop this step, we used a feedback form for human reviewers (authors of this paper)
to evaluate and suggest modifications to generated questions. These suggestions inform
refinements to prompts and few-shot examples in our pipeline. An example of the feedback
form is provided in Appendix H.

3.2 Instantiating tuples of questions for consistency checks

The base forecasting questions are subsequently used to synthetically generate tuples of
logically related questions. For example, a pair of base questions (P , Q) can be used to
generate a 4-tuple (P , Q, P ∧Q, P ∨Q) for AndOr, or a 3-tuple (P ,¬P ∧Q, P ∨Q) for
But (see Appendix B for details). The main question content (titles and bodies) were
generated synthetically (using gpt-4o), while the resolution dates and other properties were
calculated systematically (e.g. the max of the resolution dates of the base questions).
We then conduct two measures to ensure the instantiated tuples are correct and sensible:
relevance scoring, and verification that the tuples of questions indeed describe logically
related events.

Relevance scoring. When combining base questions into tuples, we have to take care to
avoid off-distribution questions like “Is SpaceX going to be worth $200B by 2030, given that
Sri Lanka’s rice production grows 40% by 2040?”. For tuples instantiated from more than
one base question, we sort 2000 potential base question combinations by their “relevance
score”, obtained by querying an LLM and asking it to score how relevant the questions are
to one another, and choose the top 200 for each consistency check. See Figure 15 for details.

Verification. The instantiated tuples of questions are then passed to another LLM call
to reject if they do not fit their intended structure; for example, we detect if the resolution
criteria of the second question are not truly a negation of the resolution criteria of the first
question. Examples of verification prompts are given in Appendix G.

3.3 Eliciting forecasts

We test a range of forecasters based on various LLM models (gpt-4o, gpt-4o-mini,
claude-3.5-sonnet, llama-3.1-8B, llama-3.1-70B, llama-3.1-405B, o1-mini and
o1-preview) with and without chain-of-thought prompting: see Appendix E for details. We
run each of these forecasters on 5000 tuples in total (for each of the 10 checks, we use 200
tuples from scraped questions and 300 from NewsAPI questions), except for o1-preview,
which we test on 50 tuples per check only due to cost constraints. We could not test
forecasters from Halawi et al. (2024) due to API deprecations; see Section 7.
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4 Results

We evaluate a range of forecasters on the datasets described above, for both consistency and
ground truth Brier score. We note that the Brier score as the standard metric of forecasting
accuracy depends both on model capabilities and the training data cutoff: it should not be
surprising for a stronger model to have a worse Brier score if its training data cutoff is earlier
than for a weaker model. The full list of forecasters is in Appendix E.
For all data analysis in this section, we exclude forecasters that have Brier score worse than
random guessing (0.25), such as the basic setup with llama-3.1-8B, as it would unfairly
advantage our case of “correlating consistency with accuracy”.
Average consistency scores correlate strongly with forecasting performance. We
can aggregate the consistency scores across all checks for each forecaster by aggregating
either the arbitrage or the frequentist violations.
We plot the average Brier score against the three aggregate consistency scores in Figure 1.
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(a) Aggregate frequentist metric on the scraped
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Figure 1: Scatter plots showing the relationship between consistency metrics and average
Brier scores for different forecasters. Each point represents a forecaster, with the x-axis
showing the average Brier score and the y-axis showing the consistency metric . The y-axis
values are aggregated across all checks for each forecaster and averaged over the instantiated
consistency check tuples. Lower scores are better for both axes.
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(a) Cond arbitrage metric on the scraped fore-
casting question dataset.
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(b) CondCond frequentist metric on the News-
API questions dataset.

Figure 2: Both Cond and CondCond consistency metrics see Table 3show a strong
correlation with forecasting accuracy as measured by the Brier score.

Bayesian consistency checks are the best proxies for forecasting performance.
Figure 2a illustrates the strong correlation between certain consistency checks from Table 3
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and average Brier scores across different forecasters. This relationship suggests that Cond,
which measures logical consistency in conditional probability estimates, serves as a proxy for
overall forecasting accuracy, without knowing how the questions resolved.
Certain consistency metrics are not well correlated with forecasting performance.
The measured correlations between the consistency checks and Brier scores are given in
Table 1. We see that some checks yield higher signal on the ground truth performance than
others. Aggregating different consistency metrics seems to improve the correlation.
We note that the selection of forecasters we test is limited, so we cannot guarantee the trends
here are representative of future LLM forecasters.
We include all data (questions, tuples, forecasts, and scores) in the supplementary material.

Table 1: Correlation of consistency metrics with Brier score, across both of our base question
datasets and the derived consistency check tuples.

Scraped NewsAPI
Arbitrage Frequentist Arbitrage Frequentist

Negation 0.60 0.67 -0.36 -0.13
Paraphrase 0.57 0.61 0.13 0.24
Consequence 0.51 0.52 0.21 0.30
AndOr 0.20 0.25 0.02 0.06
And 0.68 0.72 0.54 0.71
Or 0.14 0.24 -0.24 -0.31
But 0.20 0.67 0.63 0.77
Cond 0.92 0.87 0.71 0.69
CondCond 0.78 0.71 0.75 0.69
ExpEvidence 0.20 0.77 -0.11 0.06
Aggregated 0.62 0.85 0.49 0.66

Even good reasoning models are inconsistent. We give the full set of consistency
metrics for OpenAI’s o1-mini in Table 2. The Frac column counts the fraction of tuples
for which the violation exceeded a certain threshold; see the full exposition of what the
thresholds mean in Appendices C and D. The frequentist metric is not directly comparable
to the arbitrage metric, but the respective violation counts (“Frac” in the table) are.

Table 2: Consistency metrics for o1-mini.

Scraped NewsAPI
Arbitrage Frequentist Arbitrage Frequentist

Check Avg Frac Avg Frac Avg Frac Avg Frac
Negation 0.07 58% 0.26 61% 0.08 52% 0.27 56%
Paraphrase 0.07 56% 0.26 61% 0.06 53% 0.24 56%
Consequence 0.03 27% 0.13 29% 0.03 18% 0.10 19%
AndOr 0.09 65% 0.34 71% 0.07 57% 0.29 67%
And 0.02 24% 0.11 27% 0.03 23% 0.11 24%
Or 0.11 48% 0.30 50% 0.05 48% 0.21 50%
But 0.11 60% 0.40 79% 0.11 63% 0.38 80%
Cond 0.04 41% 0.22 52% 0.07 66% 0.29 70%
CondCond 0.03 30% 0.19 45% 0.04 54% 0.23 71%
ExpEvidence 0.04 47% 0.27 69% 0.05 45% 0.28 63%
Aggregated 0.06 − 0.25 − 0.06 − 0.24 −

OpenAI’s o1-mini forecaster, despite being one of the best reasoning models so far, violates
consistency checks more than the (0.5, 0.6) threshold from Section 2 very often.
Long-horizon consistency benchmark. The results of the previous section indicate that,
even on longer time horizons where it’s not possible to have ground truth resolutions, we
can still evaluate and compare different forecasters via consistency metrics.
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We create a dataset of 1000 synthetic questions resolving in 2028 and create 3000 tuples in
total from this dataset using the method described in Section 3.2, to evaluate the consistency
of the forecasters in questions with a longer horizon, where it’s not possible to have the ground
truth resolutions. Examples of questions and the results for gpt-4o are in Appendix K.

5 ArbitrageForecaster: Can we design a more consistent
forecaster?

Let (R,S) be a consistency check, and (x1, . . . xn) be a question tuple satisfying R. Given
forecasts F(x1), ...F(xn), the arbitrage metric computes two things (as the argmax and max
of the arbitrage respectively):

1. Improved forecasts F′(x1), ...F′(xn) which are consistent, i.e. satisfy S; and
2. The profit earned by an arbitrageur who bets these improved forecasts against the

original ones – this is the actual metric.

This leads us to wonder: can we use these “improved consistent forecasts” to build a new
forecaster which builds on the base forecaster F, but is more consistent on (R,S)?
We introduce: the ArbitrageForecaster with base F arbitraged on consistency check R,
denoted by ⟨F⟩R, which computes its forecast on a question x as follows:

1. Instantiates a tuple (x1, . . . xn) satisfying R;
2. Queries F to obtain F(x1), . . . F(xn);
3. Arbitrages these base forecasts per Eq 2 and returns the arbitraged forecast for x1.

Despite what one might assume, however, an ArbitrageForecaster is not “definitionally”
consistent on the check it is arbitraged on – rather, this must be investigated empirically.
Appendix F.1 contains a precise definition of ArbitrageForecaster, including the case of
sequentially arbitraging on multiple checks ⟨F⟩[R1,...Rs], and a theoretical discussion of its
consistency properties. In particular, we find strong theoretical reasons (see Appendix F.1)
to use recursive ArbitrageForecaster setups, i.e. ⟨F⟩rR := ⟨⟨F⟩r−1

R ⟩R, in particular with
Negation, as well as in a non-recursive ArbitrageForecaster with ExpEvidence.
Due to these priorities and the high costs of running recursive ArbitrageForecasters (see Ap-
pendix F.1), we limited ourselves to studying only a small number of ArbitrageForecaster
setups, with a limited number of checks rather than the whole list; specifically: ⟨g⟩rN ,
⟨g⟩rP , ⟨g⟩r[N ,P ], ⟨g⟩[E]∗s where g :=gpt-4o-mini, N , P , E are Negation, Paraphrase,
ExpEvidence respectively, and r and s vary from 0 to 4.
The full results of our experiments with these forecasters are reported in Appendix F.2; our
key takeaways from these preliminary runs look hopeful:

• In the case of the checks we tested, arbitraging on a check indeed makes a
forecaster more consistent on that check, with increasing consistency gains
with recursive depth, as shown in Fig 3. Crucially, this also applied when the
arbitraging was on more than a single check: ⟨g⟩r[N ,P ] did well on both Negation

and Paraphrase; arbitraging on the next check did not increase inconsistency on
the first. We are cautiously optimistic that this may extend to the full list of checks
in Table 3.

• This consistency gain was greatest with Negation, followed by Paraphrase,
and lowest with ExpEvidence. This finding is in line with our hypothesis in Ap-
pendix F that ArbitrageForecaster would be particularly effective on consistency
checks which are symmetric. and instantiate deterministically.

• We do not observe reliable improvements on ground truth forecasting
performance, or on consistency checks other than the ones we arbitrage
on. I.e. ⟨F⟩R1 does not reliably do better on R2.
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(a) Average violation of ⟨g⟩r
N (denoted CF-Nr)

on Negation for r from 0 to 4.

Basic-GPT-4o-mini CF-NP1 CF-NP2 CF-NP3 CF-NP4
Forecasters

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

av
g_

vi
ol

at
io

n

NegChecker.default.avg_violation (scraped)

(b) Average violation of ⟨g⟩r
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NPr) on Negation for r from 0 to 4.
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(c) Average violation of ⟨g⟩r
P (denoted CF-Pr)

on Paraphrase for r from 0 to 4.
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(d) Average violation of ⟨g⟩r
NP (denoted CF-

NPr) on Paraphrase for r from 0 to 4.

Figure 3: Negation and Paraphrase violations for various ArbitrageForecaster setups.
In all captions, g denotes gpt-4o-mini, N , P denote Negation and Paraphrase respec-
tively, and the definition of the ArbitrageForecaster setup is as in Def F.2.

6 Related work

Metamorphic and consistency checks. Checking logical properties of outputs of programs
under semantic-preserving transforms has a long history (Chen et al., 1998). Before Fluri
et al. (2024), variants of the consistency check framework were used for simple ML models
(Christakis et al., 2022; Sharma and Wehrheim, 2020), vision (Hendrycks and Dietterich,
2019), and chat LLMs (Jang and Lukasiewicz, 2023), among other areas. Li et al. (2019)
consider logical consistency checks beyond paraphrasing and negation for simple ML models.

Forecasting and large language models. LLMs and forecasting date back to Zou
et al. (2022a) and Yan et al. (2023). Recently, strong performance of LLM forecasters on
prediction market datasets has been claimed in (Halawi et al., 2024; Tetlock et al., 2024;
Hsieh et al., 2024; Phan et al., 2024). Concurrent with our work, Karger et al. (2024) have
introduced an automatically updating benchmark for forecasting.
Scalable oversight and failures of superhuman AI. The difficulty of evaluating models
with superhuman performance in domains without a source of ground truth has long been
acknowledged, and falls under the umbrella of scalable oversight (Amodei et al., 2016).
Forecasting using AI oracles is one such domain. The use of consistency checks for scalable
oversight has been studied in the simpler context of superhuman game AIs (Lan et al., 2022;
Fluri et al., 2024), and in general question-answering tasks via debate (Irving et al., 2018).
Consistency evaluations for LLMs. Even on tasks where the ground truth is in principle
knowable, consistency evaluations have long helped in cases where checking consistency is
easier than getting the ground truth labels (Elazar et al., 2021; Li et al., 2023). Raj et al.
(2023) measure paraphrasing consistency and ground truth accuracy on TruthfulQA (Lin

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

et al., 2021) and find little to no correlation. Some forms of consistency checks have been
applied on model internals to discover features related to LLM truthfulness and reliability
(Burns et al., 2022; Kaarel et al., 2023).

7 Future work

We have developed a comprehensive benchmark of static consistency checks for LLM fore-
casters, and demonstrated its correlation with ground truth accuracy, suggesting that our
consistency metrics could serve as a proxy for accuracy when we do not have access to ground
truth. We envision several directions in which our framework could be extended:
Consistency in decision-making. AI systems may be used not only to make forecasts
that inform decisions, but also to take decisions directly. Here too, we can have a notion
of inconsistency: for example, intransitive preferences 3 – and analogously, an inconsistent
decision-maker may be exploited by an arbitrageur.
Training for consistency. Modulo consideration of the cost-benefit to safety, our methods
could be used train LLMs for consistency, minimizing our violation metrics. This may or
may not impact overall forecasting performance and other AI capabilities. One may also
imagine an AlphaZero-style set-up, where an LLM F is trained on the outputs of ⟨F⟩r, i.e. a
recursive ArbitrageForecaster wrapped around it.
Further experiments with ArbitrageForecaster. Most of our experiments with
ArbitrageForecaster involved arbitraging on only a single check (apart from one ex-
periment with both Negation and Paraphrase), due to the cost limitations described
in F.1. It is easy to imagine how a bad forecaster could still overfit a single check: simply
forecasting 50% probability for all questions will pass Paraphrase, ExpEvidence and
Negation – but we expect that being consistent under a variety of checks is difficult without
a consistent world model. One approach to using more checks cheaply, particularly in
training, may be to randomly sample a number of consistency checks for each question.
Dynamic generation of consistency checks. Although we found strong correlations
between ground truth accuracy and consistency among existing LLM forecasters, our results
with ArbitrageForecaster demonstrate that this isn’t necessarily the case: it is possible
to do well on consistency without improving ground truth. In particular, this means that
consistency as a training metric could be “Goodharted” by a learning AI model (Karwowski
et al., 2023). One way to prevent this may be via adversarial training: i.e. have an adversarial
agent instantiate consistency checks that it believes the agent will perform poorly on.
Evaluating RAG-augmented forecasters. We have conducted some preliminary
experiments evaluating state-of-the-art forecasters such as Halawi et al. (2024). Unfortunately,
we could not reproduce the system from Halawi et al. (2024) at the time of writing, due
to deprecations in the Google News API (we could not obtain access to the alternative
Newscatcher API). At the time of writing, we are not aware of other publicly-available LLM
forecasting systems that are competitive with the results of Halawi et al. (2024) (there exist
proprietary systems that may be competitive, such as FutureSearch (2024)). We thus leave
the evaluation of better forecasters like Halawi et al. (2024) and Phan et al. (2024) to future
work, once such forecasters are more widely available.

Reproducibility Statement

We include the questions, forecasting results, and consistency results necessary to reproduce
all tables and plots in the paper. The data is organized by forecaster, with two directories
for each forecaster:

1. Ground truth forecasting results:

3See e.g. Fishburn (1970) and the Von Neumann–Morgenstern utility theorem for an introduction
to decision rationality.
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• JSONL file, where each entry has (question, boolean resolution, forecast, per-
question Brier score, metadata and reasoning traces)

• JSON file: total Brier score, calibration, other metrics
2. Consistency checks results:

• JSONL file with raw results, where each entry (questions, forecasts, consistency
violations, metadata and reasoning traces)

• JSON file: summary statistics (e.g., average violation)

The consistency check results directories have a substring tuples in the directory name. For
the 2028 synthetic dataset, we have only the consistency check result directories.
We plan to release the code at a later stage. This includes code to generate datasets, tuples,
elicit forecasts on a dataset of questions, and evaluate the consistency of a forecaster.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

References

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Kenneth J. Arrow, Robert Forsythe, Michael Gorham, Robert Hahn, Robin Hanson, John O.
Ledyard, Saul Levmore, Robert Litan, Paul Milgrom, Forrest D. Nelson, George R.
Neumann, Marco Ottaviani, Thomas C. Schelling, Robert J. Shiller, Vernon L. Smith, Erik
Snowberg, Cass R. Sunstein, Paul C. Tetlock, Philip E. Tetlock, Hal R. Varian, Justin
Wolfers, and Eric Zitzewitz. The Promise of Prediction Markets. Science, 320(5878):
877–878, May 2008. doi: 10.1126/science.1157679.

Henry Berg and Todd A Proebsting. Hanson’s automated market maker. The Journal of
Prediction Markets, 3(1):45–59, 2009.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering Latent Knowledge
in Language Models Without Supervision. In The Eleventh International Conference on
Learning Representations, September 2022.

Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a new approach
for generating next test cases. Technical report, The Hong Kong University of Science and
Technology, 1998.

Maria Christakis, Hasan Ferit Eniser, Jörg Hoffmann, Adish Singla, and Valentin Wüstholz.
Specifying and testing k-safety properties for machine-learning models. arXiv preprint
arXiv:2206.06054, 2022.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich
Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language
models. Transactions of the Association for Computational Linguistics, 9:1012–1031, 2021.

Peter C. Fishburn. Utility Theory for Decision Making. Wiley, January 1970. ISBN
978-0-471-26060-8.

Lukas Fluri, Daniel Paleka, and Florian Tramèr. Evaluating superhuman models with
consistency checks. In 2024 IEEE Conference on Secure and Trustworthy Machine
Learning (SaTML), volume 31, page 194–232. IEEE, April 2024. doi: 10.1109/satml59370.
2024.00017. URL http://dx.doi.org/10.1109/SaTML59370.2024.00017.

FutureSearch. FUTURESEARCH: Manifold markets trading bot, 2024. URL https:
//manifold.markets/FUTURESEARCH. Accessed on 26-Sept-2024.

Ozzie Gooen. Scorable Functions: A Format for Algorithmic Forecasting, May 2024.

Danny Halawi, Fred Zhang, Chen Yueh-Han, and Jacob Steinhardt. Approaching Human-
Level Forecasting with Language Models, February 2024.

Robin Hanson. Logarithmic Market Scoring Rules for Modular Combinatorial Information
Aggregation. The Journal of Prediction Markets, 1(1):3–15, January 2002. doi: 10.5750/
jpm.v1i1.417.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Elvis Hsieh, Preston Fu, and Jonathan Chen. Reasoning and tools for human-level forecasting.
arXiv preprint arXiv:2408.12036, 2024.

Geoffrey Irving, Paul Christiano, and Dario Amodei. AI safety via debate. arXiv preprint
arXiv:1805.00899, 2018.

Myeongjun Jang and Thomas Lukasiewicz. Consistency analysis of ChatGPT. arXiv preprint
arXiv:2303.06273, 2023.

Kaarel, gekaklam, Walter Laurito, Kay Kozaronek, AlexMennen, and June Ku. Searching
for a model’s concepts by their shape – a theoretical framework, February 2023.

12

http://dx.doi.org/10.1109/SaTML59370.2024.00017
https://manifold.markets/FUTURESEARCH
https://manifold.markets/FUTURESEARCH


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ezra Karger, Houtan Bastani, Chen Yueh-Han, Zachary Jacobs, Danny Halawi, Fred Zhang,
and Philip E Tetlock. Forecastbench: A dynamic benchmark of ai forecasting capabilities.
arXiv preprint arXiv:2409.19839, 2024.

Jacek Karwowski, Oliver Hayman, Xingjian Bai, Klaus Kiendlhofer, Charlie Griffin, and
Joar Max Viktor Skalse. Goodhart’s Law in Reinforcement Learning. In The Twelfth
International Conference on Learning Representations, October 2023.

Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I Wu, Cho-Jui Hsieh, et al.
Are AlphaZero-like agents robust to adversarial perturbations? arXiv preprint
arXiv:2211.03769, 2022.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for
consistency of neural models. arXiv preprint arXiv:1909.00126, 2019.

Xiang Lisa Li, Vaishnavi Shrivastava, Siyan Li, Tatsunori Hashimoto, and Percy Liang.
Benchmarking and improving generator-validator consistency of language models. arXiv
preprint arXiv:2310.01846, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic
human falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Jason Liu. Instructor: Structured LLM Outputs, May 2024. URL https://github.com/
jxnl/instructor. Version 1.4.1.

Muehlhauser, Luke. How Feasible Is Long-range Forecasting?, October 2019.

Long Phan, Adam Khoja, Mantas Mazeika, and Dan Hendrycks. LLMs are superhuman
forecasters, 2024. URL https://www.safe.ai/blog/forecasting. Accessed on 26-Sept-
2024.

Harsh Raj, Vipul Gupta, Domenic Rosati, and Subhabrata Majumdar. Semantic consistency
for assuring reliability of large language models. arXiv preprint arXiv:2308.09138, 2023.

Leonard J. Savage. Elicitation of Personal Probabilities and Expectations. Journal of
the American Statistical Association, 66(336):783–801, 1971. ISSN 0162-1459. doi:
10.2307/2284229.

Philipp Schoenegger and Peter S. Park. Large Language Model Prediction Capabilities:
Evidence from a Real-World Forecasting Tournament, October 2023.

Philipp Schoenegger, Indre Tuminauskaite, Peter S. Park, and Philip E. Tetlock. Wisdom of
the Silicon Crowd: LLM Ensemble Prediction Capabilities Rival Human Crowd Accuracy,
May 2024.

Arnab Sharma and Heike Wehrheim. Testing monotonicity of machine learning models,
2020.

Philip E Tetlock, Christopher Karvetski, Ville A Satopää, and Kevin Chen. Long-range
subjective-probability forecasts of slow-motion variables in world politics: Exploring limits
on expert judgment. Futures & Foresight Science, 6(1):e157, 2024.

Susan Vineberg. Dutch Book Arguments. In Edward N. Zalta and Uri Nodelman, editors,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
fall 2022 edition, 2022.

Qi Yan, Raihan Seraj, Jiawei He, Lili Meng, and Tristan Sylvain. Autocast++: Enhancing
world event prediction with zero-shot ranking-based context retrieval. arXiv preprint
arXiv:2310.01880, 2023.

Andy Zou, Tristan Xiao, Ryan Jia, Joe Kwon, Mantas Mazeika, Richard Li, Dawn Song,
Jacob Steinhardt, Owain Evans, and Dan Hendrycks. Forecasting future world events with
neural networks. arXiv preprint arXiv:2206.15474, 2022a.

13

https://github.com/jxnl/instructor
https://github.com/jxnl/instructor
https://www.safe.ai/blog/forecasting


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andy Zou, Tristan Xiao, Ryan Jia, Joe Kwon, Mantas Mazeika, Richard Li, Dawn Song, Jacob
Steinhardt, Owain Evans, and Dan Hendrycks. Forecasting Future World Events With
Neural Networks. Advances in Neural Information Processing Systems, 35:27293–27305,
December 2022b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A Data types used in our pipeline

A.1 Forecasting questions

Figure 4 shows the data stored on forecasting questions. Of these, only title and body are
shown to the forecaster.

Forecasting question Data Type

• id: Universally Unique Question Identifier (UUID), auto-generated using a default
factory.

• title: Title of the forecasting question.
• body: Detailed resolution criteria, background information, etc.
• resolution_date: The date when the question is expected to be resolved. We

only consider questions that have a clear date when the resolution should be
decided.

• question_type: Type of the forecasting question; in this paper, only binary and
conditional-binary. Options not used in this paper include multiple-choice, interval,
continuous-value, or opinion.

• data_source: Source of the question, either the website from which it was scraped
or synthetic.

• created_date: The date when the question was created, or null if not important
for the meaning of the question.

• url: URL of the source if the question was scraped, else null.
• metadata: Any additional information, e.g., topics, tags, category; but also

data fields specific to Metaculus, Manifold, etc; the source articles for NewsAPI-
generated questions; or instantiation metadata for questions in consistency tuples.

• resolution: A boolean indicating whether the question resolves to YES or NO, or
null if unresolved.

Figure 4: Description of the forecasting question data type.

For instance, a forecasting question from Metaculus, such as the one shown in Figure 5,
will be stored in the form depicted in Figure 6 using our method. The original question,
which asks whether SpaceX will land people on Mars before 2030, is presented with detailed
conditions for resolution, including specific criteria such as the confirmation of the landing
by SpaceX and the completion of an extravehicular activity (EVA) on the Martian surface.
The data type in Figure 4 is compatible (after appropriate processing) with scraped questions
from Metaculus and Manifold, and standardization helps with synthetic question generation
and tuple instantiation. We do not include information about human forecasts because we
explicitly focus on evaluation without relying on any human-generated probabilities.
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Figure 5: Example of a question on the Metaculus platform.
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Example forecasting question (scraped)

• id: 07b11b15-6872-4280-a94f-17b6d15a1b8a
• title: Will SpaceX land people on Mars before 2030?
• body: This question will resolve as Yes if SpaceX successfully lands at least one

human on the surface of Mars on or before December 31, 2030. The landing must
be confirmed by SpaceX through an official announcement or live broadcast. The
human(s) must be alive upon landing and must perform at least one extravehicular
activity (EVA) on the Martian surface, which must be documented and released
to the public. In the event of a dispute regarding the success of the mission,
the resolution will defer to the judgment of an international space agency such
as NASA or ESA. If no landing attempt is made by the specified date, or if all
attempts fail to meet the above criteria, the question will resolve as No.

• resolution_date: 2030-12-31 23:59:59+00:00
• question_type: binary
• data_source: metaculus
• url: https://www.metaculus.com/questions/349
• metadata:

– topics:
∗ id: 184, slug: elon-musk, name: Elon Musk, link_id: 27681,

num_questions: 159
∗ id: 485, slug: spacex-reusable-launch-system-development-

program, name: SpaceX reusable launch system, link_id: 27682,
num_questions: 130

∗ id: 1365, slug: spacex, name: SpaceX, link_id: 75197,
num_questions: 112

∗ id: 564, slug: colonization-of-mars, name: Colonization of Mars, link_id:
27683, num_questions: 70

∗ id: 1768, slug: spacex-mars-transportation-infrastructure, name: SpaceX
Mars transportation infrastructure, link_id: 40982, num_questions: 5

• resolution: null

Figure 6: Example of a forecasting question scraped from Metaculus.

By processing this question through our pipeline, we retain all relevant details, such as the
resolution date and specific criteria for a binary outcome, while structuring the data in a
more standardized format to facilitate further analysis. Additionally, associated metadata,
including related topics and links to other questions, is also preserved.
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Example forecasting question (synthetic)

• id: 4b98368c-6287-47e0-8f9e-5917e2a24a3d
• title: Will Russia launch a manned mission to the Moon before 2030?
• body: This question will resolve as Yes if, before January 1, 2030, the Russian

Federation successfully launches and completes a manned mission to the Moon,
where ’successful’ is defined as a mission where astronauts land on the lunar surface
and return safely to Earth. The mission must be officially recognized by Roscosmos
or another authoritative space agency. In the event of a joint mission involving
Russia and other countries, the mission will still resolve as Yes if Russian astronauts
are part of the crew that lands on the Moon. If no such mission is launched, or
if a mission is launched but does not meet the above criteria, the question will
resolve as No. In the case of ambiguity or lack of clear public information by
the resolution date, the question will resolve as No unless official statements or
evidence are provided by Roscosmos or an equivalent authoritative body that
confirm the mission’s success as per the defined criteria.

• resolution_date: 2030-12-31 23:59:59+00:00
• question_type: binary
• data_source: synthetic
• url: null
• metadata:

– tags:
∗ Russia

– categories:
∗ Space

• resolution: null

Figure 7: Example of a synthetic forecasting question. All question generations are seeded
with the metadata field.

As an example, we also show a forecasting question generated synthetically using the source
tags "Russia" and "Moon" could ask whether Russia will launch a manned mission to the
Moon by 2030. The structure and format of this synthetic question, as illustrated in
Figure 7, mirror those of real forecasting questions while maintaining the essential metadata
for context.

A.2 Examples of instantiated tuples

In the following examples, we focus on the question title for clarity. Figure 8 illustrates
an instantiated And tuple, starting from forecasting questions (P and Q) that address
distinct events regarding artificial intelligence policy in the U.S. and Canada, together with a
conjunction question (P_and_Q) about their joint occurrence by a specified date. Figure 9
presents an instantiated ExpEvidence tuple, examining the global space industry’s revenue
potential alongside the political dynamics in the U.S. House of Representatives, including
conditional questions that evaluate the influence of one event on another.
We note that making the detailed resolution criteria (“body” field) actually correspond to
the composite event is not straighforward, and is only in reach of the newest generations of
LLMs. A different design option would be to just list the original questions and resolution
criteria separately in the “body” field, and then say what the logical operation is. We opt
against it for two reasons:

• A separate, unnatural format for composite questions might induce qualitatively
different behaviors in LLM forecasters.
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• Future works in this framework might not rely on simple logical operations, but
rather on an advanced LLM grader that computes “do these forecasts make sense
taken together”. Our current design allows for an easier extension to this direction.

Example tuple (And)

• P:
– title: Will the United States pass a federal law regulating the ethical use of

artificial intelligence in energy management before January 1, 2028?
• Q:

– title: Will Canada implement a nationwide artificial intelligence policy before
January 1, 2028?

• P_and_Q:
– title: Will both of the following occur before January 1, 2028: (a) the United

States passes a federal law regulating the ethical use of artificial intelligence
in energy management and (b) Canada implements a nationwide artificial
intelligence policy?

Figure 8: Example of an instantiated And forecasting question tuple. We omit the rest of
the fields for brevity.

Example tuple (ExpEvidence)

• P:
– title: Will the global space industry generate annual revenues exceeding $1

trillion by the end of 2027?
• Q:

– title: Will the Democratic Party gain a majority in the US House of Repre-
sentatives after the 2026 midterm elections?

• P_given_Q:
– title: Given the Democratic Party gains a majority in the US House of

Representatives after the 2026 midterm elections, will the global space industry
generate annual revenues exceeding $1 trillion by the end of 2027?

• P_given_not_Q:
– title: Conditional on the Democratic Party failing to gain a majority in the

US House of Representatives after the 2026 midterm elections, will the global
space industry generate annual revenues exceeding $1 trillion by the end of
2027?

Figure 9: Example of an instantiated ExpEvidence forecasting question tuple. We omit
the rest of the fields for brevity.
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B Table of consistency checks

Table 3 includes all the consistency checks tested for in our benchmark. In most of them,
we leave the logical relations between forecasting questions R implicit by constructing the
sentences directly. For instance, R(x1, x2) := x1 = ¬x2 is implied by simply writing x1, x2
as P ,¬P . In the rest of the appendix, we use the sentence-based (P , Q instead of x1, x2)
notation.

Table 3: Consistency checks and the logical consistency conditions.

Name Tuple Condition (S)
Negation (P ,¬P ) F(P ) + F(¬P ) = 1
Paraphrase
R(P , Q) := P ⇐⇒ Q

(P , Q) F(P ) = F(Q)

Consequence
R(P , Q) := P =⇒ Q

(P , Q) F(P ) ≤ F(Q)

AndOr (P , Q, P ∧Q, P ∨Q) F(P ) + F(Q) = F(P ∨Q) + F(P ∧
Q)

And (P , Q, P ∧Q) max(F(P ) + F(Q) − 1, 0) ≤ F(P ∧
Q) ≤ min(F(P ), F(Q))

Or (P , Q, P ∨Q) max(F(P ), F(Q)) ≤ F(P ∨ Q) ≤
min(1, F(P ) + F(Q))

But (P ,¬P ∧Q, P ∨Q) F(P ∨Q) = F(P ) + F(¬P ∧Q)

Cond (P , Q|P , P ∧Q) F(P )F(Q|P ) = F(P ∧Q)

CondCond (P , Q|P , R|(P ∧Q),
P ∧Q∧R)

F(P )F(Q|P )F(R|P ∧ Q) = F(P ∧
Q∧R)

ExpEvidence (P , Q, P |Q, P |¬Q) F(P ) = F(P |Q)F(Q) +
F(P |¬Q)(1−F(Q))

The list of these logical consistency checks is not exhaustive, and many other forms of logical
checks are possible, especially with different output formats for forecasting models. To list
two examples:

• Generator-validator checks Li et al. (2023) were not previously considered in the
context of forecasting, but has a natural analogue: ask whether event P or Q is
more likely, and for the forecasts for P and Q.

• Monotonicity: Fluri et al. (2024) has a different version of the Consequence
above, where the output values are real-valued and the check is a sequence of future
quantities in monotonic order of value.

We do not include a specific consistency check for Bayesian updates, as we regard this as
subsumed by Cond.
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C Arbitrage as a violation metric

For the following definition we use a slightly more general notation than in the main body,
to convey that our methods could be generalized beyond binary forecasting questions.
Notation. Let Prop denote the set of forecasting questions we are interested in, Θ denote
the set of possible outcomes/resolutions for an individual question, and ∆Θ denote the set
of probability distributions on Θ. A Forecaster is a map F : Prop→ ∆Θ. For conditional
questions that can resolve to None, we also have optional resolutions Θ′ := Θ ∪ {None} =
{⊤,⊥, None}.

The arbitrage metric may be seen as being motivated by Dutch Book Arguments for
probabilistic consistency rules (see e.g. Vineberg (2022)). Imagine the forecaster’s predictions
F(x1), . . . F(xn) were prices offered by a bookie on prediction markets for sentences x1, . . . xn.
If these probabilities are inconsistent, then there are bets that an arbitrageur can make that
guarantee a profit in all possible (consistent) worlds regardless of the individual outcomes.
For example, if x1, x2 are two sentences such that x1 ⇐⇒ x2, but the bookie prices
F(x1) < F(x2), then an arbitrageur can simply buy x1 and sell x2 to make a risk-free profit.
However, if the bookie never changes their prices in response to trades, the arbitrageur
can make an infinite amount of profit with its strategy. This is neither realistic nor useful
for creating a metric to measure inconsistency. Instead, we turn to market scoring rules,
introduced in Hanson (2002)), where the bookie is a market-maker who updates market
prices in a way that ensures that the reward for moving the market price of a sentence that
resolves True from p0 to p′ is given by a proper scoring rule 4 s(p′)− s(p0). We then define
our inconsistency metric to be the minimum profit an arbitrageur can guarantee against
such a market-maker, if the latter offers inconsistent probabilities F(x1), . . . F(xn).
Definition C.1 (Arbitrage-based Violation Metric). Let R : Propn → {⊤,⊥} be an
n-ary relation such that R(θ(x1), . . . θ(xn)) is satisfied by the ground-truth resolutions
θ : Prop → Θ for all tuples (x1, . . . xn). 5 Let s : Prop×Θ × [0, 1] → R be a proper
scoring rule that gives the score earned based on the probability assigned to the true
resolution, e.g. s(x, θ, p(θ)) = log p(θ). Let (x1, . . . xn) ∈ Propn be a question tuple, and
denote Ω := {ω ∈ Θ′n | R(ω)} the set of possible consistent resolutions (including None
resolutions) of this tuple. Then for forecasts (F(x1), . . . F(xn)) the arbitraged forecasts
A(F(x1), . . . F(xn)) = (p1 . . . pn) and the minimum guaranteed profit of the arbitrageur
V(F(x1), . . . F(xn)) are given by:

(arg max, max)
p∈∆Θn

min
ω∈Ω

n∑
i=1

s (xi, ωi, pi(ωi))− s (xi, ωi, F(xi)(ωi)) (2)

Where by convention, any score on a resolution ωi = None is taken to be 0.

Definition C.1 is presented in full generality: p and F(xi) here are probability distributions
on Θ. Breaking it down: each s (xi, ωi, pi(ωi))− s (xi, ωi, F(xi)(ωi)) gives the arbitrageur’s
profit on the market for question xi, given that it resolves ωi. The profit is summed across
all markets in the tuple, and then minimized over all consistent worlds; this minimum is
maximized across all possible arbitrageur bets.
It is helpful to explicitly state Eq 2 in the case of binary forecasting questions, as follows.

(arg max, max)
p∈[0,1]n

min
ω∈Ω

n∑
i=1

(s (pi)− s (F(xi))) δω(i)=⊤ + (s (1− pi)− s (1−F(xi))) δω(i)=⊥

(3)
4A proper scoring rule (Savage, 1971), is one that incentivizes honest reporting of probabilities:

widely used proper scoring rules include the Brier score (1 − p)2 and the logarithmic scoring rule
− log p.

5This is well-defined because resolutions can be taken as a subset Θ ⊆ Prop, by treating them as
forecasting questions that always resolve to themselves by definition. For example, the forecasting
question ⊤ is always worth $1 and the forecasting question ⊥ is always worth $0.
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F(Q) F(P ) 1

−1

1
profit if P

profit if ¬P

(0.555,0.095) p

Figure 10: Profit earned by the arbitrageur in case of inconsistency over ParaphraseChecker,
taking s(p) = log(p) and F(P ), F(Q) = 0.7, 0.4 in (4).

.

We will illustrate our violation metric with three specific examples, for Paraphrase,
Negation and Cond. For other consistency checks, the math becomes too convoluted and
we use a numerical method in our project code.

C.1 ParaphraseChecker

Let P and Q be equivalent sentences, and suppose that the forecaster produces forecasts F(P )
and F(Q). A trader who instead brings prices to F′(P ) = F′(Q) = p for both questions
earns a combined profit on both questions:

{
s (p)− s (F(P )) + s (p)− s (F(Q)) if P

s (1− p)− s (1−F(P )) + s (1− p)− s (1−F(Q)) if ¬P
(4)

For this first example, we can graph this profit as a function of p for illustration, shown
in Fig. 10 – demonstrating that any p ∈ (0.529, 0.576) is profitable for the arbitrageur,
and further that the arbitrageur can guarantee a minimum profit of 0.095 regardless of the
outcome of P by choosing the consistent probability p = 0.555.
We may compute this intersection analytically:

s (p)− s (F(P )) + s (p)− s (F(Q)) = s (1− p)− s (1−F(P )) + s (1− p)− s (1−F(Q))

2 log p

1− p
= log F(P )F(Q)

(1−F(P ))(1−F(Q))

p =

√
F(P )F(Q)√

F(P )F(Q) +
√
(1−F(P ))(1−F(Q))

Substituting this back into either expression in (4) we get the expression for the arbitrage:

V(F(P ), F(Q)) = −2 log
(√

F(P )F(Q) +
√
(1−F(P ))(1−F(Q))

)
(5)

As a bonus, this can straightforwardly be extended to the multi-question paraphrasing check:
(P1 ⇐⇒ · · · ⇐⇒ Pn) =⇒ (F(P1) = · · · = F(Pn)). Here the corresponding possible
profits are:

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

{
ns (p)−

∑
s (F(Pi)) if P

ns (1− p)−
∑

s (1−F(Pi)) if ¬P
(6)

Equating them and solving for p, we get:

log p

1− p
=

1
n

∑
i

log F(Pi)

1−F(Pi)
(7)

p =
∆

∆ + 1 where ∆ =

[∏
i

F(Pi)

1−F(Pi)

]1/n

(8)

Observe that the arbitraged probability is simply the arithmetic mean in log-odds space!
One may wonder if the violaton is some kind of variance measure in log-odds space, but this
does not seem to be the case:

V(F(P1), . . . F(Pn)) = −n log
[(∏

F(Pi)
)1/n

+
(∏

(1−F(Pi))
)1/n

]
(9)

C.2 NegChecker

Suppose the forecaster produces forecasts F(P ) and F(¬P ). A trader who instead brings
prices to F′(P ) = p, F′(¬P ) = 1− p earns a combined profit on both questions:

{
s (p)− s (F(P )) + s (p)− s (1−F(¬P )) if P

s (1− p)− s (1−F(P )) + s (1− p)− s (F(¬P )) if ¬P
(10)

Equating them and solving as before,

2 log p

1− p
= log F(P )(1−F(¬P ))

(1−F(P ))F(¬P )

p =

√
F(P )(1−F(¬P ))√

F(P )(1−F(¬P )) +
√
(1−F(P ))F(¬P )

Substituting into (10), we get:

V(F(P ), F(¬P )) = −2 log
(√

F(P )(1−F(¬P )) +
√
(1−F(P ))F(¬P )

)
(11)

The similarity of these results to Paraphrase is suggestive: both the arbitraged probability
and the violation for Negation can be derived from Paraphrase simply replacing F(Q)
with 1− F(¬P ), seeing the latter as the “probability implied for P by ¬P”. This raises
the obvious question: Can all consistency checks be reduced to the case of Paraphrase
arbitraging F(P ) against the probability implied for P by the consistency check?
Unfortunately, as we will see, the case for Cond immediately falsifies this hope. The
expression for the violation does not depend only on F(P ) and F(P ∧Q)/F(Q | P ) (which
is the probability that Cond implies for P ), and so there is no simple interpretation like
“arithmetic mean in the log-odds space” either.
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C.3 CondChecker

Suppose the forecaster produces forecasts F(P ), F(Q | P ), F(P ∧Q). The possible outcomes
Ω are (P , Q | P , P ∧Q) 7→ (⊤,⊤,⊤), (⊤,⊥,⊥), (⊥, None,⊥). Consider an arbitrageur who
makes bets F′(P ) = p, F′(Q | P ) = q, F′(P ∧Q) = pq.
In each outcome:


s (p)− s (F(P )) + s (q)− s (F(Q | P )) + s (pq)− s (F(P ∧Q)) ifP , Q

s (p)− s (F(P )) + s (1− q)− s (1−F(Q | P )) + s (1− pq)− s (1−F(P ∧Q)) ifP ,¬Q

s (1− p)− s (1−F(P )) + s (1− pq)− s (1−F(P ∧Q)) if¬P
(12)

Equating these and rearranging:
1−p

p(1−q)
= 1−F(P )

F(P )(1−F(Q|P ))
=: A

1−q
q

1−pq
pq = (1−F(Q|P ))(1−F(P ∧Q))

F(Q|P )F(P ∧Q)
=: B

Solving, where we indicate the right-hand-sides of each equation above by A and B respec-
tively:

p =
1 +

√
B/(A + 1)

1 +
√

B · (A + 1)

q =
1

1 +
√

B/(A + 1)

pq =
1

1 +
√

B · (A + 1)

Substituting back into 12 and simplifying:

V(F(P ), F(Q | P ), F(P ∧Q))

= −2 log
(√

F(P )F(Q | P )F(P ∧Q) +
√
(1−F(P )F(Q | P ))(1−F(P ∧Q))

)
.

C.4 Numerical estimation

Explicitly deriving the violation metrics for other checkers from Equation (2) is infeasible by
hand, and the expressions yielded by SymPy are very convoluted. For these checks, we use a
numerical algorithm based on solving a differential equation for pi(t), as detailed below.
The arbitraging process may be understood as adjusting market prices in such a way that
the scores in each possible ω ∈ Ω remain equal throughout the process – i.e. such that their
derivatives remain equal. For derivatives p′

i(t) of the prices, the derivatives of each score
s′

ω(t) are:

s′
ω(t) = [aω1(p1) · · · aωn(pn)] ·

p′
1(t)
...

p′
n(t)


Where
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aωi(pi) =


s′(pi) if ωi = ⊤,
−s′(1− pi) if ωi = ⊥,
0 if ωi = N/A

Then, where A(p) = [aωi(pi)] (with Ω rows and n columns), we have the derivative of the
score vector s′(t) = A(p)p′(t). We want s′(t) to be a multiple of [1 · · · 1] to ensure it
is the same in all outcomes ω – the coefficient of proportionality does not matter (it just
controls the “speed” at which you reach the arbitraged probabilities), so we can just solve
p′(t) = A−1s′(t).
The dynamics of the arbitraging process are then simply:

pi(0) = F(xi) (initial conditions)

p′(t) = A(p)−1

1
...
1


Which we run until det A reaches 0, which is when consistency is reached.
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D Frequentist consistency metric

In a deterministic world, we cannot let any inconsistency pass; every time we prove any
rule of probability does not hold exactly, we must discard the forecaster as flawed. This is
too strict for the consistency check framework to be useful. Instead, we propose a violation
metric and the corresponding inconsistency threshold based on statistical hypothesis testing.
Assume that each event P has a true probability value T(P ), say under some world model
that accounts for aleatoric uncertainty.
Definition D.1 (Frequentist consistency). A frequentist-consistent forecaster F samples
a Gaussian estimate T(P ) + ε of each event P , with variance σ2T(P )(1− T(P )) for a
hyperparameter σ2:

F(P )−T(P ) ∼ N
(
0, σ2T(P )(1−T(P ))

)
independently for all events P . (13)

This is principled from the frequentist perspective. Consider a forecaster that just samples
the (relevant subset of) the world n times using the best available world simulator, and
estimates the probability of each event P as the proportion of times that P occurs in the
n samples. If we estimate the probability as the average chance of an event P with true
probability p occurring out of n times, then this estimate has a scaled binomial distribution
with mean p and variance p(1− p)/n. To reach Equation (13), replace the averaged binomial
with the Gaussian of the same variance, and denote σ2 := 1/n.
This simple model enables us to derive hypothesis tests for each of the consistency checks
described in Table 3. The null hypothesis is always that the forecaster is frequentist-consistent.
Note that σ2 is not our estimate of the variance of any forecaster; it is just a hyperparameter
that controls how strict our null hypothesis is. We leave estimating the variance of a particular
forecaster and testing frequentist consistency based on that alone to future work.

Notation The expression aN(0, c2) denotes a Gaussian random variable with mean 0 and
variance a2c2. The expression aN(0, c2) + bN(0, c2) denotes a Gaussian random variable
with mean 0 and variance a2c2 + b2c2. All sums range over the cyclic permutations of
the variables under the sum. All N(0, c2) terms appearing with the same power of σ are
independent. Two N(0, c2) terms appearing with a different power of σ may be correlated;
this is not important for our purposes, since we discard high-order powers of σ.

Bootstrapping the true probability The final expressions for hypothesis test statistics
might involve the true probability T(P ). It is not available, so we just plug in F(P ) for
T(P ) in the end. If we had a prior on T(P ), we could combine it with F(P ) to get a more
robust estimate.

Negation We take the violation metric and the corresponding threshold as to produce a
hypothesis test against this:

F(P ) + F(¬P )− 1 = T(P ) + ε1 + T(¬P ) + ε2 − 1 = ε1 + ε2

∼ N
(
0, σ2(T(P )(1−T(P )) + T(¬P )(1−T(¬P )))

)
We estimate the unknown T values with the corresponding F estimates. Note that, although
T(P ) = 1−T(¬P ), it is of course not necessarily the case that F(P ) = 1−F(¬P ).
The error distribution is σN (F(P )(1−F(P )) + F(¬P )(1−F(¬P ))), and the two-sided test
is

|F(P ) + F(¬P )− 1| < γσ
√
(1−F(P ))F(P ) + (1−F(¬P ))F(¬P )

for some scale factor γ (number of standard deviations) that scales the power of the test.
For example, γ = 3 gives a 99.7%-confidence interval.
We now want to compute some consistency violation metric that makes inconsistency
comparable across different checks. The natural idea is to aggregate all terms dependent
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on F to one side; and make the hypothesis test be just some threshold on the computed
violation metric.
It is possible that the denominator of the resulting expression is 0 when the forecaster is
certain and F is 0 or 1; to avoid division with zero, we add a small regularization term
βmin = 10−3. See the last paragraph of this section for a discussion of hyperparameters.
Our consistency violation metric is then:

vNegation =
|F(P ) + F(¬P )− 1|√

(1−F(P ))F(P ) + (1−F(¬P ))F(¬P ) + βmin

.

The hyperparameter σ2 determines how strict we are with rejecting inconsistencies which
could be attributed to “noisy” predictions. Note that the violation metric itself does not
depend on σ2.
A violation (inconsistency), therefore, occurs when:

vNegation > γσ.

CondCond This is a more complex consistency check; we derive the hypothesis test and
violation metric in detail below. For the other checks, we just report the short derivation.

(a, b, c, d) = (T(P ), T(Q | P ), T(R | P ∧Q), T(P ∧Q∧R))

(a′, b′, c′, d′) = (F(P ), F(Q | P ), F(R | P ∧Q), F(P ∧Q∧R))

We can write:

F(P ) = N
(
0, σ2a(1− a)

)
+ a,

F(Q | P ) = N
(
0, σ2b(1− b)

)
+ b,

F(R | P ∧Q) = N
(
0, σ2c(1− c)

)
+ c,

F(P ∧Q∧R) = N
(
0, σ2d(1− d)

)
+ d

We now compute the difference of the two expressions that should be equal. All sums and
products are cyclic over a, b, c.

F(P )F(Q | P )F(R | P ∧Q)−F(P ∧Q∧R) = abc− d

+ σ

(∑
a

bcN(0, a(1− a))−N(0, d(1− d))

)
+ σ2

∑
a

N(0, b(1− b))N(0, c(1− c))

+ σ3
∏
a

N(0, a(1− a)).

In the above, all Gaussians with the same variance are identical, and all other combinations
are independent. As abc− d = 0 by the law of total probability, the leading error term is
next to σ. This is a Gaussian with mean 0 and standard deviation:

σ

√∑
a

b2c2a(1− a) + d(1− d) = σ

√
abc
∑

a

bc(1− a) + d(1− d)

We now discard the terms of σ2, σ3, and in general any higher order power of σ. This is
principled because the coefficients can always be (in some confidence interval) upper bounded
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by a constant independent of σ. Hence, if σ is small enough, the resulting test will be very
close to the true hypothesis test.
We do not have the true probabilities a, b, c, d, so we just plug in (a′, b′, c′, d′) = (F(P ), F(Q |
P ), F(R | P ∧Q), F(P ∧Q ∧R)). 6 Thus the hypothesis test is (where the sum is cyclic
over a′, b′, c′):

|a′b′c′ − d′| > γσ

√
a′b′c′

∑
a′

b′c′(1− a′) + d′(1− d′)

Our violation metric is then:

vCondCond =
|a′b′c′ − d′|√

a′b′c′∑
a′ b′c′(1− a′) + d′(1− d′) + βmin

.

where again (a′, b′, c′, d′) = (F(P ), F(Q | P ), F(R | P ∧Q), F(P ∧Q∧R)) are the forecasts.

Cond Similarly as for CondCond: we denote (a, b, c) = (T(P ), T(P | Q), T(P ∧Q)) and
the associated (a′, b′, c′) for the forecasts. Then we can compute

F(P )F(Q | P )−F(P ∧Q)

= ab− c + σ (bN(0, a(1− a)) + aN(0, b(1− b))−N(0, c(1− c)))

+ σ2N(0, a(1− a))N(0, b(1− b)).

The term next to σ is a Gaussian with mean 0 and standard deviation:

σ
√

a2b(1− b) + b2a(1− a) + c(1− c) = σ
√

ab (a(1− b) + b(1− a)) + c(1− c).

Again, we have to plug in (a′, b′, c′) = (F(P ), F(Q | P ), F(P ∧Q)) instead of (a, b, c).
Our violation metric is then:

vCond =
|a′b′ − c′|√

a′b′ (a′(1− b′) + b′(1− a′)) + c′(1− c′) + βmin

And the test is again, for a suitable γ corresponding to the desired power of the test:

vCond > γσ.

Paraphrase Here we can simply check whether P and Q are the same.

F(P )−F(Q) = T(P ) + ε1 −T(Q)− ε2

= ε1 − ε2 ∼ N
(
0, σ2((T(P )(1−T(P )) + (T(Q)(1−T(Q))

)
This yields the following violation metric:

vParaphrase =
|F(P )−F(Q)|√

(F(P )(1−F(P )) + (F(Q)(1−F(Q)) + βmin

6Depending on how we use the relation abc = d, we can end up with different expressions in the
end. We choose the one that, after plugging in, (i) yields an expression for variance that is always
nonnegative, and (ii) is not a polynomial multiple of any single value of F.
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AndOr

F(P ) + F(Q)−F(P ∨Q)−F(P ∧Q)

= T(P ) + T(Q)−T(P ∨Q)−T(P ∧Q) + ε1 + ε2 − ε3 − ε4
= ε1 + ε2 − ε3 − ε4

∼ N
(
0, σ2 (T(P )(1−T(P )) + T(Q)(1−T(Q))

+T(P ∨Q)(1−T(P ∨Q)) + T(P ∧Q)(1−T(P ∧Q)))) .

We again plug in F instead of T to compute the error term allowed: γσ
√

M where

M = F(P )(1−F(P )) + F(Q)(1−F(Q) + F(P ∨Q)(1−F(P ∨Q))+

F(P ∧Q)(1−F(P ∧Q))

and violation metric:

vAndOr =
|F(P ) + F(Q)−F(P ∨Q)−F(P ∧Q)|√

F(P )(1−F(P )) + F(Q)(1−F(Q))+
F(P ∨Q)(1−F(P ∨Q)) + F(P ∧Q)(1−F(P ∧Q)) + βmin

.

But

F(P ∨Q)−F(P )−F(¬P ∧Q) = T(P ∨Q)−T(P )−T(¬P ∧Q) + ε1 − ε2 − ε3 =

ε1 − ε2 − ε3 ∼
N
(
0, σ2((T(P ∨Q)(1−T(P ∨Q)) + (T(P )(1−T(P )) + (T(¬P ∧Q)(1−T(¬P ∧Q))

)
with error term:

γσ
√

F(P ∨Q)(1−F(P ∨Q) + F(P )(1−F(P ) + F(¬P ∧Q)(1−F(¬P ∧Q)

and violation metric:

vBut =
|F(P ∨Q)−F(P )−F(¬P ∧Q)|√

F(P ∨Q)(1−F(P ∨Q)) + F(P )(1−F(P )) + F(¬P ∧Q)(1−F(¬P ∧Q) + βmin

Consequence In the case of inequalities involving ≤, there are two ways in which the
consistency check can be passed. If F(P ) ≤ F(Q), the consistency check is automatically
passed. Otherwise, we check for pseudo-equality using the same violation metric as in
Paraphrase.

vConsequence = [F(P ) > F(Q)]
|F(P )−F(Q)|√

F(P )(1−F(P )) + F(Q)(1−F(Q)) + βmin

where [F(P ) > F(Q)] is the Iverson Bracket (1 if true, 0 otherwise).

And Similarly to Consequence, if the chain of strict inequalities

max(F(P ) + F(Q)− 1, 0) < F(P ∧Q) < min(F(P ), F(Q))

holds, then the check automatically passes. We set vAnd_lhs = 0 and vAnd_rhs = 0 if it
passes the first and second strict inequality respectively.
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If not, then we test for pseudo-equality for the violating pair:
LHS : max(F(P ) + F(Q)− 1, 0) = F(P ∧Q)

RHS : F(P ∧Q) = min(F(P ), F(Q))

Equality check if it fails the first inequality:

εlhs =


γσ
√

F(P )(1−F(P )) + F(Q)(1−F(Q)) + F(P ∧Q)(1−F(P ∧Q))

if F(P ) + F(Q)− 1 > 0,

N/A
otherwise pass as F(P ∧Q) ≥ 0.

vAnd_lhs = [F(P ) + F(Q)− 1 > F(P ∧Q)]·
F(P ) + F(Q)− 1−F(P ∧Q)√

F(P )(1−F(P )) + F(Q)(1−F(Q)) + F(P ∧Q)(1−F(P ∧Q)) + βmin

Equality check if it fails the second inequality:
Define F(R) = min(F(P ), F(Q)).

εrhs = γσ
√

F(P ∧Q)(1−F(P ∧Q)) + F(R)(1 + F(R))

vAnd_rhs = [F(R) < F(P ∧Q)]
F(P ∧Q)−F(R)√

F(P ∧Q)(1−F(P ∧Q)) + F(R)(1−F(R)) + βmin

Consistency is violated if either inequality is violated, and the respective hypothesis test for
pseudo-equality fails. We use vAnd_lhs for the first and vAnd_rhs for the second inequality.
We define vAnd = max{vAnd_lhs, vAnd_rhs}.

Or We proceed similarly as for And.
If the strict inequality max(F(P ), F(Q)) < F(P ∨Q) < min(1, F(P ) + F(Q)) holds, then it
automatically passes. We set vOr_lhs = 0 and vOr_rhs = 0 if it passes the first and second
strict inequality respectively.
If not, we test for pseudo-equality:
LHS : max(F(P ), F(Q)) = F(P ∨Q)

RHS : F(P ∨Q) = min(1, F(P ) + F(Q)).
Equality check LHS: Define F(S) = max(F(P ), F(Q)).

εlhs = γσ
√

F(S)(1−F(S)) + F(P ∨Q)(1−F(P ∨Q))

vOr_lhs = [F(S) > F(P ∨Q)]
F(S)−F(P ∨Q)√

F(S)(1−F(S)) + F(P ∨Q)(1−F(P ∨Q)) + βmin

Equality check RHS:
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εrhs =


γσ
√

F(P ∨Q)(1−F(P ∨Q)) + F(P )(1−F(P )) + F(Q)(1−F(Q))

if F(P ) + F(Q) < 1,

N/A
otherwise pass as F(P ∨Q) ≤ 1.

vOr_rhs = [F(P ) + F(Q) < F(P ∨Q)]·
F(P ∨Q)−F(P )−F(Q)√

F(P ∨Q)(1−F(P ∨Q)) + F(P )(1−F(P )) + F(Q)(1−F(Q)) + βmin

Consistency is violated if either inequality is violated, and the subsequent hypothesis test
for pseudo-equality fails. We use vOr_lhs for the first and vOr_rhs for the second inequality.
Analogously to And, define vOr = max{vOr_lhs, vOr_rhs}.

ExpEvidence Write (a, b, c, d) = (T(P ), T(P | Q), T(P | ¬Q), T(Q)); then

b′d′ + c′(1− d′)− a′

= (b + σN(b(1− b)))(d + σN(d(1− d)))

+ (c + σN(c(1− c)))(1− d− σN(d(1− d)))

− (a + σN(a(1− a)))

= (bd + c(1− d)− a)

+ σ [dN(b(1− b))

+ (b− c)N(d(1− d))

+ (1− d)N(c(1− c))

−N(a(1− a))]

+ O(σ2)

gives us a normal distribution with standard deviation

σ
√

a(1− a) + d2b(1− b) + (1− d)2c(1− c) + (b− c)2d(1− d).

The violation metric is then:

|bd + c(1− d)− a|
σ
√

a(1− a) + d2b(1− b) + (1− d)2c(1− c) + (b− c)2d(1− d).

Hyperparameters for hypothesis testing Our goal is for the rejection criteria to be
similar to the arbitrage violation metric in Appendix C on simple examples. We choose
γ = 2.58 for all checks, to ensure 99%-confidence intervals for two-sided tests; future work
may consider using a different γ for checks that require one-sided tests. We pick σ = 0.05
(corresponding to n = 400 in Definition D.1). The allowed violation threshold for all checks
is then γσ = 0.129. For reference, a Negation pair (F(P ), F(¬P )) = (0.5, 0.59) has a
violation metric of 0.128, and would thus not be rejected as inconsistent. This exactly
corresponds to the tolerance threshold of 10−2 of profit for the arbitrage metric, described
in Section 2.1.
We pick βmin = 10−3 because LLM forecasters from Halawi et al. (2024) answer with at
most 3 digits of precision for events close to 0 and 1 in probability.
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E Forecasters

We describe the forecaster architectures evaluated in the paper below. All of these fore-
casters accept a model parameter working with most popular LLMs, such as gpt-4o,
claude-3.5-sonnet and llama-3.1-405B.
In plots, the following names refer to these forecasters:

• GPT-4o-05: Basic Forecaster with gpt-4o-2024-05-13
• GPT-4o-08: Basic Forecaster with gpt-4o-2024-08-06
• GPT-4o-mini: Basic Forecaster with gpt-4o-mini-2024-07-18
• Sonnet: Basic Forecaster with claude-3.5-sonnet
• L3-8B: Basic Forecaster with llama-3.1-8B
• L3-70B: Basic Forecaster with llama-3.1-70B
• L3-405B: Basic Forecaster with llama-3.1-405B
• CoT-o1-preview: CoT Forecaster with o1-preview
• CoT-o1-mini: CoT Forecaster with o1-mini
• CoT-GPT-4o-08: CoT Forecaster with gpt-4o-2024-08-06
• CoT-GPT-4o-mini: CoT Forecaster with gpt-4o-mini
• CoT-Sonnet: CoT Forecaster with claude-3.5-sonnet
• CoT-L3-8B: CoT Forecaster with llama-3.1-8B
• CoT-L3-70B: CoT Forecaster with llama-3.1-70B
• CoT-L3-405B: CoT Forecaster with llama-3.1-405B

All forecasters receive the question (see Appendix A.1) as a string render of the JSON object
in Figure 11.

{
"title": "Question title",
"body": "Question body and resolution criteria",
"resolution_date": "YYYY-MM-DD",
"created_date": "YYYY-MM-DD"
}

Figure 11: The format in which questions are presented to forecasters. If created_date is
not available, it is omitted.

E.1 Basic Forecaster

The Basic Forecaster is a simple forecasting model that uses a language model to generate
probability estimates for given questions. We use the Instructor library Liu (2024) to make
the output conform to a specific Pydantic model that has a prob field forced to be a float
between 0 and 1.

You are an informed and well-calibrated forecaster. I need you to give me your best probability
estimate for the following sentence or question resolving YES. Your answer should be a float
between 0 and 1, with nothing else in your response. Question: {question}

Figure 12: The prompt used for Basic Forecaster.
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E.2 CoT Forecaster

The CoTForecaster is composed of two steps:

1. The first model call is a native chat message with a chain-of-thought reasoning
prompt in Figure 13.

2. Then, gpt-4o-mini is used in an Instructor Liu (2024) call to parse the output into
a single probability estimate similarly as in the Basic Forecaster, plus the reasoning
summary.

We use this two-step process because of concerns with structured outputs degrading reasoning
ability in language models.

You are an informed and well-calibrated forecaster. I need you to give me your best probability
estimate for the following question resolving YES. If you think it is likely the question resolves
YES, the probability should be large; if you think it is unlikely the question resolves NO, the
probability should be small. I want you to first provide a detailed reasoning for your answer,
and then give me the probability. Your answer should be in the format: ’Reasoning: [your
reasoning here] Probability: [float between 0 and 1]’
Note: unless explicitly stated in the prompt, do not worry about the exact formatting of the
output. There will be an extra step that will summarize your output into the final answer
format. For context, the final answer format is described by the following Pydantic model:
{response_model.model_fields=}
Again, just try to answer the question as best as you can, with all the necessary information;
the output will be cleaned up in the final step. Question: {question}

Figure 13: The prompt used for CoT Forecaster.
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Algorithm 1 ArbitrageForecaster algorithm: ⟨F⟩
C⃗

input x
p← F(x) ▷ Query base forecaster
w ← 1
for (Ri,Si,Ji) in C⃗ do

(x, x2, . . . xn)← Ji(x) ▷ Instantiate tuple of size n = nRi

(p2, . . . pn)← (F(x2), . . . F(xn)) ▷ Query base forecaster on tuple
(p, p2, . . . pn)← A

(w,1,...1)
i (p, p2, . . . pn) ▷ arbitrage the forecasts as per Def 2

w ← w + n− 1 ▷ p now carries information from n− 1 other markets
end for
return p

F ArbitrageForecaster

To formally define ArbitrageForecaster, we need to first formalize our “instantiation”
process mathematically:
Definition F.1 (Tuple sampler). Let R : Propn → {⊤,⊥}, S : ∆Θn → {⊤,⊥} be a
consistency check. Then we call J : Prop⇝ Propn a “single-base-question tuple sampler”
for R if for all x, J (x)1 = x and R(J (x)) holds surely.

A multiple-base-question tuple sampler I : Propm → Propn, like the instantiation process
described in 3.2, can simply be composed with a question sampler G : Prop⇝ Prop (e.g a
synthetic generator or a sampler from our dataset) to produce a single-base-question sampler
J (x) := I(x,G(x), . . .G(x)).
Next, in order to correctly handle sequentially arbitraging checks and prevent bias towards
later applied checks, we need to introduce “weighted” arbitraging. This follows easily from
Eq C.1 by simply having the scoring rule for each question x be wx log(p). We denote the
calculation of arbitraged probabilities under these weighted scoring rules by A(w1,...wn).
Definition F.2 (ArbitrageForecaster). Let F : Prop→ ∆Θ be the “Base Forecaster”, and
let C⃗ := [(R1,S1,J1), ...(Rk,Sk,Jk)] be a list of consistency checks along with respective
single-base-question tuple samplers. Then we construct a new forecaster ⟨F⟩

C⃗
: Prop→ ∆Θ

that produces its forecast for a given question x as given in Algorithm 1; we call this the
ArbitrageForecaster with base F and check list C⃗.

The first thing we observe is that this isn’t necessarily robust to different instantiations. For
this reason, we a priori expect that ArbitrageForecaster will be more effective on
We might hope that the ArbitrageForecaster introduced in Def F.2 would be defini-
tionally consistent on the checks it is arbitraged on. However, this is not the case even
for ArbitrageForecaster applied to a single check R(x1, . . . xn), because the tuple of
forecasts that is arbitraged to compute ⟨F⟩(R,S,J )(x1), the tuple arbitraged to compute
⟨F⟩(R,S,J )(x2), . . . , the tuple arbitraged to compute ⟨F⟩(R,S,J )(xn) are all different. While
the tuple instantiated to compute ⟨F⟩(R,S,J )(x1) could indeed be J (x1) = (x1, . . . xn) (at
least if the tuple sampler J is deterministic and happens to be the same as the one used in
the instantiation of the check), the tuples instantiated to compute ⟨F⟩(R,S,J )(xi) for i ̸= 1
will be J (xi), all of which are different from one another.
To make this concrete, consider the simplest case of ⟨F⟩P (where P is short for Paraphrase);
let para be a deterministic tuple-sampler for Paraphrase. ⟨F⟩P (x) is calculated by arbi-
traging F(x) and F(para(x)). But F(para(x)) is calculated by arbitraging F(para(x)) and
F(para(para(x))).
A priori, this gives us the following hypothesis: ArbitrageForecaster will be especially
effective for fundamentally “symmetric” checks like Negation – where neg(neg(P ))
is likely to be a very similar sentence to P . Although we have not conducted a full scale
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experiment of ArbitrageForecaster with each checker, our preliminary results in Table 4
do suggest very good performance of ArbitrageForecaster on Negation.
Suppose, however, that we had an “extended” ArbitrageForecaster that made its forecast
for x based on the tuple (x, para(x), para2(x), . . . parar(x)) – then its forecast for para(x)
would be based on (para(x), para2(x), . . . parar+1(x) – these tuples would be “almost” the
same, except with parar+1(x) instead of x, and this extended ArbitrageForecaster would
be “almost” consistent on Paraphrase.
This is precisely the idea behind recursively applying ArbitrageForecaster to itself: we
recursively define ⟨F⟩r(x) := A(⟨F⟩r−1(J (x)i) for i = 1, . . . n) – then if this iteration
approaches a fixed point, this fixed point ⟨F⟩∞ is consistent. More precisely:
Theorem F.3 (Consistency of recursive ArbitrageForecaster). Let (R,S,J ) be an n-ary
consistency check and a corresponding deterministic tuple sampler satisfying Def F.1, and
have A(p1, . . . pn) and V(p1, . . . pn) denote the arbitraging function and arbitrage metric
corresponding to R as per Def C.1 under a logarithmic scoring rule. Then, for some “base
forecaster” ⟨F⟩0 = F, recursively define

⟨F⟩r(x) := A(⟨F⟩r−1(J (x)i) for i = 1, . . . n)

If this iteration converges pointwise in log-odds space – i.e. if for all x ∈ Prop, the sequence
⟨F⟩r(x) has a limit strictly between 0 and 1, then V(⟨F⟩r(J (x)i) for i = 1, . . . n)→ 0.

Proof. Recall as per Def C.1 that, where Ω is the set of possible outcomes allowed by R:
V(⟨F⟩r(J (x)i) for i = 1, . . . n)

= min
ω∈Ω

n∑
i=1

(log(A(⟨F⟩r(J (x)j) for j = 1, . . . n)i)− log⟨F⟩r(J (x)i)) δω(i)=⊤

+ (log(1−A(⟨F⟩r(J (x)j) for j = 1, . . . n)i)− log(1− ⟨F⟩r(J (x)i))) δω(i)=⊥

= min
ω∈Ω

n∑
i=1

(
log⟨F⟩r+1(J (x)i))− log⟨F⟩r(J (x)i)

)
δω(i)=⊤

+
(
log(1− ⟨F⟩r+1(J (x)i)− log(1− ⟨F⟩r(J (x)i))

)
δω(i)=⊥

Since ⟨F⟩r(x) converges to something that is neither 0 nor 1, so do log⟨F⟩r(x) and log(1−
⟨F⟩r(x)). And as this is true for all x, so in particular it is true for J (x)i. Thus the
expression above is a finite sum of terms that each approach 0.

This is a somewhat weak result: other than for Negation and Paraphrase, none of our
static consistency checks involved a deterministic instantiation process – they all require
sampling other related base questions, and having the checks use the same instantiation
process as the ArbitrageForecaster would be cheating.
Furthermore, this gives us no actual conditions for the convergence of the iteration. At least
for Paraphrase, we have the following – where log odds p denotes log p

1−p :
Theorem F.4 (Convergence of recursive ArbitrageForecaster for Paraphrase). If the

sequence ai = log odds F(parai(x)) is convergent, then the condition of Theorem F.3 holds for
the recursive ArbitrageForecaster defined arbitraged on Paraphrase with tuple sampler
para.

Proof. Recall from Sec C.1 that the arbitraged probability for Paraphrase is simply the
average of the original probabilities in log-odds space, i.e. log oddsA(F(x), F(para(x))) =
log odds F(x)+log odds F(para(x))

2 . We can apply this recursively to get:

⟨F⟩r(x) = 1
2r

r∑
i=0

(
r

i

)
log odds F(parai(x))
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Which is simply a binomial moving average of log odds F(parai(x)) = ai, and converges iff ai
does. Convergence in log-odds space is equivalent to convergence of probability to something
other than 0 or 1, so the result follows.

F.1 Choices of experiments

A single call to ⟨F⟩
C⃗

, where C⃗ := [(R1,S1,J1), ...(Rk,Sk,Jk)], involves 1 +
∑

i(nRi
− 1)

calls to F, plus at least
∑

i(mRi
+ nRi

− 2) (where mRi
is the number of separate base

questions that must be generated synthetically in each tuple) LLM calls for the Jis.
For all the checks listed in Table 3, this amounts to a total of 49 LLM calls per question.
For a recursive ArbitrageForecaster set-up of depth r, this amounts to 49r LLM calls per
question, which can get prohibitively expensive. Even on gpt-4o-mini and assuming ≈ 600
input tokens and 600 output tokens on average, this amounts to ≈ $0.02 per question at
depth r = 1, and ≈ $2500 per question at depth r = 4.
Furthermore, it was not clear that experimenting on all checks made logical sense: recursive
ArbitrageForecaster set-ups with Cond, CondCond and ExpEvidence would involve
forms like P | (Q | R), which do not have a basis in probability theory. We decided
to prioritize studying the following hypotheses and research questions, motivated by the
theoretical discussion above:

1. We hypothesised above that ArbitrageForecaster will be particularly effective
on checks that are symmetric and have deterministic instantiations – thus
we studied ⟨gpt-4o-mini⟩Negation.

2. We hypothesized that there would be consistency gains from increasing depth
r – thus we studied recursive ArbitrageForecaster setups on Negation an Para-
phrase, where it was most practical to.

3. We were interested to know if the consistency gains observed when arbitraging
on one check alone would persist after arbitraging on a sequence of checks
– to predict if this would hold when arbitraging on the full sequence of checks, we did
a preliminary run of ⟨gpt-4o-mini⟩Negation,Paraphrase and tested if it maintains
consistency on Negation and Paraphrase.

4. We expected ⟨F⟩ExpEvidence to improve ground truth and consistency
scores across the board. This is based on our intuition that arbitraging on
ExpEvidence essentially “informs” the forecast on a question x with consideration
information y – except instead of subjectively feeding this information (e.g. in chain-
of-thought), it adjusts for it via a strict probabilistic rule. Although a recursive
setup would not make sense for ExpEvidence, ⟨F⟩[ExpEvidence]∗r simply sequentially
arbitrages on ExpEvidence repeatedly (breaking the seed each time to ensure unique
new questions y), which amounts to informing the forecast for x with information
y1, y2 etc.

The results reported in Sec 5 of the main body and F.2 of the Appendix provide evidence in
favour of hypotheses 1 and 2, answer 3 in the affirmative, and do not provide clear evidence
on 4.
Future work should compare ⟨F⟩[ExpEvidence] against a comparable chain-of-thought model
in which the forecaster is asked to consider these related questions before it makes its forecast.

F.2 Results tables for ArbitrageForecaster

Consistency violation and ground truth results for each of the ArbitrageForecaster config-
urations we experimented with are reported in Tables 4, 5, 6 and 7. The results included
are for the NewsAPI dataset and the arbitrage metric. Results for the scraped and 2028
synthetic datasets (Appendix K), as well as for the frequentist metric, look very similar; they
are available in the supplementary data of this paper.
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Table 4: Consistency results (arbitrage metric) for ⟨gpt-4o-mini⟩rNegation (denoted CF-Nr)
forecasters on NewsAPI questions.

Check gpt-4o-mini CF-N1 CF-N2 CF-N3 CF-N4
Avg Frac Avg Frac Avg Frac Avg Frac Avg Frac

Negation 0.036 43% 0.012 33% 0.007 22% 0.004 11% 0.004 9%
Paraphrase 0.013 27% 0.012 36% 0.008 23% 0.006 16% 0.005 17%
CondCond 0.084 85% 0.111 88% 0.121 91% 0.129 94% 0.136 93%
ExpEvidence 0.015 27% 0.009 35% 0.008 25% 0.007 26% 0.007 25%
Consequence 0.005 10% 0.003 9% 0.003 7% 0.002 4% 0.001 3%
And 0.006 20% 0.019 45% 0.027 53% 0.031 59% 0.035 65%
Or 0.007 13% 0.004 10% 0.002 6% 0.002 6% 0.001 4%
AndOr 0.017 38% 0.024 58% 0.031 61% 0.033 67% 0.035 66%
But 0.053 75% 0.081 84% 0.091 89% 0.100 88% 0.107 91%
Cond 0.062 88% 0.085 92% 0.107 91% 0.119 94% 0.131 96%
aggregated 0.030 0.036 0.041 0.043 0.046
Brier score 0.185 0.204 0.202 0.201 0.201

Table 5: Consistency results (arbitrage metric) for ⟨gpt-4o-mini⟩rParaphrase (denoted CF-Pr)
forecasters on NewsAPI questions.

Check gpt-4o-mini CF-P1 CF-P2 CF-P3 CF-P4
Avg Frac Avg Frac Avg Frac Avg Frac Avg Frac

Negation 0.036 43% 0.028 49% 0.026 50% 0.023 46% 0.024 44%
Paraphrase 0.013 27% 0.006 22% 0.004 11% 0.002 6% 0.002 3%
CondCond 0.084 85% 0.083 83% 0.079 85% 0.080 83% 0.079 84%
ExpEvidence 0.015 27% 0.014 28% 0.012 24% 0.011 28% 0.012 28%
Consequence 0.005 10% 0.002 4% 0.001 3% 0.001 2% 0.001 2%
And 0.006 20% 0.004 12% 0.005 13% 0.004 12% 0.004 12%
Or 0.007 13% 0.005 10% 0.004 9% 0.003 10% 0.003 9%
AndOr 0.017 38% 0.015 41% 0.014 42% 0.013 39% 0.013 39%
But 0.053 75% 0.053 76% 0.049 77% 0.051 79% 0.048 79%
Cond 0.062 88% 0.066 93% 0.071 95% 0.069 95% 0.071 95%
aggregated 0.030 0.028 0.026 0.026 0.026
Brier score 0.185 0.176 0.175 0.174 0.175

Table 6: Consistency results (arbitrage metric) for ⟨gpt-4o-mini⟩r[Negation,Paraphrase] (de-
noted CF-NPr) forecasters on NewsAPI questions.

Check gpt-4o-mini CF-NP1 CF-NP2 CF-NP3 CF-NP4
Avg Frac Avg Frac Avg Frac Avg Frac Avg Frac

Negation 0.036 43% 0.014 30% 0.007 18% 0.004 9% 0.003 6%
Paraphrase 0.013 27% 0.006 17% 0.003 7% 0.002 2% 0.001 2%
CondCond 0.084 85% 0.095 90% 0.096 86% 0.108 94% 0.115 94%
ExpEvidence 0.015 27% 0.010 27% 0.007 27% 0.006 22% 0.005 21%
Consequence 0.005 10% 0.003 7% 0.001 3% 0.001 2% 0.001 0%
And 0.006 20% 0.011 30% 0.010 28% 0.011 34% 0.012 39%
Or 0.007 13% 0.004 11% 0.002 5% 0.001 4% 0.001 2%
AndOr 0.017 38% 0.017 43% 0.016 46% 0.016 46% 0.016 47%
But 0.053 75% 0.070 85% 0.072 91% 0.077 91% 0.083 97%
Cond 0.062 88% 0.082 96% 0.076 97% 0.076 97% 0.077 98%
aggregated 0.030 0.031 0.029 0.030 0.031
Brier score 0.185 0.188 0.195 0.200 0.202

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 7: Consistency results (arbitrage metric) for ⟨gpt-4o-mini⟩[ExpEvidence]∗r

(denoted CF-rxEE1) forecasters on NewsAPI questions.

Check gpt-4o-mini CF-1xEE1 CF-2xEE1 CF-3xEE1 CF-4xEE1
Avg Frac Avg Frac Avg Frac Avg Frac Avg Frac

Negation 0.036 43% 0.030 51% 0.026 49% 0.024 50% 0.025 53%
Paraphrase 0.013 27% 0.008 22% 0.006 22% 0.005 19% 0.005 18%
CondCond 0.084 85% 0.057 82% 0.053 79% 0.050 76% 0.044 74%
ExpEvidence 0.015 27% 0.008 22% 0.007 19% 0.007 16% 0.007 20%
Consequence 0.005 10% 0.003 8% 0.002 7% 0.002 5% 0.002 6%
And 0.006 20% 0.002 6% 0.002 6% 0.002 4% 0.001 5%
Or 0.007 13% 0.004 9% 0.003 8% 0.002 8% 0.003 9%
AndOr 0.017 38% 0.014 42% 0.011 39% 0.010 34% 0.011 35%
But 0.053 75% 0.040 71% 0.039 74% 0.040 77% 0.035 68%
Cond 0.062 88% 0.049 88% 0.046 89% 0.044 88% 0.040 87%
aggregated 0.030 0.021 0.020 0.019 0.017
Brier score 0.185 0.172 0.171 0.171 0.173
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G Prompts for the evaluation pipeline

In this section, we present the prompts used for the different parts of our pipeline. For
each LLM call, we use gpt-4o with a structured output Pydantic format enforced by the
Instructor library Liu (2024) and JSON API calls. The whitespace in the figures is not
representative of the whitespace in actual queries.

Synthetic question generation prompt
I want you to help me generate some forecasting questions for a forecasting market site like
Metaculus or PredictIt. I will provide you with a category and some tags. Your task is to
generate questions that can be answered with a probability between 0 and 1. For each tag,
generate a relevant question if the tag is pertinent to the category. If the tag is not relevant,
generate a general question about the category.
Examples:
{example_1}
{example_2}
{example_3}
{example_4}
{example_5}
{example_6}
Category: {category} Tags: {tags}

Figure 14: The prompt used for generating the title field of forecasting questions, given the
category and tags metadata.

A list of initial quality-filtered questions is supplied to seed the list of examples.

Relevance scoring prompt
I’m doing a project that involve eliciting probabilities from LLMs to measure the calibration,
consistency and such properties of LLM forecasters. As part of this project we will be taking
logical combinations of forecasting questions and eliciting probabilities on them. I need your
help in deciding, for two given forecasting questions, whether it makes sense to think about
their logical combinations/whether it’s worth doing so.
For example, we might want to elicit the probability of
‘Will Donald Trump win the 2024 US presidential election? AND Will US economic growth
exceed 3.5% in 2025?’
because Trump winning the election might potentially (positively or negatively) affect economic
growth in the following year.
But we probably wouldn’t care about the probability of
‘Will Donald Trump win the 2024 US presidential election? AND Will the men’s deadlift
record be broken in 2025?’
because those seem wholly unrelated.
Can you help me with this? I will just give you two forecasting questions, and you must give me

1. One or more examples of reasons someone might be interested in the logical
combination of those questions; based on how realistic these reason(s) are, provide–

2. a score between 0 and 10 to advise me on whether it makes sense to consider their
logical combination (with 0 being ‘the logical combination is nonsensical, nobody
would ever ask something like that’, 10 being ‘yeah that’s a perfectly legitimate
question I could imagine seeing that on Manifold or Metaculus’)

Figure 15: The prompt used to decide whether two questions are related enough to be
combined in an instantiated tuple.
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Tuple instantiation prompt – Or
You are a helpful assistant. I will give you two forecasting questions with Yes/No answers. You
should then give me the logical OR of these two questions, i.e. the question that would be
answered YES if EITHER question is answered YES, and NO otherwise. Notes:

• Your response should be as clear as possible, since the words ‘and’ and ‘or’ are used
ambiguously in natural language. For example, ’Will P happen or will Q happen? is
usually confusing, as it sounds like you are asking which of the two will happen
(whereas you’re actually seeking a YES/NO answer on whether either of the two will
happen). Instead, if there is any chance of confusion, you should give me something
like: Will either of the following occur: (a) P (b) Q?

• When the questions allow for a simple rephrasing or factorization (e.g. using words
like ‘respectively’, ‘both’ or ‘either’), go for it.

• If one or both of the given questions is already a logical combination of questions, join
them in the most natural way possible. E.g.

– combine ((P1 OR P2) OR Q) how you would combine (P1 OR P2 OR Q)
– ((P1 AND P2) OR Q) might have to be combined as something like: Will

EITHER of the following occur: (1) BOTH of the following occur: (a) P1 AND
(b) P2 (2) Q. Unless a more natural formulation exists.

• Be careful when combining conditional expressions (which often have words like ‘given’
and ‘if’). ‘(Given A then P) OR (Given B then Q) should be combined as is, rather
than messing up the conditions. E.g. a phrasing like ’Will either of the following occur
given their respective conditions: (a) Given A then P? (b) Given B then Q?’ is good.

• This also applies when only one of the questions is conditional. Like ‘P OR (Given A
then Q)’should be phrased as something like: ’Will either of the following occur given
their respective conditions are met? (a) P (b) Given A, then Q?’.

• Most importantly: make sure you retain ALL the information in the question bodies
from BOTH base questions! You cannot discard a single relevant detail. All this is for
an experiment to test the logical consistency of forecasters: The combined question
you give will be handed to the forecasters without having seen the base questions, so it
is critical that all the information in the base questions be included in your logical
combination; the resolution criterion for each component should be neatly and clearly
provided.

• Also, make sure that the title is self-sufficient independent of the body, i.e. is a
question that can be meaningfully answered without looking at the body. So you
CANNOT give me a question title like ‘Is the following true?’ or ‘What will happen if
the following happens?’

• One type of question you may be given is a single choice from a multiple choice
question. For example, you may be given ‘Which of these countries will legalize human
cloning by 2030? (Japan)’. This is asking if Japan will recognize and legalize human
cloning by 2030. Such a question may also itself be a logical combination – e.g. ’Which
of these countries will legalize human cloning by 2030? (UK, France, or Germany) is
asking if any either of the UK, France, or Germany will legalize human cloning by
2030. Make sure to correctly combine such combinations as previously described.

Figure 16: The prompt used for instantiating Or tuples. We use similar prompts for other
checks.
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Verification prompt – Consequence
I will provide you with two propositions, P and Q. Your task is to assess whether Q is a
proposition that will always be true if P is true. In other words, validate whether Q is a logical
implication of P, ensuring that Q will always occur if P is true. Reject if P and Q are
completely equivalent. Q should be a logical consequence of P, but not necessarily the other
way around. Reject if you need any additional assumptions to derive Q from P. Reject if Q is
just formed by making some resolution criteria more vague / not operationalizing them (but
accept if it is made by actually loosening some resolution criteria while still precisely defining
everything). Reject if Q is ‘ERROR: NO CONSEQUENCE FOUND’ or something like that.
Example 1:
P: A computer can receive emails.
Q: A computer is connected to the internet.
reasoning: If a computer can receive emails (P), then it must be connected to the internet (Q),
as an internet connection is necessary for receiving emails. Therefore, Q is a logical
consequence of P.
valid: True
Example 2:
P: The ground is wet.
Q: It is raining.
reasoning: I can easily imagine the ground being wet (P true) without it raining (Q false). So P
does not imply Q.
valid: False
Example 3:
P: It is daytime.
Q: The sun has risen and not set yet.
reasoning: The two statements are logically equivalent, as daytime (P) is defined by the sun
being above the horizon and not having set yet (Q). So Q is a logical consequence of P, but also
completely equivalent to it, therefore not useful to us.
valid: False
Example 4:
P: Will at least 50 percent of the world’s population live in Asia by 2050?
Q: Will Asia have at least 3 billion residents by 2050?
reasoning: They probably thought Q was a logical consequence of P because the world
population is 8 billion, half of that is 4 billion, so if Asia has more than 4 billion people it must
have more than 3 billion people. However, this assumes that the world population in 2050 is 8
billion, which we do not know for certain. Without knowing the world population in 2050, we
cannot judge if 50 percent of that is more or less than 3 billion.
valid: False
Example 5:
P: Will ANY of the following happen in 2025? (a) A manned mission to Mars (b) A new
Starship launch by SpaceX?
Q: Will a manned mission to Mars happen in 2025?
reasoning: Suppose only a new starship launch happens, but no manned mission to Mars. Then
P is true, but Q is false. So Q is not a logical consequence of P.
valid: False
Example 6:
P: Will there be an epidemic of meningococcal diseases in 2025? (An epidemic is defined as a
disease with an infection rate of over 15 per 100,000 people over a span of two consecutive
weeks.)
Q: Will there be an epidemic of meningococcal diseases in 2025? (An epidemic is defined as a
disease that infects a large number of people over a short span of time.)
reasoning: Q just makes the definition of an epidemic more vague, so we do not count it.
valid: False
Example 7:
P: Will there be an epidemic of meningococcal diseases in 2025? (An epidemic is defined as a
disease with an infection rate of over 15 per 100,000 people over a span of two consecutive
weeks.)
Q: Will there be an epidemic of meningococcal diseases in 2025? (An epidemic is defined as a
disease with an infection rate of over 10 per 100,000 people over a span of two consecutive
weeks.)
reasoning: Q is a logical consequence of P, as the definition of an epidemic in Q is a subset of
the definition of an epidemic in P. If an epidemic is defined as infecting more than 15 per
100,000 people, it must also be true that it infects more than 10 per 100,000 people, as 15 is
more than 10.
valid: True

Figure 17: The prompt used to verify the generated Consequence tuple is logically valid.
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H Feedback form examples

Example Entry

• title: Will the United Kingdom deploy an AI-powered public surveillance system with
real-time facial recognition capabilities by 2025?

• body: Resolution criteria: This question will resolve as Yes if, by December 31, 2025,
the United Kingdom has officially deployed a public surveillance system that utilizes
artificial intelligence for real-time facial recognition across any part of its public spaces.
The system must be capable of identifying individuals and matching them to a database
with at least an 85% accuracy rate. The deployment of such a system must be confirmed
by an official government announcement or documentation. In the absence of a public
announcement, credible reports from at least three major news organizations (e.g., BBC,
The Guardian, Reuters) will be considered sufficient evidence. The system must be
operational and not in a trial phase. If multiple systems are deployed, the resolution will
consider the first system that meets these criteria. In the event of a partial deployment
(e.g., limited to specific cities or areas), the question will resolve as Yes if the system is
intended to be expanded nationwide. Edge cases, such as temporary deployments for
specific events or the use of similar technology in private spaces, will not count towards
this question’s resolution.

• resolution_date: 2025-12-31 00:00:00+00:00
• metadata:

– tags: [United Kingdom]
– category: [Artificial Intelligence]

Example Feedback

• bad_or_irrelevant_included_information:
• unintuitive_or_wrong_resolution_criteria:
• too_specific_criteria_or_edge_cases:
• ambiguities: Should specify which public news agencies would count as resolution.
• edge_cases_not_covered:
• general_feedback :
• formatting_issues:
• rewritten_title::
• rewritten_body: Resolution criteria: This question will resolve as Yes if, by December

31, 2025, the United Kingdom has officially deployed a public surveillance system that
utilizes artificial intelligence for real-time facial recognition across any part of its public
spaces. The system must be capable of identifying individuals and matching them to a
database with at least an 85% accuracy rate. The deployment of such a system must be
confirmed by an official government announcement or documentation. In the absence of
a public announcement, credible reports from at least three major news organizations
(BBC, The Guardian, Reuters, Bloomberg, New York Times, Washington Post) will
be considered sufficient evidence. The system must be operational and not in a trial
phase. If multiple systems are deployed, the resolution will consider the first system
that meets these criteria. In the event of a partial deployment (e.g., limited to specific
cities or areas), the question will resolve as Yes if the system is intended to be expanded
nationwide. Edge cases, such as temporary deployments for specific events or the use of
similar technology in private spaces, will not count towards this question’s resolution.

• rewritten_resolution_date:
• discard_reason:
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I Consistency around a question

There is no particular reason why we need a starting dataset to measure consistency over
questions and the corresponding instantiated tuples; a single starting question suffices. We
give a preliminary exploration of a pipeline for measuring consistency around a given question.
This pipeline is especially useful when we have a dataset of questions and want a consistency
metric for each of these questions. For example, to understand how much consistency helps
with understanding the correctness of a forecast, we want a per-question consistency metric
to compare with a dataset of Brier scores.
We follow a similar process as in Section 3.1 and Section 3.2. We start with a dataset
of questions we want consistency metrics around, and then few-shot prompt gpt-4o (see
Figure 18) to generate related questions for each source question. We follow the deduplication
process based on text-embedding-3-small embeddings from OpenAI to ensure diverse
questions.
As in Section 3.1, after title creation, we generate question bodies and resolution dates using a
few-shot prompt to gpt-4o. Next, this dataset of each source question followed by generated
related questions are used to create logical tuples in the same form as in Section 3.1. We
ensure that each source question is included in the tuple, along with the necessary number
of related questions for the specific check: 1 for Negation, 2 for Cond, and so on.
For tuples where the order of the questions matter, such as Cond(P , Q|P , P ∧Q), we allow
the source question to take the position of P or Q. Overall, we get a dataset of tuples for
each source question, such that the source question is included in the tuples. We follow
the same steps for verification and evaluation. For evaluation around a source question, we
aggregate the consistency metrics by source question.

Synthetic question generation prompt for source question
Objective: Generate a set of forecasting questions for a forecasting market site like Metaculus
or PredictIt. I will provide a source question. Your task is to generate {num_questions} new
related questions that are logically related to the provided source question. Each new question
should be suitable for probabilistic evaluation and should logically combine with the source
question in a meaningful way.
Guidelines:
- The new questions should explore related scenarios, alternate outcomes, consequences and
prerequisites of the source question.
- Consider alternate outcomes, timelines, or deeper implications that are connected to the
theme of the source question.
- Each question should be binary and can be answered with a probability between 0 and 1.
The source question will optionally include a body (detailed resolution criteria). If the source
question has a body, use it to inform the generation of related questions. You still need to
generate only single sentences, not detailed resolution criteria.
Examples:
{example_1}
{example_2}
{example_3}
Source question: {source_question}
=> Related questions:

Figure 18: The prompt used for generating the title field of related questions, given a source
question.
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J Creating FQs with known resolution from news articles

This section describes a pipeline for creating forecasting questions with known ground-
truth resolutions using news articles retrieved from NewsAPI 7. We derive an initial set
of forecasting questions directly from the news articles. Then, to ensure broader coverage
and mitigate dataset biases inherent to this approach of generating questions, we generate
additional questions by spanning their reference classes, modifying key components like
location or entity while preserving thematic and temporal consistency.
Finally, we verify and, where necessary, assign ground-truth resolu-
tions to all generated forecasting questions via the Perplexity API
(perplexity/llama-3.1-sonar-huge-128k-online), see Appendix J.3 The ground
truth resolutions given by perplexity/llama-3.1-sonar-huge-128k-online are not
always correct, but have an error rate of less than 5% when applied to the scraped question
dataset.

J.1 NewsAPI-based forecasting question generation

We use NewsAPI due to its diverse set of sources and free availability, making it suitable for
our application. Additionally, we curate a list of reliable news sources, such as Associated
Press, which tend to provide more informative and factual content rather than opinion-based
articles. These sources yield a higher volume of articles grounded in real-world events that
can be effectively transformed into forecasting questions.
We gather daily news articles from 1 July 2024 to 31 August 2024 through NewsAPI. These
articles include fields such as the title, content, description, and publication date, and are
consolidated into a single file for further processing.
At this stage, we encounter an issue: conflicting news articles from different dates report
opposing information. For instance, one article states that President Joe Biden confirms
his candidacy for the 2025 U.S. Elections, while a later article claims he withdraws. These
discrepancies lead to the generation of forecasting questions with contradictory resolutions.
To address this, we remove older articles that are highly similar to more recent ones by
calculating a Named Entity Recognition (NER) similarity score8, based on the ratio of
shared entities to unique ones. Articles surpassing a certain similarity threshold are treated
as duplicates, allowing us to discard outdated and repetitive information and resolve the
issue as in the Biden problem above.
We feed processed articles to gpt-4o to determine their suitability for creating forecasting
questions with binary resolutions, judging them based on parameters such as clarity of
content, contextual relevance, binary resolution potential, and specificity. The prompt for
this is in 19.

7https://newsapi.org/
8https://spacy.io/models/en
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Example Validated News Article with Reasoning

• Article

– Source

∗ ID: bloomberg
∗ Name: Bloomberg

– Author: Bloomberg
– Title: HDFC plans to sell $1.2 billion of loans to plug funds gap
– Description: The bank is in talks with local asset managers including ICICI

Prudential AMC, Nippon Life India Asset Management and SBI Funds Management
to issue so-called pass through certificates

– URL: https://www.bloomberg.com/news/articles/2024-08-30/hdfc-bank-
plans-to-sell-1-2-billion-of-loans-via-rare-debt-tool

– Image URL: https://bl-i.thgim.com/public/todays-paper/tp-
news/e3asi7/article68587355.ece/alternates/LANDSCAPE_1200/Private-
sector-G29D92OKN.4.jpg.jpg

– Published At: 2024-08-31T13:27:56Z
– Content: HDFC Bank plans to sell as much as 100 billion ($1.2 billion) of loan

portfolios using a debt instrument it rarely used, as the nation’s banks devise ways
to overcome challenges in raising deposits...

• Validation Result: true
• Validation Reasoning:

– The article provides clear information about HDFC Bank’s plan to sell $1.2 billion
of loans, which is a concrete and definitive event.

– It mentions the involvement of local asset managers, giving context to the transaction.
– The specificity of the information is sufficient to generate forecasting questions, such

as whether the sale will be completed by a certain date or if specific asset managers
will participate.

– The event has a binary resolution potential, as the sale will either occur or not.
– However, the article’s content is truncated, but it still contains enough information

to support actionable predictions.
– Therefore, the article meets most criteria for generating forecasting questions.

Articles identified as suitable for forecasting questions are then processed by our Rough
Forecasting Question Generator module using gpt-4o. This generator follows structured
guidelines (described in 20) to extract clear and unambiguous Yes/No questions based solely
on the article’s information. Each question consists of a clear and precise title that adheres
to temporal guidelines, ensuring the resolution date aligns with the article’s month. The
body provides essential context without superfluous details, and the ground-truth resolution
is directly derived from the source article.
Further, we include a pose date (set to October 1st, 2023) in the prompt to ensure temporal
clarity. This is only relevant for NewsAPI-based FQs and should not be confused with the
created_date in Appendix A.1. For example, when an event is referenced as happening in
2024, the pose date prompts the LLM to add relevant context, preventing disambiguation
issues for forecasters unfamiliar with the event. The resulting intermediate data structure,
containing the question’s title, body, and resolution, is then passed to the Final Forecasting
Question Generator for further refinement.
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Example Rough FQ Data

• Article Title: Death toll is now 8 in listeria outbreak tied to Boar’s Head deli meat,
CDC says

• Article Description: It’s the largest listeria outbreak since 2011. On July 29, the recall
was expanded to include all foods produced at the firm’s plant in Jarratt, Virginia.

• Article Content: At least eight people have died after being infected with listeria from
Boar’s Head deli meats tied to a massive recall last month, federal health officials said
Wednesday. The new food poisoning to. . . [+7300 chars]

• Article URL: https://apnews.com/article/listeria-boars-head-recall-
d57985525441b6c5dffd310769b0e6c5

• Article Published At: 2024-08-28T21:15:00Z
• Forecasting Question Title: Will the listeria outbreak tied to Boar’s Head deli meat

result in more than 5 confirmed deaths by August 2024?
• Forecasting Question Body:

– This question resolves as YES if, by August 31, 2024, there are official reports
confirming more than 5 deaths attributed to the listeria outbreak linked to Boar’s
Head deli meats.

– Official confirmation must come from credible sources such as the CDC or equivalent
health authorities, and reported by at least two reputable news outlets.

– If the death toll remains 5 or fewer, the question resolves as NO.
• Forecasting Question Resolution: true

Our experiments indicate that claude-3.5-sonnet produces better-phrased questions than
gpt-4o; however, it occasionally generates hallucinated content and introduces fabricated
details not found in the original article. To leverage Claude’s strengths in phrasing while
addressing this concern, we incorporate a validation prompt into the Final Forecasting
Question Generator process. This prompt (21) assesses the intermediate (rough) forecasting
questions on multiple criteria, ensuring clarity and removing elements that suggest a direct
derivation from a news article, including the article’s publication date. After validating these
questions, we rephrase them to minimize overly specific details, thereby enhancing their
generality and facilitating their predictability.
The Final Forecasting Question Generator subsequently validates the resolutions of the
rephrased forecasting questions (using 22). This process involves prompting gpt-4o to
evaluate the generated questions against their respective source news articles. The LLM
determines whether a binary resolution is applicable or if the question cannot be answered
based on the information provided in the article. This approach effectively filters out questions
that do not derive directly from the news articles and imposes the necessary constraints
of clarity and specificity. By focusing solely on the factual content available at the time
of publication, the generator ensures that the resolutions are both definitive and accurate.
We then verify the NewsAPI-generated FQs with a common FQ verification step to ensure
correct structure and format.
We generate a dataset of forecasting questions using NewsAPI articles published between
July 1, 2024, and August 31, 2024, inclusive, as described in the above pipeline.
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Example Final FQ

• ID: 43b7f07f-02e2-432c-8912-1311aa5f1af8
• Title: Will Hawaii enact legislation restricting the public carrying of non-firearm weapons

by August 2024?
• Body: This question will resolve as YES if, by August 31, 2024, Hawaii officially passes

and enacts legislation that imposes new restrictions on the public carrying of non-firearm
weapons, such as bladed weapons or other non-firearm implements previously affected by
the recent legal change. The legislation must specifically address the carrying of these
weapons in public spaces. For a YES resolution, the new law must be officially enacted
and reported by at least two reputable news sources (e.g., Associated Press, Reuters,
local Hawaiian news outlets). If no such legislation is passed and enacted by the specified
date, or if any enacted legislation does not specifically restrict the public carrying of
non-firearm weapons, the question will resolve as NO.

• Resolution Date: 2024-08-31T23:59:59
• Question Type: binary
• Data Source: synthetic
• Created Date: 2024-06-30T23:59:59
• URL: None
• Metadata:

– Article Information:

∗ Article URL: https://apnews.com/article/hawaii-gun-rights-weapons-
second-amendment-f61c972ebbb28fb21baa28385fa069cd

∗ Article Date: 2024-08-28 10:46:38
∗ Article Description: Second Amendment activists in Hawaii are celebrating a

recent legal change that allows them to carry not just guns but other weapons
— from battle-axes to butterfly knives — openly in public. Hawaii has long had
strict weapons laws and some of the lowest rate. . .

∗ Article Title: Bikinis, surfboards and battle-axes? Hawaii loosens long-strict
weapons laws after court ruling...

∗ Article Content: HONOLULU (AP) Hawaii’s tourist hotspot of Waikiki is
known for bikinis, shopping and surfboards. But resident Andrew Roberts has
recently introduced a different item on evening walks through his neighborhood...
[+5086 chars]

– Pose Date: 2023-10-01 00:00:00
• Resolution: false

J.2 Generating diverse FQs through reference class spanning

A critical issue in forecasting inquiries is the inherent bias towards current phenomena, which
results in an overrepresentation of outcomes associated with actively reported events. For
instance, if a forecasting question posits whether Colorado will conduct a referendum on
abortion rights by July 2024 and the answer resolves as Yes due to media coverage, this
introduces a distortion within the dataset. Similar inquiries—such as whether Nevada will
pursue a comparable referendum or whether Colorado will address unrelated topics like
gaming regulation—may be inadequately represented or entirely omitted, thus perpetuating
a bias towards current phenomena. This imbalance prevents us from effectively testing
forecasters’ ability to predict a wider array of potential scenarios, limiting the evaluation to
outcomes associated with current events and reported phenomena.
To mitigate this bias, we advocate for the implementation of the Reference Class Spanner
methodology, which utilizes gpt-4o to systematically create a set of additional forecasting
questions within the same reference class 9 by modifying essential entities or components
(prompted with 23). This approach ensures that the dataset reflects a more extensive

9https://en.wikipedia.org/w/index.php?title=Reference_class_problem&oldid=1229577621
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spectrum of outcomes rather than being disproportionately skewed towards events reported
as occurring.
The Reference Class Spanner method generates new forecasting questions by varying one to
two core components of the original question while preserving its resolution date and thematic
structure, thereby facilitating broader scenario exploration. For example, it transforms the
question “Will Tesla complete a major software upgrade for over 1.5 million vehicles in
China by August 2024?” into “Will Ford complete a major software upgrade for over 1.5
million vehicles in the states by August 2024?” This approach promotes diversity in potential
outcomes and significantly mitigates bias toward positive outcomes by producing a set of
high-quality forecasting questions within the same reference class. By prompting the LLM to
change multiple key components simultaneously—such as the company name or location—we
ensure that the questions generated remain plausible and relevant. We verify the structure
of the generated questions and subsequently input them into our Perplexity Verification
Module to attach ground truth resolutions.

Table 8: NewsAPI Generated FQs. Represents the number of data points generated until
creation of reference spanned FQs using J.2.

Data July 2024 August 2024 Total
Initial News Articles 533 486 1019
Validated News Articles 381 363 744
Rough FQ Data 457 375 832
Final Validated FQs 117 104 221
Reference Spanned FQs 2517 2246 4763
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Examples of reference spanned FQs

• Original Question

– ID: 54667f62-5119-4c3e-bedf-37e3b94bd49f
– Title: Will India report a successful winter crop season for wheat and rapeseed by

August 2024?
– Body: This question will resolve as YES if, by August 31, 2024, India reports a

successful winter crop season for wheat and rapeseed, characterized by yields meeting
or exceeding the average of the past five years. The success must be confirmed by
official agricultural statistics from the Indian Ministry of Agriculture and Farmers’
Welfare or at least three reputable news sources (such as Reuters, Bloomberg, or
The Economic Times). For this question, ’successful’ is defined as the combined
production of wheat and rapeseed being at least 5% above the five-year average. If
the winter crop season does not meet these criteria, or if insufficient data is available
to make a determination, the question resolves as NO.

• Spanned Questions

– Spanned Question 1
∗ ID: 041133ab-2358-4c06-9580-86ade14f4026
∗ Title: Will Pakistan report a successful winter crop season for wheat and

sugarcane by August 2024?
∗ Body: This question will resolve as YES if, by August 31, 2024, Pakistan reports

a successful winter crop season for wheat and sugarcane, characterized by yields
meeting or exceeding the average of the past five years. The success must be
confirmed by official agricultural statistics from the Pakistan Ministry of National
Food Security & Research or at least three reputable news sources (such as
Reuters, Bloomberg, or The Economic Times). For this question, ’successful’
is defined as the combined production of wheat and sugarcane being at least
5% above the five-year average. If the winter crop season does not meet these
criteria, or if insufficient data is available to make a determination, the question
resolves as NO.

– Spanned Question 2
∗ ID: 42c713c2-ecea-4208-876d-af0b38dab566
∗ Title: Will Turkey report a successful winter crop season for wheat and hazelnuts

by August 2024?
∗ Body: This question will resolve as YES if, by August 31, 2024,...

– Spanned Question 3
∗ ID: bbe55403-c062-44cf-a0a8-2d96e68d9f2a
∗ Title: Will Iran report a successful winter crop season for wheat and pistachios

by August 2024?
∗ Body: This question will resolve as YES if, by August 31, 2024,...

J.3 Verifying the FQ resolutions using a Perplexity-based question
resolver

To ensure a high-quality benchmark, we verify or attach resolutions to every forecasting
question generated in the previous stages. This verification process uses the Perplexity API
(llama-3.1-sonar-huge-128k-online), querying models with internet access to determine
if the question can be resolved with current information. If the question is resolvable, we
obtain and attach the resolution. In cases where Perplexity cannot resolve the question, or if
the resolution differs from the one originally derived from the source article, we discard that
question.
For questions formed through reference class spanning, we directly attach the resolution
obtained from Perplexity. For those generated from news articles, we focus on verifying the
accuracy of the initial resolutions to ensure consistency and reliability in our dataset. As of
the creation of the NewsAPI FQ dataset up until J.2, Perplexity maintains an accuracy of
over 95%, with half of the discrepancies arising due to contradictory internet data (which
makes the resolution unclear even to the authors). Due to the potential of such label noise,
we adopt the Brier score instead of the log scoring rule for all ground truth metrics.
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Table 9: Question Verification and Resolution Data for July and August 2024. Notably,
the final count of resolved questions is lower than the combined totals for both months,
as questions with existing resolutions that differ from those suggested by Perplexity are
discarded.

Data July 2024 August 2024 Total
Total Questions Generated 2517 2246 4763
Filtered for Verification 2516 2246 4762
Questions Discarded After Perplexity 1005 1090 2095
Resolved with Final Resolution Attached 1511 1156 2667

Final Total Questions Resolved 2621

We create a ground-truth resolved dataset (20240701_20240831_gpt-4o_spanned_resolved.jsonl)
comprising of 2621 forecasting questions which is used for tuple instantiation. Further,
we filter out 1000 questions (20240701_20240831.jsonl) from this set, consisting of all of
the NewsAPI generated FQs and a subset of the reference-spanned questions, to use as a
ground-truth dataset in our experiments.
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News Article Validation Prompt
System Prompt:

• You are an AI agent responsible for evaluating news articles to determine their
suitability for generating forecasting (prediction) questions that can be answered with
a definitive YES or NO. Assess each article against the following criteria to ensure
clarity, relevance, and factual accuracy:

– Clarity of Content: Is the information presented clearly and straightforwardly?
Reject articles that are overly convoluted or difficult to understand.

– Focus on Definitive Events: Does the article discuss concrete events that have
occurred or are planned? Evaluate articles referencing past events based on their
clarity and context.

– Contextual Relevance: Does the article provide adequate context for the
events discussed? While some background gaps are acceptable, the article should
allow for a reasonable understanding of the events.

– Specificity of Information: Is the information detailed enough to formulate
precise forecasting questions? Reject articles that are too vague to support clear
predictions.

– Binary Resolution Potential: Does the article imply a resolution that can be
confirmed as TRUE (YES) or FALSE (NO)? Articles may contain subjective
elements but should lead to a binary outcome.

– Completeness of Information: Does the article provide sufficient detail to
create multiple high-quality forecasting questions? Brief articles are acceptable as
long as they contain enough information.

– Numerical Clarity: If applicable, does the article present clear thresholds or
metrics for numerical data? Some ambiguity is acceptable, but numerical
references should be understandable.

– Sufficiency for Definitive Resolution: Does the article provide enough
information to formulate forecasting questions that yield definitive resolutions
from the current date until the specified resolution date in {month_name},
{year}? Ensure the content supports actionable predictions based on concrete
events, assuming the current date is {pose_date}.

– Truncated Information: Truncated information is NOT a cause for rejection.
Accept articles that can form prediction questions, even if they reference past
events not covered by the LLM’s knowledge.

• An article that meets most of these criteria is considered "complete" and suitable for
generating forecasting questions, even if it contains minor ambiguities or references
past events that may not be fully known.

User Prompt:

• Please evaluate the following news article based on the established criteria for
completeness: {source_news_article}

• Based on your assessment, determine if the article is "complete" and suitable for
generating forecasting questions. Provide a brief justification for your decision.

Figure 19: Validation prompt used to judge whether a processed news article can be used to
create a forecasting question with a binary resolution.
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Rough FQ Generation Prompt
System Prompt:

• Objective: Generate forecasting questions that can be definitively answered with
YES or NO, based on the provided news articles, while testing a forecaster set in the
past.

• Forecaster’s Context: The forecaster’s present date is set to {pose_date}, so all
questions must be framed as if this is the current date. Although the articles may
reference future events, your questions must be phrased in a way that the forecaster
cannot detect the actual date of question creation.

• Clarity & Precision:

– Each question must be clear, specific, and unambiguous.
– Avoid subjective terms like "significant" or any similar ambiguity.
– Do not reference sensitive topics such as religion, politics, or gender.

• No Temporal Hints:

– Do not include any information or context that implies the question was created
after {pose_date}.

– Ensure no indication that the article is used to inform the question, keeping the
creation date fully hidden.

• Resolution Period:

– If you phrase the resolution date as "by {month_name}, {year}", then resolution
of each question must remain definitive and applicable from the current date
until {month_name}, {year}.

– If you phrase the resolution date as "in {month_name}, {year}", then resolution
of each question must remain definitive and applicable for the month of
{month_name} in {year}.

– Ensure the question’s outcome is verifiable and binary (YES or NO) during this
period.

• Context from Articles:

– Use concrete events from the articles, providing enough background to make the
question understandable.

– Ensure questions are diverse, covering a wide range of topics without bias or
triviality.

• Goal: Generate a diverse set of precise and objective forecasting questions that
seamlessly align with the forecaster’s assumed timeline without revealing the true
creation date or source of the information.

Figure 20: Prompt used to generate an intermediate (rough) forecasting question consisting
of just the title, body and resolution from a news article. Continued on the next page.
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Rough FQ Generation Prompt (Continued)
User Prompt:

• Task: Based on the provided news article, generate multiple high quality forecasting
questions that follow these structured guidelines. Each question must consist of a title,
body, and resolution. The generated forecasting questions must only be formed using
information from the article and no other extrapolations or inferred information.

• News Article: {source_article}
• Title Guidelines:

– YES/NO Clarity: Formulate each question so that it can be definitively answered
with a YES or NO, based on the article’s content.

– Avoid Sensitive Topics: Do not reference religion, politics, gender, or race.
– Direct and Precise: Titles must be straightforward and unambiguous, avoiding

vague terms.
– Resolution Date: Include a resolution date using the format "by {month_name},

{year}?" or "in {month_name}, {year}?", whichever is more suitable for the
context.

– Context for Clarity: Provide enough context if event names may not be clear as
of the forecaster’s present date ({pose_date}).

– Named Entities: There is no limit on the number of named entities from the
article, but the question should avoid becoming overly specific.

– Planned or Announced Events: Frame planned events as proposals or
announcements rather than completed facts, including sufficient context to avoid
ambiguity.

• Body Guidelines:

– Disambiguation: Stay focused on the title’s core question without introducing
unrelated details.

– No Extra Information: Only include relevant context to support the title.
• Resolution Guidelines:

– Binary Outcome: Resolutions must be clearly marked as True for YES and False
for NO.

– Stable Outcome: Ensure the resolution remains consistent and unchangeable
until the resolution date.

– Definitiveness: The resolution must be verifiable based solely on the content of
the article.

• General Guidelines:

– Avoid Specific Knowledge: Do not require specialized knowledge that could
disadvantage forecasters unfamiliar with niche topics.

– Base Questions on Article Content: Ensure all forecasting questions are directly
derived from the article’s content, avoiding speculative or inferred details.

Examples included in the prompt have been skipped for brevity.
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Final FQ Validation and Rephrasing Prompt
System Prompt:

• You are an expert in validating and rephrasing forecasting (prediction) questions
based on news articles. A forecasting question consists of a title, body, and resolution.

• Your task is to ensure that each question adheres to the established guidelines and to
enhance the phrasing of valid questions. It is important to note that while we are
formulating these questions after knowing the resolutions, the forecaster will assume
they are answering them as of {pose_date}. The resolution date for the questions
should be set as {month_name}, {year}.

• Guidelines to be followed are:
1. Forecaster’s Context:

– The forecaster’s present date is set to {pose_date} so all questions must be
framed as if this is the current date. Although the articles may reference
future events, your questions must be phrased in a way that the forecaster
cannot detect the actual date of question creation.

2. Clarity & Precision:
– Each question must be clear, specific, and unambiguous.
– Avoid subjective terms like "significant" or any similar ambiguity.
– Do not reference sensitive topics from religion, politics, or gender.

3. No Temporal Hints:
– Do not include any information or context that implies the question was

created after {pose_date}.
– Ensure no indication that the article is used to inform the question, keeping

the creation date fully hidden.
4. Resolution Period:

– If you phrase the resolution date as "by {month_name}, {year}", then
resolution of each question must remain definitive and applicable from the
current date until {month_name}, {year}.

– If you phrase the resolution date as "in {month_name}, {year}", then
resolution of each question must remain definitive and applicable for the
month of {month_name} in {year}.

– Ensure the question’s outcome is verifiable and binary (YES or NO) during
this period.

5. Factual Basis:
– Questions should be directly supported by the article content and not include

fabricated information.
User Prompt:

• You are tasked with the following steps:
1. Validation:

– Check if the forecasting question adheres to the provided guidelines. A
question is valid if it aligns with the guidelines.

2. Rejection:
– Reject the question if it violates any guidelines. The rejected form should be:

{example_rejected_fq}.
3. Rephrasing:

– For valid questions, rephrase them to enhance clarity, specificity, and
compliance with the guidelines while retaining the original intent. Do NOT
add any new information that wasn’t included in the original question.

• High-Quality Forecasting Question Examples: Some Examples
• Task:

– Carefully validate and rephrase the following forecasting question:
{source_rough_fq_data}.

Figure 21: Prompt used validate the structure of NewsAPI generated forecasting questions
and then rephrase them to enhance predictability.
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Final FQ Resolution Validation Prompt
System Prompt:

• You are an AI agent tasked with verifying the resolution of forecasting questions based
solely on the content of a provided news article. Your role is crucial in ensuring that
the resolutions are definitive and accurately reflect the information available at the
time the question was posed.

– Factual Basis: The resolution should be based on the factual information present
in the news article.

– Publication Perspective: Your assessment should be made from the perspective of
the article’s publication date, not any other date.

– Inference Guidelines: Reasonable inferences are acceptable, but do not fabricate
details or speculate beyond what is stated in the article.

– Response Options: Use the ‘None‘ option if there is absolutely no information in
the article that allows for a reasonable inference of either YES or NO. If the
article provides any relevant context or information that can lead to a definitive
answer, choose either ‘True‘ or ‘False‘.

User Prompt:

• Consider the following news article:
– Title: {article_title}
– Description: {article_description}
– Content: {article_content}
– Date: {article_date}

• Now, consider this forecasting question: {question_title}
• For additional context, use the following information to disambiguate the question:

{question_body}
• Your task is to determine the resolution of the question based solely on the factual

information present in the news article, assuming the article’s publication date is the
current date. Return:

– ‘True‘ if the answer to the question can be reasonably inferred as YES.
– ‘False‘ if the answer to the question can be reasonably inferred as NO.
– ‘None‘ if there is absolutely no information in the article that allows for a

reasonable inference of either YES or NO.
• Please provide a brief justification for your answer, citing specific details from the

article that support your reasoning.

Figure 22: Prompt used to verify whether a forecasting question formed using NewsAPI has
the correct resolution using the source article.
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Forecasting Question Generation Prompt
System Prompt:

• Objective: Generate high-quality forecasting questions (FQs) by spanning the
reference class of a given source question. Your goal is to enhance the diversity of the
dataset while minimizing bias.

• Reference Class: In probability theory, a reference class refers to a group of similar
events or outcomes that share common features. Your task is to create new forecasting
questions by varying key components (e.g., location, topic, action, or subject) of the
source question, ensuring they stay within the same reference class.

• Key Requirements:

– Consistency in structure and thematic integrity with the original source question.
– Vary only one to two key elements while ensuring logical consistency.
– The new questions should remain unresolved.
– Use the same resolution date as the source question.

• Question Structure:

– YES/NO clarity, avoid sensitive topics, direct and precise titles.
– Context for clarity with a clear binary outcome for resolutions.
– Retain the same resolution date as the source forecasting question.

User Prompt:

• The source forecasting question is: {source_forecasting_question}.
• Instructions:

– Identify the core components (event type, location, key subjects, or outcomes) of
the source question.

– Replace one to two significant elements with a similar entity while maintaining
logical structure.

– Ensure balance and neutrality, with a diverse probability distribution of possible
outcomes.

– Verify that the new questions remain realistic, relevant, and unresolved as of now.
– Create {num_questions} forecasting questions by spanning the reference class of

the provided source question.

Figure 23: Prompt used to generate high-quality forecasting questions by varying key
elements of a source question using reference class spanning. Examples have been omitted
for brevity.
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K 2028 synthetic questions consistency check dataset

This section presents a set of questions with a resolution date in 2028. These questions were
created using a prompt similar to the one in Figure 14, with two key additions:

1. Target Resolution Date: The prompt specifies a target resolution date, in this
case January 1, 2028. And asks the model to propose questions about events
happening before the resolution date, or in the year of the resolution date. About
half of the initial few shot examples are modified with the chosen resolution date.

2. Creation Date: The prompt includes a creation date, in this case October 1,
2024. This is crucial to prevent the generation of questions that could be trivially
answered on the creation date, but are in the future from the perspective of the
model knowledge cutoff.

Below are two example questions from this dataset:

Examples of Synthetic Questions with 2028 Resolution

• Synthetic Question 1

– ID: 2f2e7e08-5241-40ba-8ad1-5a037408388c
– Title: Will Australia’s GDP grow by at least 3% annually for three consecutive

years before January 1, 2028?
– Body: This question will be resolved as ’Yes’ if Australia’s GDP, as reported by the

Australian Bureau of Statistics, grows by at least 3% annually for three consecutive
years at any point between October 1, 2024, and January 1, 2028. The growth rate
must be based on official annual GDP growth figures released by the Australian
Bureau of Statistics.

– Additional Details:
∗ Question Type: Binary
∗ Resolution Date: 2028-01-01 00:00:00
∗ Created Date: 2024-10-01 00:00:00
∗ Data Source: Synthetic
∗ Category: Economy & Business
∗ Tags: Australia

• Synthetic Question 2

– ID: 93eafe80-e854-4d29-bbe7-da52d851025c
– Title: Will Switzerland hold a national referendum on joining the European Union

before January 1, 2028?
– Body: This question will be resolved as ’Yes’ if, between the creation date of this

question (October 1, 2024) and January 1, 2028, Switzerland holds a national
referendum on the issue of joining the European Union. The referendum must
be officially sanctioned by the Swiss government and the results must be publicly
announced.

– Additional Details:
∗ Question Type: Binary
∗ Resolution Date: 2028-01-01 00:00:00
∗ Created Date: 2024-10-01 00:00:00
∗ Data Source: Synthetic
∗ Category: Geopolitics
∗ Tags: Switzerland

We create 1000 verified (see verification paragraph in Section 3.1) base forecasting questions
resolving in 2028. From these, we run the consistency check instantiation pipeline in
Section 3.2, to create 300 tuples per check, for a total of 3000 tuples. We then run a single
forecaster on this benchmark to get a sense of baseline performance on our dataset.
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Table 10: Consistency metrics for CoT-GPT-4o-08 on the synthetic 2028 questions dataset.

Arbitrage Arbitrage Scaled Frequentist
Check Avg Frac Avg Frac Avg Frac
Negation 0.033 49% 0.016 49% 0.178 50%
Paraphrase 0.014 37% 0.007 37% 0.107 38%
CondCond 0.044 65% 0.011 54% 0.296 89%
ExpEvidence 0.031 35% 0.008 23% 0.186 50%
Consequence 0.003 7% 0.001 7% 0.021 8%
And 0.020 23% 0.007 18% 0.080 25%
Or 0.016 36% 0.006 24% 0.105 37%
AndOr 0.034 46% 0.008 36% 0.190 49%
But 0.050 58% 0.017 54% 0.317 81%
Cond 0.042 66% 0.014 60% 0.242 71%
Aggregated 0.029 - 0.010 - 0.172 -

We plan to release a leaderboard of forecasters for this dataset upon publication. The
consistency metrics on this dataset might provide the best proxy available for comparing
long-term forecasting ability of LLM forecasters, but many caveats apply.
Future work may consider creating a similar benchmark with a secret subset, to prevent new
forecasters from being trained to cheat on this benchmark. Note that, due to the lack of
ground truth resolutions, accidental training on the dataset does not automatically invalidate
any consistency metric, as opposed to what happens with standard benchmarks.
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