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ABSTRACT

While graph neural networks have demonstrated potential across various appli-
cations, explaining their predictions on dynamic graphs remains largely under-
explored. This paper introduces a new research task: self-interpretable GNNs
for continuous-time dynamic graphs (CTDGs). We aim to predict future links
within dynamic graphs while simultaneously providing causal explanations for
these predictions. There are two key challenges: (1) capturing the underlying
structural and temporal information that remains consistent across both indepen-
dent and identically distributed (IID) and out-of-distribution (OOD) data, and (2)
efficiently generating high-quality link prediction results and explanations. To
tackle these challenges, we propose a novel causal inference model, namely the
Independent and Confounded Causal Model (ICCM). ICCM is then integrated
into a deep learning architecture that considers both effectiveness and efficiency.
Extensive experiments demonstrate that our proposed model significantly out-
performs existing methods across link prediction accuracy, explanation quality,
and robustness to OOD data. Our code and datasets are anonymously released at
https://github.com/2024SIG/SIG.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated remarkable efficacy in representing graph-
structured data. However, the inherent opacity of GNNs poses challenges in comprehending and
trusting their predictions, particularly in high-stakes domains such as fraud detection in financial
systems (Kumar et al., 2019) or disease progression prediction in healthcare (Li et al., 2021), where
interpretability is important.

Recent advancements in explainable Graph Neural Networks (GNNs) have aimed to unravel the
underlying rationale guiding GNN predictions (Yuan et al., 2022). These models are broadly clas-
sified into two categories: post-hoc interpretable models (Ying et al., 2019; Xia et al., 2022; Luo
et al., 2020; Lv & Chen, 2023) and self-interpretable models (Zhang et al., 2022a; Wu et al., 2022b;
Liu et al., 2022a). Post-hoc interpretable models focus on elucidating the behaviors of the pri-
mary predictive GNN model after its construction without altering its structural or training aspects.
Conversely, self-interpretable models are inherently transparent in their decision-making processes,
obviating the requirement for additional post-hoc techniques. Existing self-interpretable models
include decision trees (Kotsiantis, 2013), subgraph extraction based models (Liu et al., 2024; Yin
et al., 2024; Deng & Shen, 2024), attention-based mechanisms (Shu et al., 2019), rule-based models
(Setnes et al., 1998; Geng et al., 2023), and causal inference models (Wu et al., 2022b; Zhang et al.,
2022b). These models inherently provide interpretability, offering explanations of their predictions
without relying on auxiliary interpretive methods.

This work tackles a novel research task: the development of self-interpretable models for continuous-
time dynamic graphs (CTDGs). Unlike static graphs or discrete-time dynamic graphs (DTDGs), CT-
DGs continuously evolve with time, enabling more precise modeling of dynamic processes. How-
ever, achieving interpretability in CTDGs presents two challenges. The first challenge is suscep-
tibility to shortcut features, which is a prevalent issue in most existing self-interpretable models.
Shortcut features are patterns that provide good performance on test data but fail to generalize to
out-of-distribution (OOD) data (Geirhos et al., 2020). Recent causal inference methods (Wu et al.,
2022b; Fan et al., 2022; Sui et al., 2022; Liu et al., 2022a) have been developed to address this
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challenge by performing interventions on graphs. However, they are based on static graphs or DT-
DGs, and cannot effectively handle the CTDGs. The second challenge is the efficiency of the
self-interpretable model. This challenge is amplified in CTDGs due to their constantly evolv-
ing structures. Different from static or discrete-time graphs, CTDGs undergo continuous node and
edge additions/deletions, resulting in a much larger number of possible topologies. This signifi-
cantly increases the computational burden of performing interventions in causal inference models
for CTDGs. Exhaustive sampling of topologies becomes computationally expensive, while limited
sampling might hinder model effectiveness.

Designing self-interpretable models for CTDGs is intricate, as the model must meet three critical
requirements: (1) Handle both independent and identically distributed (IID) and out-of-distribution
(OOD) data; (2) Capture invariant subgraphs in both structural and temporal aspects; (3) Perform
interventions efficiently. To fulfill these requirements, we propose a novel self-interpretable GNN
(SIG) method. SIG initiates with a theoretical analysis of the problem from a causal effect perspec-
tive and proposes a novel causal inference model, namely the Independent and Confounded Causal
Model (ICCM). ICCM incorporates two key components: the Independent Causal Model (ICM) and
the Confounded Causal Model (CCM). The ICM is designed for IID data, where the causal subgraph
is the unique exogenous variable influencing the predictive label. In contrast, the CCM is tailored for
OOD data, where shortcut features act as confounding factors, creating backdoor paths that result
in spurious correlations between causal subgraphs and prediction labels. SIG employs interventions
to disrupt these “backdoor paths” and mitigate the influence of confounding factors in CCM. To
achieve efficient intervention optimization, SIG utilizes the Normalized Weighted Geometric Mean
(NWGM) (Xu et al., 2015) instead of directly pairing causal subgraphs or their representations with
each element in the confounders set. During implementation, SIG leverages a deep learning cluster-
ing technique to approximate the actual confounders within CTDGs, thereby reducing computational
costs. SIG generates final predictions based on both temporal and structural representations from
the CTDG, along with these confounders.

The main contributions of this paper are summarized as follows:

• We investigate a new research task on CTDGs, which outputs not only the prediction label but
also a concise causal subgraph for the prediction. To the best of our knowledge, the proposed SIG
is the first self-interpretable GNN for CTDGs that is capable of handling both IID and OOD data.

• We present a thorough causal analysis of SIG, elucidating the causal effects and underlying mech-
anisms. This theoretical analysis serves as the foundation for our innovative model design and
optimization strategies.

• We develop a novel deep learning framework that implements the theoretically established causal
models, effectively and efficiently addressing challenges of self-interpretability on CTDGs.

• Extensive experiments on five real-world datasets demonstrate that SIG significantly outperforms
state-of-the-art methods in link prediction, graph explanation, and handling OOD datasets.

2 RELATED WORK

Dynamic Graph Neural Networks. Dynamic graph neural networks encompass two primary
classifications: Discrete-Time Dynamic Graphs (DTDGs) (Ma et al., 2019; Qin et al., 2023) and
Continuous-Time Dynamic Graphs (CTDGs) (Li et al., 2017; De Winter et al., 2018; Li et al.,
2023). DTDGs comprise a sequence of static graph snapshots captured at regular time intervals
(Sankar et al., 2020; Yu et al., 2018; Mahdavi et al., 2018). CTDGs capture the evolution of graphs
by considering modifications on the graph that occur continuously rather than discretely at prede-
fined time steps (Xu et al., 2020; Trivedi et al., 2019; Feng et al., 2023). However, these GNNs focus
on modeling graph dynamics and fail to offer sufficient interpretability for the underlying processes.

Explainability of Graph Neural Networks. The majority of existing explainable GNNs fall into
the category of post-hoc interpretable GNNs. These frameworks are formulated as an optimization
task that maximizes the mutual information between a GNN’s prediction and distribution of pos-
sible subgraph structures (Ying et al., 2019; Luo et al., 2020; Xia et al., 2022; Rossi et al., 2022).
However, post-explanation methodologies may encounter inaccuracies or incompleteness in eluci-
dating the genuine reasoning process of the underlying model and require iterative executions of
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the prediction model to delve into the intricate relationships between inputs and outputs, conse-
quently incurring a notable computational overhead. Few efforts are devoted to self-interpretable
GNNs. Prototype-based methods (Zhang et al., 2022a) learn prototype vectors as explanations.
These methods either fail to produce an explainable subgraph or depend on computationally expen-
sive subgraph exploration techniques. Neighborhood-based methods (Dai & Wang, 2021), while
effective in capturing local node and structure similarity, might include many extraneous details or
miss out on key structural patterns that are critical for interpretation. They often fail to distill the
graph into a form that clearly communicates the rationale behind a model’s prediction. Subgraph
extraction-based methods (Liu et al., 2024; Zheng et al., 2023; Yin et al., 2024; Deng & Shen, 2024;
Feng et al., 2022; Liu et al., 2022b) identify the most influential subgraph for decision-making. They
may neglect the influence of confounding factors, potentially leading to inaccurate explanations.

Causal Inference on Graph Neural Networks. Causal inference seeks to unveil and comprehend
the causal variables responsible for observed phenomena. On real-world graphs, uncovering these
causal variables becomes an act of explanation, revealing the “why” behind intricate relationships.
Most existing methods focus on static graphs. These approaches either manipulate non-causal el-
ements within a graph to create counterfactual graph data, as demonstrated in (Wu et al., 2022b),
or utilize implicit interventions at the representation level, as shown in (Sui et al., 2022; Fan et al.,
2022; Miao et al., 2022). The method most closely associated with this context is DIDA (Zhang
et al., 2022b), an invariant rational discovery approach specifically designed for DTDGs. DIDA re-
quires the construction of an intervention set for each node and snapshot. When the graph is divided
into too many snapshots, applying DIDA becomes time-consuming. Conversely, dividing the graph
into too few snapshots leads to a loss of significant time-related information. The correlations and
differences between related studies and this work can be found in App. D.2

3 PROBLEM DEFINITION

This paper investigates a new problem of developing a self-interpretable graph learning model tai-
lored for the analysis of continuous-time dynamic graphs, with a particular emphasis on its inherent
capabilities for link prediction and explainability.

Definition 1 (Continuous-Time Dynamic Graph (CTDG)). A continuous-time dynamic graph G =
(V, E , T ) comprises a set of vertices V , a set of edges E , and a time domain T . This graph evolves
continuously over time t ∈ T , where at each time instance t, edges might undergo additions, re-
movals, or changes in their characteristics. Formally, the graph G can be denoted as a sequence of
edges G = ⟨eij(tk)⟩. Each edge eij(tk) signifies an interaction occurring between the source node
vi and the target node vj at time tk. Additionally, we introduce xe

ij(tk) to denote the feature vector
of edge eij(tk), while xn

i indicates the feature vector of node vi,

Definition 2 (Self-interpretable GNN for CTDG). Given a CTDG G and two distinct nodes, vi ∈ V
and vj ∈ V , the primary objectives of self-interpretable GNN are twofold: firstly, to accurately
predict whether an edge will form between nodes vi and vj; and secondly, to discern a causal
subgraph that elucidates the underlying reasons for the prediction.

4 CASUAL EFFECT LOOK

4.1 INDEPENDENT CAUSAL MODEL (ICM)

The link prediction label on dynamic graphs can be influenced by both the structural topology and
temporal dynamics (Cong et al., 2023). Consequently, this paper proposes to capture causal infor-
mation emanating from both the structural and the temporal perspectives, as shown in Figure 1 (a).
In this subsection, we formalize the causal inference (Pearl et al., 2000) by inspecting the causali-
ties among six variables: the input graph G, the structural causal subgraph Gs, the temporal causal
subgraph Gt, the temporal feature MT , the structural feature MS and the prediction label Y I . The
following equations summarize the core assumptions:

Assumption 1 (ICM).

Gt, Gs := fext(G), MT := f I
t (Gt), MS := f I

s (Gs), Y I := f I
o (M

T ,MS) (1)
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Figure 1: Causal Models.

In this assumption, fext performs the extraction of causal subgraphs from the input graph G, f I
t (·)

and f I
s (·) encode the causal subgraph into latent representations MT and MS , respectively. f I

o
calculates the ultimate prediction outcome using the MT and MS .

4.2 CONFOUNDED CAUSAL MODEL (CCM)

To handle the confounding variables that may introduce bias in OOD data predictions, we introduce
CCM. As shown in Figure 1 (b), CCM considers confounders consisting of non-causal subgraph Gb

and unobserved variables U , where Gb is the residual part of the graph once the causal subgraphs
are excluded. These confounders contain information about possible shortcut features, which could
lead to spurious correlations between the causal subgraph and the prediction labels.

Let G∗ denote a causal subgraph which is either Gs or Gt. To block the backdoor paths G∗ ← Gb →
Y and G∗ ← U → Y , we perform interventions on G∗. Specifically, we perform interventions as
do(Gs = Cs) based on structural features and do(Gt = Ct) based on temporal features, where
Cs and Ct are constant subgraphs. Through the replacement of Gs with Cs and Gt with Ct ,
these interventions effectively block the backdoor paths, thereby eliminating the previously existing
spurious correlation between G∗ and Y . The foundational assumptions guiding these models are
summarized as follows:

Assumption 2 (CCM).

HS := fC
s (Cs), HT := fC

t (Ct), Y S := fS
o (H

S , U∗), Y T := fT
o (HT , U∗) (2)

Within these formulations, U∗ denotes the set of confounders, which can be either {HS , Gb, U} or
{HT , Gb, U}. fC

s (·) and fC
t (·) are structural and temporal encoders, fS

o (·) and fT
o (·) are structural

and temporal predictors, Y S and Y T represent the prediction labels resulting from structural and
temporal interventions, respectively.

4.3 COMBINATION OF ICM AND CCM (ICCM)

This subsection discusses the Independent and Confounded Causal Model (ICCM), which serves as
the foundation of our proposed SIG framework.

Recall that in ICM, we use MS and MT to capture the structural and temporal features from the
causal subgraph. In CCM, we use HS and HT to denote the structural and temporal representations
from the causal subgraph. To ensure consistency between these models, we define:

HS := MS , HT := MT . (3)

Assumption 3 summarizes the core principles guiding ICCM:

Assumption 3 (ICCM).

Y I := f I
o (H

S , HT ), Y S := fS
o (H

S , U∗), Y T := fT
o (HT , U∗) (4)

where HS and HT are structural and temporal representations from the causal subgraphs, f I
o , fS

o
and fH

o are linear networks followed by a sigmoid activation functions. The following equations
present the mathematical formulation of ICCM:

P
(
Y I = yI |G

)
= σ

(
W I

1 f
IS
y (HS) +W I

2 f
IT
y (HT )

)
, (5)

4
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Figure 2: The deep learning implementation of SIG.

P
(
Y S = yS |do(Gs = Cs)

)
= Ed∼D[σ

(
W c

1 f
s
y (H

S) +W c
3 f

u
y (d)

)
], (6)

P
(
Y T = yT |do(Gt = Ct)

)
= Ed∼D[σ

(
W c

2 f
t
y(H

T ) +W c
4 f

u
y (d)

)
]. (7)

where D denotes the set of confounding factors, W ∗
∗ denotes the model parameters, f∗

y (·) denotes
linear network, σ denotes the activation function. Detailed explanations of Equation 6 and Equation
7 are in App. C.

Equations 6 and 7 require evaluating the model for each confounder d ∈ D with both HS and
HT . This becomes computationally expensive for large temporal networks. To address this, we
leverage the Normalized Weighted Geometric Mean (NWGM) approximation (Xu et al., 2015), i.e.,
Ed∼D[σ

(
W c

∗f
s
y (H

S)+W c
∗f

u
y (d)

)
] ≈ σ

(
Ed∼D[W

c
∗f

s
y (H

S)+W c
∗f

u
y (d)]

)
. After applying NWGM,

Equations 6 and 7 can be reformulated as:

P
(
Y S = yS |do(Gs = Cs)

)
≈ σ

(
W c

1 f
s
y (H

S) +W c
3Ed∼D[f

u
y (d)]

)
, (8)

P
(
Y T = yT |do(Gt = Ct)

)
≈ σ

(
W c

2 f
t
y(H

T ) +W c
4Ed∼D[f

u
y (d)]

)
. (9)

The designed causal model ICCM is exploited as the theoretical underpinning for implementing our
deep learning framework, which will be presented in the next section.

5 DEEP LEARNING IMPLEMENTATION

5.1 OVERVIEW

ICCM relies on structural and temporal representations derived from constant causal subgraphs Cs

and Ct. However, in real-world scenarios, these causal subgraphs are typically unobserved. To
address this issue, SIG employs two causal subgraph extractors to extract structural and temporal
subgraphs Ĉs and Ĉt from the input data. These extracted subgraphs are then used to approximate
Cs and Ct. Figure 2 illustrates the overall structure of the SIG framework. First, the causal subgraph
extraction aims to identify structural and temporal subgraphs Ĉs and Ĉt. These subgraphs are then
encoded into hidden representations HS and HT . Subsequently, the confounder generation com-
ponent produces a confounder dictionary D̂. Finally, both HS and HT are passed to the classifier
f I
o to generate yI . Simultaneously, along with the produced confounder dictionary, HS and HT are

also fed into classifiers fS
o and fT

o to output yS and yT , respectively. We will delve deeper into the
details of each module in the following sections.

5.2 CAUSAL SUBGRAPH EXTRACTING AND ENCODING

Temporal causal subgraph extraction and encoding. Given a dynamic graph G and two nodes
(u and v) for prediction, we initially generate two edge sequences Su and Sv by selecting the top N
most recent temporal edges linked to u and v, respectively. The parameter N functions as a dataset-
specific hyper-parameter. If the number of edges linked to a node is fewer than N , all available
connections will be retained. For each edge eui(tk) ∈ Su, a temporal encoding is performed using

5
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cos
(
(t0 − tk)ω

)
(Cong et al., 2023), where t0 denotes the timestamp used for predicting the edge’s

existence, ω =
{
α−(i−1)/β

}d
i=1

, with α and β representing hyperparameters. This encoding is
combined with its corresponding edge features as [cos

(
(t0 − tk)ω

)
∥xe

ui (tk)].

Let F (0)
u denote the stack of edge features within the sequence Su. A 1-layer MLP-mixer (Tolstikhin

et al., 2021) is employed to produce the final temporal representations, i.e., Fu = MLP-mixer(F (0)
u ).

Two queries and keys are generated for node u and v using: qu = Wm
1 Mean(Fu), Kv = Wm

2 (Fv),
qv = Wm

1 Mean(Fv), Ku = Wm
2 (Fu). The subgraph is generated by:

Me
v = Softmax

(
qTuKv√

d

)
, Me

u = Softmax
(
qTv Ku√

d

)
, Ĉt = TOPk(M

e
u,M

e
v ). (10)

Here, d denotes a specific hyperparameter, and Me
∗ [k] represents the importance score assigned to

the k-th edge within S∗. Consequently, the highest top-k scores in Me
v and Me

u are selected to
construct the temporal causal subgraphs Ĉt. Finally, the temporal representation HT is encoded by:

ht
u = Mean

(
{Fv|v ∈ NT (u)}

)
, ht

v = Mean
(
{Fu|u ∈ NT (v)}

)
, HT = [ht

u||ht
v], (11)

where NT (u) denotes the nodes linked to u in Ĉt.

Structural causal subgraph extraction and encoding. Structural node representation is encoded
based on its n-hop neighborhood: zu = xn

u + Mean
(
{xn

v | v ∈ Nn(u; t0 − T, t0)}
)
. Here,

Nn(u; t0−T, t0) denotes the n-hop neighbors of node u with edge timestamps ranging from t0−T
to t0, where T represents a dataset-specific hyperparameter. The node mask matrices are computed
through the equations:

Mn
v = Softmax

(
zTuZv√

d

)
, Mn

u = Softmax
(
zTv Zu√

d

)
, Ĉs = TOPk(M

n
u ,M

n
v ). (12)

Here, Zu and Zv is the stack of the encoded node features of all nodes in Nn(u; t0 − T, t0) and
Nn(v; t0 − T, t0), respectively. The nodes with the highest top-k scores in Mn

u and Mn
v are chosen

to form the structural causal subgraph. The final structural representation HS is computed by:

hs
u = xn

u+Mean
(
{xn

i |i ∈ Nn
S (u)}

)
, hs

v = xn
v +Mean

(
{xn

i |i ∈ Nn
S (v)}

)
, HS = [hs

u||hs
v], (13)

where xn
v represents the node feature of v, Nn

S (u) represents the n-hop neighbors of u in Ĉs.

5.3 CONFOUNDERS GENERATION

The confounder dictionary is expected to contain representations of all confounders, including non-
causal subgraphs and unobserved factors. In this paper, we collect the representation of each link’s
temporal and structural subgraph, which includes both the causal subgraph and the confounder for
that link. It is important to note that the causal subgraph for one link may serve as the non-causal sub-
graph for another. Therefore, it is reasonable to use these representations to approximate potential
confounders. As the dynamic graph evolves, the number of distinct confounders becomes extremely
large, making it computationally expensive to account for all of them. To address this, we cluster
the representations and use each cluster centroid to approximate a group of similar confounders.

Specifically, given the dynamic graph G = (V, E , T ), we adopt a dynamic GNN encoder (Cong
et al., 2023) to extract the representations for each link in E based on its temporal and structural
subgraph, resulting in the matrix X ∈ R|E|×l, where l denotes the embedding dimension. By
utilizing the deep learning clustering method VaDE (Jiang et al., 2016), we group X into k clus-
ters, i.e., {C1, . . . , Ck} = VaDE(X ). The centroids within each cluster serve as indicators of the
central tendencies, effectively summarizing the overall features or characteristics among subgraph
information within the same cluster. Consequently, computing the cluster-wise average yields a rep-
resentation for each cluster, resulting in a confounder dictionary with the shape D̂ ∈ Rk×l, where
D̂[i] = Mean(Ci). Finally, the expectation of confounders is computed by:

Ed∼D̂[f
u
y (d)] =

|D̂|∑
i=1

αiD̂[i], [α1, α2, . . . , αk] = Softmax

(
(W c

1 D̂)TW c
2 q√

|q|

)
(14)

where W c
1 and W c

2 are learnable matrices. We set q = HS and q = HT for yS and yT , respectively.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.4 PREDICTION AND OPTIMIZATION

Given representations HS and HT , and the expectation of confounders Ed∼D̂[f
u
y (d)], we can make

the final predictions based on Equations 5, 8, and 9.

Intuitively, if a subgraph Ĉ∗ is irrelevant to the final prediction Y , then changing the subgraph should
not affect the prediction. In other words, a subgraph that is relevant to the prediction should have
high mutual information with the label. Formally, the learning objectives of the proposed model can
be formulated as follows:

max
Ω

I(Ĉs, Y ) + I(Ĉt, Y ), s.t. Ĉs⊥U∗, Ĉt⊥U∗ (15)

where Ω is the set of model parameters. I(Ĉ∗, Y ) is the mutual information between the causal
subgraph Ĉ∗ and the label Y , Ĉ∗⊥U∗ means that Ĉ∗ is independent of the unobserved variables
U∗.

Maximizing mutual information is equivalent to minimizing a variational upper bound of the risk
functions (Alemi et al., 2016; Yu et al., 2020). Hence, we define the total learning objective of SIG
as :

L = λiRi(y
I , y) + λtRt(y

T , y) + λsRs(y
S , y), (16)

where Ri, Rt, Rs are risk functions of IID prediction, temporal intervention prediction, and struc-
tural intervention prediction, respectively. λ∗ are hyperparameters, and y is ground-truth label. This
paper adopts cross-entropy loss as risk functionsR∗. Details are in App. C.2.

6 EXPERIMENTS

In this section, we conduct extensive experiments on five dynamic graph datasets. Our experiments
aim to answer the following questions:

• RQ1: Does SIG improve the performance of methods for link prediction in dynamic graphs?

• RQ2: What is the explanation capability of SIG?

• RQ3: How well does SIG perform in mitigating OOD issues?

6.1 EXPERIMENTAL SETTINGS

Dataset and evaluation metrics. We conduct experiments on five real-world datasets:
Wikipedia, Reddit, MOOC, LastFM and SX. We employ the average precision (AP) and area
under the curve (AUC) as the evaluation metrics for link prediction. We adopt fidelity (FID) w.r.t.
sparsity (SP) as the evaluation metrics for graph explanation. Details are in App. E.1 and E.2.

Baselines. Note that the proposed SIG is the first self-interpretable GNN specifically designed for
CTDGs. Given the limited studies in self-interpretable GNNs for dynamic graphs, our evaluation
spans several comparisons by considering different types of baselines. (1) Initially, SIG undergoes
comparison with three existing dynamic GNN models: TGN (Rossi et al., 2020), TGAT (Xu et al.,
2020), GM ori and GM 50n (Cong et al., 2023). These models are designed to handle CTDGs.

Table 1: Comparison with SOTA graph link prediction models w.r.t. AUC and AP. The best scores
are highlighted in bold, and the second highest scores are highlighted in underline.

Model Wikipedia Reddit MOOC LastFM SX
AP AUC AP AUC AP AUC AP AUC AP AUC

TGN 95.54 95.06 95.96 96.16 79.56 81.73 79.03 77.90 68.28 73.64
TGAT 97.25 96.92 98.20 98.12 86.91 88.44 82.46 80.97 71.44 74.01
GM ori 99.75 99.79 99.90 99.91 99.91 99.93 96.16 97.73 97.60 97.62
GM 50n 99.69 99.73 99.92 99.93 99.83 99.86 96.18 97.49 96.94 96.97
DIDA 86.46 89.09 83.04 81.72 97.47 98.43 55.56 54.57 92.33 91.42
SIG 99.94 99.94 99.99 99.99 99.95 99.97 99.96 99.98 99.71 99.70
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Table 2: Comparison with SOTA explanation models. ‘TLE’ indicates that the time limit of 24 hours
was exceeded. ‘FID(SP)’ denotes the best fidelity value FID along with its corresponding occurred
sparsity SP (SP ∈ {0.2, 0.4, 0.6, 0.8, 1.0}). ‘AUFSC’ stands for the Area Under the Fidelity-Sparse
Curve.

Type Model Wikipedia Reddit MOOC LastFM SX
FID(SP) AUFSC FID(SP) AUFSC FID(SP) AUFSC FID(SP) AUFSC FID(SP) AUFSC

Po
st

-h
oc T

G
A

T

ATTN 18.92(1.0) 3.36 TLE TLE TLE TLE TLE TLE TLE TLE
PBONE 18.92(1.0) 2.57 TLE TLE TLE TLE TLE TLE TLE TLE
PGExp 18.92(1.0) 3.18 TLE TLE TLE TLE TLE TLE TLE TLE
TGExp TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE

T
G

N

ATTN 23.90(1.0) 9.48 TLE TLE TLE TLE TLE TLE TLE TLE
PBONE 23.90(1.0) 7.73 TLE TLE TLE TLE TLE TLE TLE TLE
PGExp 23.90(1.0) 7.92 TLE TLE TLE TLE TLE TLE TLE TLE
TGExp TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE

Self-int DIDA 1.31(1.0) 0.34 0(0) -0.75 0(0) -0.17 0(0) -0.17 0(0) -0.47
SIG 53.70(0.6) 42.09 58.21(0.4) 38.29 30.71(1.0) 6.47 28.29(0.2) 17.10 53.94(0.2) 25.86

Table 3: Comparison with SOTA graph explanation models on the sampled datasets.

Type Model Wikipedia sample Reddit sample MOOC sample LastFM sample SX sample
FID(SP) AUFSC FID(SP) AUFSC FID(SP) AUFSC FID(SP) AUFSC FID(SP) AUFSC

Po
st

-h
oc T

G
A

T

ATTN 40.40(1.0) 11.45 36.00(1.0) 5.48 6.29(1.0) 1.35 21.18(1.0) 6.59 22.63(0.4) 20.17
PBONE 40.40(1.0) 6.88 36.00(1.0) 6.51 6.29(1.0) 0.88 21.18(1.0) 6.35 22.33(0.2) 20.97
PGExp 40.40(1.0) 7.63 36.00(1.0) 6.17 6.29(1.0) 1.43 21.18(1.0) 5.49 18.26(1.0) 9.21
TGExp TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE

T
G

N

ATTN 27.62(0.8) 14.66 20.43(1.0) 5.49 1.12(1.0) 0.63 2.79(1.0) 1.13 1.82(0.8) 0.95
PBONE 25.10(1.0) 11.02 20.43(1.0) 8.70 1.12(1.0) 0.63 2.77(1.0) 1.27 4.85(0.2) 2.41
PGExp 25.10(1.0) 10.84 20.43(1.0) 3.03 1.23(0.8) 0.69 2.79(1.0) 1.24 1.04(0.4) -0.44
TGExp TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE

Self-int DIDA 0.90(0.6) 0.34 0(0) -0.75 0(0) -0.07 0(0) -0.17 0(0) -0.47
SIG 54.58(0.6) 42.43 58.27(0.4) 38.19 17.82(0.2) 5.11 28.68(0.2) 17.88 52.63(0.2) 25.26

However, as they lack the capacity to produce explainable outcomes, our comparison primarily fo-
cuses on link prediction tasks across original datasets and synthetic OOD datasets. (2) Additionally,
we compare the proposed model with four post-interpretable models, including an attention-based
explainer (ATTN (Xia et al., 2022)), a perturbing-based explainer (PBONE (Xia et al., 2022)), a
static graph explainer (PGExp (Luo et al., 2020)), and a dynamic graph explainer (TGExp (Xia
et al., 2022)). These models were thoughtfully chosen to represent diverse graph explanation ap-
proaches. Given their post-interpretable nature, our comparison focuses solely on graph explanation
tasks. (3) Further, we compare SIG with DIDA (Zhang et al., 2022b), a self-interpretable GNN for
DTDG. Our comparative analysis with DIDA spans across all tasks. Details are in App. E.4.

6.2 COMPARISON WITH SOTA DYNAMIC GNNS (RQ1)

Table 1 illustrates a comparative analysis between SIG and recent dynamic graph neural networks
w.r.t. link prediction tasks. Among all dynamic graph neural networks, GM ori and GM 50n achieve
higher AP and AUC values compared to TGAT and TGN. These results suggest that recurrent neu-
ral networks and self-attention mechanisms are not always essential for effective temporal graph
learning.

DIDA, a self-interpretable GNN explicitly tailored for DTDGs, obtains low scores across multiple
datasets. This disparity in performance stems from the finer granularity in modeling temporal dy-
namics offered by CTDGs compared to DTDGs. CTDGs enable a more precise representation of
event occurrences, making them inherently more challenging.

SIG consistently outperforms all baselines across all datasets. These results highlight the effective-
ness of SIG’s novel causal inference model and its ability to capture complex temporal relationships
within dynamic graphs, effectively removing the shortcut features that hinder performance.

6.3 COMPARISON WITH SOTA GRAPH EXPLANATION MODELS (RQ2)

Table 2 presents a comparative analysis between SIG and state-of-the-art graph explanation method-
ologies. In this comparison, the category of ‘Post-hoc’ block denotes the application of post-hoc
interpretable models. Building upon prior techniques (Xia et al., 2022), we apply these post-hoc in-
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terpretable models to two dynamic GNN models: TGAT and TGN. Meanwhile, the ‘Self-int’ block
refers to the self-interpretable GNNs designed specifically for dynamic graphs.

Our empirical investigation reveals that all post-hoc interpretable models require over 24 hours to
process the Reddit, MOOC, LastFM, and SX datasets. This extensive computational time is pri-
marily attributed to their reliance on complex computation methodologies for extracting explainable
subgraphs. For instance, TGExp utilizes Monte Carlo Tree Search for subgraph extraction, render-
ing it impractical when generating explanations for each prediction. Although DIDA manages to
produce results within 24 hours, its explanatory performance significantly lags behind SIG. This
occurs because, when transitioning from a cntinuous time dynamic graph to a discrete time dynamic
graph, a significant amount of dynamic information is lost.

Given the prevalent occurrence of TLE issues in most models documented in Table 2, we sought
to assess the efficacy of SIG against established baselines. To this end, we randomly sampled 500
edges from the datasets, following the methodology outlined in (Xia et al., 2022), thereby creating a
test set of edges, as depicted in Table 3. Empirical results reveal that, on average, SIG outperforms
the best baselines by 17.10% and 16.77% concerning FID(SP) and AUFSC, respectively. Notably,
our observations indicate that SIG achieves best fidelity, particularly at sparsity levels below 0.6
across most datasets. Conversely, the majority of existing explainable methods attain best fidelity at
a sparsity of 1. These outcomes underscore SIG’s capability to discern the most distinctive subgraph
as the explanation.

Table 4: Comparison on OOD datasets.

Model Reddit OOD LastFM OOD SX OOD
Split 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
TGN 63.89 59.97 65.15 61.07 65.58 61.46 54.66 53.12 55.67 53.99 56.57 54.66 66.63 59.41 67.46 60.33 67.72 60.88
TGAT 69.00 63.27 70.85 65.14 71.69 65.90 60.83 56.71 62.86 58.56 64.15 59.74 70.83 71.03 70.92 72.55 71.15 73.32
GM ori 99.52 99.66 99.55 99.67 99.56 99.68 92.25 94.89 92.01 94.73 91.92 94.64 96.07 96.43 96.17 96.54 96.20 96.57
GM 50n 99.62 99.71 99.63 99.71 99.63 99.72 90.80 94.42 90.87 94.44 90.90 94.47 85.68 91.18 87.03 91.92 87.61 92.22
DIDA 64.16 63.16 66.08 64.71 67.35 65.67 53.33 54.86 53.34 54.96 53.24 54.29 64.25 66.50 65.66 68.15 66.59 69.26
SIG 99.85 99.90 99.86 99.89 99.90 99.92 99.88 99.93 99.94 99.97 99.92 99.96 99.85 99.86 99.79 99.81 99.81 99.84

6.4 EVALUATION ON OOD DATASETS (RQ3)

Following (Wu et al., 2022a), we generate the OOD datasets by injecting synthetic biases into the
original dataset. For each node, we introduce two times the number of its existing connections as
intervention edges. We employ three scales of 0.4, 0.6, and 0.8 to distinguish between positive
and negative samples within the added intervention edges. Positive samples are drawn from the
edges directly connected to the node, while negative samples are drawn from edges not connected
to the node. Empirical results on OOD Datasets (Table 4) reveal the following observations: 1)
SIG demonstrates superior performance across all datasets and distribution shift scales compared
to existing baselines. While the best baseline, GM ori, achieves comparable results to SIG on the
IID datasets of Wikipedia, Reddit, and MOOC (Table 1), its performance drastically drops on OOD
datasets. 2) SIG exhibits remarkable resilience to varying levels of distribution shift, indicating its
ability to exploit invariant patterns under distribution shift scenarios. This robustness is particularly
evident in the LastFM dataset, where SIG outperforms the best-performing baseline by nearly 8.00%
in terms of AP.

7 CONCLUSION

This paper investigates a novel research problem, which simultaneously produces prediction re-
sults and explanatory subgraphs for continuous-time dynamic graphs. By analyzing this problem
from a causal effect perspective, we introduce the ICCM, a novel causal inference model meticu-
lously designed to address both IID and OOD scenarios for CTDGs. Building upon the theoretical
foundations of ICCM, we propose a novel deep learning architecture, which translates theoretically
established causal models into a practical solution for dynamic graphs. Our extensive empirical eval-
uations demonstrate the superior effectiveness and efficiency of the proposed SIG model, exhibiting
significant advancements over existing methods in link prediction, explainability, and robustness
when handling OOD data.
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Table 5: Notations and descriptions.

Notations Descriptions
G = (V, E , T ) Dynamic graph G with nodes set V , edges set E , and time domain T

eij(tk) The edge between nodes ui and vj occurred at time tk
xe
ij(tk) The feature vector of eij(tk)
xn
i The feature vector of vi

Gs, Gt, Gb Structural causal, temporal causal, and non-causal subgraph in causal model
Cs, Ct Constant structural and temporal subgraph in causal model
M∗, H∗ Hidden representations in causal model

Y The prediction label in causal model
U Unobserved variables in causal model

W ∗
∗ , W ∗

∗ The model parameters
D Confounder dictionary

fs, ft Structural and temporal encoding functions
f∗
y (·) Linear networks

Figure 3: Basic causal inference models.

Causal inference models. The causal relationships between variables can be reflected by causal
models. Figure 3 shows three instances of causal inference models. Chain (Fig. 3 (a)) represents se-
quential relationships where one variable influences another, which subsequently influences a third,
and so on. Fig. 3 (b) illustrates the instance of confound. A variable U is a confounder of the effect
of X on Y if U meets 3 conditions: U is associated with X; U is associated with Y conditional on
X; U is not on a causal pathway from X to Y . The confounder U and backdoor path X ← U → Y
make Y and X spuriously correlated. For instance, low blood pressure is seemingly linked to a
higher risk of mortality. However, this association may be misleading, as it would be influenced by
the confounding effect of heart disease. In this scenario, blood pressure (X) might appear as a direct
cause of mortality (Y ). Yet, the confounder heart disease (U ) is associated with both low blood
pressure and mortality.

Do-operation. The do(X = x) operator is a mathematical tool used to simulate interventions within
a model. As shown in Fig. 3 (c), it works by altering specific functions associated with X in the
model, replacing them with a constant X = x, while keeping the remaining model unchanged.

In the case of blood pressure (X) and mortality (Y ), employing the do(X = ‘low’) or do(X =
‘normal’) operator entails fixing the blood pressure variable to a low or normal state for individu-
als. This intentional manipulation facilitates the analysis of mortality, particularly concerning the
alteration in blood pressure, while holding other influential factors constant. Since it’s impractical
to collect data directly using the do-operation, adjustment formulas are proposed to compute the
probability P (Y = y | do(X = x)). The adjustment formula is shown as follows:

P (Y = y | do(X = x))

=
∑
u∈D

[P (Y = y | U = u, do(X = x))P (U = u | do(X = x))]

=
∑
u∈D

[P (Y = y | U = u,X = x)P (U = u)] .

(17)

Here, D represents the confounders dictionary, P (Y = y | U = u,X = x) represents the proba-
bility considering the causal feature X and confounding factors U , and P (U = u) denotes the prior
probability of these confounding factors. Note that P (Y = y | X = x) ̸= P (Y = y | do(X = x))
unless there are no confounders present.
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C MORE DETAILS ON SECTION 4 AND SECTION 5

C.1 DETAILED EXPLANATIONS OF EQUATION 6 AND EQUATION 7

Equation (6) can be derived as follows:
P (Y S = yS | do(Gs = Cs))

=
∑
u∈D

P (Y S = yS | U = u, do(Gs = Cs))P (U = u | do(Gs = Cs))

=
∑
u∈D

P (Y S = yS | U = u,Gs = Cs)P (U = u)

= Eu∈D
[
P (Y S = yS | U = u,Gs = Cs)

]
= Eu∈D

[
fS
o (f

C
s (Cs), d)

]
= Eu∈D

[
fS
o (H

S , d)
]

= Ed∼D[σ
(
W c

1 f
s
y (H

S) +W c
3 f

u
y (d)

)
].

(18)

Similarly, we can derive Formula (7) as follows:
P (Y T = yT | do(Gt = Ct))

=
∑
u∈D

P (Y T = yT | U = u, do(Gt = Ct))P (U = u | do(Gt = Ct))

= Ed∼D[σ
(
W c

2 f
t
y(H

T ) +W c
4 f

u
y (d)

)
].

(19)

C.2 RISK FUNCTIONS

The risk functions are formulated as:

Ri(y
I , y) =

1

|E|
∑
e∈E

yelog(y
I
e) + (1− ye)log(1− yIe)

Rt(y
T , y) =

1

|E|
∑
e∈E

yelog(y
T
e ) + (1− ye)log(1− yTe )

Rs(y
S , y) =

1

|E|
∑
e∈E

yelog(y
S
e ) + (1− ye)log(1− ySe ).

(20)

Here, the set E refers to the training dataset, which comprises pairs of positive and negative samples.
Positive samples originate from the original edge sets, while negative samples are generated by
substituting the destination nodes with randomly sampled nodes from the vocabulary, maintaining
an equal ratio to the positive samples. The variable ye denotes the ground-truth label of edge e,
assuming a value of 1 for positive samples and 0 for negative samples.

C.3 TIME COMPLEXITY ANALYSIS

It takes O(|P1| · N) time to extract the temporal causal graph and generate the temporal represen-
tation, where |P1| is the number of learnable parameters in the causal graph extractor fext, and N
is a hyperparameter denoting the number of recent edges for representation generation. It takes
O(|Vn| · |x|) time to extract the structural causal graph and generate the structural representation,
where |Vn| is the number of nodes in the n-hop neighborhoods of two nodes for prediction and |x| is
the number of node features. The prediction takes O(|P2|) time, where |P2| is the number of param-
eters in the prediction model. Therefore, the total complexity of SIG is O(|P1| ·N+ |Vn| · |x|+ |P2|).

D FURTHER ANALYSES

D.1 PROBLEM ANALYSIS

In the domain of explainable dynamic graph link prediction, a causal subgraph is extracted from the
dynamic graph and elucidates the rationale behind the predicted label. A straightforward approach
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Figure 4: Example of shortcut features.

involves utilizing subgraph extraction techniques to extract the causal subgraph, from the initial
graph G. Subsequently, link prediction is performed based on the information encoded within the
extracted causal graph. Though this straightforward method may perform well w.r.t. IID data, its
performance would downgrade when handling OOD data, as it is susceptible to the influence of
confounding factors, i.e., variables correlated with both the causal subgraph and the target variable.
These confounding factors can originate from the remaining subgraph of G that is not encompassed
by causal subgraph or can arise from latent and unobserved variables.

In the example in Figure 4, where a node x consistently establishes a connection with node u in the
triadic closure pattern (red) within the training data. Though the triadic closure pattern is the reason
for the link between u and v, this straightforward method may tend to capture the bridging link (blue)
rather than recognizing the specific triadic closure pattern. This bridging link could be a shortcut
feature. In the test data, if the triadic closure pattern does not appear, the aforementioned models
may still predict the link (u, v) as long as it sees the bridging link. The presence of shortcut features
makes it difficult to capture essential mechanisms, leading to inaccurate predictions. Therefore, it is
crucial to carefully consider the potential for confounding factors when designing the model.

D.2 RELATIONSHIPS WITH RELATED MODELS

This section delves into the connections between the proposed SIG framework and other relevant
models in the research field.

DIR (Wu et al., 2022b) is an invariant rational discovery method specifically designed for static
graphs. Similar to SIG, DIR mitigates spurious correlations between Gc and Y through the adoption
of a do-operation. However, DIR’s approach to performing the do-operation differs from that of SIG.
DIR modifies non-causal elements in the graph to generate counterfactual graph data, while SIG
employs the Normalized Weighted Geometric Mean (NWGM) approximation to efficiently estimate
the causal effect without directly modifying the graph structure.

DIR’s learning strategy is formulated as follows:

minEc[R(Ŷ , Y )|do(Gs = s)] + λV ars
(
R(Ŷ , Y )|do(Gs = s)

)
, (21)

whereR represents the risk function, Ŷ denotes the predicted label, and λ controls the trade-off be-
tween minimizing interventional risks and their variance. DIR aims to minimize both interventional
risks and their variance, ensuring that the model is not overly sensitive to specific interventions.
However, these interventions can pose computational challenges, especially as graph sizes increase.

Without classifiers f I
o and fT

o , and using the same do-operation implementation method as DIR, the
proposed SIG methodology becomes equivalent to DIR. This demonstrates that SIG encompasses
DIR as a special case, while capturing the temporal information and offering improved computa-
tional efficiency through the NWGM approximation.

DIDA (Zhang et al., 2022b) is an invariant rational discovery method specifically designed for DT-
DGs. Its learning strategy aligns with that of DIR, aiming to minimize interventional risks and their
variance. However, DIDA proposes an approximation to the intervention process by sampling and
replacing the variant pattern representation instead of directly modifying the original graph structure.
This approach aims to reduce the computational burden of interventions in DTDGs.

The probability function associated with DIDA’s intervention process is expressed as follows:

P (Y = y|do(Gc = C)) = Ed∼D[Softmax
(
g(zc + zd)

)
] (22)
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Table 6: Summary of dataset statistics.

Dataset Wikipedia Reddit MOOC LastFM SX
#edge 157,474 672,447 411,749 1,293,103 1,443,339
#node 8,227 10,000 7,047 1,980 194,085
#dim-E 172 172 / / /
#dim-N / / / / /

where zc and zd represent the hidden representations for the cause and bias graph, respectively. g(·)
makes predictions using both zc and zd. Notably, DIDA requires the construction of an intervention
set, denoted as D, for each node and time step, which requires expensive sampling.

By omitting the classifier f I
o , integrating structural and temporal interventions, discarding the

NWGM approximation, and utilizing the same implementation approach, the proposed SIG method-
ology becomes equivalent to DIDA. This again highlights the generality of SIG and its ability to
incorporate existing methods as special cases.

GraphMixer (GM) (Cong et al., 2023) presents a neural network architecture specifically designed
for temporal graphs. Its main goal is to learn effective representations of temporal graphs for pre-
dictive tasks. If the causal subgraph extraction and the do-operation are omitted from the SIG
framework, SIG reduces to GM.

In summary, SIG represents the first self-interpretable GNN tailored explicitly for both IID and
OOD CTDGs. Temporal graph neural networks designed for CTDGs, such as GM, fail to pro-
vide explainable outcomes. Moreover, existing self-interpretable graph neural networks intended
for static graphs (e.g., DIR) and DTDGs (e.g., DIDA) encounter limitations in their adaptation to
CTDGs due to computational complexities. SIG effectively tackles these challenges by introduc-
ing two novel causal models, ICM and CCM. These meticulously designed models capture both
temporal and structural information within CTDGs, simultaneously addressing confounding effects.
Additionally, SIG specifies the essential components for implementing the causal models, including
an extractor for identifying invariant subgraphs, two encoders for transforming subgraphs into latent
representations, and classifiers for predictive modeling based on the derived causal graphs.

E EXPERIMENTAL SETTINGS

All the experiments are conducted on a computer with Intel(R) Core(TM)2 Duo CPU @2.40 GHz
processor, 128 GB RAM, and Tesla T4.

E.1 DATASETS.

We conducted experiments on five real-world datasets. The details of the datasets are reported in
Table 6, where #edge and #node represent the number of node and edges. #dim-E and #dim-N
denote the dimensions of node and edge features, respectively.

Wikipedia1 captures edits made by Wikipedia editors over a month, with extracted link features
derived by converting edit text into LIWC feature vectors (Pennebaker et al., 2001). Reddit2

compiles posts from various subreddits within a month. The source node represents a user, while
the target node denotes a subreddit. Each edge signifies a user’s post in a specific subreddit. Similar
to the Wikipedia dataset, link features are extracted through the conversion of text into LIWC feature
vectors. MOOC3 constitutes a bipartite network involving online resources. It comprises two kinds
of nodes: students and units of course content. The connection between nodes signifies a student’s
interaction with specific content units. LastFM4 serves as a commonly used dataset for music
recommendation and analysis. It contains user listening histories and music tag information from

1http://snap.stanford.edu/jodie/wikipedia.csv
2http://snap.stanford.edu/jodie/reddit.csv
3http://snap.stanford.edu/jodie/mooc.csv
4http://snap.stanford.edu/jodie/lastfm.csv
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the LastFM music platform. SX5 stands as a temporal network of interactions on the Stack Exchange
website “super user”.

Note that for the datasets without node features, we utilize one-hot vectors as the nodes’ features.
Considering the large size of SX, it is impractical to use this manner. Hence, we randomly select 100
nodes for each node, and the corresponding shortest distances between them are used as the node’s
feature.

E.2 EVALUATION METRICS.

We partitioned the datasets based on the edge occurrence time: the initial 70% of edges were desig-
nated as the training set, the subsequent 15% were allocated to the validation set, and the remaining
15% formed the test set. We employ the average precision (AP) and area under the curve (AUC) as
the evaluation metrics for link prediction. AP and AUC are two common metrics used to evaluate
the performance of binary classification models. AP is a measure of the average precision across all
possible recall thresholds. AUC is a measure of the area under the receiver operating characteristic
(ROC) curve.

We adopt fidelity w.r.t. sparsity as the evaluation metrics for graph explanation. The definitions of
Fidelity and sparsity are shown as follows:

Fidelityap =
1

N

N∑
i=1

(
ap(G)− ap(Gb)

)
. (23)

Sparsity =
|Gc|e
|G|e

. (24)

Here, N is the number of test graphs, G represents the input graph, Gb represents the residual
portion of graph G after excluding the explanatory subgraph Gc, ap(G) represents the average
precision output by graph G. |G|e (|Gc|e ) denotes the number of edges in G (Gc). Higher values
of Fidelityap signify better explanatory outcomes, indicating the identification of more distinctive
features. Lower values for sparsity indicate that the explanations are sparser and can focus primarily
on more essential input information. Furthermore, we obtain the fidelity-sparsity curve and calculate
the area under the curve (AUFSC) to evaluate interpretability performance, where a higher AUFSC
value indicates better performance.

E.3 TRAINING PROTOCOLS.

An early-stopping mechanism was employed, terminating training when the Average Precision (AP)
metric showed no improvement for five consecutive epochs. The model underwent training for 300
epochs using the Adam optimizer with a learning rate set at 0.0001 and a weight decay of 1e-6. We
set the batch size to 600, and the hidden layer dimension to 100. For the extraction of the causal
subgraph, we specified the number of recent edges (N ) as 50 and employed 1-hop neighbors. All
MLP layers were configured to 2. Regarding the link prediction task, negative samples were set at a
ratio of 1:5 in the training set and adjusted to 1:1 in both the validation and test sets. Hyperparameters
λi, λt, and λs were set to 1.0, 0.5, and 0.5, respectively.

E.4 BASELINES

Note that the proposed SIG is the first self-interpretable GNN specifically designed for CTDGs.
Given the limited studies in self-interpretable GNNs for dynamic graphs, our evaluation spans sev-
eral comparisons by considering different types of baselines. (1) Initially, SIG undergoes compari-
son with three existing dynamic GNN models: TGN (Rossi et al., 2020), TGAT (Xu et al., 2020),
and GraphMixer (GM) (Cong et al., 2023). These models are designed to handle CTDGs. However,
as they lack the capacity to produce explainable outcomes, our comparison primarily focuses on
link prediction tasks across original datasets and synthetic OOD datasets. (2) Additionally, we com-
pare the proposed model with four post-interpretable models, including an attention-based explainer

5https://snap.stanford.edu/data/sx-superuser.html
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Figure 5: Case study of temporal casual subgraph (Gt) on the wikipedia dataset.

(ATTN (Xia et al., 2022)), a perturbing-based explainer (PBONE (Xia et al., 2022)), a static graph
explainer (PGExp (Luo et al., 2020)), and a dynamic graph explainer (TGExp (Xia et al., 2022)).
These models were thoughtfully chosen to represent diverse graph explanation approaches. Given
their post-interpretable nature, our comparison focuses solely on graph explanation tasks. (3) Fur-
ther, we compare SIG with DIDA (Zhang et al., 2022b), a self-interpretable GNN for DTDG. Our
comparative analysis with DIDA spans across all tasks.

• TGN initially captures temporal information using Recurrent Neural Networks, followed by the
graph attention convolution to jointly encompass spatial and temporal information.

• TGAT leverages a self-attention mechanism as its foundational element, incorporating a novel
functional time encoding technique. TGAT can discern node embeddings as functions of time and
can deduce embeddings for previously unseen nodes in an inductive manner.

• GM represents a straightforward architecture composed of three core components: a link-encoder
utilizing MLPs, a node-encoder relying solely on neighbor mean-pooling, and an MLP-based link
classifier. For GM ori, we adhered to the default parameters provided in the paper’s source code.
Conversely, for GM 50n, we configured the number of recent edges to 50, aligning it with the
setting used in SIG.

• ATTN extracts the attention weights in TGAT/TGN and averages the values over all layers. The
averaged weights are regarded as importance scores.

• PBONE functions as a direct explainer by perturbing a single candidate edge. We configured the
interpretation process for TGAT and TGN.

• PGExp employs a deep neural network to parameterize the generation process of explanations.
In line with (Xia et al., 2022), we tailor it for temporal graph scenarios by computing weights for
each event rather than each edge.

• TGExp comprises an explorer that identifies event subsets using Monte Carlo Tree Search and a
navigator that learns event correlations to reduce the search space.

• DIDA represents self-interpretable GNN tailored explicitly for DTDGs. To enable a comparative
analysis with the proposed model, we adjust our datasets by converting edges that occur within
monthly periods into snapshots, thereby aligning our datasets with the DTDG setting.

F SUPPLEMENTARY EXPERIMENTS

F.1 CASE STUDY

Figure 5 depicts four examples of extracted temporal causal subgraphs (Gt), which are causal sub-
graphs based on temporal edges. This visualization demonstrates that the first two instances share
similar causal graphs, as do the last two instances. Hence, the proposed SIG effectively extracts key
topologies in the graph that are useful for dynamic link predictions.

Figure 6 depicts two examples of extracted structural causal subgraphs (Gs), which are based on
structural node features. We observe that even for the same source node, different causal subgraphs
are extracted when connected to different destination nodes. Note that the Wikipedia dataset contains
abundant link features but no node features. Therefore, we use a one-hot vector as its node features.
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Figure 6: Case study of structural casual subgraph (Gt) on the wikipedia dataset.

F.2 EFFICIENCY

Table 7 shows the efficiency of our method w.r.t all dynamic GNN baselines. TGAT and TGN exhibit
slower performance compared to SIG due to their utilization of more complex encoding networks.
Additionally, DIDA operates at a slower pace than SIG as it necessitates gathering a confounder
dictionary in each snapshot. GM demonstrates slightly better efficiency than SIG, because GM does
not output an explainable subgraph.

Table 7: Average running time per edge (seconds).
Self-int Dynamic GNN Post-hoc

SIG DIDA TGN TGAT GM ori GM 50n ATTN PBONE PGExp TGExp
Reddit 5.8×10−4 3.7×10−3 1.7×10−3 4.2×10−3 2.2×10−4 3.7×10−4 0.95 1.10 0.82 412.65
LastFM 6.2×10−4 2.8×10−3 1.4×10−3 3.7×10−3 1.5×10−4 2.1×10−4 3.44 2.89 2.59 716.08

Table 7 also illustrates the efficiency comparison of our method against all graph explanation meth-
ods. Notably, all post-hoc explainable GNNs exhibit high computational costs, leading to delayed
detections. Each of these methods requires over 0.8 seconds to explain an edge. Among the base-
lines, the self-interpretable GNN model, namely DIDA, emerges as the most efficient baseline. How-
ever, despite its efficiency, DIDA’s speed remains significantly slower than SIG. This discrepancy
arises from DIDA’s necessity to gather a confounder dictionary in each snapshot, a process that is
time-consuming.

F.3 ABLATION STUDY

We conducted ablation studies by removing ICM, temporal, and structural classifiers. The ablation
experiments are summarized in Table 8. The results reveal that the complete solution achieves the
highest performance, validating the efficacy of our proposed design. Specifically, we notice that
ICM significantly contributes to the performance in both the original and OOD datasets. Moreover,
the removal of structural and temporal losses results in marginal performance changes in the original
dataset, whereas their absence notably impacts the performance in OOD datasets, indicating their
substantial contribution in handling out-of-distribution scenarios.

Table 8: Ablation study on various original and OOD graph datasets.

Dataset Reddit LastFM SX Reddit OOD LastFM OOD SX OOD
AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC

remove structural classifier 99.88 99.89 98.37 99.03 99.16 99.23 74.22 71.73 50.15 49.97 93.01 95.07
remove temporal classifier 99.87 99.88 97.75 98.51 99.53 99.48 98.37 98.19 78.29 82.90 99.31 99.17
remove ICM 98.76 98.66 53.96 54.95 95.86 97.14 97.75 97.71 50.38 50.48 95.27 95.07
SIG 99.99 99.99 99.96 99.98 99.71 99.70 99.90 99.92 99.92 99.96 99.81 99.84

Figure 7 shows the throughput of our solution by varying the number of edges N and the number
of hops n. We observe that the change of throughput is linear to the hyperparameter N , which is
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Figure 7: Throughput w.r.t. hyper-parameters on five graph datasets.

consistent with the complexity analysis. As the number of hops n increases, the number of nodes in
the extracted structural causal graph increases greatly, reducing the throughput in a linear trend.
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