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Abstract

Therapeutic molecules must selectively interact
with a target protein while avoiding structurally
or functionally similar off-targets. However, no
existing generative strategy explicitly optimizes
both target affinity and off-target avoidance.
To address this, we introduce SOAPIA, a
framework for the Siamese-guided generation
of Off-target-Avoiding Protein Interactions with
high target Affinity. SOAPIA generates de novo
peptide binders by steering the generative process
of a Diffusion Protein Language Model (DPLM)
using a multi-objective Monte Carlo Tree Search
(MCTS). Affinity is optimized via a pre-trained
predictor, while specificity is enforced using a
Siamese model trained with an adaptive Log-Sum-
Exp Decoy Loss. This dual-guidance scheme
enables Pareto-efficient exploration of discrete
sequence space without gradient access. In bench-
marks across 17 fusion oncoproteins, SOAPIA
consistently produces binders with strong affinity
and high selectivity for over 75% of targets. For
multiple clinically relevant targets, SOAPIA gen-
erated peptides that preferentially bind the fusion
by engaging both its head and tail domains, while
avoiding the wild-type counterparts. These results
underscore SOAPIA’s promise for designing safe,
specific biologics for fusion-driven cancers and
other rare, currently untreatable diseases.
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1. Introduction

Selective modulation of pathogenic proteins is essential
for drug design (Nada et al., 2024). Off-target interac-
tions can reduce efficacy or lead to toxicity, a challenge
shared across small molecules, PROTACs, and biologics
(Garon et al., 2017; Chen et al., 2023b). Since large-scale
in vitro screening is costly and impractical, computational
methods for designing drug-target interactions (DTIs) and
protein-protein interactions (PPIs) are increasingly impor-
tant. Structure-based approaches offer atomistic resolution
but fail on disordered and chimeric proteins and are too slow
for high-throughput design (Chen et al., 2023b). Sequence-
based models for DTIs (Singh et al., 2023; McNutt et al.,
2024; Gao et al., 2024), PPIs (Sledzieski et al., 2021; Singh
et al., 2022), and peptide design (Bhat et al., 2025; Tang
et al., 2025) address this limitation by operating directly on
primary sequences.

Yet, most generative approaches optimize only for target
binding, without explicitly avoiding off-target interactions.
This is particularly problematic for fusion oncoproteins,
which drive many pediatric cancers and result from chromo-
somal translocations, often retaining high sequence identity
with their wild-type head and tail domains (Vincoff et al.,
2025). Designing binders for such targets requires a multi-
objective formulation that simultaneously maximizes affin-
ity and enforces specificity—not just against a generic back-
ground proteome, but against multiple known off-targets.
Including two explicit decoys during training and generation
better reflects real-world therapeutic constraints, where safe
and selective binding is essential (Chen et al., 2023b).

Discrete diffusion models have become a powerful class of
generative frameworks for sequence design, enabling high-
quality, controllable generation at the token level without
requiring 3D structures or continuous embeddings (Camp-
bell et al., 2024; Shi et al., 2024; Sahoo et al., 2024). These
models have recently shown strong performance in protein
design tasks; as examples, DPLM (Wang et al., 2024) and
EvoDiff (Alamdari et al., 2023) support structure-free gen-
eration of valid, foldable protein sequences. Most recently,
PepTune (Tang et al., 2025) extended this paradigm to multi-
objective optimization by introducing a Monte Carlo Tree
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Search (MCTS) framework that guides discrete diffusion
using multiple non-differentiable reward functions. Operat-
ing in therapeutic peptide SMILES space, PepTune demon-
strates that MCTS can efficiently explore the denoising
landscape to discover Pareto-optimal solutions, even in the
absence of gradient signals (Tang et al., 2025).

We build on these insights with SOAPIA: a framework
for the Siamese-guided generation of Off-target-Avoiding
Protein Interactions with high Affinity. SOAPIA combines
a contrastive Siamese protein language model—trained with
an adaptive Log-Sum-Exp Decoy Loss to separate binders
from multiple off-targets—with a pre-trained affinity predic-
tor. These soft-value signals define a dual-objective reward
function that guides a Pareto-aware MCTS over the de-
noising trajectory of DPLM (Wang et al., 2024), enabling
efficient sampling of short protein sequences that satisfy
both constraints. We show that SOAPIA outperforms Best-
of-N sampling baselines on both affinity and specificity and
generates peptide-like binders that preferentially dock to
fusion proteins while avoiding their head and tail domains.
In silico docking with AlphaFold-Multimer (Evans et al.,
2021) confirms SOAPIA’s ability to design safe and selec-
tive binders for undruggable and isoform-sensitive targets,
such as fusion oncoproteins.

2. Methods

Data curation and handling All data curation, splitting,
and clustering details can be found in the Supplementary
Methods.

Protein encoding We encode four protein sequences—a
binder, target, and two off-targets—into a shared latent space
using the 33-layer ESM-2-650M model. The final two lay-
ers are unfrozen during training. A positional multi-head
attention module (n_heads = 10) with rotary positional em-
beddings (RoPE) (Su et al., 2024) captures sequence-order
information. Outputs are passed through two SiLU-activated
linear layers with skip connections, and attention pooling
produces fixed-length embeddings (Figure Al).

Specificity loss To enforce off-target avoidance, we train
a Siamese model using an Adaptive Log-Sum-Exp Decoy

Loss. Let b, t, otq, and ot represent the embeddings of
the binder, target, and two off-targets. The loss is:
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where 3 controls sharpness, « is a margin, and e = 1078
ensures numerical stability.

Implementation details All models were implemented
using PyTorch Lightning (Falcon, 2019) and trained on
4xA100 NVIDIA GPUs with an effective batch size of 128.
Learning rate was initialized at 1 x 10~% and decayed using
cosine annealing with 200 warmup steps. Training was
stopped after loss plateaued for three epochs (10 total). See
Table A2 for full hyperparameters.

Embedding separation visualization After each epoch,
we computed Euclidean distances between binder-target,
binder-off-target 1, and binder-off-target 2 embeddings
across the training set, and visualized them using
matplotlib v3.8.2 (Figure A2).

Binder recovery screen To test specificity, 50,000 ran-
dom amino acid sequences (lengths 56-856) were generated
per target and scored using the Siamese model. The true
binder was ranked by:
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Lower D implies better specificity. Rankings were evaluated
across multiple thresholds (Figure A3).

Masked discrete diffusion Binder generation is based on
a masked discrete diffusion model (MDM) (Sahoo et al.,
2024; Shi et al., 2024; Campbell et al., 2024). The forward
process corrupts a clean sequence xg with:

pi(xlxo) = [ Cat(afs cud(z) + (1 — ar)d(m)), 3)

i=1
and the reverse process denoises via:
(|7, 2p) o ap—1d(wp) + (1 — ag—1)d(m). ()

Training minimizes weighted cross-entropy:

L= By, Y xhl0g 10}, 1). 5)
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Sampling and generation strategies (SOAPIA)
SOAPIA generates peptide binders by applying MCTS
over the denoising trajectory of DPLM (Wang et al.,
2024), guided by two soft-value reward functions which
are maximized for the optimal binder: one reward from
the Siamese model trained for off-target avoidance as
described here (r(x) = —D) (2), and one from a pre-trained
peptide-protein affinity predictor (Chen et al., 2025). At
each expansion step, candidate sequences are sampled
from the DPLM transition distribution pg(x¢—1 | 2¢,t)
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and completed via ancestral decoding. Each fully un-
masked sequence is scored along both objectives and
compared to a dynamically updated Pareto frontier. Soft
reward vectors—computed from overlap with frontier
members—encourage exploration of diverse trade-offs,
while heavily dominated sequences are pruned.

We evaluate multiple guidance mechanisms to direct se-
quence refinement, including SVDD (Li et al., 2024), which
selects the best of m candidates at each step; simple guid-
ance (Schiff et al., 2025), which applies reward-informed
local updates; and NOS (Gruver et al., 2023), which per-
forms iterative local search through the reward landscape.
These samplers and guidance methods are combined with
higher-level generation strategies. The Basic strategy gen-
erates [NV samples without filtering; Best-of-N selects the
top N from a larger pool; Scalarized Best-of-N applies
a weighted reward R(x) = Ar1(z) + (1 — X)ra(x); and
Pareto Best-of-N returns non-dominated sequences. The
MCTS strategies used by SOAPIA integrate sampling and
guidance at each expansion and rollout step, updating the
Pareto frontier online as sequences are generated. MCTS
uses specificity scores only, while MultiMCTS performs
multi-objective guidance with both specificty and affinity
scores. See Algorithm 1 for details.

3. Results

Siamese model results First, we trained our Siamese
model (Figure A1) to obtain the specificity predictor used
for SOAPIA’s dual-guided sampling. The model was trained
to embed binders closer to their target than to either of two
off-targets. Over the course of training, we observed pro-
gressive separation in the embedding space: binder—target
distances decreased while binder—off-target distances in-
creased, as shown in Figure A2. To assess its ranking per-
formance, we evaluated the model against 50,000 randomly
generated binders per test case. The true binder was ranked
in the top-1 for 19.2% of cases and in the top-25% for 56.8%
(Figure A3). Finally, protein role distributions across train,
validation, and test splits are shown in Figure A4, confirm-
ing dataset diversity and generalization.

Generation of specific, high-affinity peptides SOAPIA
successfully generates novel, short binding proteins with a
variety of sampling strategies (Figure 1). When different
methodologies were evaluated on 20 examples from the
Siamese specificity model’s test set, MultiMCTS achieved
the optimal results. Binders “passed” the specificity task if
their reward scores were positive, indicating that the binder
is embedded closer to the target than the two off-targets in
the model’s latent space. For the affinity task, a passing
threshold of 6.5 was selected, as indicated in MOG-DFM
(Chen et al., 2025). All three guidance methods - NOS,

simple, and SVDD - performed well in the expansion and
rollout steps of MultiMCTS. Unguided generation was also
competitive. NOS achieved the best results, with a dual-
objective pass rate of 48.12%, and only 5.31% of generated
samples failing to meet the criteria for either objective (Fig-
ure 1).
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Figure 1. Performance of different sampling strategies on the
Siamese model test set. The passing thresholds for specificity and
affinity rewards are 0 and 6.5, respectively. For each input (target,
off-target 1, and off-target 2), 10 novel binding peptides of length
10 or 20 were generated and scored.

Targeting fusion oncoproteins Next, we sought to de-
termine whether SOAPIA can be applied to target proteins
which have no known specific binders. We evaluated Mul-
tiMCTS on 17 fusion oncoproteins, whose off-targets are
their corresponding wild-type heads and tails (Figure 2).
For all guidance strategies tested, the maximum specificity
and affinity values were greater than 12 and 8 respectively,
indicating very strong selectivity and affinity for the best
samples. Mean affinity scores were greater than 7 for all
methods, indicating that on average, SOAPI-designed fu-
sion oncoprotein binders pass the affinity criterion. The four
strategies were slightly more differentiated in average speci-
ficity, with simple guidance achieving the highest value of
2.84 (Figure 2A). Accordingly, simple guidance also pro-
duced the highest simultaneous dual-objective hit rate of
68.27% (Figure 2B, Table A4).

Prediction of target-binder complexes To validate that
SOAPIA’s rewards are meaningful, we co-folded all pep-
tides in the “green zone” (passing both criteria) using
AlphaFold-Multimer. All four guidance strategies produced
dozens of hits, where target ipTM exceeded both off-target
ipTMs. Unguided and NOS produced the highest and low-
est hit rates, respectively (36.1%, 27.3%) (Table A5). For
46 (8.1%) green zone binders across all four strategies (Ta-
ble A6), target ipTMs were above 0.7 in addition to ex-
ceeding off-target ipTMs, indicating both high specificity
and high affinity. We visualize four top-performing com-
plexes for clinically relevant targets, each associated with
a specific cancer: APTX::ARL5B with lung squamous cell
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carcinoma, ETHE1::PLAUR with esophageal carcinoma,
DHRSX::RPS4Y1 with pancreatic adenocarcinoma, and
AMACR::NDUFAF2 with prostate adenocarcinoma (Vin-
coff et al., 2025) (Figure 3, Table A3). The predicted struc-
tures of the binder-target complexes imply selective binding
modes, where the peptide engages both the head and tail
portions of the fusion oncoprotein. In total, these findings
demonstrate SOAPIA’s potential to design peptides that se-
lectively recognize fusion oncoproteins while minimizing
interactions with their wild-type counterparts.
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Figure 2. Performance of different guidance methods with Mul-
tiMCTS on a set of fusion oncoproteins. A Maximum and mean
rewards across 10 samples per target, for 18 targets. B Pass rates
for each objective across all generated samples.

4. Discussion

SOAPIA is a new framework for multi-objective binder de-
sign that jointly optimizes specificity and affinity using a
Pareto-guided MCTS over a DPLM prior. Inspired by Pep-
Tune (Tang et al., 2025), SOAPIA combines soft-value sig-
nals from a Siamese contrastive model and a trained affinity
predictor (Chen et al., 2025) to guide tree-based exploration
during denoising, without requiring gradient access to either
objective. This dual-guidance mechanism allows SOAPIA
to perform competitively against Best-of-N sampling base-
lines across both objectives, generating peptide sequences
that exhibit strong binding while avoiding homologous off-
targets. Notably, SOAPIA is capable of generating binders
to fusion oncoproteins that show preferential docking to the
full fusion but not to the individual head or tail proteins.
This level of selectivity is critical for therapeutic applica-
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Figure 3. AlphaFold-Multimer-predicted structures of top-
performing binders. (A-D) For each fusion oncoprotein, the
binder is displayed in complex with the target, off-target 1 (wild-
type head protein), and off-target 2 (wild-type tail protein)

tions, particularly in pediatric fusion-driven cancers, where
targeting the aberrant fusion protein while sparing wild-type
counterparts is essential for minimizing toxicity (Vincoff
et al., 2025).

Looking ahead, we will refine SOAPIA’s guidance weights
and rollout policies to further improve sample efficiency, and
conduct experimental validation in cellular systems focused
on disordered fusion oncoproteins. For this, we plan to in-
tegrate FusOn-pLM embeddings (Vincoff et al., 2025) to
better capture breakpoint-localized context, and incorporate
PTM-Mamba embeddings (Peng et al., 2025) to enable pep-
tide design sensitive to post-translational modification states.
In addition to MCTS, recent work on multi-objective guided
flow matching (MOG-DFM (Chen et al., 2025)) offers a
potential alternative decoding framework for joint optimiza-
tion in discrete sequence space. Finally, when paired with
experimental platforms such as ubiquibodies (uAbs) and
deubiquibodies (duAbs) for targeted protein degradation
(Brixi et al., 2023; Bhat et al., 2025; Chen et al., 2023a)
and stabilization (Hong et al., 2025), SOAPIA provides a
generalizable, programmable approach to modulating pre-
viously undruggable proteins, with potential impact across
oncology, rare disease, and immunotherapy.

Impact Statement

SOAPIA enables the design of highly selective peptide
binders for challenging targets, including fusion oncopro-
teins in pediatric cancers. By optimizing specificity and
affinity directly from sequence, it offers a scalable approach
to precision biologics.
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SOAPIA: Siamese-Guided Generation of Off Target-Avoiding Protein Interactions with High Target Affinity

A. Algorithm

Algorithm 1 SOAPIA: Pareto-Guided MCTS with Dual Objective Scoring

1: Input: Denoising model pg(z¢—1 | x,t), specificity model fpec(z), affinity model fur(x), number of MCTS iterations Npcs,
number of children Nenig

2: Output: Pareto frontier of guided binders P*
3: Initialize: z7 « [M]” (fully masked), P* < {},t « T
4: for i = 1to Nys do
5: Selection: wjcor <— SELECTLEAF(27)
6: Expansion:
7 for ] = 1 to Nehiig do
8 Sample xij)l ~ po(- | Ticat, t)
9: Unmask k positions to form xézi)ld
10: Add 292 to children ()
11: end for
12: Rollout:
13:  foreach z), do
14: i) ROLLOUTTOCOMPLETION(xiﬁizd)
15: Compute scores: ') [fspec(is(j)), faff(fi'<j>):|
16: Compute soft reward vector: r'/) <~ MULTICOMPAREPARETOFRONT(Z), s(7)  tokens)
17: Update P* with #) if non-dominated
18: end for )
19: Backpropagation: BACKPROPAGATE(Zjeaf, {r<] ) b
20: end for

21: return P*

MultiCompareParetoFront provides a mechanism for prioritizing items on the Pareto front to optimize performance. Over
the first few MCTS iterations, binders may be added to the Pareto front even if they are dominated. This ensures that the user
receives the total number of binders they have requested. In later iterations, newly generated binders may dominate multiple
members of this initially sub-optimal front. MultiCompareParetoFront tracks which Pareto front members dominate each
other so that in later iterations, a new superior candidate will replace the weakest current member of the front.

B. Supplementary Methods
B.1. Data collection

Each sample in the training data is a protein quadruplet consisting of a binder, target, off-target 1, and off-target 2. Positive
protein-protein interactions (PPIs) were collected from BioGRID (October 2022) (Oughtred et al., 2021), IntAct (October
2022) (Del Toro et al., 2022), and PPIRef (January 2025) (Bushuiev et al., 2023). Negative interactions were collected
from Negatome2.0 (Blohm et al., 2014), a manually curated database of proteins with experimental evidence indicating
the absence of direct interaction. Positive PPIs were filtered by cleaning (e.g. dropping sequences with non-natural amino
acids), swapping targets and binders to double the dataset size, removing duplicate homomer interactions, applying a length
limit of 1022 amino acids for both target and binder sequences, and only retaining rows where one partner is included in the
Negatome. The Negatome was filtered by removing any listed target and off-target pairs that are included as binder and
target pairs in the PPI database. This produced a dataset of 245,587 positive PPIs and 7,198 negative interactions.

B.2. Quadruplet selection

The training, validation, and testing datasets were designed to (1) enhance generalizability by including diverse binders,
targets, and off-targets, (2) prevent rigid role assignments by allowing any sequence to act in any interaction context,
and (3) maximize difficulty to improve learning. Quadruplet selection was formulated as a linear programming problem
using length-averaged ESM-2-650M (Lin et al., 2023) embeddings. With PuLP v2. 9.0, quadruplets were optimized
for difficulty while minimizing role repetition (Supplementary Algorithm ??). Difficulty increased with higher cosine
similarity between target and off-target embeddings, ensuring the Siamese model learned to distinguish subtle differences.
Euclidean distance was used in the loss function, but cosine similarity was preferred for selection due to its bounded range
(-1 to 1). Selecting closely related targets and off-targets better reflects SOAPI’s real-world applications, such as designing
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binders that avoid wild-type protein interactions. To ensure the model learned relationships rather than predefined roles,
four constraints were imposed: (1) each binder appears at most ten times, (2) each target-off-target grouping appears only
once, (3) each target appears once per binder, and (4) each off-target appears once per binder. Constraint 1 was pre-enforced
by subsampling positive PPIs, and Constraint 2 required a tiebreaker term (A = 0.001) based on Euclidean binder-target
distance. A total of 1,352 quadruplets were selected, consisting of 565 unique binders, 1,054 targets, and 969 off-targets.

B.3. Clustering and splitting

Quadruplets were clustered on binder sequence using MMSeqs2 easy clustering module (Steinegger & Soding, 2017) with a
minimum sequence identity of 30% and a coverage threshold of 70%. The resulting clusters were randomly split at 80-10-10
ratio using sklearn v1.2.0 into a training set (1,111 quadruplets, 82.2%), validation set (116 quadruplets, 8.6%), and
test set (125 quadruplets, 9.2%). The distribution of roles (binder, target, off-target) played by each sequence in the full
dataset and individual splits can be found in Figure A4.
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C. Supplementary Tables

Table Al. SOAPI loss on training data.

Split Size  Loss
Train 1111 0.04
Validation 116 143
Test 125  1.57

Table A2. Siamese specificity model architecture and training hyperparameters

Hyperparameter Value
Model Architecture

ESM Model Base ESM2_t33_650M_UR50D
Embedding Dimension 1280
ESM Unfrozen Layers 2
Linear Layers 2
Positional Attention Head: n_heads 10
Adaptive Log-Sum Decoy Loss

o 5

B8 0.5

€ le-8
Training

Max Sequence Length 1022
Batch Size / Device 16
Effective Batch Size 128
Dataloader num_workers 30
Learning Rate (LR) le-4
LR Scheduler: Warmup Steps 200
LR Scheduler: Total Steps 9000
LR Scheduler: Min/Max LR Ratio 0.1
Gradient Clipping 0.5

Table A3. Peptide sequences for fusion oncoprotein visualizations.

Target Method | Specificity | Affinity | Proposed sequence
APTX: :ARLS5B NOS 3.67 6.97 AEMQIWMWGTLKDVESMKQF
ETHE1l: :PLAUR Unguided 12.72 6.81 MTCAYRGLKLQODYMRLYPDL
DHRSX: :RPS4Y1 Simple 11.13 7.71 COQWLWRQRCVEQLKISLSWS
AMACR: :NDUFAF2 SVDD 4.18 7.11 QFLSERDRGYGIVLKVLPPN
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Table A4. Performance of MultiMCTS guidance strategies in producing “green zone” binders (passing both objectives; specificity > 0,
affinity > 6.5). The model was tasked with producing 10 binders for each of 17 fusion oncoproteins. However, MultiMCTS will return
additional binders if they lie on the Pareto Front.

Guidance Green Zone Green Zone
Binders Targets (/17)
NOS 143 /251 (57.0%) | 13 (76.5%)
Simple 170/239 (71.1%) | 13 (76.5%)
SVDD 123 /242 (50.8%) | 13 (76.5%)
Unguided | 133/252 (55.0%) | 13 (76.5%)
Total 569 /984 (57.8%) | 13/17 (76.5%)

Table A5. Performance of green zone binders for each MultiMCTS guidance strategy in AlphaFold-Multimer. A peptide is considered a

hit when its ipTM with the target is higher than its ipTM with either off-target.

Guidance AFM Top-25 AFM Targets
Hit Rate Hit Rate Hit

NOS 6 (24%) 39 /143 (27.3%) 8/13 (61.5%)

Simple 7 (28%) 597170 34.7%) | 7/13 (53.8%)

SVDD 4 (16%) 34 /123 (27.6%) 12/13 (92.3%)

Unguided | 4 (16%) 48 /133 (36.1%) 12/13 (92.3%)

Total 21 21%) 180/569 (31.6%) | 12/ 13 (92.3%)

Table A6. AlphaFold-Multimer results indicating high specificity (target ipTM > offtarget] ipTM and offtarget2 ipTM) and high affinity
(target ipTM > 0.7) on fusion oncoproteins, across all four MultiMCTS guidance strategies.

Guidance AFM Dual-Objective
Hit Rate

NOS 11/143 (7.7%)

Simple 16 /170 (9.4%)

SVDD 5/123 (4.1%)

Unguided | 14/133 (10.5%)

Total 46 /569 (8.1%)
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D. Supplementary Figures
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Figure Al. Siamese specificity model architecture. A Siamese Protein Module, the core unit of the quadruplet network. ESM-2-650M
encodes sequences into [B,1280] embeddings, refined via positional attention (10 heads) with rotary embeddings, skip-connected linear
layers, and attention pooling. B Full SOAPI pipeline. Binder, target, and off-target sequences pass through the Siamese module with
shared weights. Euclidean distances between embeddings define a loss that pulls the binder toward the target while pushing it away from

off-targets.
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Binder-Partner Distance Over Training
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Figure A2. Embedding separation throughout model training. Euclidean distances between SOAPI embeddings of the proteins in each
training quadruplet: dist(b, t) (binder and target), dist(b, ot;) (binder and off-target 1), and dist(b, ot2) (binder and off-target 2). The
inner box of each violin plot indicates the median (white) and inter-quartile range, representing the middle 50% of distances (grey box).
Distances are plotted every three epochs throughout training, starting at the end of epoch 1.
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Figure A3. Siamese model ranks true binders against 50,000 randomly generated candidates. SOAPI produced a specificity-based
ranking of 50,000 randomly generated binders and one true binder to 125 targets from the test set. Relative distance metrics D were
calculated using Equation (2). Any target where SOAPI ranked the true binder among the top-V or top-/N % was considered a hit. Top-1,
top-10, top-100, top-1%, top-10%, and top-25% evaluations were conducted.
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Training Data Protein Roles
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Figure A4. Training Data Protein Roles. Distribution of roles (binder, target, off-target) played by proteins in the quadruplets comprising
the A full training dataset (1,352 quadruplets), B train split (1,111 quadruplets), C validation split (116 quadruplets), and D test spit (125
quadruplets).
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