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Abstract
For real-world applications of machine learning
(ML), it is essential that models make predictions
based on well-generalizing features rather than
spurious correlations in the data. The identifica-
tion of such spurious correlations, also known as
shortcuts, is a challenging problem and has so
far been scarcely addressed. In this work, we
present a novel approach to detect shortcuts in im-
age and audio datasets by leveraging variational
autoencoders (VAEs). The disentanglement of
features in the latent space of VAEs allows us to
discover feature-target correlations in datasets and
semi-automatically evaluate them for ML short-
cuts. We demonstrate the applicability of our
method on several real-world datasets and iden-
tify shortcuts that have not been discovered before.
The code is available at github.com/Fraunhofer-
AISEC/shortcut-detection-vae.

1. Introduction
Machine learning (ML) addresses a wide range of real-world
problems such as quality control (Yang et al., 2020), medi-
cal diagnosis (Rajpurkar et al., 2022) and facial recognition
(Adjabi et al., 2020). However, transferring new ML tech-
nology from the lab to the real world is often difficult due
to the limited capacity of ML models to generalize. Among
the reasons for this limitation are shortcuts: features in data
X that correlate only statistically with the target Y , but
are inconsequential for the specific ML task. Geirhos et
al. (2020) define shortcuts as a certain group of decision
rules learned by neural networks. Shortcuts perform well on
training data and on independent and identically distributed
(i.i.d.) test data but fail on out-of-distribution (o.o.d.) data.

Shortcut learning has been particularly evident in the medi-
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cal field. A recent MIT technology report (Heaven, 2021)
reveals that hundreds of tools were developed during the
COVID-19 pandemic to diagnose the disease from chest
X-rays, but none of them was found reliable enough for
clinical use. The predictions of these models were often not
based on the appearance of the lungs in the X-ray images.
As the datasets were acquired from different sources for
positive and negative cases, most of the models ended up
learning the systematic differences in the data, e.g. the pose
of the patient being scanned. Shortcut learning can also be
a cause of ethical concerns towards ML. For example, due
to the existence of spurious correlations in the training data,
ML models have been found to reinforce gender stereotypes
(Bolukbasi et al., 2016; Dastin, 2018).

Detecting shortcuts is a major challenge to ensure the reli-
ability and fairness of artificial intelligence (AI). Existing
approaches (Zech et al., 2018; Singla & Feizi, 2021) often
rely on heatmaps and are thus limited to the identification
of spatial shortcuts. We propose a novel method that is
capable of identifying a variety of spurious features in im-
ages including background, color, object zoom level, and
human facial characteristics. To learn representations ro-
bust to spurious correlations, Zhang et al. (2022) propose a
contrastive approach which ensures that the hidden represen-
tations for samples of the same class are close to each other.
Kirichenko et al. (2022) suggest to retrain the last layer of a
model on a small dataset without spurious correlations. Our
approach can serve as a preliminary step by identifying the
shortcuts to be addressed.

Concurrent to our work, Yang et al. (2022) introduced
Chroma-VAE. The authors partition the latent space of a
VAE into two subspaces where one subspace is initially
trained with an appended classifier to isolate shortcuts.
Subsequently, the final classifier is trained on the second,
shortcut-free subspace. While this method is appealing, we
believe that a human-in-the-loop approach is required to
ultimately distinguish between shortcuts and valid features.
In contrast to Yang et al. (2022) we leverage latent space
traversal in VAEs and focus on the identification of shortcuts
in datasets rather than the creation of a robust classifier.

We utilize a VAE to identify correlations between features
of input X and target Y in a dataset D = (X,Y ). We
provide tools for visualization and statistical analysis on
the latent space of the VAE which allow a human judge
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Figure 1. Shortcut detection with a VAE. We first train a Beta-VAE on a dataset containing potential shortcuts. The model discovers
independent latent factors in the data and encodes them in its latent dimensions. Evaluating the distribution in the latent space (top)
and the weights of a VAE classifier yields a set of candidate dimensions with high predictiveness. The visualization of corresponding
latent space traversals (bottom) enables a human judge to identify the meaning of these candidate dimensions and evaluate them for
shortcuts/valid features.

to reliably detect ML shortcuts as those correlations that
are not meaningful to the task at hand. We demonstrate the
applicability of our approach by finding real-world shortcuts
in publicly available image and audio datasets.

2. Methodology
Let D = (X,Y ) be a dataset, where X = {x(i)|x(i) ∈
Rh×w×3}Ni=1 are the images, Y = {y(i)|y(i) ∈
{1, ..., C}}Ni=1 are the corresponding targets and C is the
number of classes.

We train a Beta-VAE (Higgins et al., 2016) on such a dataset
with potential shortcuts. The model discovers independent
latent factors in a dataset and encodes them in its latent
dimensions. Hence, each latent variable zj of a trained Beta-
VAE is likely to represent a descriptive property of the data,
e.g. brightness, color, orientation, or shape (Higgins et al.,
2016). To establish feature-target correlations in the data,
we measure how predictive each latent variable zj is for each
value of the target variable y (see Section 2.1). We perform
a statistical analysis on the latent space of a VAE and assess
the utility of its latent dimensions for linear classification.
For latent variables zj that show a strong correlation with
the target variable y, we create visualizations that allow a
human judge to easily decide whether the property encoded
by zj is a valid feature or a shortcut (see Section 2.2).

2.1. Identification of Feature-Target Correlations

Forwarding an image x(i) through the encoder of a trained
Beta-VAE yields the parameters µ(i)and σ(i) of the posterior
qϕ(z|x(i)) = N (z;µ(i), (σ(i))2I). The mean µ(i) can be
considered as the latent representation for x(i). We forward
the entire dataset through the trained VAE, obtaining µ(i)

for all i ∈ {1, . . . , N}. We utilize these representations to
determine the feature-target correlations in the data. We
propose two different methods for this analysis.

Statistical Analysis on the Latent Space. For each latent
dimension j and all target classes c ∈ {1, ..., C}, we an-
alyze the distributions p(zj |y = c). We are interested in
finding those dimensions j where two different classes result
in two highly disparate distribution estimates. This indicates
that feature zj is highly correlated with the target classes
(a necessary, but not sufficient requirement for a shortcut).
The separation between any two distributions is quantified
in terms of the Wasserstein distance (Vaserstein, 1969) be-
tween them. We hypothesize that the maximum pairwise
Wasserstein distance (MPWD) for a particular dimension
represents its capability to separate classes.

Classification with VAE Encoder. Another approach to
understanding the correlation between zj and y is to employ
a classifier to predict y given z. We pick the encoder of our
trained Beta-VAE and append a fully connected layer. After
freezing the encoder backbone, we optimize its dense clas-
sification head. The weights in the last layer of this model
denote the correlation between the latent dimensions and
the target classes. For a dense classification head h(z) → y,
we define the predictiveness of a feature zj as

pred(zj) =
∑
c

|θjc| (1)

where θjc is the weight of the neuron in h which maps input
zj to output h(zj)c.

2.2. Evaluation of Feature-Target Correlations for
Shortcuts

After identifying the most predictive features in the latent
space, we can now evaluate them for shortcuts. To facilitate
the distinction between valid and spurious correlations, we
provide a human judge with visualizations that convey the
meaning of the features.

Visualizing zj via Latent Space Traversal. The first ap-
proach to understanding the high-level features encoded in
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Figure 2. Latent space traversal. The first column shows exam-
ples for the three classes (‘good quality’, ‘bad quality’, ‘empty
background’) from the Lemon Quality dataset. We vary the value
of dimension 2 in the latent space from zmin

2 = −3.75 (second
column) to zmax

2 = 3.64 (rightmost column) while keeping the
values of the other dimensions fixed. Decoding the new latent
representation reveals that dimension 2 encodes the zoom level of
the images. While close-up shots correlate with class ‘bad quality’,
distant shots correlate with class ‘good quality’.

a latent dimension zj is to visualize the effect of traversal in
that dimension on the decoder output using the trained Beta-
VAE. Given an instance x(i), we obtain z(i) = µ(i) from the
encoder and then visualize the decoder output Dec(z(i)+λ).
The linear interpolation in the latent space is specified
by λ where λj ∈ [zmin

j , zmax
j ], zmin

j = min({z(i)j }Ni=1),

zmax
j = max({z(i)j }Ni=1) and λk = 0 for k ̸= j. This helps

us to understand whether the latent variable zj encodes a
useful feature or a shortcut. Figure 2 illustrates the latent
traversal for the Lemon Quality dataset.

Visualizing Images for Extreme zj . To validate the mean-
ing attributed to zj , we propose to additionally compute the
embeddings z(i)j for all the instances x(i) in the dataset, and
identify those instances which minimize or maximize zj .
This step is outlined in the Appendix.

2.3. On the Necessity of Human Judges

Our method requires a human judge to evaluate if the in-
formation encoded by the latent variable zj constitutes a
feature or a shortcut. We argue that human interventions
are inevitable for ML-based shortcut detection (Zech et al.,
2018; Geirhos et al., 2020; Singla & Feizi, 2021). ML mod-
els learn relations between input and output based on statis-
tics alone. Unlike humans, they are hardly equipped with
prior knowledge of the real world beyond the given dataset
and the specified task. However, this prior knowledge may
be necessary to evaluate whether a correlation is valid or
spurious. Therefore, to assess the candidate feature-target
correlations identified by our model, we need a human judge
in the last step of our approach. This human supervision is
limited to inferring the meaning of a latent dimension from
the visualization of its latent traversal.

Figure 3. Evaluation of our method on the COVID-19 dataset. The
position of the patient’s chest in the X-ray images is revealed as
a spurious attribute through latent space traversal. Patients with
‘covid’ appear closer to the scanner (left) while patients with ‘no
covid’ appear further away such that the black background on the
top and bottom sides is visible (right).

3. Evaluation
3.1. Experimental Setup

To obtain a low-dimensional latent representation, we use a
Beta-VAE (see Appendix B.1) with dim(z) ∈ {10, 32} de-
pending on the data. For our encoder, we employ a ResNet
(He et al., 2016) backbone pretrained on the ImageNet (Rus-
sakovsky et al., 2015) dataset. We append two separate
linear layers for predicting the parameters µ and σ of the
posterior distribution. The decoder of our model consists
of 5 hidden layers, each applying transposed convolutions
with padding 1, stride 2, and kernel size 3. The channel
dimensions of the successive hidden layers in the decoder
are chosen as follows: 512, 256, 128, 64, and 32. We apply
ReLU activation and batch normalization in the hidden lay-
ers and Sigmoid activation in the output layer. While our
model can operate on varying input sizes, we use images of
size 128× 128 in our experiments. We do not perform any
data augmentation so as to retain the original characteristics
of the input data including any shortcut.

Our model is trained using the Adam (Kingma & Ba, 2014)
optimizer with a learning rate of 0.001 and a batch size of
32. Since β determines the tradeoff between reconstruction
and sampling quality, we perform hyperparameter tuning
on β for each dataset. To estimate the predictiveness of
latent features, we append a linear layer to the frozen en-
coder of a trained Beta-VAE. The resulting classifier with
cross-entropy loss is trained with the Adam optimizer and
a learning rate of 0.001 on batches of size 32. We ran all
experiments on an Nvidia Titan X 12GB GPU.

3.2. Datasets

Our approach is evaluated on six datasets: Waterbirds
(Sagawa et al., 2019), Colored MNIST (Arjovsky et al.,
2019), CelebA (Liu et al., 2015), Lemon Quality (Köroğlu,
2020), COVID-19 (DeGrave et al., 2021), ASVspoof (Wang
et al., 2020). Details on these datasets are provided in the
Appendix.
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Table 1. Shortcut detection results. For every dataset, we denote the latent dimension of a trained VAE which encodes a spuriously
correlated attribute. They are picked from a set of candidate dimensions shortlisted based on how predictive (see Section 2.1) they are in
relation to all dimensions. The semantic meaning encoded by these candidate dimensions is revealed with a traversal in the latent space
(see Section 2.2).

Dataset Spurious Dimension Spurious Attribute MPWD Predictiveness

ASVspoof 30 Leading silence 2/32 2/32
CelebA 26 Gender 3/32 3/32
Colored MNIST 14 Color 1/32 1/32
COVID-19 1 Patient’s position 1/32 2/32
Lemon Quality 2 Zoom level 1/10 2/10
Waterbirds 1 Background 2/32 3/32

3.3. Results

The empirical results are summarized in Table 1. While
the particular dimension representing a spurious feature
can vary between different training runs, any VAE trained
with well-chosen hyperparameters should be able to encode
the feature in one of its latent dimensions. The MPWD
and the predictiveness of a spurious dimension are reported
relative to all latent dimensions. Across all experiments,
we conclude that a human judge has to review only the
top k = 3 latent dimensions with the highest MPWD and
predictiveness to identify a shortcut if present in the data.

Our approach correctly identifies the known shortcut in the
COVID-19 dataset. The statistical analysis on the latent
space of a trained VAE shows that its latent variable z1
has the highest MPWD and a high predictiveness pred(z1)
(among top 2). The latent traversal illustrated in Figure 3
reveals that the latent variable z1 encodes the position of
a patient. Similarly, we detect the color shortcut in the
Colored MNIST dataset, the background shortcut in the
Waterbirds dataset and the gender shortcut in the CelebA
dataset. To the best of our knowledge, we are the first to
identify the existence of a shortcut in the Lemon Quality
dataset. As depicted in Figure 2, our method reveals the
correlation between lemon quality and zoom level. We
make a step towards the generalization of our method to
other domains by identifying shortcuts in spectrograms from
the ASVspoof dataset.

To compare our results to heatmap-based approaches (Zech
et al., 2018; Singla & Feizi, 2021), we generate heatmaps
(see Appendix) of maximally activating features of the
penultimate layer for a standard CNN classifier. The
heatmaps for the Lemon Quality dataset focus on brown
patches for class ‘bad quality’ and on the background for
class ‘good quality’. This spatial shortcut is also identified
by our method. For CelebA, we obtain heatmaps that focus
on meaningful facial features, including hair, forehead and
eyes. In contrast to our approach, none of these heatmaps
make the gender shortcut in the dataset obvious.

3.4. Limitations

Dai and Wipf (2019) have argued that latent representations
with independent dimensions do not necessarily correspond
to any semantically-meaningful form of disentanglement.
Locatello et al. (2019) have theoretically proven that the
unsupervised learning of disentangled representations is im-
possible without inductive biases on the learning approaches
and the datasets. The human supervision in our pipeline
addresses the concern of Dai and Wipf (2019). Once we
quantitatively discover a latent variable that shows a high
correlation with a particular class label, a human judge can
inspect its latent traversal. The human-in-the-loop approach
allows to determine whether the recovered visual pattern in
a particular latent dimension matches a real-world concept.

A Beta-VAE can encode a disentangled representation only
if the underlying factors of a dataset are independent. The
existence of shortcuts in a dataset makes it particularly diffi-
cult to fully separate the factors of variation. However, we
demonstrate that our approach even works if two or more
real-world concepts are entangled in one latent dimension.
Figure 3 illustrates how the change of a spurious attribute
(e.g. position) can coincide with the change of the main dis-
tinguishing factor (e.g. lung appearance). Finally, we note
that VAEs are sensitive to the choice of hyperparameters,
including the number of latent dimensions and the weights
in the loss function.

4. Conclusion
In this paper, we introduce a novel approach to detect spuri-
ous correlations in machine learning datasets. Our method
utilizes a VAE to discover meaningful features in a given
dataset and enables a human judge to identify shortcuts ef-
fortlessly. We evaluate our approach on image and audio
datasets and successfully reveal the inherent shortcuts. We
hope that our work inspires researchers to explore the po-
tential of VAEs in the field of shortcut learning. It would
be interesting to see if our method can be extended to other
domains.
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A. Related Work
Machine Learning Shortcuts. Geirhos et al. (2020) locate the origin of shortcuts in the data and the learning process of
ML models. The inherent contextual bias in datasets provides opportunities for shortcuts. Natural image datasets contain
spurious correlations between the target variable and the background (Xiao et al., 2020), the object poses (Alcorn et al.,
2019) or other co-occurring distracting features (Kolesnikov & Lampert, 2016; Shetty et al., 2019). In discriminative
learning, a model uses a combination of features to make a prediction. Following the “principle of least effort”, models
tend to rely only on the most obvious features, which often correspond to shortcuts (Geirhos et al., 2020). For instance,
convolutional neural networks (CNNs) trained on ImageNet were found to be biased towards the texture of the objects
instead of their shapes (Geirhos et al., 2018). In another example, it was discovered that CNNs solely used the location of a
single pixel to distinguish between object categories (Malhotra & Bowers, 2018).

Identification of Shortcuts. The identification of shortcuts in supervised machine learning is still in its infancy. Zech et al.
(2018) use activation heatmaps to reveal the spurious features learned by CNNs trained on X-ray images. As outlined by
Viviano et al. (2019), saliency maps can only explain spatial shortcuts, e.g. source tags on images (Lapuschkin et al., 2019),
but fail to identify more complicated ones, e.g. people’s gender (Sagawa et al., 2019). Singla and Feizi (2021) select the
highest activations of neurons in the penultimate layer of a CNN classifier and back-project them onto the input images.
The resulting heatmaps highlight the features in the image that maximize neural activations. Under human supervision,
the highlighted regions, for a subset of images, are labelled as ‘core’ (part of the object definition) or ‘spurious’ (only
co-occurring with the object). Using this labelled dataset, they train a classifier to automatically identify the core and
spurious visual features for a larger dataset. To diagnose shortcut learning, Geirhos et al. (2020) suggest performing o.o.d.
generalization tests. Evaluating the model on o.o.d. real-world data in addition to the i.i.d. test set reveals whether a model
is actually generalizing on the intended features or simply learning shortcuts from the training data.

Robustness against Shortcuts. To learn representations robust to spurious correlations, Zhang et al. (2022) propose a
two-stage contrastive approach. The method first identifies training samples from the same class with different model
predictions. Contrastive learning then ensures that the hidden representations for samples of the same class with initially
different predictions become close to each other. Kirichenko et al. (2022) suggest to retrain the last layer of a classifier
on a small dataset without spurious correlations. While the reweighting of the last layer reduces the model’s reliance on
background and texture information, the requirement of a shortcut-free subset remains a limitation of this approach. Our
method could serve as a preliminary step by identifying the shortcuts to be addressed.

B. Methodology
B.1. Variational Autoencoder

Our approach for shortcut detection is based on variational autoencoders (Kingma & Welling, 2013) (VAEs), which are
probabilistic generative models that learn the underlying data distribution in an unsupervised manner. A VAE attempts to
model the marginal likelihood of an observed variable x:

pθ(x) =

∫
pθ(z)pθ(x|z) dz (2)

The unobserved variable z lies in a latent space of dimensionality d = dim(z), d ≪ dim(x). Each instance x(i) has a
corresponding latent representation z(i).

The model assumes the prior over the latent variables to be a multivariate normal distribution pθ(z) = N (z; 0, I) resulting
in independent latent factors {zj}dj=1. The likelihood pθ(x|z) is modelled as a multivariate Gaussian whose parameters
are conditioned on z ∼ pθ(z) and computed using the VAE decoder. As outlined by Kingma and Welling (2013), the true
posterior pθ(z|x) is intractable and hence approximated with a variational distribution qϕ(z|x). This variational posterior is
chosen to be a multivariate Gaussian

qϕ(z|x(i)) = N (z;µ(i), (σ(i))2I) (3)

whose mean µ(i) ∈ Rd and standard deviation σ(i) ∈ Rd are obtained by forwarding x(i) through the VAE encoder. The
objective function is composed of two terms. A Kullback-Leibler (KL) divergence term ensures that the variational posterior
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distribution remains close to the assumed prior distribution.

DKL(qϕ(z|x(i))||pθ(z)) = −1

2

d∑
j=1

(
1 + log((σ(i)

j )2)− (σ
(i)
j )2 − (µ

(i)
j )2

)
(4)

A log-likelihood loss, on the other hand, helps to accurately reconstruct an input image x(i) from a sampled latent variable
z(i) = µ(i) + σ(i) ⊙ ϵ where ϵ ∼ N (0, I). Thus the encoder and decoder are trained to maximize the following objective
function:

L(θ, ϕ;x(i)) = −DKL(qϕ(z|x(i))||pθ(z)) + log pϕ(x
(i)|z(i)) (5)

For modelling images, both the encoder and decoder of a VAE consist of CNNs.

Higgins et al. (2016) introduce the Beta-VAE to better learn independent latent factors. The authors propose to augment the
vanilla VAE loss in Equation (5) by weighing the KL term with a hyperparameter β. Choosing β > 1 enables the model to
learn a more efficient latent representation of the data with better disentangled dimensions.

B.2. Hyperparameter Tuning of Beta-VAE

Following Higgins et al. (2016), we tune the hyperparameters dim(z) and β of the Beta-VAE for every dataset. To
achieve maximum disentanglement, the number of latent dimensions should match the number of factors of variation in
a dataset. This number is usually not known a priori. Choosing a latent space of too high dimensionality leads to a lot
of uninformative dimensions with low variance. A latent space of too few latent dimensions, on the other hand, leads to
entangled representations of features in the latent space. Therefore, it is necessary to identify the optimal number of latent
dimensions to achieve maximally disentangled factors, ideally one in each dimension.

To obtain the best combination of β and dim(z) for a given dataset, we first train a Beta-VAE with β = 1 and dim(z) = 32
on all datasets. We then compare the variance of the distribution in each dimension to that of a Gaussian prior. In the
presence of dimensions with relatively low variance, we reduce the number of latent dimensions. Once we find a Beta-VAE
with consistently informative dimensions, i.e. with the variance comparable to the prior, we fix dim(z) and focus on
fine-tuning β. As outlined by Higgings et al. (2016), for relatively low values of β, the VAE learns an entangled latent
representation since the capacity in the latent space is too high. On the other hand, for relatively high values of β, the
capacity in the latent space becomes too low. The VAE performs a low-rank projection of the true data generative factors
and again learns an entangled latent representation. This renders some of the latent dimensions uninformative.

We find the highest possible β for which all dimensions of the VAE remain informative with a variance close to the prior.
In line with the findings of Higgings et al. (2016), β > 1 is required for all datasets to achieve good disentanglement
(see Table 2).

Table 2. Beta-VAE hyperparameters

Dataset dim(z) β

ASVspoof 32 1.25
CelebA 32 10.0
Colored MNIST 32 2.5
COVID-19 32 1.5
Lemon Quality 10 3.0
Waterbirds 32 1.75

B.3. Visualizing Images for Extreme zj

To validate the meaning attributed to zj , we propose to additionally compute the embeddings z(i)j for all the instances x(i) in

the dataset, and identify those instances which minimize or maximize zj . Particularly, we perform arg sorti({z(i)j }Ni=1) for
every dimension j in the latent space and display the input images x(i) corresponding to the first l and the last l indices of
the sorted values. Figure 4 depicts l = 27 images of the Lemon Quality dataset with minimum and maximum values in
latent dimension 2.
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(a) Inputs from the Lemon Quality dataset which minimize z2. (b) Inputs from the Lemon Quality dataset which maximize z2.

Figure 4. Real-world images from the training dataset that correspond to the minimum and maximum encoded values in latent dimension
2. While bad-quality lemons are mostly captured as close-up shots, good-quality lemons are photographed from a distance.

C. Evaluation
C.1. Datasets

We evaluate our approach on datasets with artificially introduced shortcuts to demonstrate its ability to identify spurious
correlations. Our method can also be applied to real-world datasets to reveal previously unknown shortcuts. We perform a
train-val-test split in the ratio 80:10:10 on each dataset unless explicitly specified.

Waterbirds. Sagawa et al. (2019) extract birds from the Caltech-UCSD Birds-200-2011 dataset (Wah et al., 2011) and
combine them with background images from the Places dataset (Zhou et al., 2017). As a result, 95% of the water birds
appear on a water background while 95% of the land birds appear on a land background. Since this spurious correlation
is only introduced in the train set of the Waterbirds dataset consisting of 4,795 samples, we use the same to create the
train-val-test splits for our experiments.

Colored MNIST. Arjovsky et al. (2019) inject color as a spurious attribute into the MNIST (LeCun et al., 2010) dataset.
Following this idea, Zhang et al. (2022) create a colored MNIST dataset consisting of five subsets with five associated colors.
A fraction pcorr of the training samples are assigned colors based on the group they belong to. The remaining samples are
assigned a random color. We follow the color assignment in (Zhang et al., 2022) and choose pcorr = 0.995 for coloring the
70,000 MNIST samples.

CelebA. The CelebFaces Attributes Dataset (Liu et al., 2015) contains 202,599 images of celebrities, each annotated with 40
facial attributes. Sagawa et al. (2019) train a classifier to identify the hair color of the celebrities and discover that the target
classes (blond, dark) are spuriously correlated with the gender (male, female). We stick to the setup specified in (Sagawa
et al., 2019) with the official train-val-test splits of the CelebA dataset.

Lemon Quality. To demonstrate the detection of shortcuts in quality control, we apply our method on the Lemon Quality
dataset (Köroğlu, 2020). The dataset consists of 2,533 images labelled with one of three classes, namely ‘good quality’,
‘bad quality’, and ‘empty background’.

COVID-19. Following (Brunese et al., 2020; Ghoshal & Tucker, 2020; Hemdan et al., 2020; Ozturk et al., 2020; DeGrave
et al., 2021), we obtain a dataset with 112,528 samples for COVID-19 detection by combining COVID-19-positive
radiographs from the GitHub-COVID repository (Cohen et al., 2020) and COVID-19-negative radiographs from the
ChestX-ray14 repository (Wang et al., 2017).

ASVspoof. The ASVspoof 2019 Challenge Dataset (Wang et al., 2020) is used to train and benchmark systems for the
detection of spoofed audio and audio deepfakes. Müller at al. (2021) observe that the length of the silence at the beginning
of an audio sample differs significantly between benign and malicious data. Previous deepfake detection models have
exploited this shortcut. We chose a subset of the training data (benign audio and attack A01), which results in a binary
classification dataset comprising 6,380 samples. We transform the audio samples to CQT spectrograms (Schörkhuber &
Klapuri, 2010), and obtain a frequency-domain representation with 257 logarithmically spaced frequency bins, capturing up
to 8 kHz (Nyquist frequency given the input is 16 kHz).

C.2. Results

We provide illustrations of the latent space traversal for the Colored MNIST, CelebA and ASVspoof dataset.
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Figure 5. Evaluation of our method on the Colored MNIST dataset. The illustrated dimension represents the attribute ‘color’. The
minimum values encode the colors red (left) while the maximum values encode the color blue (right).

Figure 6. Evaluation of our method on the CelebA dataset. The latent traversal reveals the meaning of dimension 26 as ‘gender’. The
high correlation (as measured in terms of MPWD and predictiveness) of this attribute with the target variable ‘hair color’ indicates the
existence of a spurious correlation.

Figure 7. Evaluation of our method on the ASVspoof dataset. Latent traversal reaffirms the known spurious correlation between the
leading silence in the audio and the target class. Leading silence (left) in the spectrogram is an indicator of benign audio samples while no
leading silence (right) is common in spoofs.

C.3. Comparison

To further evaluate our approach, we compare it to one of the most established Explainable AI techniques, namely heatmaps
(Zech et al., 2018; Singla & Feizi, 2021). We train a CNN C(x) = L(F (x)), which consists of a convolutional feature
extractor F and a linear model L, where L computes a linear combination of the features F (x). We design F to include five
convolutional layers with 32, 64, 128, 256, and 512 filters, using a kernel of size 3× 3. Each of these layers is followed by
ReLU activation and max pooling.
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For each image x, we obtain features F (x) in the penultimate layer. We compute the average contribution of each feature
F (x)i towards the activation L(F (x)i)c of a particular class c by multiplying it with the associated weight. The average
contribution of each feature to the prediction of a certain class is computed over all images of that class. We pick the top
5 most predictive features and then find the top 5 images that yield the highest activation. We compute the heatmaps by
projecting these top features onto the original images.

The heatmaps for the Lemon Quality dataset (see Figure 8) indicate that the maximally activated features for class ‘bad
quality’ are brown patches on the fruit, which is a meaningful feature. However, the heatmaps for class ‘good quality’ (see
Figure 9) largely focus on the background. Therefore, a heatmap-based approach is able to hint at the spatial shortcut in the
Lemon Quality dataset. This shortcut is also successfully identified by our method as described in Section 3.3.

Additionally, we compute the heatmaps on the CelebA dataset. The results are illustrated in Figure 10 and Figure 11. We can
see that the model focuses on the hair in order to classify the ‘hair color’, as well as other facial features such as the forehead
and eyes. However, this does not enable to identify the gender shortcut. In contrast, our approach could successfully reveal
this spurious correlation (see Figure 6).

(a) For the 5 most predictive features (from top to bottom) we
display the images which yield the highest activations (from
left to right).

(b) For the 5 most predictive features (from top to bottom)
we display the heatmaps on images which yield the highest
activations (from left to right).

Figure 8. Original images along with heatmaps for class ‘bad quality’ of the Lemon Quality dataset. A standard CNN classifier identifies
the brown patches as a meaningful feature for classification.
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(a) For the 5 most predictive features (from top to bottom) we
display the images which yield the highest activations (from
left to right).

(b) For the 5 most predictive features (from top to bottom)
we display the heatmaps on images which yield the highest
activations (from left to right).

Figure 9. Original images along with heatmaps for class ‘good quality’ of the Lemon Quality dataset. A standard CNN classifier leverages
the background as a spatial shortcut for classification.

(a) For the 5 most predictive features (from top to bottom) we
display the images which yield the highest activations (from
left to right).

(b) For the 5 most predictive features (from top to bottom)
we display the heatmaps on images which yield the highest
activations (from left to right).

Figure 10. Original images along with heatmaps for class ‘dark hair’ of the CelebA dataset. While a few heatmaps focus on the valid
attribute hair, none of them reveal the gender shortcut.
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(a) For the 5 most predictive features (from top to bottom) we
display the images which yield the highest activations (from
left to right).

(b) For the 5 most predictive features (from top to bottom)
we display the heatmaps on images which yield the highest
activations (from left to right).

Figure 11. Original images along with heatmaps for class ‘blond hair’ of the CelebA dataset. The heatmaps highlight meaningful facial
features like forehead and eyes but fail to reveal the gender shortcut.


