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Abstract

Opinion summarization is the task of cre-001
ating summaries capturing popular opinions002
from user reviews. In this paper, we in-003
troduce Geodesic Summarizer (GeoSumm), a004
novel system to perform unsupervised extrac-005
tive opinion summarization. GeoSumm in-006
volves an encoder-decoder based representa-007
tion learning model, that generates represen-008
tations of text as a distribution over latent se-009
mantic units. GeoSumm generates these rep-010
resentations by performing dictionary learning011
over pre-trained text representations at multi-012
ple layers of the decoder. We then use these013
representations to quantify the importance of014
review sentences using a novel approximate015
geodesic distance based scoring mechanism.016
We use the importance scores to identify pop-017
ular opinions in order to compose general018
and aspect-specific summaries. Our proposed019
model, GeoSumm, achieves state-of-the-art020
performance on three opinion summarization021
datasets. We perform additional experiments022
to analyze the functioning of our model and023
showcase the generalization ability of Geo-024
Summ across different domains.025

1 Introduction026

As more and more human interaction takes place027

online, consumers find themselves wading through028

an ever-increasing number of documents (e.g. cus-029

tomer reviews) when trying to make informed pur-030

chasing decisions. As this body of information031

grows, so too does the need for automatic systems032

that can summarize it in an unsupervised manner.033

Opinion summarization is the task of automati-034

cally generating concise summaries from online035

user reviews (Hu and Liu, 2004; Pang, 2008; Med-036

hat et al., 2014). For instance, opinion summaries037

allow a consumer to understand product reviews038

without reading all of them. Opinion summaries039

are also useful for sellers to receive feedback, and040

compare different products. The recent success of041

deep learning techniques have led to a significant 042

improvement in summarization (Rush et al., 2015; 043

Nallapati et al., 2016; Cheng and Lapata, 2016; See 044

et al., 2017; Narayan et al., 2018; Liu et al., 2018) in 045

supervised settings. However, it is difficult to lever- 046

age these techniques for opinion summarization 047

due to the scarcity of annotated data. It is expen- 048

sive to collect good-quality opinion summaries as 049

human annotators need to read hundreds of reviews 050

to write a single summary (Moussa et al., 2018). 051

Therefore, most works on opinion summarization 052

tackle the problem in an unsupervised setting. 053

Recent works (Bražinskas et al., 2021; Amplayo 054

et al., 2021a) focus on abstractive summarization, 055

where fluent summaries are generated using novel 056

phrases. However, these approaches suffer from is- 057

sues like text hallucination (Rohrbach et al., 2018), 058

which affects the faithfulness of generated sum- 059

maries (Maynez et al., 2020). Extractive summaries 060

are less prone to these problems, presenting the user 061

with a representative subset of the original reviews. 062

We focus on the task of unsupervised extrac- 063

tive opinion summarization, where the system se- 064

lects sentences representative of the user opinions. 065

Inspired by previous works (Chowdhury et al., 066

2022; Angelidis et al., 2021a), we propose a novel 067

encoder-decoder architecture along with objectives 068

for (1) learning sentence representations that cap- 069

ture underlying semantics, and (2) a sentence selec- 070

tion algorithm to compose a summary. 071

One of the challenges in extractive summariza- 072

tion is quantifying the importance of opinions. An 073

opinion is considered to be important if it is se- 074

mantically similar to opinions from other users. 075

Using off-the-shelf pre-trained representations to 076

obtain semantic similarity scores has known is- 077

sues (Timkey and van Schijndel, 2021). These 078

similarity scores can behave counterintuitively due 079

to the high anisotropy of the representation space 080

(a few dimensions dominating the cosine similar- 081

ity scores). Therefore, we use topical representa- 082
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tions (Blei et al., 2003), which capture the under-083

lying semantics of text as a distribution over latent084

semantic units, where the semantic units encode085

concepts or topics. These semantic units can be086

captured using a learnable dictionary (Engan et al.,087

1999; Mairal et al., 2009; Aharon et al., 2006; Lee088

et al., 2006). Topical representations enable us to089

effectively measure semantic similarity between090

text representations, as they are distributions over091

the same support. Text representations from re-092

views lie on a high-dimensional manifold. It is im-093

portant to consider the underlying manifold while094

computing the importance score of a review. There-095

fore, we use the approximate geodesic distance096

between topical text representations to quantify the097

importance scores of reviews.098

In this paper, we present Geodesic099

Summarization (GeoSumm) that learns topi-100

cal text representations in an unsupervised manner101

from distributed representations (Hinton, 1984).102

We also present a novel sentence selection scheme103

that compares topical sentence representations in104

high-dimensions using approximate geodesics.105

Empirical evaluations show that GeoSumm106

achieves state-of-the-art performance on three107

opinion summarization datasets – OPOSUM+ (Am-108

playo et al., 2021a), AMAZON (He and McAuley,109

2016) and SPACE (Angelidis et al., 2021b). To110

summarize, our primary contributions are:111

• We present an extractive opinion summarization112

system, GeoSumm. It consists of an unsuper-113

vised representation learning system and a sen-114

tence selection algorithm (Section 3).115

• We present a novel representation learning model116

that learns topical text representations from dis-117

tributed representations using dictionary learning118

(Section 3.1).119

• We present a novel sentence selection algorithm120

that computes importance of text using approxi-121

mate geodesic distance (Section 3.2).122

• GeoSumm achieves state-of-the-art results on 3123

opinion summarization datasets (Section 4.3).124

2 Task Setup125

In extractive opinion summarization, the objec-126

tive is to select representative sentences from a127

reviews set. Specifically, each dataset consists of128

a set of entities E and their corresponding review129

set R. For each entity e ∈ E (e.g., a particular130

hotel such as the Holiday Inn in Redwood City,131

CA.), a review set Re = {r1, r2, . . .} is provided,132

where each review is an ordered set of sentences 133

ri = {s(i)1 , s
(i)
2 , . . .}. For simplicity of notation, 134

we will represent the set of review sentences cor- 135

responding to an entity e as Se =
⋃
ri∈Re

ri. For 136

each entity, reviews encompass a set of aspects 137

Ae = {a1, a2, . . .} (e.g., service, food of a ho- 138

tel). In this work, we consider two forms of ex- 139

tractive summarization: (a) general summariza- 140

tion, where the system selects a subset of sentences 141

Oe ⊂ Se, that best represents popular opinions in 142

the review setRe; (b) aspect summarization, where 143

the system selects a representative sentence subset 144

O(a)
e ⊂ Se, about a specific aspect a for entity e. 145

3 Geodesic Summarizer (GeoSumm) 146

In this section, we present our proposed approach 147

Geodesic Summarizer (GeoSumm). GeoSumm has 148

two parts: (a) an unsupervised model to learn topi- 149

cal representations of review sentences, and (b) a 150

sentence selection algorithm, that uses approximate 151

geodesic distance between topical representations, 152

to compose the extractive summary. 153

3.1 Unsupervised Representation Learning 154

The goal of the representation learning model is to 155

learn topical representations of review sentences. 156

Topical representations model text as a distribu- 157

tion over underlying concepts or topics. This is 158

useful for unsupervised extractive summarization 159

because we want to capture the aggregate semantic 160

distribution, and quantify the importance of individ- 161

ual review sentences with respect to the aggregate 162

distribution. Topical representations allow us to 163

achieve both. Being a distribution over latent units, 164

topical representations can be combined to form an 165

aggregate (mean) representation, enabling compo- 166

sitionality. Also, it is convenient to measure simi- 167

larity between representations using conventional 168

metrics (like cosine similarity). 169

We propose to model topical representations 170

by decomposing pre-trained representations us- 171

ing dictionary learning (Tillmann, 2015; Lotfi and 172

Vidyasagar, 2018). In this setup, the various com- 173

ponents of the dictionary captures latent seman- 174

tic units, and we consider the representation over 175

dictionary elements as the topical representation. 176

Unlike conventional dictionary learning algorithms, 177

we use a sentence reconstruction objective for learn- 178

ing the dictionary. We use an encoder-decoder 179

architecture to achieve this. We retrieve word em- 180

beddings from a pre-trained encoder. We modify 181
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Figure 1: Architecture of Geodesic Summarizer.
Sparse representations of words are formed via the ker-
nel function f (j)θ . The representations are trained to re-
construct the output embeddings of the encoder layer.
Alongside the dictionary learning objective, we use
an unsupervised sentence-reconstruction cross entropy
loss. N indicates the number of decoder layers.

the architecture of a standard Transformer decoder,182

and add a dictionary learning component at each183

decoder layer. The pre-trained word embeddings184

obtained from the encoder are decomposed using185

these dictionary learning components to obtain top-186

ical representations. Then, we combine the topical187

word representations at different decoder layers to188

form a sentence representation. The schematic dia-189

gram of the model is shown in Figure 1. Next, we190

will discuss each of the components in detail.191

Encoder. We obtain contextual word embeddings192

from a pre-trained BART (Lewis et al., 2020)193

encoder. We keep the weights of the encoder194

frozen during training.1 Given an input sentence195

s = {w1, . . . , wL}, we retrieve contextual word196

embeddings zi’s from the BART encoder197

zi = sg(enc(wi)) ∈ Rd (1)198

where sg(·) denotes the stop gradient operator.199

Dictionary Learning. We describe the dictionary200

learning component within each decoder layer. We201

use dictionary learning to decompose pre-trained202

word representations from the encoder to obtain a203

sparse representation for each word. We want word204

1In Section 5, we discuss why frozen representations are
important for our model.

representations to be sparse because each word can 205

capture only a small number of semantics. We for- 206

ward word representations from the encoder to the 207

decoder layers. For the j-th decoder layer, we use 208

a dictionary, D(j) ∈ Rm×d, and kernel function, 209

kj(·, ·), where j ∈ {1, . . . , N} (N is the number of 210

decoder layers). The dictionary captures the under- 211

lying semantics in the text by enabling us to model 212

text representations as a combination of dictionary 213

elements. Specifically, we learn a topical word 214

representation Tj(wi) over the dictionary D(j) as: 215

ẑi
(j) = D(j)TTj(wi)

Tj(wi) = kj(zi,D
(j)) ∈ Rm

(2) 216

where ẑ(j)i is the reconstructed word embedding, 217

and kj(·, ·) ∈ Rm is the kernel function that mea- 218

sures the similarity between zi and individual dic- 219

tionary elements. In practice, since the dictionary 220

is common for all word embeddings zi’s, the kernel 221

function can be implemented as: 222

kj(zi,D
(j)) = f

(j)
θ (zi) ∈ Rm (3) 223

where f (j)θ is a feed-forward neural network with 224

ReLU non-linearity. ReLU non-linearity ensures 225

that the kernel coefficients are positive and also 226

encourages sparsity. 227

Following conventional dictionary learning algo- 228

rithms (Beck and Teboulle, 2009), the dictionary 229

D(j) and kernel layer f (j)θ are updated iteratively. 230

This can be achieved by using the loss function: 231

Ldict(D(j), f
(j)
θ ) =||zi − sg(D(j)T )f

(j)
θ (zi)||2+

||zi −D(j)T sg(f
(j)
θ (zi))||2

232

where the gradient update of the dictionary D(j) 233

and kernel layer f (j)θ are performed independently. 234

Decoder. We build on the decoder architecture 235

introduced by Vaswani et al. (2017). A decoder 236

layer consists of 3 sub-layers (a) masked multi- 237

head attention layer that takes as input decoder 238

token embeddings, (b) multi-head attention that 239

performs cross-attention between decoder tokens 240

and encoder stack output, and (c) feed-forward net- 241

work. We modify the cross attention multi-head 242

sub-layer to attend over the reconstructed word em- 243

beddings ẑ(j)i (Equation 2), instead of the encoder 244

stack output (shown in Figure 1). Finally, the de- 245

coder autoregressively generates the reconstructed 246

sentence ŝ = {ŵ1, . . . , ŵL}. 247
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Training. The system is trained using the sen-248

tence reconstruction objective. The overall objec-249

tive function is shown below:250

LCE(s, ŝ) +

N∑
j=1

Ldict(D(j), f
(j)
θ ) (4)251

where LCE is the cross-entropy loss, and f (j)θ is252

the implementation of the kernel function kj(·, ·)253

corresponding to the j-th decoder layer. The above254

loss function is used to update the decoder, dictio-255

nary elements and kernel parameters while keeping256

the encoder weights frozen.257

Sentence Representations. We combine topical258

word representations from different decoder layers259

to form a sentence representation. First, we ob-260

tain a word representation, Tj(w) ∈ Rm from each261

decoder layer. We compose the final word represen-262

tation xw by concatenating representations from263

all decoder layers.264

xw = [T1(w), . . . , TN (w)] ∈ RmN (5)265

where m is the dictionary dimension and N is the266

number of decoder layers. We use max-pooling267

over the dimensions of word representations to268

form a sentence representation xs as shown below.269

xsn = max
i∈{1,...,L}

xw
∣∣
n

x̄s = {xsn}mNn=1,xs = x̄s/||x̄s||1 ∈ RmN
(6)270

where xw
∣∣
n

is the n-th entry of the vector xw. The271

sentence representation xs is normalized to a unit272

vector. Next, we discuss how we leverage these273

topical sentence representations to compute impor-274

tance scores using approximate geodesics. We use275

the importance scores to compose the final extrac-276

tive summary for a given entity.277

3.2 General Summarization278

We use representations retrieved from GeoSumm to279

select sentences representative of popular opinions280

in the review set. For an entity e, the set of sentence281

representations is denoted as Xe = {xs|s ∈ Se}.282

For a summary budget q, we select a subset of283

sentences Oe ⊂ Se according to their importance284

scores, such that |Oe| = q. First, we compute a285

mean representation as shown: µe = Es∼Se [xs].286

Secondly, we define the importance of a sentence287

s, as the distance from the mean representation288

xs

xs′￼

Figure 2: Illustration of the geodesic shortest path
(shown in blue) between two sentence representations
xs and xs′ on a three-dimensional manifold.

d(xs, µe). However, we do not directly evaluate 289

d(·, ·) using a similarity metric. Representations 290

in Xe lie in a high-dimensional manifold, and we 291

aim to measure the geodesic distance (Jost and Jost, 292

2008) between two points along that manifold. An 293

illustration of the geodesic distance between two 294

points is shown in Figure 2. Computing the ex- 295

act geodesic distance is difficult without explicit 296

knowledge of the manifold structure (Surazhsky 297

et al., 2005). We approximate the manifold struc- 298

ture using a k-NN graph. Each sentence repre- 299

sentation forms a node in this graph. A directed 300

edge exists between two nodes if the target node 301

is among the k-nearest neighbours of the source 302

node. The edge weight between two nodes (s, s′) 303

is defined using their cosine similarity distance, 304

d(s, s′) = 1 − xsx
T
s′ . The geodesic distance be- 305

tween two sentence representations is computed 306

using the shortest path distance along the weighted 307

graph. Therefore, the importance score I(s) for a 308

sentence s, is defined as: 309

I(s) = 1/ShortestPath(xs, µe) (7) 310

where the shortest path distance is computed us- 311

ing Dijkstra’s algorithm (Dijkstra et al., 1959). We 312

select the top-q sentences according to their im- 313

portance scores I(s) to form the final general ex- 314

tractive summary. The overall sentence selection 315

routine is shown in Algorithm 1. 316

3.3 Aspect Summarization 317

In aspect summarization, the goal is to select repre- 318

sentative sentences to form a summary specific to 319

an aspect (e.g., durability) of an entity (e.g., bag). 320

To perform aspect summarization, we compute the 321

mean representation of aspect-specific sentences 322

as shown: µ(a)e = E
s∼S(a)e

[xs], where S(a)e is the 323
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Algorithm 1 General Summarization Routine
1: Input: A set of sentence representations Xe =
{xs|s ∈ Se} are review sentences for entity e.

2: µe ← Es∼Se [xs]
3: A← knn(Xe ∪ µe) ∈ Rl×l . adjacency

matrix of k-NN graph, l = |Se|+ 1.
4: d← Dijkstra(A, µe) . shortest distances of

all nodes from µe
5: I = {1/d(s)|s ∈ Se} . importance scores
6: tq ← min top-q(I) . top-q threshold
7: Oe ← {s | I(s) ≥ tq, s ∈ Se}
8: return Oe

set of sentences mentioning aspect a. We identify324

S(a)e by detecting the presence of aspect-specific325

keywords available with the dataset. To ensure326

the selected sentences are aspect-specific, we in-327

troduce a measure of informativeness (Chowdhury328

et al., 2022; Peyrard, 2019). Informativeness pe-329

nalizes a sentence for being close to the overall330

mean µe. Therefore, we model the aspect-specific331

importance score Ia(s) as:332

Ia(s) = 1/ShortestPath(xs, µ
(a)
e )− γI(s) (8)333

where γ is a hyperparameter, I(s) is the overall im-334

portance score (obtained from Eqn. 7). Aspect sum-335

mary O(a)
e is composed using the top-q sentences336

according to the aspect-specific scores, Ia(s).337

4 Experiments338

We evaluate the performance of GeoSumm on ex-339

tractive summarization. Given a set of opinion340

reviews the system needs to select a subset of the341

sentences as the summary. This summary is then342

compared with human-written summaries. In this343

section, we discuss the experimental setup in detail.344

4.1 Datasets & Metrics345

We evaluate GeoSumm on three publicly available346

opinion summarization datasets:347

(a) OPOSUM+ (Amplayo et al., 2021b) is348

an extended version of the original OPOSUM349

dataset (Angelidis and Lapata, 2018a). This dataset350

contains Amazon reviews from six product cat-351

egories (like laptops, bags, etc.), with 3 human-352

written summaries in the test set. The extended353

version contains additional product reviews and354

aspect-specific human-annotations.355

(b) AMAZON (He and McAuley, 2016; Bražinskas356

et al., 2020a) has product reviews of 4 different357

Dataset Reviews Train / Test Ent. Rev./Ent.

OPOSUM+ 4.13M 95K /60 10
AMAZON 4.75M 183K / 60 8
SPACE 1.14M 11.4K / 50 100

Table 1: Dataset statistics for OPOSUM+, AMAZON
and SPACE datasets. (Train/Test Ent.: Number of en-
tities in the training and test set; Rev./Ent.: Number of
reviews per entity in the test set.)

categories (like electronics, clothing etc.) from 358

Amazon, with 3 human summaries per entity. 359

(c) SPACE (Angelidis et al., 2021a) contains re- 360

views for hotels from Tripadvisor. SPACE provides 361

3 human-written abstractive summaries per entity. 362

It also has 6 aspect-specific summaries per entity. 363

Statistics of the datasets are provided in Table 1. 364

We observe that SPACE dataset has significantly 365

more reviews per entity compared to other datasets. 366

4.2 Baselines 367

We compare GeoSumm with several summariza- 368

tion systems (including the current state-of-the-art) 369

that can be classified into three broad categories: 370

• Single Review systems select a single review as 371

the summary. We compare with the following sys- 372

tems: (a) Random samples a review randomly from 373

the review set; (b) Centroid selects a review closest 374

to the centroid of the review set. The centroid is 375

computed using BERT (Devlin et al., 2019) embed- 376

dings; (c) Oracle selects the best review based on 377

ROUGE overlap with the human-written summary. 378

• Abstractive systems generate summaries using 379

novel phrasing. We compare GeoSumm with the 380

following systems: MeanSum (Chu and Liu, 2019), 381

Copycat (Bražinskas et al., 2020b), and AceSum 382

(Amplayo et al., 2021b). 383

• Extractive systems select text phrases from the 384

review set to form the summary. We compare with 385

the following systems: LexRank (Erkan and Radev, 386

2004) using BERT embeddings, QT (Angelidis 387

et al., 2021a), AceSumEXT (Amplayo et al., 2021b), 388

and SemAE2 (Chowdhury et al., 2022). 389

4.3 Results 390

We discuss the performance of GeoSumm on gen- 391

eral and aspect-specific summarization. We evalu- 392

ate the quality of the extracted summaries using the 393

automatic metric – ROUGE F-scores (Lin, 2004). 394

General Summarization. We present the results 395

of GeoSumm and baseline approaches on general 396

2For a fair comparison, we consider the version of SemAE
that does not use additional aspect-related information.
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Method
OPOSUM+ AMAZON SPACE

R1 R2 RL R1 R2 RL R1 R2 RL
Si

ng
le

R
ev

.

Random 29.88 5.64 17.19 27.66 4.72 16.95 26.24 3.58 14.72
CentroidBERT 33.44 11.00 20.54 29.94 5.19 17.70 31.29 4.91 16.43
Oracle 32.89 23.20 28.73 31.69 6.47 19.25 33.21 8.33 18.02

A
bs

tr
ac

t MeanSum (Chu and Liu, 2019) 34.95 7.49 19.92 29.20 4.70 18.15 34.95 7.49 19.92
Copycat (Bražinskas et al., 2020b) 36.66 8.87 20.90 31.97 5.81 20.16 36.66 8.87 20.90
AceSum (Amplayo et al., 2021c) 40.37 11.51 23.23 - - - 40.37 11.51 23.23

E
xt

ra
ct

LexRankBERT (Erkan and Radev, 2004) 35.42 10.22 20.92 31.47 5.07 16.81 31.41 5.05 18.12
QT (Angelidis et al., 2021a) 37.72 14.65 21.69 31.27 5.03 16.42 38.66 10.22 21.90
AceSumEXT (Amplayo et al., 2021b) 38.48 15.17 22.82 - - - 35.50 7.82 20.09
SemAE (Chowdhury et al., 2022) 39.16 16.85 23.61 32.03 5.38 16.47 42.48 13.48 26.40

Geodesic Summarizer (GeoSumm) 41.29 19.94 33.53 32.93 6.91 25.45 43.29 12.80 29.87

Table 2: Evaluation results of GeoSumm and baseline approaches on general summarization. We observe that
GeoSumm achieves state-of-the-art performance on all datasets. GeoSumm significantly improves ROUGE-L
scores, with an average improvement of 6.9 points over prior best. ROUGE-L being the most difficult metric of
overlap, showcases the efficacy of GeoSumm in selecting sentences that correlate with human summaries. We
report the ROUGE-F scores denoted as – R1: ROUGE-1, R2: ROUGE-2, RL: ROUGE-L.

Method
OPOSUM+ SPACE

R1 R2 RL R1 R2 RL

A
bs

tr
ac

t MeanSum 24.63 3.47 17.53 23.24 3.72 17.02
CopyCat 26.17 4.30 18.20 24.95 4.82 17.53
AceSum 29.53 6.79 21.06 32.41 9.47 25.46

E
xt

ra
ct

LexRank 22.51 3.35 17.27 27.72 7.54 20.82
QT 23.99 4.36 16.61 28.95 8.34 21.77
SemAE 25.30 5.08 17.62 31.24 10.43 24.14
AceSumEXT 26.16 5.75 18.55 30.91 8.77 23.61

GeoSumm 30.64 7.94 24.37 30.29 9.02 23.79

Table 3: Evaluation results on aspect summarization.
Best scores for each metric is highlighted in bold.
GeoSumm achieves the state-of-the-art performance on
OPOSUM+, while achieving competitive performance
with other extractive methods on SPACE.

summarization in Table 2. We observe that Geo-397

Summ achieves strong improvement over baselines398

(including abstractive summarization approaches)399

across all datasets. It is important to note that com-400

pared to baselines GeoSumm achieves much better401

ROUGE-L F1 scores, which is the hardest metric402

among the three (with an average improvement of403

6.9 points over prior best). This shows the efficacy404

of GeoSumm in selecting sentences that correlate405

with human summaries. For SPACE dataset, it is406

competitive with the state-of-the-art model SemAE,407

falling slightly short only in ROUGE-2 F1 score.408

However, GeoSumm performs significantly better409

than SemAE on human evaluations.410

Aspect Summarization. We report the perfor-411

mance on different approaches on aspect summa-412

rization in Table 3 on OPOSUM+ and SPACE. We413

observe that GeoSumm achieves the state-of-the-art414

General Inform. Coherence Redund.

SemAE -29.3 -25.3 -58.0
QT 4.0 -19.3 40.7
GeoSumm 25.3 44.7* 17.3

Table 4: Human evaluation results of general summa-
rization for SPACE dataset. (*): statistically significant
difference with all baselines (p < 0.05, using paired
bootstrap resampling Koehn (2004)).

performance for all metrics on OPOSUM+ dataset. 415

It also achieves strong results on SPACE, obtain- 416

ing similar scores compared to other extractive ap- 417

proaches, falling slightly short of state-of-the-art. 418

Human Evaluation. We perform human evalua- 419

tion to compare the summaries from GeoSumm 420

with the state-of-the-art extractive summarization 421

systems SemAE and QT. General summaries were 422

judged based on the following criteria: informa- 423

tiveness, coherence and redundancy. We present 424

human evaluators with summaries in a pairwise 425

fashion, and ask them to select which one was 426

better/worse/similar according to the criteria. The 427

final scores for each system reported in Table 4 428

were computed using Best-Worst Scaling (Lou- 429

viere et al., 2015). We observe that GeoSumm out- 430

performs the prior state-of-the-art in informative- 431

ness and coherence. GeoSumm performs slightly 432

worse than QT in redundancy. This is expected 433

as GeoSumm greedily select sentences, while QT 434

performs sampling to introduce diversity in the 435

summary (compromising on informativeness). 436

For aspect summaries, we ask annotators to 437

judge whether a summary discusses a specific as- 438

pect exclusively, partially, or does not mention it 439
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Aspect Exclusive Partial None

SemAE 22.1 43.8 34.1
QT 22.2 41.9 35.9
GeoSumm 45.7* 40.1 14.1*

Table 5: Human evaluation results of aspect summa-
rization for OPOSUM+ dataset. GeoSumm generates
more aspect-specific summaries compared to baselines.

at all. In Table 5, we report the human evaluation440

results for aspect summaries on OPOSUM+ dataset.441

We observe that GeoSumm generates summaries442

that are more specific to an aspect compared to443

baselines. We provide further details about human444

evaluation and additional results in Appendix A.3.445

5 Analysis446

Thawed Encoder. In this experiment, we compare447

the performance of GeoSumm when the encoder448

is allowed to be fine-tuned with the original setup,449

where the encoder weights are frozen. In Table 6,450

we observe that there is a significant drop in perfor-451

mance when the encoder is fine-tuned. We believe452

that this happens because the model overfits on453

shallow word-level semantics, and is unable to cap-454

ture more abstract semantics. This showcases the455

utility of pre-trained representations, which helps456

GeoSumm perform well in an unsupervised setting.457

Dataset R1 R2 RL

OPOSUM+ 31.46 [-9.83] 8.60 [-11.34] 23.94 [-9.59]
AMAZON 30.12 [-2.81] 4.85 [-2.06] 22.01 [-3.44]
SPACE 30.07 [-13.22] 4.31 [-8.49] 21.56 [-8.31]

Table 6: Evaluation results of GeoSumm when the en-
coder is fine-tuned during training.

Visualization. In this experiment, we visualize the458

UMAP (McInnes et al., 2018) projections of sen-459

tence representation retrieved from GeoSumm for460

an entity. We investigate whether different parts461

of the representation space capture distinct seman-462

tics. We partition the space using kmeans clustering463

(k = 10) on the representations, color-code them464

according to the assigned cluster label and visualize465

them in Figure 3. In Table 7, we observe that these466

clusters capture certain semantics. We report exam-467

ple sentences within different clusters. We observe468

that sentences belonging to the same cluster share469

a common theme. The underlying semantics of a470

cluster can vary from being coarse, like presence471

of a phrase ‘Calistoga’, to more nuanced concepts472

like cleanliness of rooms, time frame etc.473

Next, we investigate the efficacy of the represen-474

tation learning and sentence selection modules by475

replacing each of them with a competitive variant.476

Figure 3: UMAP projections of sentence representation
retrieved from GeoSumm for an entity. The representa-
tions are colored-coded according to the cluster labels.

Theme Sentences

Cleanliness
• The room was clean, but no more
than that
• Also, the pools were filthy dirty.

Time
• I called on Monday, and was told
there was no manager on Mondays!
• save your time and money and stay
anywhere else.

Location
‘Calistoga’

• The Roman Spa and Calistoga is
our favorite spot in the Wine Country.
• Roman Spa Hot Springs Resort in
Calistoga is a wonderful place...

Pleasant
Rooms

• The rooms were in great shape,
very clean, comfortable beds ...
• The rooms are very comfortable
and they have upgraded them ...

Table 7: Sentences within a cluster visualized in Fig-
ure 3. Sentences in a row belong to the same cluster.
We highlight the dominant theme of a cluster in green.
We annotate cluster identity using color-coded circles.

Euclidean-based Importance Score. We investi- 477

gate the utility of geodesic-based importance scor- 478

ing over Euclidean-based scoring. In this experi- 479

ment, instead of I(s) (defined in Equation 7) we 480

compute the importance score of a sentence (s) 481

as the Euclidean distance from the mean represen- 482

tation, µe (I(s) = −||xs − µe||22). We report the 483

results of this setup in Table 8 (relative performance 484

to GeoSumm is shown in brackets). We observe 485

that using Euclidean distance achieves similar per- 486

formance for AMAZON and OPOSUM+ (with a 487

slight improvement for AMAZON). But there is a 488

significant performance drop for SPACE. SPACE 489

has a larger number of reviews per entity, providing 490

a better approximation of the manifold using k-NN 491

graph, and therefore a more accurate geodesic dis- 492

tance. We believe that this is the reason why Eu- 493

clidean distance achieves comparable performance, 494

when there are less reviews. In the real word, opin- 495

ion summarization involves a large number of re- 496

views, where GeoSumm will scale better. 497

Distributed vs. Topical Representations. In this 498
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Dataset R1 R2 RL

OPOSUM+ 40.87 [-0.42] 19.66 [-0.28] 32.85 [-0.68]
AMAZON 33.42 [+0.49] 6.95 [+0.04] 25.72 [+0.27]
SPACE 40.95 [-2.34] 11.21 [-1.59] 28.57 [-1.30]

Table 8: Evaluation results of GeoSumm with a modi-
fied score I(s) = −||xs − µe||22. We observe a signif-
icant drop in performance on SPACE, while achieving
similar performance on OPOSUM+ and AMAZON.

experiment, we investigate the relative efficacy499

of topical representations compared to distributed500

representations. We retrieve distributed sentence501

representations from RoBERTa (Liu et al., 2019)502

([CLS] token feature) and SimCSE (Gao et al.,503

2021) model. Then, we use our sentence selection504

algorithm (Section 3.2) to compose the summary.505

In Table 9, we observe that topical representations506

outperform distributed representations by a signifi-507

cant margin in almost all setups (except AMAZON508

with RoBERTa embeddings). This shows the utility509

of topical representations over distributed represen-510

tations for unsupervised summarization.511

We perform additional experiments to investi-512

gate the domain transfer capabilities, sparsity of513

representation, and visualize the generated sum-514

maries from GeoSumm in Appendix A.2.515

6 Related Work516

Most work on opinion summarization focuses on517

generating summaries in an unsupervised setup due518

to scarcity of labeled data. These works are broadly519

classified into two categories based on the type520

of summaries being generated: abstractive (Gane-521

san et al., 2010; Carenini et al., 2006; Di Fab-522

brizio et al., 2014) or extractive (Erkan and Radev,523

2004; Nenkova and Vanderwende, 2005; Kim et al.,524

2011). Abstractive systems, in an unsupervised525

setup (Chu and Liu, 2019; Bražinskas et al., 2020b;526

Iso et al., 2021; Wang and Wan, 2021; Amplayo527

et al., 2021a) train an encoder-decoder setup us-528

ing a self-supervised objective, and generate the529

summary by leveraging the aggregate opinion rep-530

resentation. On the other hand, extractive opinion531

systems (Kim et al., 2011), select sentences us-532

ing an importance score that quantifies its salience.533

Salience has been computed using frequency-based534

approaches (Nenkova and Vanderwende, 2005),535

distance from mean (Radev et al., 2004), or graph-536

based techniques (Erkan and Radev, 2004). Few537

approaches focus on aspect specificity and senti-538

ment polarity for sentence selection (Angelidis and539

Lapata, 2018b; Zhao and Chaturvedi, 2020).540

Our work is most similar to extractive summa-541

Dataset Model R1 R2 RL

OPOSUM+ RoBERTa 36.29 [-6.00] 13.18 [-7.76] 28.36 [-5.17]
SimCSE 35.37 [-6.92] 12.99 [-6.95] 20.76 [-12.77]

AMAZON
RoBERTa 33.79 [+0.86] 6.95 [+0.04] 25.54 [+0.09]
SimCSE 32.71 [-0.22] 6.53 [-0.38] 17.65 [-6.80]

SPACE
RoBERTa 38.70 [-4.59] 9.40 [-3.40] 27.60 [-2.27]
SimCSE 35.36 [-7.93] 7.21 [-5.59] 19.72 [-10.15]

Table 9: Evaluation results of GeoSumm using
RoBERTa and SimCSE’s representations. We observe
a significant drop in performance in most setups.

rization systems SemAE (Chowdhury et al., 2022), 542

and QT (Angelidis et al., 2021a). Similar to these 543

systems, Geodesic Summarizer has two compo- 544

nents: a representation learning system, and a sen- 545

tence selection routine. However, unlike these ap- 546

proaches, we leverage pre-trained models to learn 547

topical representations over a latent dictionary, and 548

propose a sentence selection mechanism using ap- 549

proximate geodesics to perform summarization. 550

Prior work in deep clustering consider a sim- 551

ilar combination of unsupervised representation 552

learning and sparse structures (Yang et al., 2016; 553

Jiang et al., 2016; Law et al., 2017; Caron et al., 554

2020; Zhao et al., 2020; Chan et al., 2022). Simi- 555

larly, dictionary learning-like approaches have been 556

combined with deep networks (Liang et al., 2021; 557

Zheng et al., 2021) for various tasks. 558

7 Conclusion 559

We present Geodesic Summarizer, a novel frame- 560

work for extractive opinion summarization. Geo- 561

Summ uses a representation learning model to con- 562

vert distributed representations from a pre-trained 563

model into topical text representations. GeoSumm 564

uses these representations to compute the impor- 565

tance of a sentence using approximate geodesics. 566

We show that GeoSumm achieves state-of-the-art 567

results on several opinion summarization datasets. 568

However, there are a lot of open questions about 569

the inductive biases of representation learning that 570

are needed for unsupervised summarization. In 571

this work, we show the efficacy of topical repre- 572

sentations. However, are there better approaches to 573

capture language semantics that help us quantify 574

the importance of an opinion? Our analysis shows 575

that representations from GeoSumm span the high- 576

dimensional space in a manner that different parts 577

of it capture distinct semantics. This opens up the 578

possibility of leveraging the representation geome- 579

try to capture different forms of semantics. Future 580

work can explore ways to leverage topical repre- 581

sentations from GeoSumm for tasks where there is 582

a scarcity of labeled data. 583
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Ethical Considerations584

We do not foresee any ethical issues from the tech-585

nology introduced in this paper. However, we586

would like to mention certain limitations of extrac-587

tive summarization systems in general. As extrac-588

tive systems select review sentences from the input,589

it can produce undesirable output when the input590

reviews have foul or offensive language. There-591

fore, it is important to remove foul language from592

the input in order to ensure the end user is not af-593

fected. In general, we use public datasets, and do594

not annotate any data manually. All datasets used595

in this paper have customer reviews in English lan-596

guage. Human evaluations for summarization were597

performed on Amazon Mechanical Turks (AMT)598

platform. Human judges were based in the United599

States. Human judges on AMT were compensated600

at a wage rate of at least $15 USD per hour.601
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A Appendix979

A.1 Implementation Details980

Our experiments are implemented in Tensor-981

Flow (Abadi et al., 2015) framework. We use982

BART (Lewis et al., 2020) architecture as our983

encoder-decoder model. We initialize the encoder984

with pre-trained weights from BART, while the de-985

coder is trained from scratch. In our experiments,986

we use dictionary dimension m = 8192, number987

of decoder layers N = 6, and hidden dimension988

d = 768. GeoSumm was trained for 15K steps on989

16 TPUs in all setups. We optimize our model us-990

ing Adam (Kingma and Ba, 2014) optimizer with a991

learning rate of 10−5. We set aspect-summarization992

parameter γ = 0.5 for OPOSUM+ and γ = 0.7 for993

SPACE (Equation 8). All hyperparameters were994

tuned using grid-search on the development set.995

We will make our code publicly available.996

A.2 Analysis997

Dictionary Size Ablation. In this experiment, we998

vary the number of elements in each dictionary999

(n) and observe the summarization performance on1000

OPOSUM+ dataset. We conduct these experiments1001

on the OPOSUM+ dataset. In Table 10, we observe1002

GeoSumm achieves comparable performance with1003

significantly smaller dictionary sizes.1004

m R1 R2 RL

512 39.52 18.13 31.78
1024 40.03 19.14 32.69
2048 40.15 19.26 32.93
4096 41.29 19.94 33.53

Table 10: Evaluation results with varying number of
dictionary elements on OPOSUM+ dataset. We observe
that there is only a small drop in performance of Geo-
Summ, when the dictionary sizes are reduced.

Sparsity. We investigate whether word represen-1005

tations from GeoSumm are sparse. We compute1006

the number of non-zero elements in each word rep-1007

resentation. We plot the histogram corresponding1008

to the number of non-zero elements in representa-1009

tions. In Figure 4, we observe that the histogram is1010

left-skewed which shows that most representations1011

have a small number of non-zero elements. This1012

shows that word representations are modeled as a1013

combination of small number of latent semantics.1014

Domain Transfer capability. In this experiment,1015

we investigate the domain transfer capability of1016

GeoSumm. Specifically, we evaluate how Geo-1017

Figure 4: Plot depicting the sparsity of word repre-
sentations retrieved from GeoSumm. We compute the
number of non-zero elements in each word representa-
tion, and plot the corresponding histogram. We observe
that the histogram is left-skewed showcasing sparsity
among the representations.

Train→Predict R1 R2 RL

SPACE→OPOSUM+ 39.06 17.48 31.09
AMAZON→OPOSUM+ 39.14 18.44 31.77
C4→OPOSUM+ 42.83 21.21 34.86
OPOSUM+→OPOSUM+ 41.29 19.94 33.53

SPACE→AMAZON 32.10 6.52 24.68
OPOSUM+→AMAZON 32.34 6.62 24.78
C4→AMAZON 33.39 6.88 25.54
AMAZON→AMAZON 32.93 6.91 25.45

OPOSUM+→SPACE 33.53 7.48 24.43
AMAZON→SPACE 36.30 9.26 25.72
C4→SPACE 32.55 6.46 24.07
SPACE→SPACE 43.29 12.80 29.87

Table 11: Evaluation results when the representation
learning system is trained on a different dataset. In-
domain performance is highlighted in gray . Geo-
Summ shows decent domain transfer performance for
OPOSUM+ and AMAZON datasets. However,

Summ trained on one dataset, performs on others. 1018

We also evaluate GeoSumm when it is trained on 1019

C4 dataset (Raffel et al., 2020). In Table 11, we 1020

report the results for this experiment. When evalu- 1021

ated on OPOSUM+ or AMAZON, we observe that 1022

GeoSumm is generalizing well, out-of-domain per- 1023

formance is comparable or better than in-domain 1024

performance (highlighted in gray ). When eval- 1025

uated on SPACE, we observe the out-of-domain 1026

performance to be much lower than in-domain per- 1027

formance. We also observe that the performance is 1028

the worst compared to others when tranferring from 1029

SPACE to other datasets. We hypothesize that this 1030

happens due to a domain shift, where both AMA- 1031

ZON and OPOSUM+ are product review datasets, 1032

while SPACE has reviews for hotel entities. 1033

Generated Summaries. In Table 12, we report the 1034
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Human GeoSumm SemAE QT

All staff members were
friendly, accommodating,
and helpful. The hotel and
room were very clean. The
room had modern charm
and was nicely remodeled.
The beds are extremely
comfortable. The rooms are
quite with wonderful beach
views. The food at Hash,
the restaurant in lobby, was
fabulous. The location is
great, very close to the beach.
It’s a longish walk to Santa
Monica. The price is very
affordable.

The Hotel is classy and has
a rooftop bar. The food
and service at the restau-
rant was awesome. We ate
breakfast at the hotel and
it was great. Overall we
had a nice stay at the ho-
tel. I appreciate the loca-
tion and the security in the
hotel. The location is very
central. It is very close to
ocean, the stuff is friendly,
rooms are clean. Our room
was very clean and com-
fortable. It was great.

The staff is great. The Ho-
tel Erwin is a great place to
stay. The staff were friendly
and helpful. The location
is perfect. We ate breakfast
at the hotel and it was great.
The hotel itself is in a great
location. The service was
wonderful. It was great. The
rooms are great. The rooftop
bar HIGH was the icing on
the cake. The food and ser-
vice at the restaurant was
awesome. The service was
excellent.

Great hotel. We liked our
room with an ocean view.
The staff were friendly
and helpful. There was
no balcony. The location
is perfect. Our room was
very quiet. I would def-
initely stay here again.
You’re one block from the
beach. So it must be
good! Filthy hallways.
Unvacuumed room. Pricy,
but well worth it.

Table 12: Human-written and generated summaries from GeoSumm, SemAE, and QT. For fair comparison, we
present the summary for the instance reported by in previous works. GeoSumm generates summaries where sen-
tences with similar aspects appear together (highlighted in green), without abrupt context switch between aspects
as seen in summaries of other approaches (highlighted in red).

General Inform. Coherence Redund.

SemAE 18.9 -13.3 -16.1
AceSum -53.9 7.2 21.7
GeoSumm 35.0 6.1 -5.6

Table 13: Human evaluation results of general sum-
marization for OPOSUM+ dataset. We observe that
GeoSumm generates the most informative summaries,
while falling slightly behind the abstractive baseline
(AceSum) in coherence and redundancy.

summaries generated by GeoSumm, and other com-1035

parable extractive summarization systems like Se-1036

mAE and QT. We observe that GeoSumm is able to1037

generate summaries where sentences with similar1038

aspects stay together (highlighted in green) while1039

covering multiple aspects of an entity. This shows1040

that GeoSumm’s representation learning system1041

is able to capture underlying aspects, and we can1042

effectively quantify them using geodesic distance.1043

Baseline methods SemAE and QT, also cover dif-1044

ferent aspect but the summary abrupted switches1045

between aspects (highlighted in red).1046

A.3 Human Evaluation1047

We perform human evaluation on the Amazon Me-1048

chanical Turk (AMT) platform. We designed the1049

payment rate per Human Intelligence Task (HIT) in1050

a manner to ensure that judges were compensated1051

at a rate of at least $15 USD per hour. In all tasks,1052

each HIT was evaluated by 3 human judges.1053

For general summarization, we performed pair-1054

wise evaluation of two summarization systems. 1055

Specifically, we given two system summaries the 1056

human judges were asked to judge each pair as 1057

better, worse or similar. We asked the judges to 1058

evaluate pair based on the following criteria – in- 1059

formativeness, redundancy and coherence, in inde- 1060

pendent tasks. For informativeness, we also pro- 1061

vide the judges with a human-written summary. 1062

The judges annotate a summary as more informa- 1063

tive only if the information is consistent with the 1064

human-written summaries. The reported scores 1065

(-100 to +100) were computed using Best-worst 1066

scaling (Louviere et al., 2015). 1067

For aspect summarization, we provide human 1068

judges with a system generated aspect-summary 1069

and the corresponding aspect. Judges were asked 1070

to annotate whether the system summary discusses 1071

the mentioned aspect exclusively, partially or does 1072

not mention the aspect at all. In this setup, each sys- 1073

tem was evaluated individually by 3 human judges. 1074

We present the human evaluation results of gen- 1075

eral summarization in Table 13. We compare Geo- 1076

Summ with state-of-the-art extractive baseline Se- 1077

mAE and abstractive baseline AceSum. We ob- 1078

serve that GeoSumm generates the most infor- 1079

mative summaries compared to the baselines. It 1080

slightly falls short in coherence and redundancy 1081

when compared to the abstractive baseline – Ace- 1082

Sum, which is expected because abstractive sys- 1083

tems can generate summaries using novel phrases 1084

to ensure coherence. In extractive summarization, 1085

we focus on selecting relevant sentences without 1086
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Aspect Exclusive Partial None

AceSum 50.9 42.6 6.5
GeoSumm 57.7 33.8 8.5
SemAE 70.7* 25.9* 3.4*

Table 14: Human evaluation results of aspect summa-
rization for SPACE dataset. (*): statistically significant
difference with all baselines (p < 0.05, using paired
bootstrap resampling Koehn (2004)).

considering the coherence of the generated sum-1087

mary. We still find that GeoSumm is competitive1088

with abstractive baselines, which shows the efficacy1089

of our approach.1090

Next, we present the human evaluation results1091

of aspect summarization on SPACE dataset. We1092

observe that SemAE generates the most aspect-1093

specific summaries for this dataset. To investigate1094

further why GeoSumm falls behind SemAE on1095

SPACE, we analyze the performance of the sys-1096

tems for each aspect category. For each aspect1097

category, we report the percentage of summaries1098

annotated as exclusively aspect-specific for SemAE1099

and GeoSumm (shown in Figure 5).1100

Figure 5: Plot showcasing the percentage of summaries
annotated as exclusively aspect-specific for each aspect
in the SPACE dataset.

We observe that SemAE achieves better or simi-1101

lar performance than GeoSumm for all aspect cate-1102

gories, except “building”. In SPACE dataset, most1103

aspects can be identified by the presence of seeds1104

words, e.g., service – has words “staff”, cleanli-1105

ness – “clean”, “spotless”, rooms – “room”, etc.1106

However, the “building” aspect covers a variety of1107

things like decor, pool, lounge, etc. We hypothesize1108

that SemAE overfits on the word-level semantics,1109

and just selects sentences that have lexical over-1110

lap with the seed sentences. This works in SPACE1111

dataset because most aspect-specific sentences hap-1112

pen to contain a small number of words. On the1113

other hand, GeoSumm is captures semantic infor-1114

Figure 6: Plot showcasing the fraction of unique n-
grams in a summary for each annotation label. We
observe that GeoSumm generates more diverse sum-
maries compared to SemAE.

mation using the pre-trained encoder. This helps 1115

GeoSumm achieve good performance on aspects 1116

like “building”, where selecting sentences based 1117

on the presence of a word is not helpful. 1118

We also observe that aspect summaries from 1119

SemAE are quite redundant. This helps SemAE 1120

generate summaries that are aspect-specific and 1121

achieve good ROUGE scores. However, they are 1122

not informative to the user. To quantify redun- 1123

dancy, we compute the fraction of unique n-grams 1124

(n = 1) in a summary. In Figure 6, we report the 1125

variation of the fraction of unique n-grams for each 1126

annotated category – exclusive, partial, and not spe- 1127

cific. We observe a general trend that aspect sum- 1128

maries that are partially or not aspect-specific tend 1129

to be more diverse. We also observe GeoSumm 1130

generates more diverse summaries than SemAE 1131

across all annotation labels. Moreover, summaries 1132

from GeoSumm are more diverse than SemAE’s 1133

summaries even in the exclusively aspect-specific 1134

category. This shows the efficacy of GeoSumm 1135

in generating more diverse and informative aspect 1136

summaries compared to baselines. 1137
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