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Abstract

Opinion summarization is the task of cre-
ating summaries capturing popular opinions
from user reviews. In this paper, we in-
troduce Geodesic Summarizer (GeoSumm), a
novel system to perform unsupervised extrac-
tive opinion summarization. GeoSumm in-
volves an encoder-decoder based representa-
tion learning model, that generates represen-
tations of text as a distribution over latent se-
mantic units. GeoSumm generates these rep-
resentations by performing dictionary learning
over pre-trained text representations at multi-
ple layers of the decoder. We then use these
representations to quantify the importance of
review sentences using a novel approximate
geodesic distance based scoring mechanism.
We use the importance scores to identify pop-
ular opinions in order to compose general
and aspect-specific summaries. Our proposed
model, GeoSumm, achieves state-of-the-art
performance on three opinion summarization
datasets. We perform additional experiments
to analyze the functioning of our model and
showcase the generalization ability of Geo-
Summ across different domains.

1 Introduction

As more and more human interaction takes place
online, consumers find themselves wading through
an ever-increasing number of documents (e.g. cus-
tomer reviews) when trying to make informed pur-
chasing decisions. As this body of information
grows, so too does the need for automatic systems
that can summarize it in an unsupervised manner.
Opinion summarization is the task of automati-
cally generating concise summaries from online
user reviews (Hu and Liu, 2004; Pang, 2008; Med-
hat et al., 2014). For instance, opinion summaries
allow a consumer to understand product reviews
without reading all of them. Opinion summaries
are also useful for sellers to receive feedback, and
compare different products. The recent success of

deep learning techniques have led to a significant
improvement in summarization (Rush et al., 2015;
Nallapati et al., 2016; Cheng and Lapata, 2016; See
etal.,2017; Narayan et al., 2018; Liu et al., 2018) in
supervised settings. However, it is difficult to lever-
age these techniques for opinion summarization
due to the scarcity of annotated data. It is expen-
sive to collect good-quality opinion summaries as
human annotators need to read hundreds of reviews
to write a single summary (Moussa et al., 2018).
Therefore, most works on opinion summarization
tackle the problem in an unsupervised setting.

Recent works (BraZinskas et al., 2021; Amplayo
et al., 2021a) focus on abstractive summarization,
where fluent summaries are generated using novel
phrases. However, these approaches suffer from is-
sues like text hallucination (Rohrbach et al., 2018),
which affects the faithfulness of generated sum-
maries (Maynez et al., 2020). Extractive summaries
are less prone to these problems, presenting the user
with a representative subset of the original reviews.

We focus on the task of unsupervised extrac-
tive opinion summarization, where the system se-
lects sentences representative of the user opinions.
Inspired by previous works (Chowdhury et al.,
2022; Angelidis et al., 2021a), we propose a novel
encoder-decoder architecture along with objectives
for (1) learning sentence representations that cap-
ture underlying semantics, and (2) a sentence selec-
tion algorithm to compose a summary.

One of the challenges in extractive summariza-
tion is quantifying the importance of opinions. An
opinion is considered to be important if it is se-
mantically similar to opinions from other users.
Using off-the-shelf pre-trained representations to
obtain semantic similarity scores has known is-
sues (Timkey and van Schijndel, 2021). These
similarity scores can behave counterintuitively due
to the high anisotropy of the representation space
(a few dimensions dominating the cosine similar-
ity scores). Therefore, we use topical representa-



tions (Blei et al., 2003), which capture the under-
lying semantics of text as a distribution over latent
semantic units, where the semantic units encode
concepts or topics. These semantic units can be
captured using a learnable dictionary (Engan et al.,
1999; Mairal et al., 2009; Aharon et al., 2006; Lee
et al., 2006). Topical representations enable us to
effectively measure semantic similarity between
text representations, as they are distributions over
the same support. Text representations from re-
views lie on a high-dimensional manifold. It is im-
portant to consider the underlying manifold while
computing the importance score of a review. There-
fore, we use the approximate geodesic distance
between topical text representations to quantify the
importance scores of reviews.

In this paper, we present Geodesic
Summarization (GeoSumm) that learns topi-
cal text representations in an unsupervised manner
from distributed representations (Hinton, 1984).
We also present a novel sentence selection scheme
that compares topical sentence representations in
high-dimensions using approximate geodesics.
Empirical evaluations show that GeoSumm
achieves state-of-the-art performance on three
opinion summarization datasets — OPOSUM+ (Am-
playo et al., 2021a), AMAZON (He and McAuley,
2016) and SPACE (Angelidis et al., 2021b). To
summarize, our primary contributions are:

e We present an extractive opinion summarization
system, GeoSumm. It consists of an unsuper-
vised representation learning system and a sen-
tence selection algorithm (Section 3).

e We present a novel representation learning model
that learns topical text representations from dis-
tributed representations using dictionary learning
(Section 3.1).

e We present a novel sentence selection algorithm
that computes importance of text using approxi-
mate geodesic distance (Section 3.2).

e GeoSumm achieves state-of-the-art results on 3
opinion summarization datasets (Section 4.3).

2 Task Setup

In extractive opinion summarization, the objec-
tive is to select representative sentences from a
reviews set. Specifically, each dataset consists of
a set of entities E and their corresponding review
set R. For each entity e € E (e.g., a particular
hotel such as the Holiday Inn in Redwood City,
CA.), areview set R, = {r1, 72, ...} is provided,

where each review is an ordered set of sentences
ri = {sgl), sg), ...}. For simplicity of notation,
we will represent the set of review sentences cor-
responding to an entity e as S, = UneRe r;. For
each entity, reviews encompass a set of aspects
A. = {a1,a2,...} (e.g., service, food of a ho-
tel). In this work, we consider two forms of ex-
tractive summarization: (a) general summariza-
tion, where the system selects a subset of sentences
O, C 8., that best represents popular opinions in
the review set R.; (b) aspect summarization, where
the system selects a representative sentence subset

Oga) C S., about a specific aspect a for entity e.

3 Geodesic Summarizer (GeoSumm)

In this section, we present our proposed approach
Geodesic Summarizer (GeoSumm). GeoSumm has
two parts: (a) an unsupervised model to learn topi-
cal representations of review sentences, and (b) a
sentence selection algorithm, that uses approximate
geodesic distance between topical representations,
to compose the extractive summary.

3.1 Unsupervised Representation Learning

The goal of the representation learning model is to
learn topical representations of review sentences.
Topical representations model text as a distribu-
tion over underlying concepts or topics. This is
useful for unsupervised extractive summarization
because we want to capture the aggregate semantic
distribution, and quantify the importance of individ-
ual review sentences with respect to the aggregate
distribution. Topical representations allow us to
achieve both. Being a distribution over latent units,
topical representations can be combined to form an
aggregate (mean) representation, enabling compo-
sitionality. Also, it is convenient to measure simi-
larity between representations using conventional
metrics (like cosine similarity).

We propose to model topical representations
by decomposing pre-trained representations us-
ing dictionary learning (Tillmann, 2015; Lotfi and
Vidyasagar, 2018). In this setup, the various com-
ponents of the dictionary captures latent seman-
tic units, and we consider the representation over
dictionary elements as the topical representation.
Unlike conventional dictionary learning algorithms,
we use a sentence reconstruction objective for learn-
ing the dictionary. We use an encoder-decoder
architecture to achieve this. We retrieve word em-
beddings from a pre-trained encoder. We modify
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Figure 1: Architecture of Geodesic Summarizer.
Sparse representations of words are formed via the ker-

nel function féj ). The representations are trained to re-
construct the output embeddings of the encoder layer.
Alongside the dictionary learning objective, we use
an unsupervised sentence-reconstruction cross entropy
loss. IV indicates the number of decoder layers.

the architecture of a standard Transformer decoder,
and add a dictionary learning component at each
decoder layer. The pre-trained word embeddings
obtained from the encoder are decomposed using
these dictionary learning components to obtain top-
ical representations. Then, we combine the topical
word representations at different decoder layers to
form a sentence representation. The schematic dia-
gram of the model is shown in Figure 1. Next, we
will discuss each of the components in detail.
Encoder. We obtain contextual word embeddings
from a pre-trained BART (Lewis et al., 2020)
encoder. We keep the weights of the encoder
frozen during training.! Given an input sentence
s = {ws,...,wr}, we retrieve contextual word
embeddings z;’s from the BART encoder

z; = sg(enc(w;)) € RY (1)

where sg(+) denotes the stop gradient operator.

Dictionary Learning. We describe the dictionary
learning component within each decoder layer. We
use dictionary learning to decompose pre-trained
word representations from the encoder to obtain a
sparse representation for each word. We want word

'Tn Section 5, we discuss why frozen representations are
important for our model.

representations to be sparse because each word can
capture only a small number of semantics. We for-
ward word representations from the encoder to the
decoder layers. For the j-th decoder layer, we use
a dictionary, DU ¢ R™*4_and kernel function,
kj(-,-), where j € {1,..., N} (NN is the number of
decoder layers). The dictionary captures the under-
lying semantics in the text by enabling us to model
text representations as a combination of dictionary
elements. Specifically, we learn a topical word
representation 7’j(w;) over the dictionary D) as:
2,0) = D(j)TTj(wi) @
Tj(w;) = kj(z;, DY) € R™
where z‘iu ) is the reconstructed word embedding,
and k;(-,-) € R™ is the kernel function that mea-
sures the similarity between z; and individual dic-
tionary elements. In practice, since the dictionary
is common for all word embeddings z;’s, the kernel
function can be implemented as:

ki (2, DY) = £9(2;) € R™ 3)

where féj ) is a feed-forward neural network with
ReLU non-linearity. ReLU non-linearity ensures
that the kernel coefficients are positive and also
encourages sparsity.

Following conventional dictionary learning algo-
rithms (Beck and Teboulle, 2009), the dictionary
DU) and kernel layer fg(j ) are updated iteratively.
This can be achieved by using the loss function:

Laics(DD, £5) =z — sg(DD) £ () []o+
T .
12 — DD sg (£ (23)) ]2

where the gradient update of the dictionary D)
and kernel layer f(gj ) are performed independently.
Decoder. We build on the decoder architecture
introduced by Vaswani et al. (2017). A decoder
layer consists of 3 sub-layers (a) masked multi-
head attention layer that takes as input decoder
token embeddings, (b) multi-head attention that
performs cross-attention between decoder tokens
and encoder stack output, and (c) feed-forward net-
work. We modify the cross attention multi-head
sub-layer to attend over the reconstructed word em-
beddings 22(] ) (Equation 2), instead of the encoder
stack output (shown in Figure 1). Finally, the de-
coder autoregressively generates the reconstructed
sentence § = {uw,..., W}



Training. The system is trained using the sen-
tence reconstruction objective. The overall objec-
tive function is shown below:

N
Lcg(s, 8) + Z Laic (DY, fé”) 4

=1

where Lcg is the cross-entropy loss, and féj ) is
the implementation of the kernel function &;(, )
corresponding to the j-th decoder layer. The above
loss function is used to update the decoder, dictio-
nary elements and kernel parameters while keeping
the encoder weights frozen.

Sentence Representations. We combine topical
word representations from different decoder layers
to form a sentence representation. First, we ob-
tain a word representation, 7;(w) € R from each
decoder layer. We compose the final word represen-
tation x,, by concatenating representations from
all decoder layers.

N
Xw = [Tl (U)), s 7TN(w)] e R"™ (5)
where m is the dictionary dimension and N is the
number of decoder layers. We use max-pooling
over the dimensions of word representations to
form a sentence representation x5 as shown below.

X, = 1max xw}
ie{l,...,.L} n (6)
Xs = {x;, ?:J\Q’XS =Xs/||Xs]]1 €

S
n

RmN

where x,, }n is the n-th entry of the vector x,,. The
sentence representation X is normalized to a unit
vector. Next, we discuss how we leverage these
topical sentence representations to compute impor-
tance scores using approximate geodesics. We use
the importance scores to compose the final extrac-
tive summary for a given entity.

3.2 General Summarization

We use representations retrieved from GeoSumm to
select sentences representative of popular opinions
in the review set. For an entity e, the set of sentence
representations is denoted as X, = {x;|s € S.}.
For a summary budget ¢, we select a subset of
sentences O, C S, according to their importance
scores, such that |O.| = ¢. First, we compute a
mean representation as shown: p. = Egos, [Xs].
Secondly, we define the importance of a sentence
s, as the distance from the mean representation

Figure 2: Illustration of the geodesic shortest path
(shown in blue) between two sentence representations
xs and X,/ on a three-dimensional manifold.

d(xs, pte). However, we do not directly evaluate
d(-,-) using a similarity metric. Representations
in X, lie in a high-dimensional manifold, and we
aim to measure the geodesic distance (Jost and Jost,
2008) between two points along that manifold. An
illustration of the geodesic distance between two
points is shown in Figure 2. Computing the ex-
act geodesic distance is difficult without explicit
knowledge of the manifold structure (Surazhsky
et al., 2005). We approximate the manifold struc-
ture using a k-NN graph. Each sentence repre-
sentation forms a node in this graph. A directed
edge exists between two nodes if the target node
is among the k-nearest neighbours of the source
node. The edge weight between two nodes (s, s’)
is defined using their cosine similarity distance,
d(s,s') =1— xsxg. The geodesic distance be-
tween two sentence representations is computed
using the shortest path distance along the weighted
graph. Therefore, the importance score I(s) for a
sentence s, is defined as:

I(s) = 1/ShortestPath(xs, pte) 7

where the shortest path distance is computed us-
ing Dijkstra’s algorithm (Dijkstra et al., 1959). We
select the top-gq sentences according to their im-
portance scores I(s) to form the final general ex-
tractive summary. The overall sentence selection
routine is shown in Algorithm 1.

3.3 Aspect Summarization

In aspect summarization, the goal is to select repre-
sentative sentences to form a summary specific to
an aspect (e.g., durability) of an entity (e.g., bag).
To perform aspect summarization, we compute the
mean representation of aspect-specific sentences

as shown: uéa) =E [xs], where Séa) is the

s~$§a>



Algorithm 1 General Summarization Routine

1: Input: A set of sentence representations X, =
{xs|s € S.} are review sentences for entity e.

2 e < Egos, [Xs)

3 A« knn(&, U p,) € RX! > adjacency
matrix of k-NN graph, [ = | S| + 1.

4: d <+ Dijkstra(A, p.) > shortest distances of

all nodes from g,

I ={1/d(s)|s € S} > importance scores

tq < mintop-q(I) > top-q threshold

O « {s| I(s) > tg,5 € Se}

return O,

set of sentences mentioning aspect a. We identify
Séa) by detecting the presence of aspect-specific
keywords available with the dataset. To ensure
the selected sentences are aspect-specific, we in-
troduce a measure of informativeness (Chowdhury
et al., 2022; Peyrard, 2019). Informativeness pe-
nalizes a sentence for being close to the overall
mean u.. Therefore, we model the aspect-specific
importance score [, (s) as:

I,(s) = 1/ShortestPath(x, (%) — vI(s) (8)
where ~ is a hyperparameter, (s) is the overall im-
portance score (obtained from Eqn. 7). Aspect sum-
mary (’)Ef‘) is composed using the top-g sentences
according to the aspect-specific scores, I,(s).

4 [Experiments

We evaluate the performance of GeoSumm on ex-
tractive summarization. Given a set of opinion
reviews the system needs to select a subset of the
sentences as the summary. This summary is then
compared with human-written summaries. In this
section, we discuss the experimental setup in detail.

4.1 Datasets & Metrics

We evaluate GeoSumm on three publicly available
opinion summarization datasets:

(a) OpoSUM+ (Amplayo et al., 2021b) is
an extended version of the original OPOSUM
dataset (Angelidis and Lapata, 2018a). This dataset
contains Amazon reviews from six product cat-
egories (like laptops, bags, etc.), with 3 human-
written summaries in the test set. The extended
version contains additional product reviews and
aspect-specific human-annotations.

(b) AMAZON (He and McAuley, 2016; Brazinskas
et al., 2020a) has product reviews of 4 different

Dataset Reviews  Train/ Test Ent. Rev./Ent.
OPOSUM+ 4.13M 95K /60 10
AMAZON 4.75M 183K / 60 8
SPACE 1.14M 11.4K /50 100

Table 1: Dataset statistics for OPOSUM+, AMAZON
and SPACE datasets. (Train/Test Ent.: Number of en-
tities in the training and test set; Rev./Ent.: Number of
reviews per entity in the zest set.)

categories (like electronics, clothing etc.) from
Amazon, with 3 human summaries per entity.
(c) SPACE (Angelidis et al., 2021a) contains re-
views for hotels from Tripadvisor. SPACE provides
3 human-written abstractive summaries per entity.
It also has 6 aspect-specific summaries per entity.
Statistics of the datasets are provided in Table 1.
We observe that SPACE dataset has significantly
more reviews per entity compared to other datasets.

4.2 Baselines

We compare GeoSumm with several summariza-
tion systems (including the current state-of-the-art)
that can be classified into three broad categories:

e Single Review systems select a single review as
the summary. We compare with the following sys-
tems: (a) Random samples a review randomly from
the review set; (b) Centroid selects a review closest
to the centroid of the review set. The centroid is
computed using BERT (Devlin et al., 2019) embed-
dings; (c) Oracle selects the best review based on
ROUGE overlap with the human-written summary.
e Abstractive systems generate summaries using
novel phrasing. We compare GeoSumm with the
following systems: MeanSum (Chu and Liu, 2019),
Copycat (Brazinskas et al., 2020b), and AceSum
(Amplayo et al., 2021b).

e Extractive systems select text phrases from the
review set to form the summary. We compare with
the following systems: LexRank (Erkan and Radev,
2004) using BERT embeddings, QT (Angelidis
et al., 2021a), AceSumgxT (Amplayo et al., 2021b),
and SemAE? (Chowdhury et al., 2022).

4.3 Results

We discuss the performance of GeoSumm on gen-
eral and aspect-specific summarization. We evalu-
ate the quality of the extracted summaries using the
automatic metric — ROUGE F-scores (Lin, 2004).

General Summarization. We present the results
of GeoSumm and baseline approaches on general

*For a fair comparison, we consider the version of SemAE
that does not use additional aspect-related information.



Method OpPOSUM+ AMAZON SPACE
R1 R2 RL R1 R2 RL R1 R2 RL

5 Random 29.88 5.64 17.19 | 27.66 472 1695 | 2624 3.58 14.72
Fy Centroidggrr 3344 11.00 20.54 | 2994 5.19 17.70 | 31.29 491 16.43
2 Oracle 32.89 2320 28.73 | 31.69 647 19.25 | 33.21 8.33 18.02
5 MeanSum (Chu and Liu, 2019) 3495 749 1992|2920 470 18.15| 3495 749 19.92
E Copycat (Brazinskas et al., 2020b) 36.66 8.87 2090 | 3197 5.81 20.16 | 36.66 8.87 20.90
< AceSum (Amplayo et al., 2021c) 40.37 11.51 23.23 - - - 40.37 11.51 2323

LexRankgggt (Erkan and Radev, 2004) 35.42 10.22 2092 | 31.47 5.07 16.81 | 3141 5.05 18.12
g QT (Angelidis et al., 2021a) 3772 14.65 21.69 | 31.27 5.03 1642 | 38.66 10.22 21.90
5 AceSumgxt (Amplayo et al., 2021b)  38.48 15.17 22.82 - - - 3550 7.82  20.09

SemAE (Chowdhury et al., 2022) 39.16 16.85 23.61 | 32.03 5.38 1647 | 4248 13.48 26.40

Geodesic Summarizer (GeoSumm) 41.29 1994 33.53 | 3293 691 2545 | 43.29 12.80 29.87

Table 2: Evaluation results of GeoSumm and baseline approaches on general summarization. We observe that
GeoSumm achieves state-of-the-art performance on all datasets. GeoSumm significantly improves ROUGE-L
scores, with an average improvement of 6.9 points over prior best. ROUGE-L being the most difficult metric of
overlap, showcases the efficacy of GeoSumm in selecting sentences that correlate with human summaries. We
report the ROUGE-F scores denoted as — R1: ROUGE-1, R2: ROUGE-2, RL: ROUGE-L.

OrPOSUM+ SPACE
Method py "Ro» RL  RI R2 RL
5 MeanSum 2463 347 1753 2324 372 1702
£ CopyCat 2617 430 1820 2495 482 17.53
2 AceSum 2953 679 21.06 3241 947 2546
LexRank 2251 335 1727 2772 754 2082
3 QT 2399 436 1661 2895 834 21.77
E SemAE 2530 508 17.62 3124 1043 24.14
AceSumgxr 26.16 575 1855 3091 877 23.61
GeoSumm 30.64 7.94 2437 3029 902 23.79

Table 3: Evaluation results on aspect summarization.
Best scores for each metric is highlighted in bold.
GeoSumm achieves the state-of-the-art performance on
OprOSUM+, while achieving competitive performance
with other extractive methods on SPACE.

summarization in Table 2. We observe that Geo-
Summ achieves strong improvement over baselines
(including abstractive summarization approaches)
across all datasets. It is important to note that com-
pared to baselines GeoSumm achieves much better
ROUGE-L F1 scores, which is the hardest metric
among the three (with an average improvement of
6.9 points over prior best). This shows the efficacy
of GeoSumm in selecting sentences that correlate
with human summaries. For SPACE dataset, it is
competitive with the state-of-the-art model SemAE,
falling slightly short only in ROUGE-2 F1 score.
However, GeoSumm performs significantly better
than SemAE on human evaluations.

Aspect Summarization. We report the perfor-
mance on different approaches on aspect summa-
rization in Table 3 on OPOSUM+ and SPACE. We
observe that GeoSumm achieves the state-of-the-art

General Inform. Coherence Redund.
SemAE -29.3 -25.3 -58.0
QT 4.0 -19.3 40.7
GeoSumm 25.3 44.7* 17.3

Table 4: Human evaluation results of general summa-
rization for SPACE dataset. (*): statistically significant
difference with all baselines (p < 0.05, using paired
bootstrap resampling Koehn (2004)).

performance for all metrics on OPOSUM+ dataset.
It also achieves strong results on SPACE, obtain-
ing similar scores compared to other extractive ap-
proaches, falling slightly short of state-of-the-art.
Human Evaluation. We perform human evalua-
tion to compare the summaries from GeoSumm
with the state-of-the-art extractive summarization
systems SemAE and QT. General summaries were
judged based on the following criteria: informa-
tiveness, coherence and redundancy. We present
human evaluators with summaries in a pairwise
fashion, and ask them to select which one was
better/worse/similar according to the criteria. The
final scores for each system reported in Table 4
were computed using Best-Worst Scaling (Lou-
viere et al., 2015). We observe that GeoSumm out-
performs the prior state-of-the-art in informative-
ness and coherence. GeoSumm performs slightly
worse than QT in redundancy. This is expected
as GeoSumm greedily select sentences, while QT
performs sampling to introduce diversity in the
summary (compromising on informativeness).
For aspect summaries, we ask annotators to
judge whether a summary discusses a specific as-
pect exclusively, partially, or does not mention it



Aspect Exclusive Partial None
SemAE 22.1 43.8  34.1

QT 222 419 359
GeoSumm 45.7* 40.1 14.1%

Table 5: Human evaluation results of aspect summa-
rization for OPOSUM+ dataset. GeoSumm generates
more aspect-specific summaries compared to baselines.

at all. In Table 5, we report the human evaluation
results for aspect summaries on OPOSUM+ dataset.
We observe that GeoSumm generates summaries
that are more specific to an aspect compared to
baselines. We provide further details about human
evaluation and additional results in Appendix A.3.

5 Analysis

Thawed Encoder. In this experiment, we compare
the performance of GeoSumm when the encoder
is allowed to be fine-tuned with the original setup,
where the encoder weights are frozen. In Table 6,
we observe that there is a significant drop in perfor-
mance when the encoder is fine-tuned. We believe
that this happens because the model overfits on
shallow word-level semantics, and is unable to cap-
ture more abstract semantics. This showcases the
utility of pre-trained representations, which helps
GeoSumm perform well in an unsupervised setting.

Dataset R1 R2 RL

OpoSUM+  31.46[-9.83] 8.60[-11.34] 23.94[-9.59]
AMAZON 30.12 [-2.81] 4.85[-2.06] 22.01 [-3.44]
SPACE 30.07 [-13.22]  4.31[-8.49]  21.56 [-8.31]

Table 6: Evaluation results of GeoSumm when the en-
coder is fine-tuned during training.

Visualization. In this experiment, we visualize the
UMAP (Mclnnes et al., 2018) projections of sen-
tence representation retrieved from GeoSumm for
an entity. We investigate whether different parts
of the representation space capture distinct seman-
tics. We partition the space using kmeans clustering
(k = 10) on the representations, color-code them
according to the assigned cluster label and visualize
them in Figure 3. In Table 7, we observe that these
clusters capture certain semantics. We report exam-
ple sentences within different clusters. We observe
that sentences belonging to the same cluster share
a common theme. The underlying semantics of a
cluster can vary from being coarse, like presence
of a phrase ‘Calistoga’, to more nuanced concepts
like cleanliness of rooms, time frame etc.

Next, we investigate the efficacy of the represen-
tation learning and sentence selection modules by
replacing each of them with a competitive variant.

20

18

16

14

12

Figure 3: UMAP projections of sentence representation
retrieved from GeoSumm for an entity. The representa-
tions are colored-coded according to the cluster labels.

Theme | Sentences

e The room was clean, but no more
Cleanliness ® | than that

e Also, the pools were filthy dirty.

e [ called on Monday, and was told
Time ® there was no manager on Mondays!

e save your time and money and stay

anywhere else.

e The Roman Spa and Calistoga is
Location our favorite spot in the Wine Country.
‘Calistoga’ e Roman Spa Hot Springs Resort in

Calistoga is a wonderful place...

e The rooms were in great shape,
Pleasant very clean, comfortable beds ...
Rooms @ e The rooms are very comfortable

and they have upgraded them ...

Table 7: Sentences within a cluster visualized in Fig-
ure 3. Sentences in a row belong to the same cluster.
We highlight the dominant theme of a cluster in green.
We annotate cluster identity using color-coded circles.

Euclidean-based Importance Score. We investi-
gate the utility of geodesic-based importance scor-
ing over Euclidean-based scoring. In this experi-
ment, instead of I(s) (defined in Equation 7) we
compute the importance score of a sentence (s)
as the Euclidean distance from the mean represen-
tation, pe (I(s) = —||xs — e||3). We report the
results of this setup in Table 8 (relative performance
to GeoSumm is shown in brackets). We observe
that using Euclidean distance achieves similar per-
formance for AMAZON and OPOSUM+ (with a
slight improvement for AMAZON). But there is a
significant performance drop for SPACE. SPACE
has a larger number of reviews per entity, providing
a better approximation of the manifold using £-NN
graph, and therefore a more accurate geodesic dis-
tance. We believe that this is the reason why Eu-
clidean distance achieves comparable performance,
when there are less reviews. In the real word, opin-
ion summarization involves a large number of re-
views, where GeoSumm will scale better.

Distributed vs. Topical Representations. In this



Dataset R1 R2 RL

OpoSUM+  40.87 [-0.42] 19.66 [-0.28] 32.85 [-0.68]
AMAZON 33.42 [+0.49] 6.95 [+0.04] 25.72 [+0.27]
SPACE 40.95 [-2.34] 11.21 [-1.59] 28.57 [-1.30]

Table 8: Evaluation results of GeoSumm with a modi-
fied score I(s) = —||xs — pe||3. We observe a signif-
icant drop in performance on SPACE, while achieving
similar performance on OPOSUM+ and AMAZON.

experiment, we investigate the relative efficacy
of topical representations compared to distributed
representations. We retrieve distributed sentence
representations from RoBERTa (Liu et al., 2019)
([CLs] token feature) and SimCSE (Gao et al.,
2021) model. Then, we use our sentence selection
algorithm (Section 3.2) to compose the summary.
In Table 9, we observe that topical representations
outperform distributed representations by a signifi-
cant margin in almost all setups (except AMAZON
with RoBERTa embeddings). This shows the utility
of topical representations over distributed represen-
tations for unsupervised summarization.

We perform additional experiments to investi-
gate the domain transfer capabilities, sparsity of
representation, and visualize the generated sum-
maries from GeoSumm in Appendix A.2.

6 Related Work

Most work on opinion summarization focuses on
generating summaries in an unsupervised setup due
to scarcity of labeled data. These works are broadly
classified into two categories based on the type
of summaries being generated: abstractive (Gane-
san et al., 2010; Carenini et al., 2006; Di Fab-
brizio et al., 2014) or extractive (Erkan and Radev,
2004; Nenkova and Vanderwende, 2005; Kim et al.,
2011). Abstractive systems, in an unsupervised
setup (Chu and Liu, 2019; BraZinskas et al., 2020b;
Iso et al., 2021; Wang and Wan, 2021; Amplayo
et al., 2021a) train an encoder-decoder setup us-
ing a self-supervised objective, and generate the
summary by leveraging the aggregate opinion rep-
resentation. On the other hand, extractive opinion
systems (Kim et al., 2011), select sentences us-
ing an importance score that quantifies its salience.
Salience has been computed using frequency-based
approaches (Nenkova and Vanderwende, 2005),
distance from mean (Radev et al., 2004), or graph-
based techniques (Erkan and Radev, 2004). Few
approaches focus on aspect specificity and senti-
ment polarity for sentence selection (Angelidis and
Lapata, 2018b; Zhao and Chaturvedi, 2020).

Our work is most similar to extractive summa-

Dataset Model R1 R2 RL

ROBERTa 3629 [-6.00] 13.18[-7.76]  28.36[-5.17]
OPOSUM*  GimCSE 35.371-6.92]  12.99[-6.95] 20.76 [-12.77]
Amazoy  ROBERTa 3379 [+0.86]  6.95[+0.04]  25.54[+0.09]
SimCSE  32.71[-:0.22]  6.53[-038]  17.65 [-6.80]
Spacy  ROBERTa  3870[-450]  940[-340]  27.60(-2.27]
SImCSE  35.36[-7.93]  721[-5.59]  19.72[-10.15]
Table 9: Evaluation results of GeoSumm using

RoBERTa and SimCSE’s representations. We observe
a significant drop in performance in most setups.

rization systems SemAE (Chowdhury et al., 2022),
and QT (Angelidis et al., 2021a). Similar to these
systems, Geodesic Summarizer has two compo-
nents: a representation learning system, and a sen-
tence selection routine. However, unlike these ap-
proaches, we leverage pre-trained models to learn
topical representations over a latent dictionary, and
propose a sentence selection mechanism using ap-
proximate geodesics to perform summarization.

Prior work in deep clustering consider a sim-
ilar combination of unsupervised representation
learning and sparse structures (Yang et al., 2016;
Jiang et al., 2016; Law et al., 2017; Caron et al.,
2020; Zhao et al., 2020; Chan et al., 2022). Simi-
larly, dictionary learning-like approaches have been
combined with deep networks (Liang et al., 2021;
Zheng et al., 2021) for various tasks.

7 Conclusion

We present Geodesic Summarizer, a novel frame-
work for extractive opinion summarization. Geo-
Summ uses a representation learning model to con-
vert distributed representations from a pre-trained
model into topical text representations. GeoSumm
uses these representations to compute the impor-
tance of a sentence using approximate geodesics.
We show that GeoSumm achieves state-of-the-art
results on several opinion summarization datasets.
However, there are a lot of open questions about
the inductive biases of representation learning that
are needed for unsupervised summarization. In
this work, we show the efficacy of topical repre-
sentations. However, are there better approaches to
capture language semantics that help us quantify
the importance of an opinion? Our analysis shows
that representations from GeoSumm span the high-
dimensional space in a manner that different parts
of it capture distinct semantics. This opens up the
possibility of leveraging the representation geome-
try to capture different forms of semantics. Future
work can explore ways to leverage topical repre-
sentations from GeoSumm for tasks where there is
a scarcity of labeled data.



Ethical Considerations

We do not foresee any ethical issues from the tech-
nology introduced in this paper. However, we
would like to mention certain limitations of extrac-
tive summarization systems in general. As extrac-
tive systems select review sentences from the input,
it can produce undesirable output when the input
reviews have foul or offensive language. There-
fore, it is important to remove foul language from
the input in order to ensure the end user is not af-
fected. In general, we use public datasets, and do
not annotate any data manually. All datasets used
in this paper have customer reviews in English lan-
guage. Human evaluations for summarization were
performed on Amazon Mechanical Turks (AMT)
platform. Human judges were based in the United
States. Human judges on AMT were compensated
at a wage rate of at least $15 USD per hour.
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A Appendix

A.1 Implementation Details

Our experiments are implemented in Tensor-
Flow (Abadi et al., 2015) framework. We use
BART (Lewis et al., 2020) architecture as our
encoder-decoder model. We initialize the encoder
with pre-trained weights from BART, while the de-
coder is trained from scratch. In our experiments,
we use dictionary dimension m = 8192, number
of decoder layers N = 6, and hidden dimension
d = 768. GeoSumm was trained for 15K steps on
16 TPUs in all setups. We optimize our model us-
ing Adam (Kingma and Ba, 2014) optimizer with a
learning rate of 10~°. We set aspect-summarization
parameter v = 0.5 for OPOSUM+ and v = 0.7 for
SPACE (Equation 8). All hyperparameters were
tuned using grid-search on the development set.
We will make our code publicly available.

A.2 Analysis

Dictionary Size Ablation. In this experiment, we
vary the number of elements in each dictionary
(n) and observe the summarization performance on
OPOSUM+ dataset. We conduct these experiments
on the OPOSUM+ dataset. In Table 10, we observe
GeoSumm achieves comparable performance with
significantly smaller dictionary sizes.

m R1 R2 RL
512 3952 1813 31.78
1024  40.03 19.14 32.69
2048 40.15 19.26 3293
4096 41.29 1994 3353

Table 10: Evaluation results with varying number of
dictionary elements on OPOSUM+ dataset. We observe
that there is only a small drop in performance of Geo-
Summ, when the dictionary sizes are reduced.

Sparsity. We investigate whether word represen-
tations from GeoSumm are sparse. We compute
the number of non-zero elements in each word rep-
resentation. We plot the histogram corresponding
to the number of non-zero elements in representa-
tions. In Figure 4, we observe that the histogram is
left-skewed which shows that most representations
have a small number of non-zero elements. This
shows that word representations are modeled as a
combination of small number of latent semantics.

Domain Transfer capability. In this experiment,
we investigate the domain transfer capability of
GeoSumm. Specifically, we evaluate how Geo-
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Figure 4: Plot depicting the sparsity of word repre-
sentations retrieved from GeoSumm. We compute the
number of non-zero elements in each word representa-
tion, and plot the corresponding histogram. We observe
that the histogram is left-skewed showcasing sparsity
among the representations.

Train—Predict R1 R2 RL

SPACE—OPOSUM+ 39.06 17.48 31.09
AMAZON—OPOSUM+ 39.14 1844 31.77
C4—OPOSUM+ 42.83 21.21 34.86
OrPOSUM+—OPOSUM+ 41.29 19.94 33.53
SPACE—AMAZON 32.10 6.52 24.68
OPOSUM+—AMAZON 3234 6.62 2478
C4— AMAZON 33.39 6.88 25.54
AMAZON—AMAZON 3293 691 2545
OPOSUM+—SPACE 3353 748 24.43
AMAZON—SPACE 36.30 926 25.72
C4—SPACE 3255 646 24.07
SPACE—SPACE 43.29 12.80 29.87

Table 11: Evaluation results when the representation
learning system is trained on a different dataset. In-
domain performance is highlighted in gray . Geo-
Summ shows decent domain transfer performance for
OPOSUM+ and AMAZON datasets. However,

Summ trained on one dataset, performs on others.
We also evaluate GeoSumm when it is trained on
C4 dataset (Raffel et al., 2020). In Table 11, we
report the results for this experiment. When evalu-
ated on OPOSUM+ or AMAZON, we observe that
GeoSumm is generalizing well, out-of-domain per-
formance is comparable or better than in-domain
performance (highlighted in gray ). When eval-
uated on SPACE, we observe the out-of-domain
performance to be much lower than in-domain per-
formance. We also observe that the performance is
the worst compared to others when tranferring from
SPACE to other datasets. We hypothesize that this
happens due to a domain shift, where both AMA-
ZON and OPOSUM+ are product review datasets,
while SPACE has reviews for hotel entities.

Generated Summaries. In Table 12, we report the



SemAE QT

Human GeoSumm
All staff members were | The Hotel is classy and has
friendly, = accommodating, | a rooftop bar. The food

and service at the restau-
rant was awesome. We ate
breakfast at the hotel and
it was great. Overall we
had a nice stay at the ho-
tel. I appreciate the loca-
tion and the security in the
hotel. The location is very
central. It is very close to
ocean, the stuff is friendly,
rooms are clean. Our room
was very clean and com-
fortable. It was great.

and helpful. The hotel and
room were very clean. The
room had modern charm
and was nicely remodeled.
The beds are extremely
comfortable. The rooms are
quite with wonderful beach
views. The food at Hash,
the restaurant in lobby, was
fabulous. The location is
great, very close to the beach.
It’s a longish walk to Santa
Monica. The price is very
affordable.

The staff is great. The Ho-
tel Erwin is a great place to
stay. The staff were friendly
and helpful. The location
is perfect. We ate breakfast
at the hotel and it was great.
The hotel itself is in a great
location. The service was
wonderful. It was great. The
rooms are great. The rooftop
bar HIGH was the icing on
the cake. The food and ser-
vice at the restaurant was
awesome. The service was
excellent.

Great hotel. We liked our
room with an ocean view.
The staff were friendly
and helpful. There was
no balcony. The location
is perfect. Our room was
very quiet. I would def-
initely stay here again.
You’re one block from the
beach. So it must be
good! Filthy hallways.
Unvacuumed room. Pricy,
but well worth it.

Table 12: Human-written and generated summaries from GeoSumm, SemAE, and QT. For fair comparison, we
present the summary for the instance reported by in previous works. GeoSumm generates summaries where sen-
tences with similar aspects appear together (highlighted in green), without abrupt context switch between aspects
as seen in summaries of other approaches (highlighted in red).

General Inform. Coherence Redund.
SemAE 18.9 -13.3 -16.1
AceSum -53.9 7.2 21.7
GeoSumm 35.0 6.1 -5.6

Table 13: Human evaluation results of general sum-
marization for OPOSUM+ dataset. We observe that
GeoSumm generates the most informative summaries,
while falling slightly behind the abstractive baseline
(AceSum) in coherence and redundancy.

summaries generated by GeoSumm, and other com-
parable extractive summarization systems like Se-
mAE and QT. We observe that GeoSumm is able to
generate summaries where sentences with similar
aspects stay together (highlighted in green) while
covering multiple aspects of an entity. This shows
that GeoSumm’s representation learning system
is able to capture underlying aspects, and we can
effectively quantify them using geodesic distance.
Baseline methods SemAE and QT, also cover dif-
ferent aspect but the summary abrupted switches
between aspects (highlighted in red).

A.3 Human Evaluation

We perform human evaluation on the Amazon Me-
chanical Turk (AMT) platform. We designed the
payment rate per Human Intelligence Task (HIT) in
a manner to ensure that judges were compensated
at a rate of at least $15 USD per hour. In all tasks,
each HIT was evaluated by 3 human judges.

For general summarization, we performed pair-
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wise evaluation of two summarization systems.
Specifically, we given two system summaries the
human judges were asked to judge each pair as
better, worse or similar. We asked the judges to
evaluate pair based on the following criteria — in-
formativeness, redundancy and coherence, in inde-
pendent tasks. For informativeness, we also pro-
vide the judges with a human-written summary.
The judges annotate a summary as more informa-
tive only if the information is consistent with the
human-written summaries. The reported scores
(-100 to +100) were computed using Best-worst
scaling (Louviere et al., 2015).

For aspect summarization, we provide human
judges with a system generated aspect-summary
and the corresponding aspect. Judges were asked
to annotate whether the system summary discusses
the mentioned aspect exclusively, partially or does
not mention the aspect at all. In this setup, each sys-
tem was evaluated individually by 3 human judges.

We present the human evaluation results of gen-
eral summarization in Table 13. We compare Geo-
Summ with state-of-the-art extractive baseline Se-
mAE and abstractive baseline AceSum. We ob-
serve that GeoSumm generates the most infor-
mative summaries compared to the baselines. It
slightly falls short in coherence and redundancy
when compared to the abstractive baseline — Ace-
Sum, which is expected because abstractive sys-
tems can generate summaries using novel phrases
to ensure coherence. In extractive summarization,
we focus on selecting relevant sentences without



Aspect Exclusive Partial None
AceSum 50.9 42.6 6.5
GeoSumm 57.7 33.8 8.5
SemAE 70.7* 25.9%  34%*

Table 14: Human evaluation results of aspect summa-
rization for SPACE dataset. (*): statistically significant
difference with all baselines (p < 0.05, using paired
bootstrap resampling Koehn (2004)).

considering the coherence of the generated sum-
mary. We still find that GeoSumm is competitive
with abstractive baselines, which shows the efficacy
of our approach.

Next, we present the human evaluation results
of aspect summarization on SPACE dataset. We
observe that SemAE generates the most aspect-
specific summaries for this dataset. To investigate
further why GeoSumm falls behind SemAE on
SPACE, we analyze the performance of the sys-
tems for each aspect category. For each aspect
category, we report the percentage of summaries
annotated as exclusively aspect-specific for SemAE
and GeoSumm (shown in Figure 5).
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Figure 5: Plot showcasing the percentage of summaries
annotated as exclusively aspect-specific for each aspect
in the SPACE dataset.

We observe that SemAE achieves better or simi-
lar performance than GeoSumm for all aspect cate-
gories, except “building”. In SPACE dataset, most
aspects can be identified by the presence of seeds
words, e.g., service — has words “staff”, cleanli-
ness — “clean”, “spotless”, rooms — “room”, etc.
However, the “building” aspect covers a variety of
things like decor, pool, lounge, etc. We hypothesize
that SemAE overfits on the word-level semantics,
and just selects sentences that have lexical over-
lap with the seed sentences. This works in SPACE
dataset because most aspect-specific sentences hap-
pen to contain a small number of words. On the
other hand, GeoSumm is captures semantic infor-

15

10

wn
£ 09
o _
D os
<
g 5o oo
0.7 ° o
= oo
2 = 7
> 06 23
—
5]
5 05 7
2 1
8 oa o F°= GeoSumm
w © SemAE
03 —
Exclusive Partial Not Specific

Figure 6: Plot showcasing the fraction of unique n-
grams in a summary for each annotation label. We
observe that GeoSumm generates more diverse sum-
maries compared to SemAE.

mation using the pre-trained encoder. This helps
GeoSumm achieve good performance on aspects
like “building”, where selecting sentences based
on the presence of a word is not helpful.

We also observe that aspect summaries from
SemAE are quite redundant. This helps SemAE
generate summaries that are aspect-specific and
achieve good ROUGE scores. However, they are
not informative to the user. To quantify redun-
dancy, we compute the fraction of unique n-grams
(n = 1) in a summary. In Figure 6, we report the
variation of the fraction of unique n-grams for each
annotated category — exclusive, partial, and not spe-
cific. We observe a general trend that aspect sum-
maries that are partially or not aspect-specific tend
to be more diverse. We also observe GeoSumm
generates more diverse summaries than SemAE
across all annotation labels. Moreover, summaries
from GeoSumm are more diverse than SemAE’s
summaries even in the exclusively aspect-specific
category. This shows the efficacy of GeoSumm
in generating more diverse and informative aspect
summaries compared to baselines.
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