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Abstract

Recent claims of strong performance by Large Language Models (LLMs) on causal1

discovery tasks are undermined by a critical flaw: many evaluations rely on widely-2

used benchmarks that likely appear in LLMs’ pretraining corpora. As a result,3

empirical success on these benchmarks seem to suggest that LLM-only methods,4

which ignore observational data, outperform classical statistical approaches on5

causal discovery. In this position paper, we challenge this emerging narrative by6

raising a fundamental question: Are LLMs truly reasoning about causal structure,7

and if so, how do we measure it reliably without any memorization concerns?8

And can they be trusted for causal discovery in real-world scientific domains? We9

argue that realizing the true potential of LLMs for causal analysis in scientific10

research demands two key shifts. First, (P.1) the development of robust evaluation11

protocols based on recent scientific studies that effectively guard against dataset12

leakage. Second, (P.2) the design of hybrid methods that combine LLM-derived13

world knowledge with data-driven statistical methods.14

To address P.1, we motivate the research community to evaluate discovery methods15

on real-world, novel scientific studies, so that the results hold relevance for modern16

science. We provide a practical recipe for extracting causal graphs from recent17

scientific publications released after the training cutoff date of a given LLM. These18

graphs not only prevent verbatim memorization but also typically encompass19

a balanced mix of well-established and novel causal relationships. Compared20

to widely used benchmarks from BNLearn, where LLMs achieve near-perfect21

accuracy, LLMs perform significantly worse on our curated graphs, underscoring22

the need for statistical methods to bridge the gap. To support our second position23

(P.2), we show that a simple hybrid approach that uses LLM predictions as priors24

for the classical PC algorithm significantly improves accuracy over both LLM-only25

and traditional data-driven methods. These findings motivate a call to the research26

community: adopt science-grounded benchmarks that minimize dataset leakage,27

and invest in hybrid methodologies that are better suited to the nuanced demands28

of real-world scientific inquiry.29

1 Introduction30

Causal discovery, which is the task of learning the underlying causal graph is a foundational step31

in many causal inference problems. For instance, in treatment effect estimation [45, 38], the causal32

graph identifies appropriate adjustment variables to account for confounding. In interventional33

and counterfactual analysis [37, 39], it reveals the pathways through which interventions influence34

outcomes. Traditionally, causal discovery has been dominated by data-driven methods that infer35

graph structure using observational datasets. These approaches typically fall into three categories:36

(i) constraint-based methods that apply statistical tests [15, 50] to infer conditional independence37
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Figure 1: (a) Our Novel Science benchmarks were created post-2021 and required expert consensus, unlike
widely-used BNLearn graphs from the 1990s that likely appeared in LLM training data and memorized.
Evaluating with LLM checkpoints trained on pre-2021 data ensures these graphs are unseen, enabling a fair
benchmarking. (b) We compare the performance of PC, an LLM-BFS [25], and a hybrid PC+LLM approach
(refer Sec. 3.1) on two graphs: Asia (pre-2021, likely included in LLM training data) and Alzheimers (post-2021,
unseen during training). We observe a large gap in F1 scores between PC and LLM on the Asia dataset, a
contrast that is notably diminished on the Alzheimers dataset.

relationships [49, 48], (ii) score-based methods that search for graphs optimizing a goodness-of-38

fit score [16, 10, 36, 60], and (iii) functional-causal models that leverage assumptions about the39

data-generating process, such as additive noise [17, 57] or non-Gaussian residuals [46].40

Despite significant progress in causal discovery, some fundamental limitations still hinder the ef-41

fectiveness of current methods [13, 14, 19, 26]. Suppose we consider a simple case with two42

dependent variables, X and Y . Although we can measure their dependence using metrics such as43

correlation from observational data, it is impossible to identify the direction of causation. This is44

because both causal models: X → Y with likelihood assessed using P (X)P (Y |X) and Y → X45

with P (Y )P (X|Y ) can explain the data equally well. Disambiguating between the two requires46

additional assumptions such as constraints on the distribution of error residuals [46], or external47

supervision from experts, since observational data alone cannot identify the true causal structure.48

Recent advancements in Large Language Models (LLMs) have sparked interest within the causal49

inference community in exploring whether the world knowledge encoded in LLMs can be leveraged50

to identify causal graphs [28, 3, 32, 54]. However, many of these studies perform experiments on51

well-known benchmark datasets such as BNLearn, and tend to promote the narrative that standalone52

LLM-based approaches, which disregard observational data, can significantly outperform traditional53

data-driven methods. The validity of such claims is questionable if these benchmarks were part54

of the LLMs’ pretraining data. As also pointed out by [55], LLMs may appear to reason causally,55

but in reality, they could be merely reproducing patterns memorized during training. Extending56

this direction, Jin et al. propose benchmarks [24, 23] that remove any domain knowledge from the57

questions posed to LLMs and find that LLMs fail at inferring causal relationships reliably.58

While there is an active debate on whether LLMs can genuinely do causal reasoning, the practical59

relevance of such a capability for modern scientific studies has not received attention. Since one of60

the main goals of causal graph discovery is to support scientific discovery, in this paper, we focus on61

the potential of LLM-based graph discovery for science. Notably, we observe that most scientific62

studies often involve a combination of known variables and novel variables. Even if LLMs are purely63

memorizing scientific facts, this capability can be useful to provide causal relationships among the64

known variables and thus accelerate the process of building a graph for a scientist. And in case they65

have a potential of inferring relationships more generally, that could be even more useful. Realizing66

this potential, however, requires immediate attention of the research community on the following two67

positions: 1) principled evaluation and 2) progress on new kind of methods that combine LLM-based68

and data-based approaches (hybrid methods).69

P.1. Principled evaluation protocols are needed that prevent dataset leakage, thereby ensuring70

that any observed performance gains can be attributed to the genuine causal reasoning capabilities71

of LLMs rather than inadvertent memorization; and that such gains will translate to performance72

on real scientific studies.73

P.2. Hybrid methods, that combine LLM-based and data-based approaches, need to be de-74

veloped to make causal discovery algorithms practical for scientists. While there is some75
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initial work in this direction [27, 4, 2, 52, 11], we believe that there is potential to develop more76

advanced methods that optimally utilize both domain knowledge and data, with the goal of77

significantly improving accuracy on real-world scientific data.78

Principled, Science-grounded evaluation benchmarks. In support of P.1, we first show that79

widely used benchmarks in the LLM-based discovery literature, such as those from the BNLearn [43]80

repository, are memorized by state-of-the-art LLMs. Specifically, we develop a memorization test for81

causal graphs and find that LLMs such as GPT-4 can complete the information in such benchmarks82

with near-perfect accuracy, given only a partial peek into the benchmark data.83

To avoid memorization concerns, we advocate for Novel Science-grounded benchmarks that are84

based on latest scientific studies focused on causality. If we ensure that all materials of the study85

were released after the training cut-off date of a LLM, we can rule out verbatim memorization of86

the causal graph studied. Moreover, high accuracy on such a benchmark task mirrors the real-world87

scientific task, where a scientist may apply a previously trained LLM to a novel scenario of interest88

and attempt to build a graph. To demonstrate the idea, we collect four novel causal graphs curated89

through expert consensus and sourced from scientific papers published after the training cutoff of90

major LLMs and provide an accompanying codebase for evaluating statistical, LLM-only, and hybrid91

causal discovery methods. Our dataset collection approach offers a principled and generalizable92

recipe for constructing robust benchmarks: draw on latest studies to eliminate the risk of verbatim93

memorization (see Figure 1(a)).94

Hybrid graph discovery methods. In support of P.2, results on the novel benchmarks show that95

LLM-based methods yield significantly lower performance compared to the results typically reported96

on the BNLearn datasets. For example, Figure 1(b) shows that a popular LLM-based method, LLM-97

BFS [25], achieves an F1 score of 0.54 on the Alzheimer’s dataset (11 nodes, 19 edges) sourced from98

a recent study [1], in contrast to 0.93 on the similarly sized Asia graph from BNLearn. Notably, the99

improvement due to LLM-based methods compared to the existing data-based algorithms such as the100

PC algorithm is markedly smaller on the Alzheimer’s dataset than on Asia, challenging a growing101

narrative in recent literature that LLM-only methods are often adequate for causal discovery. This102

insight underscores the need for principled methods that integrate two complementary sources of103

information: (a) world knowledge encoded in LLMs, and (b) statistical signals inferred from data. To104

encourage progress in this direction, we consider a simple hybrid extension of the PC algorithm that105

uses the LLM-predicted graph as a prior (shown as the red bar in Figure 1(b)), and show that, despite106

its simplicity, this hybrid approach outperforms both standalone statistical and LLM-based methods,107

achieving an F1 score of 0.67 on the novel Alzheimer’s graph.108

2 P.1: Call for Robust Benchmarks109

In this section, we critically examine existing causal discovery benchmarks to assess their suitability110

for benchmarking LLM-based causal discovery performance. Our analysis reveals key limitations,111

motivating the need for a principled approach to constructing novel benchmarks. We articulate the112

following insights as part of our first position:113

P.1a Popular benchmarks, such as those from BNLearn, have been memorized by LLMs thus114

undermining their utility for benchmarking LLM-based causal discovery.115

P.1b We must develop novel benchmarks grounded in scientific literature released after LLM’s116

training to mitigate the risk of verbatim memorization and enable a genuine assessment of their117

causal reasoning capabilities.118

2.1 P.1a: Current Causal Benchmarks Fall Short for LLM-Based Causal Discovery119

Detecting whether an LLM has memorized a given graph benchmark is particularly challenging120

for closed-source models such as GPT-4 since their training data and mechanisms remain opaque.121

Prior work [7] has shown that mere presence of data sequences in pretraining corpora does not122

necessarily mean memorization; rather, memorization depends on factors such as model size and data123

frequency, thereby undermining the assumption that any pretraining overlap invalidates a benchmark.124

Hence, successful memorization tests in the literature often use prompting techniques that provide125

partial datasets and ask LLMs to complete the missing portions. When such prompts lead to exact126

reproduction, the most plausible explanation is memorization, as reasoning alone cannot justify127
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Dataset M1 M2 M3 (Nodes) M3 (Edges)
0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

Asia 0.75 0.91 1.00 1.00 1.00 1.00 1.00 1.00 0.25 1.00 1.00 1.00 0.00 1.00 1.00 1.00
Cancer 1.00 1.00 1.00 0.5 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.86 1.00 0.67
Earthquake 0.60 0.75 0.67 0.50 1.00 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00
Child 1.00 0.11 0.06 0.53 0.44 0.55 0.44 0.36 1.00 0.85 0.89 0.00 0.17 0.00 0.30 0.16
Insurance 0.06 0.11 0.45 0.59 0.36 0.44 0.24 0.00 0.21 0.25 0.92 0.77 0.00 0.00 0.00 0.00
Alarm 1.00 0.72 0.79 0.89 0.49 0.38 0.12 0.00 0.97 0.72 0.92 0.00 0.43 0.10 0.00 0.00

Table 1: F1 scores for memorization tests (M1–M3) across datasets at varying context levels (α). High F1,
especially at low α, indicates memorization.

In-Degree
Causal Graph Nodes Edges Colliders Min Median Max Longest Path
Alzheimer’s 11 19 1 0 2 4 5
COVID-19 Respiratory 11 20 1 0 2 4 7
Sweden Transport 11 10 3 0 1 3 3
COVID-19 Complications 63 138 23 0 2 7 23

Table 2: Characteristics of Novel Science Datasets included in our paper.

verbatim recall of real-world data. Reconstruction-based tests of this kind exist for tabular data [6],128

images [30], text [35, 5, 18, 8, 29], etc. We extend such tests for causal graphs.129

Specifically, we perform reconstruction-based memorization tests to evaluate the credibility of widely-130

used benchmarks in causal graph discovery. We prompt the LLM with partial knowledge about131

specific aspects of a dataset and ask it to infer or complete the missing components. Since our focus132

is on causal graphs, we identify three natural and meaningful categories of information against which133

to assess memorization. These are outlined below.134

M1 Given the dataset name and a random α% subset of nodes, predict the remaining nodes.135

M2 Provided with the dataset name, the full list of nodes, and an α% subset of edges in the prompt,136

identify the remaining nodes.137

M3 Given the dataset name and a subgraph induced by a random α% subset of nodes (with intra-138

subset edges), complete the rest of the nodes and edges.139

Table 1 presents the results of our memorization tests, with the exact prompts provided in Appendix C.140

We highlight several key observations:141

• Several datasets exhibit near-perfect F1 scores, even at α = 0%, where no contextual information142

is provided to the LLM. Such performance strongly suggests that the LLM has memorized these143

datasets, raising concerns about their suitability for evaluation.144

• M2 achieves very high F1 scores, even at α = 0, demonstrating that LLMs can accurately145

reconstruct edge structures when provided only with the node list. This raises the question: Do we146

need sophisticated traversal strategies, such as LLM-BFS, for these datasets.147

• LLM performance degrades as graph size increases, as seen in the lower scores for the Child and148

Insurance datasets.149

• Overall, these results call into question the validity of current benchmarks for evaluating causal150

reasoning in LLMs and underscore the need for novel, leakage-free benchmarks.151

2.2 P.1b: Need Science-Grounded Causal Datasets for Benchmarking152

The above results suggest that widely-used BNLearn graph datasets are likely memorized by LLMs.153

Therefore, it is important to create novel datasets. Existing literature tackles this problem by creating154

datasets without any real-world domain knowledge [24, 9] or with synthetic, toy-level scenarios that155

can be randomized [23]. Although creating a dataset with completely novel causal relationships156

is useful for evaluating genuine causal reasoning abilities of LLMs, they do not help assess the157

real-world utility of LLMs for scientific studies. We therefore posit that it is equally important to158

develop realistic benchmarks for causal discovery that closely mimic the challenges faced by a typical159

scientific study, as BNLearn benchmark did a few decades ago.160

In this section, we show how it is possible. We outline a practical recipe for constructing novel161

science-grounded datasets to support robust evaluation of causal discovery algorithms. Our proposal162

involves: a) Finding recent scientific studies that explicitly provide a causal graph (or contain enough163
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Dataset M1 M2 M3 (Nodes) M3 (Edges)
0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

Alz. 0.00 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.67 0.80 0.00 0.34 0.23 0.00
C19-small 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 1.00 0.00 0.00 0.12 0.00
C19-large 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sweden 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.67 0.00 0.00 0.00 0.06

Table 3: Results of memorization tests conducted on the novel science datasets.

information such that a causal graph can be extracted); (b) Extracting the relevant source data for164

the studies (when available) or generating synthetic data with varying distributions. In a way, we165

propose restarting and adapting the BNLearn initiative for LLM evaluation: sourcing new graphs166

from research papers and associating them with real or synthetic data.167

Below we introduce four new causal graphs, each developed in a recent publication through careful168

expert elicitation and consensus. Key statistics for these graphs are summarized in Table 2. As new169

LLMs are introduced, the recipe can be repeated to generate more novel datasets.170

Alzheimer’s Graph The first dataset is the Alzheimer’s graph from [1], developed with input from171

five domain experts. It includes two broad categories of variables: clinical phenotypes (e.g., age, sex,172

education) and radiological features extracted from MRI scans (e.g., brain and ventricular volumes),173

as illustrated in Fig. 4. The consensus graph was built by retaining only those edges that were agreed174

upon by at least two of the five experts. As highlighted in Figure 21 of [1], there is substantial175

disagreement among the individual expert graphs, underscoring the difficulty for automated methods176

such as LLMs to infer a consensus graph. Although the graph’s structure was developed independently,177

its variables align with a subset of those used in the Alzheimer’s Disease Neuroimaging Initiative [40].178

COVID-19 Respiratory Graph The second graph models the progression of COVID-19 within179

the respiratory system, as introduced in [34]. It tracks the disease’s path from initial viral entry to180

pulmonary dysfunction and symptomatic manifestations. The graph was developed through iterative181

elicitation sessions involving 7–12 domain experts and released on medRxiv in February 2022.182

Figure 3 presents the graph with color-coded nodes corresponding to different stages of infection:183

viral entry (pink), lung mechanics (yellow), infection-induced complications (orange), and observable184

symptoms (cyan). Each variable captures a phase in the progression from infection to respiratory185

distress. The graph was refined through group workshops and follow-ups, followed by independent186

expert validation to ensure consensus and accuracy.187

COVID-19 Complications Graph The third dataset extends the respiratory model to include systemic188

complications resulting from COVID-19, again from [34]. This graph captures how the virus can189

affect organs beyond the lungs, such as the heart, liver, kidneys, and vascular system. It includes190

variables like vascular tone, blood clotting, cardiac inflammation, and ischemia, while retaining191

key pulmonary indicators such as hypoxemia and hypercapnia (see Fig. 3). Constructed using a192

similar expert elicitation process, this graph focuses on mapping primary pathways that lead to severe193

complications, including immune overreactions and multi-organ failure. It distinguishes between194

observable variables used in clinical monitoring and latent variables that reflect complex physiological195

states. With 63 nodes and 138 edges, this is the most complex of the four graphs and presents a196

challenging testbed for causal discovery algorithms.197

The Sweden Traffic Dataset The Sweden traffic dataset was introduced in a recent study [59] aimed198

at modeling bus delay propagation through a causal graph. Each node corresponds to a variable that199

influences delays, such as arrival_delays, dwell_time, and scheduled_travel_time. Unlike200

the previous three studies, a notable feature of this work is that the true graph is not known since it201

deals with real-world bus traffic data. Instead, the authors provide expert annotations specifying a202

subset of edge that should definitely exist, and a subset that are forbidden. Thus, the ground-truth203

contains not only positive edges that should be present in the causal graph but also negative edges204

that must be absent. The dataset is inspired by the General Transit Feed Specification (GTFS),205

a standardized format for public transit schedules and geographic data. As such, benchmarking206

causal discovery methods on this dataset holds promise for informing real-world applications in207

transportation systems analysis.208

Memorization Tests We conduct the same memorization tests on the four science-grounded datasets209

to assess potential dataset leakage. As shown in Table 3, many F1 scores are consistently low, often210

close to zero. While these results do not conclusively rule out memorization, they provide strong211
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evidence that our science-grounded datasets are significantly more likely to support fair and unbiased212

evaluation of causal discovery methods compared to other widely used benchmarks.213

Generating Synthetic Observational Data For datasets where source data is unavailable, we214

generate synthetic observational data based on expert-designed causal graphs, following the approach215

used in the BNLearn benchmark. We consider two settings: (a) Linear and (b) Non-Linear, differing216

in the form of structural equations used for each node. Data is generated in topological order over217

the graph. Root nodes are sampled as xi ∼ N (0, 1). For non-root nodes, we use: xi ∼ fi(Pai) + ϵi218

where Pai denotes the values of the parents of node i, and ϵi ∼ N (0, 1) is an exogenous noise term.219

In the Linear setting, fi(Pai) = w⊤Pai with weights w drawn from U(0, 2) to ensure consistent220

scaling across graph depths. In the Non-Linear setting, fi is parameterized by a randomly initialized221

3-layer MLP with ReLU activations and four neurons per hidden layer: fi(Pai) = MLP(Pai) This222

setup enables flexible modeling of complex non-linear relationships, as in prior work [61].223

Studying performance of LLMs on these novel, science-grounded causal graphs can provide a better224

evaluation of their real world potential and also highlights the limitations, as we show next.225

3 P.2: Call for Hybrid Methods226

Interestingly, one of the reasons that scientific studies provide causal graphs is to evaluate the227

performance of graph discovery algorithms. For instance, the Swedish Traffic study was focused228

on applying data-based discovery algorithms to bus transit data. However, multiple studies in229

medicine [51], climate science [20] and other fields find that data-based graph discovery algorithms230

are not sufficient for direct application in scientific contexts. This is due to the fundamental limitations231

of graph discovery with observational data.232

Therefore, we believe that combining domain knowledge with data-based methods can be a fruitful233

way to improve accuracy of graph discovery and make it practical for scientists. This would involve234

creative methods that combine LLMs’ output with principled causal discovery algorithms. Below we235

provide motivation on why hybrid algorithms may lead to significant gains. 1) LLM-only methods236

are not adequate when evaluated on novel benchmarks; 2) even a simple attempt at hybridizing237

PC with LLMs yields promising gains. There are a rich set of questions to be explored around238

quantifying uncertainty in LLMs’ graph outputs and integrating themn with different kinds of239

discovery algorithms.240

P.2a LLM-only methods exhibit significantly lower accuracy on our novel, science-grounded241

datasets, highlighting their current limitations.242

P.2b Advancing hybrid methods offers a promising path forward, as they can effectively combine243

the strengths of LLMs and statistical inference to improve causal discovery performance.244

Methods. Before presenting our experimental results, we briefly outline the methods considered: (a)245

data-driven/statistical methods, which rely solely on observational datasets to infer the causal graph,246

(b) LLM-based methods, which rely solely on prompt responses, and (c) hybrid methods, which247

use both LLMs and observational datasets. Among data-driven methods, we consider score-based248

approaches such as GES [10] and NOTEARS [60], and for constraint-based methods that rely on249

conditional independence testing, we include PC [49] and FCI [48]. We also ran two variants of250

LiNGAM: Direct LiNGAM [47] and ICA LiNGAM [46], both of which assume linear relationships251

among variables with non-Gaussian noise. In our synthetic datasets, the non-Gaussianity assumption252

is violated in both settings, while the linearity assumption is additionally violated in the non-linear253

variant. We further evaluate ANM, which assumes additive noise which holds true in our experiments.254

Then we considered two state of the art LLM-only approaches: (i) LLM Pairwise [28], which queries255

all
(
n
2

)
node pairs, and (ii) LLM BFS, which explores the graph in a breadth-first manner using O(n)256

prompts. Lastly, as a representative for hybrid approaches, we evaluate LLM+PC, a simple way to257

combine PC with LLM BFS predictions (Sec. 3.2). We defer a detailed description to Appendix B.258

3.1 P.2a: LLM-Only Methods Fall Short on Novel Science Datasets259

Table 4 summarizes the results of evaluating LLM-only methods on the novel science datasets. Our260

main finding is that accuracy for LLM-only methods is significantly lower than reported numbers on261
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BNLearn datasets [25]. On Sweden Transport and Covid-19 Complications, the F1 is less than 0.3,262

whereas it is less than 0.6 for the other two datasets, Covid-19 Respiratory and Alzheimers.263

• Among the statistical baselines, the LiNGAM variants achieve the best overall performance.264

• Within the LLM-only methods, LLM-BFS stands out as the top performer. Interestingly, it265

constructs the graph using fewer prompts compared to other LLM-based approaches.266

• On the COVID-19 Respiratory Complications dataset, the largest and most complex among the267

benchmarks, LLM-BFS struggles to maintain contextual coherence as it traverses deeper into the268

graph. Statistical methods also experience performance degradation on this dataset.269

3.2 P.2b: Hybrid Methods can Potentially Bridge the Gap270

The above results show that there is significant potential for hybrid methods to improve accuracy271

further. For completeness, we describe and evaluate a simple algorithm below.272

Our hybrid algorithm, LLM+PC, begins by using the LLM-BFS method to generate a prior graph,273

denoted by Gprior (though this prior can come from any suitable LLM-based approach). This prior274

is then used to guide the PC algorithm, which itself operates in two stages: skeleton discovery and275

edge orientation. During skeleton discovery, the PC algorithm examines each pair of variables X and276

Y , and searches for a conditioning set S such that X ⊥⊥ Y | S. If such a set exists, the algorithm277

removes the undirected edge X ↔ Y from the graph. Our hybrid method adjusts this process by278

incorporating the prior knowledge from Gprior: if the prior includes a directed edge X → Y or279

X ← Y , we prevent the PC algorithm from removing the corresponding undirected edge X ↔ Y ,280

even if conditional independence is detected. In the edge orientation phase, we initialize the directions281

of edges that appear in Gprior first, and then allow the PC algorithm to determine the orientation of the282

remaining undirected edges based on its standard orientation rules.283

In Table 4, we evaluate two variants of our hybrid algorithm, differing only in the choice of hypothesis284

tests used within the PC. One variant uses Fisher’s Z-test, which is well-suited for detecting linear285

dependencies, while the other uses Kernel Conditional Independence (KCI) test to capture non-linear286

relationships. Across all datasets, we observe that at least one variant consistently achieves the287

highest F1-score, outperforming both LLM-only and statistical baselines. Importantly, neither variant288

performs significantly worse on any dataset, underscoring the robustness of hybrid methods. In289

certain cases, the hybrid methods exhibit slightly lower precision as we constrain the PC algorithm to290

retain prior edges predicted by the LLM, and this can sometimes include false positives. Results are291

robust to changes in hyperparameters; for details see App. G.292

On the bigger and more complicated Covid-19 Complications dataset, while the hybrid methods293

retain an edge, the performance gains over other approaches are less pronounced. We believe that294

the results underscore the importance of new algorithms that can combine domain knowledge and295

data statistics. Below we highlight the research questions that can be explored by the community and296

provide some explorations using the simple hybrid algorithm above.297

RQ1 What are other promising ways of combining LLMs with data-based methods? For example,298

how does adding a post-processing phase to a hybrid algorithm, where edges are selectively299

removed based on additional hypothesis tests from observational data, affect the accuracy?300

RQ2 How much would adding negative edges as priors improve performance?301

RQ3 How do the observed performance trends generalize to open-source LLMs? And how can302

we develop novel learning strategies for language models that enable them to learn cause and303

effect from scientific corpora?304

RQ1: Dropping Edges. In this section, we evaluate a variant of our LLM+PC algorithm that includes305

a post-processing step to prune extraneous edges using statistical hypothesis tests on the observational306

dataset. The PC algorithm can sometimes leave some edges unoriented, resulting in cycles. To307

ensure acyclicity, we first drop a minimal set of edges from the LLM+PC output to obtain a DAG.308

For each surviving edge, we identify its minimal separator set (witness set), perform a conditional309

independence test, and record the corresponding p-value. We then sort the edges by ascending310

p-value and remove the top α%. Thus, α = 0% corresponds to the unaltered LLM+PC output, while311

higher α values yield sparser graphs. Results in Table 5 show that pruning edges generally degrades312

performance, with a consistent drop in F1 scores across datasets. These results suggest that, at313

least for the datasets considered, retaining the original LLM+PC output without aggressive post-hoc314
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Methods Covid-19 Resp. Alzheimers Sweden Transport Covid-19 Compl.
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

GES 0.25 0.10 0.14 0.08 0.05 0.06 0.27 0.27 0.27 - -
PC(Fisherz) 0.14 0.05 0.07 0.50 0.52 0.51 0.54 0.60 0.57 0.05 0.03 0.04
PC(KCI) 0.33 0.10 0.15 0.36 0.21 0.27 0.28 0.4 0.33 0.05 0.01 0.02
ICA LiNGAM 0.44 0.2 0.28 0.58 0.52 0.55 0.71 0.50 0.59 0.07 0.01 0.01
Direct LiNGAM 0.33 0.10 0.15 0.50 0.10 0.17 0.62 0.50 0.55 0.00 0.00
ANM 0.44 0.20 0.28 0.30 0.15 0.20 0.22 0.2 0.21 0.04 0.04 0.04
FCI 0.30 0.15 0.20 0.42 0.26 0.32 0.50 0.3 0.38 0.02 0.03 0.03
LLM pairwise 0.26 0.35 0.30 0.17 0.31 0.22 0.20 0.50 0.29 - -
LLM BFS 0.90 0.45 0.60 0.69 0.47 0.56 0.25 0.4 0.31 0.06 0.04 0.05

PC(Fisherz) + LLM 0.64 0.80 0.71 0.58 0.78 0.66 0.64 0.70 0.67 0.06 0.07 0.07
PC(KCI) + LLM 0.90 0.45 0.60 0.64 0.84 0.73 0.50 0.50 0.50 0.07 0.05 0.06

Table 4: Results on Non-Linear Observational Dataset. GES and LLM-pairwise are compute-intensive methods
and were not feasible to run for the larger Covid-19 Complications dataset.

α% Edges COVID-19 Resp. Alzheimer’s Sweden Transport
P R F1 P R F1 P R F1

0 0.64 0.80 0.71 0.58 0.78 0.66 0.63 0.70 0.67
5 0.64 0.70 0.67 0.58 0.74 0.65 0.60 0.60 0.60
10 0.62 0.65 0.63 0.57 0.68 0.62 0.66 0.60 0.63
25 0.55 0.50 0.52 0.53 0.53 0.53 0.62 0.50 0.55
50 0.42 0.25 0.31 0.61 0.42 0.50 0.4 0.2 0.27

Table 5: Precision, Recall, and F1 Score after removing edges based on p-Value

pruning yields better results. Future Question: How robust is this result for other constraint-based315

algorithms beyond PC?316

RQ2: Incorporating Priors on Missing Edges. In this experiment, we ask: should the prior provided317

to the PC algorithm be limited to edges believed to exist in the causal graph? In practice, we may also318

possess knowledge about edges that should not exist, what we refer to as negative edges. These can319

come from expert annotations or be inferred heuristically from LLM predictions. For example, if an320

LLM predicts k edges, any subset of the remaining
(
n
2

)
− k pairs can serve as candidates for negative321

prior. To assess the value of incorporating such information, we evaluate hybrid performance under322

two settings. In the Sweden Traffic dataset, prior work identifies a set of ground-truth negative edges.323

For other datasets, we construct a noisy negative prior by randomly sampling edges not predicted by324

the LLM, acknowledging that these may include false negatives.325

We modify our LLM+PC hybrid algorithm to leverage this information during the skeleton discovery326

phase: any edge included in the negative prior is forcibly removed from the skeleton, regardless of327

whether the PC algorithm identifies a separating set (i.e., witness set).328

• Incorporating ground-truth negative priors enhances performance, as seen in the Sweden Traffic329

dataset in Tab. 6 (left). Specifically, the PC+LLM (WITH NEGATIVE PRIOR) method shows330

significant gains in precision without loss in recall, leading to improved F1 scores.331

• For datasets where negative priors are derived from LLM outputs, the improvements are less332

consistent due to potential noise in the inferred prior. Table 6 (right) presents results across varying333

levels of α, where α denotes the percentage of edges absent in the LLM-only prediction that are334

used as negative priors. Consequently, α = 0 corresponds to the standard PC+LLM method, while335

α = 100 reflects LLM-only predictions. We see that our original PC+LLM achieves the best F1336

here.337

• These results illustrate that although negative priors can be beneficial, their effectiveness is highly338

sensitive to their quality—noisy or incorrect priors may in fact impair overall performance. More339

work is needed to fully answer this question and explore choices in both prior and algorithm design.340

RQ3: Extensions using Open-Source LLMs. Another key question is whether we can move away341

from propietary LLMs and develop methods using open LLMs. Two research directions are: 1) How342

to train language models to infer cause-effect relationships based on a corpus of documents? For343

instance, can we train specific models for domains such as biomedical or climate science? 2 How do344
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P R F1
PC 0.54 0.60 0.57
PC+LLM 0.64 0.70 0.67
PC+LLM (-ve prior) 0.70 0.70 0.70

α% COVID-19 Resp. Alz.
P R F1 P R F1

100 (LLM) 0.90 0.45 0.60 0.69 0.47 0.56
0 (PC+LLM) 0.57 0.70 0.63 0.56 0.70 0.62
25 0.60 0.62 0.61 0.56 0.61 0.58
50 0.60 0.54 0.50 0.55 0.55 0.55
75 0.67 0.48 0.56 0.61 0.49 0.54

Table 6: Left: Sweden dataset with expert-provided ground-truth negative prior. Right: PC+LLM performance
under varying levels of randomly sampled LLM-derived negative priors.

we combine language models with existing discovery methods, such that training and/or inference345

may happen end-to-end?346

Covid-19 Resp Alzheimers0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

0.15

0.51

0.30
0.22

0.56

0.680.66
0.73

PC
LLM Pairwise
LLM BFS
PC + LLM

(a) GPT-4 Turbo

Covid-19 Resp Alzheimers0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

0.15

0.51
0.42

0.56

0.23

0.67

0.41

0.72

PC
LLM Pairwise
LLM BFS
PC + LLM

(b) Llama 3.1

Figure 2: Evaluation of GPT-4-Turbo and Llama 3.1 models on NovoGraphs benchmarks. Notably, these
models were trained after the release of these datasets, so non-memorization is not guaranteed.

4 Conclusion and the Path Forward347

We envision a future where causal discovery can be a valuable tool for scientific studies. To support348

more work in building science-grounded benchmarks and novel algorithms, we aim to open-source349

all our datasets and code used to constructing the four benchmarks and the hybrid algorithm. Having350

a general testbed can spur innovation and lead to a robust evaluation of discovery algorithms.351

A key concern is whether our benchmark will be relevant as new LLMs keep getting introduced.352

To test this hypothesis, we also test latest LLMs on the four datasets. we evaluate a recent version353

of GPT-4 and a recent open language model, LLaMA 3.1 (2023 checkpoints) on the novel datasets.354

Both models were released after the publication of novel science datasets. Results are presented355

in Fig. 2 (nonlinear dataset) and Fig. 7 (linear dataset). In Fig. 2, GPT-4-Turbo yields F1 scores356

comparable to earlier models, outperforming on the Alzheimer’s dataset but slightly underperforming357

on COVID-19 Resp. for LLM-BFS. These trends are consistent with our broader observations, which358

is unsurprising because, although the datasets could technically be part of the training corpus, their359

frequency is likely to be very low which makes memorization unlikely. Notably, LLaMA 3.1 departs360

from previous patterns: its pairwise comparison strategy surpasses BFS, marking a novel shift in361

behavior. Across both datasets, our hybrid method consistently outperforms both LLM-BFS and PC362

alone. These ablations affirm the utility of the benchmark even for newer language models. That363

said, we would recommend dynamic creation of new benchmarks based on research papers from364

each future year.365

To conclude, we critically examined the limitations of current benchmarking practices in LLM-based366

causal discovery, highlighting the risks of drawing conclusions without first ruling out dataset leakage.367

Through a series of targeted memorization experiments, we demonstrated that many widely used368

benchmarks are vulnerable and often fail to test genuine causal reasoning. To address this gap,369

we introduced a lightweight yet powerful strategy for building more robust benchmarks grounded370

in scientific knowledge and human consensus. We hope this sets a new standard for evaluating371

causal discovery methods and the community builds more science-grounded benchmarks to evaluate372

progress. Finally, we advocate for deeper investment in hybrid approaches: methods that can harness373

the complementary strengths of large language models and observational data. As our results suggest,374

such integration may hold the key to advancing causal discovery as a key part of scientific studies.375
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[54] Moritz Willig, Matej Zečević, Devendra Singh Dhami, and Kristian Kersting. Probing for514

correlations of causal facts: Large language models and causality. 2022.515

12
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A Code538

We release the anonymous code at the url : https://anonymous.4open.science/r/novographs-5005/539

B Background: Types of causal discovery algorithms540

We categorize related work into: (a) data-driven methods, which rely solely on observational datasets541

to infer the causal graph, (b) LLM-based methods, which rely solely on prompt responses, and (c)542

hybrid methods, which use both LLMs and observational datasets.543

Data-Driven Methods. Constraint-based methods for causal discovery, such as the PC algorithm [49]544

and the FCI algorithm [48], identify causal relationships by testing conditional independencies. Vari-545

ants of these methods [12, 42, 21, 53, 56, 44] aim to improve scalability and accommodate different546

assumptions. While some of these methods offer asymptotic consistency guarantees, their perfor-547

mance in practice often depends on the power of the statistical hypothesis tests applied to determine548

conditional independencies from observational data, a factor we examine in our experiments. Standard549

tests include Fisher’s z-test [50] for linear dependencies and kernel-based tests [58] for non-linear550

dependencies. Other methods include score-based methods [10, 36, 22, 41] that optimize a score551

function over graphs, including recent versions based on continuous optimization [60]; and parametric552

methods that assume parametric assumptions about the functional relationships among nodes in a553

causal graph, e.g., assuming non-gaussian noise [46, 31].554

Leveraging LLMs for learning Causal Graphs. There is a growing interest in augmenting obser-555

vational data with meta-knowledge, aiming for improved causal predictions [1]. Large Language556

Models (LLMs) offer a promising source of such augmentation, requiring minimal manual effort.557

For instance, the pairwise approach [28, 54, 33] finds the causal graph using prompts like “Does A558

cause B?” for each pair of nodes, then coalesces the graph based on the responses. While effective,559

this method requires O(n2) prompts for n nodes, making it costly. Alternative approaches [25]560

reduce prompt complexity by building the graph with a breadth-first search. Another recent approach561

considers querying LLMs over triplet of variables [52].562

Hybrid Approaches. ALCM [27] is a recent approach that begins with the PC algorithm and563

subsequently queries the LLM to validate each edge predicted by the PC. Other methods in this564

category initiate with a prior LLM-based graph and adjust it using observational data [4, 2] or565

use LLM as a post-processing critic for data-based output [32, 52]. [11] introduces a method that566

adaptively defers to either expert (LLM) recommendations or data-driven causal discovery based on567

their reliability. In their work, [25] presented a variant that incorporates the p-values from statistical568

tests into the prompts while constructing the causal graph. However, the authors found that the569

inclusion of p-values does not yield any improvement over their standalone LLM variant. This570

indicates that merely adding superficial data statistics to the prompts is less effective, highlighting the571

necessity for explicit mechanisms to integrate LLM and data-driven graph predictions, and for testing572

such mechanisms on non-memorized benchmarks.573

However, almost all of the above studies use popular, existing graph datasets such as bnlearn for574

evaluation of LLM-based methods. In the next section, we show why such evaluation is not reliable.575

C Prompts for Memorization Tasks576

Prompt Template for M1 Task

You are provided with the name of the bnlearn dataset: {dataset_name} and the following
nodes: {given_nodes}. Give me the remaining nodes. Strictly output the nodes in the
format: [’node1’, ’node2’, ’node3’].

Note: Add bnlearn if it is a bnlearn dataset.
577
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Prompt Template for M2 Task

You are provided with the name of the bnlearn dataset: {dataset_name}, all nodes:
{all_nodes}, and the following edges: {given_edges}. Give me the remaining edges of
the graph. Strictly output the edges in the format: [[’node1’, ’node2’], [’node1’,
’node3’], [’node2’, ’node3’]].

Note: Add bnlearn if it is a bnlearn dataset.
578

Prompt Template for M3 Task

You are provided with the name of the bnlearn dataset: {dataset_name}, the following
nodes: {given_nodes}, and the following edges: {given_edges}. Give me the remaining
nodes and edges. Strictly output the nodes and edges in the format and do not add any text
before or after the list:
{’remaining_nodes’: [’node1’, ’node2’, ’node3’], ’remaining_edges’:
[[’node1’, ’node2’], [’node1’, ’node3’], [’node2’, ’node3’]]}

Note: Add bnlearn if it is a bnlearn dataset.
579

D Visualizations of Novel Sciences benchmark580

The Covid-19 respiratory dataset represents the full pathway of Covid-19’s impact on the body,581

organized into six distinct subsystems: vascular, pulmonary, cardiac, system-wide, background, and582

other organs. This dataset provides a comprehensive view of Covid-19’s effects as observed across583

various aspects of human anatomy.584

The complexity of this dataset stems from the high level of interconnections between the subsystems,585

resulting in a dense causal graph structure with 63 nodes and 138 edges. This density, along with586

numerous collider structures, makes it exceptionally challenging to analyze, even with advanced587

statistical algorithms and causal discovery methods.588
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Figure 3: Covid-19 Complications Graph, reproduced from [34].

(a) Alzheimers (b) Covid-19 Respiratory

Figure 4: Consensus causal graphs for Alzheimers benchmark reproduced from [1], and Covid-19 Respiratory
dataset reproduced from [34].

D.1 Sweden Urban Bus Operation Delays (Sweden Transport) Dataset Description589

The Sweden Transport dataset [59] contains temporal and operational information from a public bus590

network. The variables in the dataset are defined as follows:591
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Figure 5: Causal graph obtained from the Sweden Urban Bus Operation Delays dataset.

Figure 6: Edges obtained from the Sweden Transport dataset. Both positive and negative causal edges
are shown. These tables are quoted from the original paper [59] for ease of reference.

• Arrival Delays: Arrival delay of bus j at stop i; the difference between the actual arrival592

time and the scheduled arrival time.593

• Dwell Time: Actual dwell time at the preceding stop (i− 1); the difference between actual594

departure and arrival time at stop i− 1 for bus j.595

• Preceding Section Travel Time: Actual running time between stops i− 2 and i− 1; the596

difference between arrival at i− 1 and departure from i− 2.597

• Scheduled Travel Time: Scheduled running time between stops i− 1 and i; the difference598

between scheduled arrival at i and scheduled departure from i− 1.599

• Preceding Stop Delay: Arrival delay of bus j at stop i− 1; the difference between actual600

and scheduled arrival time at stop i− 1.601

• Previous Bus Delay: Arrival delay (knock-on effect) of preceding bus j − 1 at stop i; the602

difference between its actual and scheduled arrival time.603

• Previous Bus Travel Time: Actual running time of bus j − 1 between stops i− 1 and i;604

used to indicate current traffic conditions.605

• Recurrent Delay: Historical mean travel time of bus j at stop i during the same hour on606

weekdays; reflects recurrent congestion patterns.607

• Origin Delay: Departure delay of bus j at the first stop; the difference between actual and608

scheduled departure time.609

• Scheduled Headway: Planned time interval between arrival times of buses j − 1 and j at610

stop i.611

• Section Length: Distance between stop i− 1 and i (in metres).612
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Table 7: Results on Linear Observational Dataset.

methods Covid-19 Resp. Alzheimers Sweden Transport Covid-19 Compl.
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

GES 0.16 0.20 0.18 0.26 0.26 0.26 0.21 0.30 0.25 - -
PC(Fisherz) 0.31 0.45 0.37 0.47 0.47 0.47 0.44 0.80 0.57 0.04 0.02 0.03
PC(KCI) 0.27 0.25 0.26 0.57 0.42 0.48 0.66 0.80 0.72 0.03 0.015 0.02
NOTEARS 0.13 0.10 0.11 0.16 0.26 0.20 0.16 0.20 0.18 - -
ICA LiNGAM 0.25 0.20 0.22 0.11 0.26 0.15 0.21 0.30 0.25 0.05 0.17 0.07
Direct LiNGAM 0.18 0.35 0.24 0.20 0.30 0.24 0.16 0.30 0.21 0.03 0.17 0.05
ANM 0.25 0.20 0.22 0.19 0.2 0.19 0 0 - 0.04 0.58 0.07
FCI 0.12 0.15 0.13 0.60 0.16 0.25 0.50 0.40 0.44 0.04 0.01 0.01

LLM Pairwise 0.26 0.35 0.30 0.17 0.31 0.22 0.20 0.50 0.29 - -

LLM BFS 0.90 0.45 0.60 0.69 0.47 0.56 0.25 0.40 0.31 0.06 0.04 0.05

PC(Fisherz) + LLM 0.46 0.70 0.56 0.54 0.68 0.60 0.53 0.80 0.64 0.06 0.06 0.06

PC(KCI) + LLM 0.63 0.60 0.61 0.60 0.78 0.68 0.66 0.80 0.72 0.06 0.05 0.05

E Results on Linear Observational Dataset613

Statistical methods were applied to linearly generated data, and results were obtained using GPT-4614

with a 2021 cutoff, facilitating a comparison of performance between traditional algorithms, the615

LLM-based approach and our hybrid method.616

F Ablations using Linear dataset617

We conduct ablation studies using GPT-4 Turbo and LLaMA 3.1 on linearly generated data and ob-618

served that our hybrid PC+LLM method outperforms both individual baselines. This demonstrates the619

advantage of combining PC’s statistical rigor with LLM’s contextual reasoning for causal discovery.620

Covid-19 Resp Alzheimers0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

0.37
0.47

0.30
0.22

0.56

0.680.64
0.72

PC
LLM Pairwise
LLM BFS
PC + LLM

(a) GPT-4 Turbo

Covid-19 Resp Alzheimers0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

0.37
0.470.42

0.56

0.23

0.67

0.44

0.72

PC
LLM Pairwise
LLM BFS
PC + LLM

(b) Llama 3.1

Figure 7: Evaluation of GPT-4-Turbo and Llama 3.1 models on Novel Sciences benchmarks. Notably, these
models were trained after the release of these datasets, so there is a possibility that they may have encountered
our datasets during training.

G Experiments for Research Question: RQ4621

We conduct a series of ablation studies to assess the robustness and generalization ability of our622

hybrid PC+LLM approach under various modifications to the data generation process.623

Ablation 1: MLP Depth. We evaluate the impact of increasing the depth of the nonlinear generators624

by replacing 3-layer MLPs in our default setting with 5-layer MLPs. The results in Table 8 (left)625

indicate that performance remains consistent, suggesting insensitivity to architectural depth.626
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Ablation 2: Noise Distribution. To assess robustness under different exogenous noise assumptions,627

we replace the default N (0, 1) noise with N (0, 0.1) and U(0, 1). As shown in Table 8 (right),628

PC+LLM consistently outperforms the PC baseline across all settings.629

Method COVID-19 Resp. Alzheimers
P R F1 P R F1

LLM 0.90 0.45 0.60 0.69 0.47 0.56
PC 0.35 0.25 0.30 0.44 0.42 0.43
PC + LLM 0.73 0.55 0.63 0.60 0.78 0.68

Noise Method COVID-19 Resp. Alzheimers
P R F1 P R F1

N (0, 0.1)
PC 0.34 0.40 0.37 0.38 0.37 0.38
PC+LLM 0.58 0.70 0.63 0.56 0.68 0.62

U(0, 1) PC 0.60 0.30 0.40 0.58 0.36 0.45
PC+LLM 0.85 0.60 0.70 0.60 0.63 0.62

Table 8: Left: Effect of deeper MLPs on performance. Right: Performance under noisy LLM-derived priors.

Ablation 3: MLP Initialization. We compare three initialization strategies for MLP weights:630

uniform U(0, 1), standard normal, and Xavier normal. As seen in Table 9 (left), the hybrid method631

retains its advantage across all configurations.632

Ablation 4: Linear Coefficient Sampling. We vary the distribution used for sampling linear SEM633

coefficients, testing U(0, 2),N (0, 2), and U(−1, 1). Table 9 (right) shows that PC+LLM consistently634

achieves superior recall and F1 scores.635

Init. Method COVID-19 Resp. Alzheimers
P R F1 P R F1

Std Normal PC 0.44 0.20 0.28 0.35 0.37 0.36
PC+LLM 0.73 0.55 0.63 0.50 0.57 0.54

Xavier Normal PC 0.38 0.40 0.39 0.40 0.47 0.43
PC+LLM 0.59 0.80 0.68 0.54 0.68 0.60

Coeff. Dist. Method COVID-19 Resp. Alzheimers
P R F1 P R F1

N (0, 2)
PC 0.14 0.20 0.16 0.44 0.42 0.43
PC+LLM 0.66 0.70 0.68 0.59 0.68 0.63

U(−1, 1) PC 0.26 0.55 0.36 0.48 0.63 0.54
PC+LLM 0.59 0.65 0.62 0.53 0.79 0.64

Table 9: Left: Performance across different MLP initializations. Right: Effect of different coefficient sampling
distributions.

In Summary, these results collectively demonstrate the robustness and effectiveness of our method636

across a wide range of data-generating assumptions. Across all ablations, our PC+LLM hybrid637

approach consistently outperforms the standalone PC method. These experiments effectively illustrate638

the robustness of hybrid approaches.639
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NeurIPS Paper Checklist640

1. Claims641

Question: Do the main claims made in the abstract and introduction accurately reflect the642

paper’s contributions and scope?643

Answer: [Yes]644

Justification: We have justified with corresponding theoretical results as well as accompany-645

ing experiments.646

Guidelines:647

• The answer NA means that the abstract and introduction do not include the claims648

made in the paper.649

• The abstract and/or introduction should clearly state the claims made, including the650

contributions made in the paper and important assumptions and limitations. A No or651

NA answer to this question will not be perceived well by the reviewers.652

• The claims made should match theoretical and experimental results, and reflect how653

much the results can be expected to generalize to other settings.654

• It is fine to include aspirational goals as motivation as long as it is clear that these goals655

are not attained by the paper.656

2. Limitations657

Question: Does the paper discuss the limitations of the work performed by the authors?658

Answer: [Yes]659

Justification: Discussed in the main paper.660

Guidelines:661

• The answer NA means that the paper has no limitation while the answer No means that662

the paper has limitations, but those are not discussed in the paper.663

• The authors are encouraged to create a separate "Limitations" section in their paper.664

• The paper should point out any strong assumptions and how robust the results are to665

violations of these assumptions (e.g., independence assumptions, noiseless settings,666

model well-specification, asymptotic approximations only holding locally). The authors667

should reflect on how these assumptions might be violated in practice and what the668

implications would be.669

• The authors should reflect on the scope of the claims made, e.g., if the approach was670

only tested on a few datasets or with a few runs. In general, empirical results often671

depend on implicit assumptions, which should be articulated.672

• The authors should reflect on the factors that influence the performance of the approach.673

For example, a facial recognition algorithm may perform poorly when image resolution674

is low or images are taken in low lighting. Or a speech-to-text system might not be675

used reliably to provide closed captions for online lectures because it fails to handle676

technical jargon.677

• The authors should discuss the computational efficiency of the proposed algorithms678

and how they scale with dataset size.679

• If applicable, the authors should discuss possible limitations of their approach to680

address problems of privacy and fairness.681

• While the authors might fear that complete honesty about limitations might be used by682

reviewers as grounds for rejection, a worse outcome might be that reviewers discover683

limitations that aren’t acknowledged in the paper. The authors should use their best684

judgment and recognize that individual actions in favor of transparency play an impor-685

tant role in developing norms that preserve the integrity of the community. Reviewers686

will be specifically instructed to not penalize honesty concerning limitations.687

3. Theory assumptions and proofs688

Question: For each theoretical result, does the paper provide the full set of assumptions and689

a complete (and correct) proof?690

Answer: [Yes]691

Justification: NA.692

Guidelines:693

• The answer NA means that the paper does not include theoretical results.694

• All the theorems, formulas, and proofs in the paper should be numbered and cross-695

referenced.696

• All assumptions should be clearly stated or referenced in the statement of any theorems.697
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• The proofs can either appear in the main paper or the supplemental material, but if698

they appear in the supplemental material, the authors are encouraged to provide a short699

proof sketch to provide intuition.700

• Inversely, any informal proof provided in the core of the paper should be complemented701

by formal proofs provided in appendix or supplemental material.702

• Theorems and Lemmas that the proof relies upon should be properly referenced.703

4. Experimental result reproducibility704

Question: Does the paper fully disclose all the information needed to reproduce the main ex-705

perimental results of the paper to the extent that it affects the main claims and/or conclusions706

of the paper (regardless of whether the code and data are provided or not)?707

Answer: [Yes]708

Justification: We have uploaded the code in the supplementary material.709

Guidelines:710

• The answer NA means that the paper does not include experiments.711

• If the paper includes experiments, a No answer to this question will not be perceived712

well by the reviewers: Making the paper reproducible is important, regardless of713

whether the code and data are provided or not.714

• If the contribution is a dataset and/or model, the authors should describe the steps taken715

to make their results reproducible or verifiable.716

• Depending on the contribution, reproducibility can be accomplished in various ways.717

For example, if the contribution is a novel architecture, describing the architecture fully718

might suffice, or if the contribution is a specific model and empirical evaluation, it may719

be necessary to either make it possible for others to replicate the model with the same720

dataset, or provide access to the model. In general. releasing code and data is often721

one good way to accomplish this, but reproducibility can also be provided via detailed722

instructions for how to replicate the results, access to a hosted model (e.g., in the case723

of a large language model), releasing of a model checkpoint, or other means that are724

appropriate to the research performed.725

• While NeurIPS does not require releasing code, the conference does require all submis-726

sions to provide some reasonable avenue for reproducibility, which may depend on the727

nature of the contribution. For example728

(a) If the contribution is primarily a new algorithm, the paper should make it clear how729

to reproduce that algorithm.730

(b) If the contribution is primarily a new model architecture, the paper should describe731

the architecture clearly and fully.732

(c) If the contribution is a new model (e.g., a large language model), then there should733

either be a way to access this model for reproducing the results or a way to reproduce734

the model (e.g., with an open-source dataset or instructions for how to construct735

the dataset).736

(d) We recognize that reproducibility may be tricky in some cases, in which case737

authors are welcome to describe the particular way they provide for reproducibility.738

In the case of closed-source models, it may be that access to the model is limited in739

some way (e.g., to registered users), but it should be possible for other researchers740

to have some path to reproducing or verifying the results.741

5. Open access to data and code742

Question: Does the paper provide open access to the data and code, with sufficient instruc-743

tions to faithfully reproduce the main experimental results, as described in supplemental744

material?745

Answer: [Yes]746

Justification: We have used all public benchmarks, and synthetic datasets.747
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• The answer NA means that paper does not include experiments requiring code.749

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/750

public/guides/CodeSubmissionPolicy) for more details.751

• While we encourage the release of code and data, we understand that this might not be752

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not753

including code, unless this is central to the contribution (e.g., for a new open-source754

benchmark).755
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• The instructions should contain the exact command and environment needed to run to756

reproduce the results. See the NeurIPS code and data submission guidelines (https:757

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.758

• The authors should provide instructions on data access and preparation, including how759

to access the raw data, preprocessed data, intermediate data, and generated data, etc.760

• The authors should provide scripts to reproduce all experimental results for the new761

proposed method and baselines. If only a subset of experiments are reproducible, they762

should state which ones are omitted from the script and why.763

• At submission time, to preserve anonymity, the authors should release anonymized764

versions (if applicable).765

• Providing as much information as possible in supplemental material (appended to the766
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6. Experimental setting/details768
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the770

results?771

Answer: [Yes]772

Justification: We have discussed all the hyperparameters in the Experiments Section.773
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• The answer NA means that the paper does not include experiments.775

• The experimental setting should be presented in the core of the paper to a level of detail776

that is necessary to appreciate the results and make sense of them.777
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material.779

7. Experiment statistical significance780

Question: Does the paper report error bars suitably and correctly defined or other appropriate781

information about the statistical significance of the experiments?782

Answer: [NA]783

Justification: Error bars are not reported because the merits of our approach over the784

baselines is mostly apparent.785

Guidelines:786

• The answer NA means that the paper does not include experiments.787

• The authors should answer "Yes" if the results are accompanied by error bars, confi-788

dence intervals, or statistical significance tests, at least for the experiments that support789

the main claims of the paper.790

• The factors of variability that the error bars are capturing should be clearly stated (for791

example, train/test split, initialization, random drawing of some parameter, or overall792

run with given experimental conditions).793

• The method for calculating the error bars should be explained (closed form formula,794

call to a library function, bootstrap, etc.)795

• The assumptions made should be given (e.g., Normally distributed errors).796

• It should be clear whether the error bar is the standard deviation or the standard error797

of the mean.798

• It is OK to report 1-sigma error bars, but one should state it. The authors should799

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis800

of Normality of errors is not verified.801

• For asymmetric distributions, the authors should be careful not to show in tables or802

figures symmetric error bars that would yield results that are out of range (e.g. negative803

error rates).804

• If error bars are reported in tables or plots, The authors should explain in the text how805

they were calculated and reference the corresponding figures or tables in the text.806

8. Experiments compute resources807

Question: For each experiment, does the paper provide sufficient information on the com-808

puter resources (type of compute workers, memory, time of execution) needed to reproduce809

the experiments?810

Answer: [NA]811

Justification: We need either the API keys or GPUs tp host the LLMs to run our experiments.812

Guidelines:813

• The answer NA means that the paper does not include experiments.814
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,815

or cloud provider, including relevant memory and storage.816

• The paper should provide the amount of compute required for each of the individual817

experimental runs as well as estimate the total compute.818

• The paper should disclose whether the full research project required more compute819

than the experiments reported in the paper (e.g., preliminary or failed experiments that820

didn’t make it into the paper).821

9. Code of ethics822
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?824

Answer: [Yes]825
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.828

• If the authors answer No, they should explain the special circumstances that require a829

deviation from the Code of Ethics.830
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eration due to laws or regulations in their jurisdiction).832

10. Broader impacts833
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societal impacts of the work performed?835

Answer: [Yes]836

Justification: Our broader impact comes from the positions we have stated in the paper.837
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• The answer NA means that there is no societal impact of the work performed.839

• If the authors answer NA or No, they should explain why their work has no societal840

impact or why the paper does not address societal impact.841

• Examples of negative societal impacts include potential malicious or unintended uses842
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(e.g., deployment of technologies that could make decisions that unfairly impact specific844
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to particular applications, let alone deployments. However, if there is a direct path to847
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to point out that an improvement in the quality of generative models could be used to849
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technology is being used as intended but gives incorrect results, and harms following855
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strategies (e.g., gated release of models, providing defenses in addition to attacks,858
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11. Safeguards861

Question: Does the paper describe safeguards that have been put in place for responsible862

release of data or models that have a high risk for misuse (e.g., pretrained language models,863

image generators, or scraped datasets)?864

Answer: [NA]865

Justification: We only worked with public benchmarks.866
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• The answer NA means that the paper poses no such risks.868

• Released models that have a high risk for misuse or dual-use should be released with869

necessary safeguards to allow for controlled use of the model, for example by requiring870

that users adhere to usage guidelines or restrictions to access the model or implementing871

safety filters.872
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• Datasets that have been scraped from the Internet could pose safety risks. The authors873

should describe how they avoided releasing unsafe images.874

• We recognize that providing effective safeguards is challenging, and many papers do875

not require this, but we encourage authors to take this into account and make a best876

faith effort.877
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Question: Does the paper describe potential risks incurred by study participants, whether931

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)932

approvals (or an equivalent approval/review based on the requirements of your country or933
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Justification: We have not used LLMs and all our results are original.954
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