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Abstract

Recent claims of strong performance by Large Language Models (LLMs) on causal
discovery tasks are undermined by a critical flaw: many evaluations rely on widely-
used benchmarks that likely appear in LLMs’ pretraining corpora. As a result,
empirical success on these benchmarks seem to suggest that LLM-only methods,
which ignore observational data, outperform classical statistical approaches on
causal discovery. In this position paper, we challenge this emerging narrative by
raising a fundamental question: Are LLMs truly reasoning about causal structure,
and if so, how do we measure it reliably without any memorization concerns?
And can they be trusted for causal discovery in real-world scientific domains? We
argue that realizing the true potential of LLMs for causal analysis in scientific
research demands two key shifts. First, (P.1) the development of robust evaluation
protocols based on recent scientific studies that effectively guard against dataset
leakage. Second, (P.2) the design of hybrid methods that combine LLM-derived
world knowledge with data-driven statistical methods.

To address P.1, we motivate the research community to evaluate discovery methods
on real-world, novel scientific studies, so that the results hold relevance for modern
science. We provide a practical recipe for extracting causal graphs from recent
scientific publications released after the training cutoff date of a given LLM. These
graphs not only prevent verbatim memorization but also typically encompass
a balanced mix of well-established and novel causal relationships. Compared
to widely used benchmarks from BNLearn, where LLMs achieve near-perfect
accuracy, LLMs perform significantly worse on our curated graphs, underscoring
the need for statistical methods to bridge the gap. To support our second position
(P.2), we show that a simple hybrid approach that uses LLM predictions as priors
for the classical PC algorithm significantly improves accuracy over both LLM-only
and traditional data-driven methods. These findings motivate a call to the research
community: adopt science-grounded benchmarks that minimize dataset leakage,
and invest in hybrid methodologies that are better suited to the nuanced demands
of real-world scientific inquiry.

1 Introduction

Causal discovery, which is the task of learning the underlying causal graph is a foundational step
in many causal inference problems. For instance, in treatment effect estimation [45, [38]], the causal
graph identifies appropriate adjustment variables to account for confounding. In interventional
and counterfactual analysis [I37, 139], it reveals the pathways through which interventions influence
outcomes. Traditionally, causal discovery has been dominated by data-driven methods that infer
graph structure using observational datasets. These approaches typically fall into three categories:
(i) constraint-based methods that apply statistical tests [15,50] to infer conditional independence

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75

_ LLMTraining @7 LLM Inference

Causal graphs here Causal Graphs here
may be memorised are not memorised

Standard
Benchmarks,
Asia
Cancer

Insurance
Earthquake

Covid-19 Sweeden
Respiratory Traffic

F1 Score

Covid-19
Complications Alzheimers
20

1990s 2021 Trn Cut-Off Feb 2022 Jan§024 Asia Alzheimers

(a) Causal Graphs Timeline (b) Comparing Asis and Alz. Datasets

Figure 1: (a) Our Novel Science benchmarks were created post-2021 and required expert consensus, unlike
widely-used BNLearn graphs from the 1990s that likely appeared in LLM training data and memorized.
Evaluating with LLM checkpoints trained on pre-2021 data ensures these graphs are unseen, enabling a fair
benchmarking. (b) We compare the performance of PC, an LLM-BFS [23]], and a hybrid PC+LLM approach
(refer Sec.[3-1)) on two graphs: Asia (pre-2021, likely included in LLM training data) and Alzheimers (post-2021,
unseen during training). We observe a large gap in F1 scores between PC and LLM on the Asia dataset, a
contrast that is notably diminished on the Alzheimers dataset.

relationships [49] 48], (ii) score-based methods that search for graphs optimizing a goodness-of-
fit score [16) 10, 36, [60], and (iii) functional-causal models that leverage assumptions about the
data-generating process, such as additive noise or non-Gaussian residuals [46]].

Despite significant progress in causal discovery, some fundamental limitations still hinder the ef-
fectiveness of current methods [[13, (14, 19, 26]. Suppose we consider a simple case with two
dependent variables, X and Y. Although we can measure their dependence using metrics such as
correlation from observational data, it is impossible to identify the direction of causation. This is
because both causal models: X — Y with likelihood assessed using P(X)P(Y|X)and Y — X
with P(Y)P(X|Y') can explain the data equally well. Disambiguating between the two requires
additional assumptions such as constraints on the distribution of error residuals [46], or external
supervision from experts, since observational data alone cannot identify the true causal structure.

Recent advancements in Large Language Models (LLMs) have sparked interest within the causal
inference community in exploring whether the world knowledge encoded in LLMs can be leveraged
to identify causal graphs [28], 3, [32] 54]. However, many of these studies perform experiments on
well-known benchmark datasets such as BNLearn, and tend to promote the narrative that standalone
LLM-based approaches, which disregard observational data, can significantly outperform traditional
data-driven methods. The validity of such claims is questionable if these benchmarks were part
of the LLMs’ pretraining data. As also pointed out by [33], LLMs may appear to reason causally,
but in reality, they could be merely reproducing patterns memorized during training. Extending
this direction, Jin et al. propose benchmarks that remove any domain knowledge from the
questions posed to LLMs and find that LLMs fail at inferring causal relationships reliably.

While there is an active debate on whether LLMs can genuinely do causal reasoning, the practical
relevance of such a capability for modern scientific studies has not received attention. Since one of
the main goals of causal graph discovery is to support scientific discovery, in this paper, we focus on
the potential of LLM-based graph discovery for science. Notably, we observe that most scientific
studies often involve a combination of known variables and novel variables. Even if LLMs are purely
memorizing scientific facts, this capability can be useful to provide causal relationships among the
known variables and thus accelerate the process of building a graph for a scientist. And in case they
have a potential of inferring relationships more generally, that could be even more useful. Realizing
this potential, however, requires immediate attention of the research community on the following two
positions: 1) principled evaluation and 2) progress on new kind of methods that combine LLM-based
and data-based approaches (hybrid methods).

P.1. Principled evaluation protocols are needed that prevent dataset leakage, thereby ensuring
that any observed performance gains can be attributed to the genuine causal reasoning capabilities
of LLMs rather than inadvertent memorization; and that such gains will translate to performance
on real scientific studies.

P.2. Hybrid methods, that combine LLLM-based and data-based approaches, need to be de-
veloped to make causal discovery algorithms practical for scientists. While there is some
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initial work in this direction [27, 4, 2,152, [11], we believe that there is potential to develop more
advanced methods that optimally utilize both domain knowledge and data, with the goal of
significantly improving accuracy on real-world scientific data.

Principled, Science-grounded evaluation benchmarks. In support of P.1, we first show that
widely used benchmarks in the LLM-based discovery literature, such as those from the BNLearn [43]
repository, are memorized by state-of-the-art LLMs. Specifically, we develop a memorization test for
causal graphs and find that LLMs such as GPT-4 can complete the information in such benchmarks
with near-perfect accuracy, given only a partial peek into the benchmark data.

To avoid memorization concerns, we advocate for Novel Science-grounded benchmarks that are
based on latest scientific studies focused on causality. If we ensure that all materials of the study
were released after the training cut-off date of a LLM, we can rule out verbatim memorization of
the causal graph studied. Moreover, high accuracy on such a benchmark task mirrors the real-world
scientific task, where a scientist may apply a previously trained LLM to a novel scenario of interest
and attempt to build a graph. To demonstrate the idea, we collect four novel causal graphs curated
through expert consensus and sourced from scientific papers published after the training cutoff of
major LLMs and provide an accompanying codebase for evaluating statistical, LLM-only, and hybrid
causal discovery methods. Our dataset collection approach offers a principled and generalizable
recipe for constructing robust benchmarks: draw on latest studies to eliminate the risk of verbatim
memorization (see Figure[I|a)).

Hybrid graph discovery methods. In support of P.2, results on the novel benchmarks show that
LLM-based methods yield significantly lower performance compared to the results typically reported
on the BNLearn datasets. For example, Figure[T(b) shows that a popular LLM-based method, LLM-
BFS [25], achieves an F1 score of 0.54 on the Alzheimer’s dataset (11 nodes, 19 edges) sourced from
a recent study [1]], in contrast to 0.93 on the similarly sized Asia graph from BNLearn. Notably, the
improvement due to LLM-based methods compared to the existing data-based algorithms such as the
PC algorithm is markedly smaller on the Alzheimer’s dataset than on Asia, challenging a growing
narrative in recent literature that LLM-only methods are often adequate for causal discovery. This
insight underscores the need for principled methods that integrate two complementary sources of
information: (a) world knowledge encoded in LLMs, and (b) statistical signals inferred from data. To
encourage progress in this direction, we consider a simple hybrid extension of the PC algorithm that
uses the LLM-predicted graph as a prior (shown as the red bar in Figure[T(b)), and show that, despite
its simplicity, this hybrid approach outperforms both standalone statistical and LLM-based methods,
achieving an F1 score of 0.67 on the novel Alzheimer’s graph.

2 P.1: Call for Robust Benchmarks

In this section, we critically examine existing causal discovery benchmarks to assess their suitability
for benchmarking LL.M-based causal discovery performance. Our analysis reveals key limitations,
motivating the need for a principled approach to constructing novel benchmarks. We articulate the
following insights as part of our first position:

P.1a Popular benchmarks, such as those from BNLearn, have been memorized by LLMs thus
undermining their utility for benchmarking LL.M-based causal discovery.

P.1b We must develop novel benchmarks grounded in scientific literature released after LLM’s
training to mitigate the risk of verbatim memorization and enable a genuine assessment of their
causal reasoning capabilities.

2.1 P.la: Current Causal Benchmarks Fall Short for LLM-Based Causal Discovery

Detecting whether an LLM has memorized a given graph benchmark is particularly challenging
for closed-source models such as GPT-4 since their training data and mechanisms remain opaque.
Prior work [7] has shown that mere presence of data sequences in pretraining corpora does not
necessarily mean memorization; rather, memorization depends on factors such as model size and data
frequency, thereby undermining the assumption that any pretraining overlap invalidates a benchmark.
Hence, successful memorization tests in the literature often use prompting techniques that provide
partial datasets and ask LLMs to complete the missing portions. When such prompts lead to exact
reproduction, the most plausible explanation is memorization, as reasoning alone cannot justify
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Dataset M1 M2 M3 (Nodes) M3 (Edges)

0% 25% 50% 75% || 0% 25% 50% 75%| 0% 25% 50% 75% | 0% 25% 50% 75%
Asia 0.75 091 1.00 1.00{[1.00 1.00 1.00 1.00([0.25 1.00 1.00 1.00({/0.00 1.00 1.00 1.00
Cancer 1.00 1.00 1.00 0.5(/1.00 1.00 1.00 1.00([1.00 1.00 0.80 1.00|{1.00 0.86 1.00 0.67
Earthquake || 0.60 0.75 0.67 0.50(/1.00 1.00 1.00 1.00 | 1.00 0.86 1.00 1.00|1.00 1.00 1.00 1.00
Child 1.00 0.11 0.06 0.53|/0.44 0.55 0.44 0.36(/1.00 0.85 0.89 0.00(/0.17 0.00 0.30 0.16
Insurance 0.06 0.11 045 0.59(0.36 0.44 0.24 0.00(0.21 0.25 0.92 0.77|/0.00 0.00 0.00 0.00
Alarm 1.00 0.72 0.79 0.89(/0.49 0.38 0.12 0.00([0.97 0.72 0.92 0.00|/0.43 0.10 0.00 0.00

Table 1: F1 scores for memorization tests (M1-M3) across datasets at varying context levels (). High F1,
especially at low «, indicates memorization.

In-Degree
Causal Graph Nodes Edges Colliders | Min Median Max | Longest Path
Alzheimer’s 11 19 1 0 2 4 5
COVID-19 Respiratory 11 20 1 0 2 4 7
Sweden Transport 11 10 3 0 1 3 3
COVID-19 Complications 63 138 23 0 2 7 23

Table 2: Characteristics of Novel Science Datasets included in our paper.

verbatim recall of real-world data. Reconstruction-based tests of this kind exist for tabular data [6],
images [30], text [35} 5 [18} I8, 29]], etc. We extend such tests for causal graphs.

Specifically, we perform reconstruction-based memorization tests to evaluate the credibility of widely-
used benchmarks in causal graph discovery. We prompt the LLM with partial knowledge about
specific aspects of a dataset and ask it to infer or complete the missing components. Since our focus
is on causal graphs, we identify three natural and meaningful categories of information against which
to assess memorization. These are outlined below.

M1 Given the dataset name and a random «% subset of nodes, predict the remaining nodes.

M2 Provided with the dataset name, the full list of nodes, and an a'% subset of edges in the prompt,
identify the remaining nodes.

M3 Given the dataset name and a subgraph induced by a random a% subset of nodes (with intra-
subset edges), complete the rest of the nodes and edges.

Table|[T] presents the results of our memorization tests, with the exact prompts provided in Appendix [C]
We highlight several key observations:

* Several datasets exhibit near-perfect F1 scores, even at « = 0%, where no contextual information
is provided to the LLM. Such performance strongly suggests that the LLM has memorized these
datasets, raising concerns about their suitability for evaluation.

* M2 achieves very high F1 scores, even at @« = 0, demonstrating that LLMs can accurately
reconstruct edge structures when provided only with the node list. This raises the question: Do we
need sophisticated traversal strategies, such as LLM-BFS, for these datasets.

* LLM performance degrades as graph size increases, as seen in the lower scores for the Child and
Insurance datasets.

* Overall, these results call into question the validity of current benchmarks for evaluating causal
reasoning in LLMs and underscore the need for novel, leakage-free benchmarks.

2.2 P.1b: Need Science-Grounded Causal Datasets for Benchmarking

The above results suggest that widely-used BNLearn graph datasets are likely memorized by LLMs.
Therefore, it is important to create novel datasets. Existing literature tackles this problem by creating
datasets without any real-world domain knowledge [24, 9] or with synthetic, toy-level scenarios that
can be randomized [23]. Although creating a dataset with completely novel causal relationships
is useful for evaluating genuine causal reasoning abilities of LLMs, they do not help assess the
real-world utility of LLMs for scientific studies. We therefore posit that it is equally important to
develop realistic benchmarks for causal discovery that closely mimic the challenges faced by a typical
scientific study, as BNLearn benchmark did a few decades ago.

In this section, we show how it is possible. We outline a practical recipe for constructing novel
science-grounded datasets to support robust evaluation of causal discovery algorithms. Our proposal
involves: a) Finding recent scientific studies that explicitly provide a causal graph (or contain enough
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Dataset M1 M2 M3 (Nodes) M3 (Edges)
0% 25% 50% 75% | 0% 25% 50% 75% || 0% 25% 50% 75% | 0% 25% 50% 75%

Alz. 0.00 0.1T 0.12 0.00{0.00 0.00 0.00 0.00{[0.00 0.62 0.67 0.80 | 0.00 0.34 0.23 0.00
C19-small || 0.00 0.00 0.00 0.00{0.00 0.00 0.00 0.00(/0.00 0.00 091 1.00|/0.00 0.00 0.12 0.00
C19-large ||0.00 0.00 0.00 0.00{0.00 0.00 0.00 0.00(/0.00 0.00 0.00 0.00|/0.00 0.00 0.00 0.00
Sweden 0.00 0.00 0.00 0.00{/0.00 0.00 0.00 0.000.00 0.00 0.67 0.67|0.00 0.00 0.00 0.06

Table 3: Results of memorization tests conducted on the novel science datasets.

information such that a causal graph can be extracted); (b) Extracting the relevant source data for
the studies (when available) or generating synthetic data with varying distributions. In a way, we
propose restarting and adapting the BNLearn initiative for LLM evaluation: sourcing new graphs
from research papers and associating them with real or synthetic data.

Below we introduce four new causal graphs, each developed in a recent publication through careful
expert elicitation and consensus. Key statistics for these graphs are summarized in Table 2] As new
LLMs are introduced, the recipe can be repeated to generate more novel datasets.

Alzheimer’s Graph The first dataset is the Alzheimer’s graph from [1], developed with input from
five domain experts. It includes two broad categories of variables: clinical phenotypes (e.g., age, sex,
education) and radiological features extracted from MRI scans (e.g., brain and ventricular volumes),
as illustrated in Fig. [d] The consensus graph was built by retaining only those edges that were agreed
upon by at least two of the five experts. As highlighted in Figure 21 of [1], there is substantial
disagreement among the individual expert graphs, underscoring the difficulty for automated methods
such as LLMs to infer a consensus graph. Although the graph’s structure was developed independently,
its variables align with a subset of those used in the Alzheimer’s Disease Neuroimaging Initiative [40].

COVID-19 Respiratory Graph The second graph models the progression of COVID-19 within
the respiratory system, as introduced in [34]]. It tracks the disease’s path from initial viral entry to
pulmonary dysfunction and symptomatic manifestations. The graph was developed through iterative
elicitation sessions involving 7-12 domain experts and released on medRxiv in February 2022.
Figure [3| presents the graph with color-coded nodes corresponding to different stages of infection:
viral entry (pink), lung mechanics (yellow), infection-induced complications (orange), and observable
symptoms (cyan). Each variable captures a phase in the progression from infection to respiratory
distress. The graph was refined through group workshops and follow-ups, followed by independent
expert validation to ensure consensus and accuracy.

COVID-19 Complications Graph The third dataset extends the respiratory model to include systemic
complications resulting from COVID-19, again from [34]]. This graph captures how the virus can
affect organs beyond the lungs, such as the heart, liver, kidneys, and vascular system. It includes
variables like vascular tone, blood clotting, cardiac inflammation, and ischemia, while retaining
key pulmonary indicators such as hypoxemia and hypercapnia (see Fig.[3). Constructed using a
similar expert elicitation process, this graph focuses on mapping primary pathways that lead to severe
complications, including immune overreactions and multi-organ failure. It distinguishes between
observable variables used in clinical monitoring and latent variables that reflect complex physiological
states. With 63 nodes and 138 edges, this is the most complex of the four graphs and presents a
challenging testbed for causal discovery algorithms.

The Sweden Traffic Dataset The Sweden traffic dataset was introduced in a recent study [59] aimed
at modeling bus delay propagation through a causal graph. Each node corresponds to a variable that
influences delays, such as arrival_delays, dwell_time, and scheduled_travel_time. Unlike
the previous three studies, a notable feature of this work is that the true graph is not known since it
deals with real-world bus traffic data. Instead, the authors provide expert annotations specifying a
subset of edge that should definitely exist, and a subset that are forbidden. Thus, the ground-truth
contains not only positive edges that should be present in the causal graph but also negative edges
that must be absent. The dataset is inspired by the General Transit Feed Specification (GTFS),
a standardized format for public transit schedules and geographic data. As such, benchmarking
causal discovery methods on this dataset holds promise for informing real-world applications in
transportation systems analysis.

Memorization Tests We conduct the same memorization tests on the four science-grounded datasets
to assess potential dataset leakage. As shown in Table[3] many F1 scores are consistently low, often
close to zero. While these results do not conclusively rule out memorization, they provide strong
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evidence that our science-grounded datasets are significantly more likely to support fair and unbiased
evaluation of causal discovery methods compared to other widely used benchmarks.

Generating Synthetic Observational Data For datasets where source data is unavailable, we
generate synthetic observational data based on expert-designed causal graphs, following the approach
used in the BNLearn benchmark. We consider two settings: (a) Linear and (b) Non-Linear, differing
in the form of structural equations used for each node. Data is generated in topological order over
the graph. Root nodes are sampled as x; ~ N(0, 1). For non-root nodes, we use: x; ~ f;(Pa;) + ¢;
where Pa; denotes the values of the parents of node 7, and ¢; ~ A/(0, 1) is an exogenous noise term.
In the Linear setting, f;(Pa;) = w ' Pa; with weights w drawn from 2/(0, 2) to ensure consistent
scaling across graph depths. In the Non-Linear setting, f; is parameterized by a randomly initialized
3-layer MLP with ReLU activations and four neurons per hidden layer: f;(Pa;) = MLP(Pa;) This
setup enables flexible modeling of complex non-linear relationships, as in prior work [61].

Studying performance of LLMs on these novel, science-grounded causal graphs can provide a better
evaluation of their real world potential and also highlights the limitations, as we show next.

3 P.2: Call for Hybrid Methods

Interestingly, one of the reasons that scientific studies provide causal graphs is to evaluate the
performance of graph discovery algorithms. For instance, the Swedish Traffic study was focused
on applying data-based discovery algorithms to bus transit data. However, multiple studies in
medicine [51], climate science [20] and other fields find that data-based graph discovery algorithms
are not sufficient for direct application in scientific contexts. This is due to the fundamental limitations
of graph discovery with observational data.

Therefore, we believe that combining domain knowledge with data-based methods can be a fruitful
way to improve accuracy of graph discovery and make it practical for scientists. This would involve
creative methods that combine LLMs’ output with principled causal discovery algorithms. Below we
provide motivation on why hybrid algorithms may lead to significant gains. 1) LLM-only methods
are not adequate when evaluated on novel benchmarks; 2) even a simple attempt at hybridizing
PC with LLMs yields promising gains. There are a rich set of questions to be explored around
quantifying uncertainty in LLMs’ graph outputs and integrating themn with different kinds of
discovery algorithms.

P.2a LLM-only methods exhibit significantly lower accuracy on our novel, science-grounded
datasets, highlighting their current limitations.

P.2b Advancing hybrid methods offers a promising path forward, as they can effectively combine
the strengths of LLMs and statistical inference to improve causal discovery performance.

Methods. Before presenting our experimental results, we briefly outline the methods considered: (a)
data-driven/statistical methods, which rely solely on observational datasets to infer the causal graph,
(b) LLM-based methods, which rely solely on prompt responses, and (c) hybrid methods, which
use both LLMs and observational datasets. Among data-driven methods, we consider score-based
approaches such as GES [10] and NOTEARS [60], and for constraint-based methods that rely on
conditional independence testing, we include PC [49] and FCI [48]]. We also ran two variants of
LiNGAM: Direct LINGAM [47]] and ICA LiNGAM [46]], both of which assume linear relationships
among variables with non-Gaussian noise. In our synthetic datasets, the non-Gaussianity assumption
is violated in both settings, while the linearity assumption is additionally violated in the non-linear
variant. We further evaluate ANM, which assumes additive noise which holds true in our experiments.
Then we considered two state of the art LLM-only approaches: (i) LLM Pairwise [28]], which queries
all (g) node pairs, and (ii) LLM BFS, which explores the graph in a breadth-first manner using O(n)
prompts. Lastly, as a representative for hybrid approaches, we evaluate LLM+PC, a simple way to
combine PC with LLM BFS predictions (Sec. [3.2). We defer a detailed description to Appendix

3.1 P.2a: LLM-Only Methods Fall Short on Novel Science Datasets

Table d] summarizes the results of evaluating LLM-only methods on the novel science datasets. Our
main finding is that accuracy for LLM-only methods is significantly lower than reported numbers on
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BNLearn datasets [25]. On Sweden Transport and Covid-19 Complications, the F1 is less than 0.3,
whereas it is less than 0.6 for the other two datasets, Covid-19 Respiratory and Alzheimers.

* Among the statistical baselines, the LINGAM variants achieve the best overall performance.

* Within the LLM-only methods, LLM-BFS stands out as the top performer. Interestingly, it
constructs the graph using fewer prompts compared to other LLM-based approaches.

* On the COVID-19 Respiratory Complications dataset, the largest and most complex among the
benchmarks, LLM-BFS struggles to maintain contextual coherence as it traverses deeper into the
graph. Statistical methods also experience performance degradation on this dataset.

3.2 P.2b: Hybrid Methods can Potentially Bridge the Gap

The above results show that there is significant potential for hybrid methods to improve accuracy
further. For completeness, we describe and evaluate a simple algorithm below.

Our hybrid algorithm, LLM+PC, begins by using the LLM-BFS method to generate a prior graph,
denoted by Gprior (though this prior can come from any suitable LLM-based approach). This prior
is then used to guide the PC algorithm, which itself operates in two stages: skeleton discovery and
edge orientation. During skeleton discovery, the PC algorithm examines each pair of variables X and
Y, and searches for a conditioning set S such that X 1l Y | S. If such a set exists, the algorithm
removes the undirected edge X <> Y from the graph. Our hybrid method adjusts this process by
incorporating the prior knowledge from Gyio: if the prior includes a directed edge X — Y or
X <Y, we prevent the PC algorithm from removing the corresponding undirected edge X < Y,
even if conditional independence is detected. In the edge orientation phase, we initialize the directions
of edges that appear in Gpyior first, and then allow the PC algorithm to determine the orientation of the
remaining undirected edges based on its standard orientation rules.

In Table 4, we evaluate two variants of our hybrid algorithm, differing only in the choice of hypothesis
tests used within the PC. One variant uses Fisher’s Z-test, which is well-suited for detecting linear
dependencies, while the other uses Kernel Conditional Independence (KCI) test to capture non-linear
relationships. Across all datasets, we observe that at least one variant consistently achieves the
highest F1-score, outperforming both LLM-only and statistical baselines. Importantly, neither variant
performs significantly worse on any dataset, underscoring the robustness of hybrid methods. In
certain cases, the hybrid methods exhibit slightly lower precision as we constrain the PC algorithm to
retain prior edges predicted by the LLM, and this can sometimes include false positives. Results are
robust to changes in hyperparameters; for details see App. [G|

On the bigger and more complicated Covid-19 Complications dataset, while the hybrid methods
retain an edge, the performance gains over other approaches are less pronounced. We believe that
the results underscore the importance of new algorithms that can combine domain knowledge and
data statistics. Below we highlight the research questions that can be explored by the community and
provide some explorations using the simple hybrid algorithm above.

RQ1 What are other promising ways of combining LLMs with data-based methods? For example,
how does adding a post-processing phase to a hybrid algorithm, where edges are selectively
removed based on additional hypothesis tests from observational data, affect the accuracy?

RQ2 How much would adding negative edges as priors improve performance?

RQ3 How do the observed performance trends generalize to open-source LLMs? And how can
we develop novel learning strategies for language models that enable them to learn cause and
effect from scientific corpora?

RQ1: Dropping Edges. In this section, we evaluate a variant of our LLM+PC algorithm that includes
a post-processing step to prune extraneous edges using statistical hypothesis tests on the observational
dataset. The PC algorithm can sometimes leave some edges unoriented, resulting in cycles. To
ensure acyclicity, we first drop a minimal set of edges from the LLM+PC output to obtain a DAG.
For each surviving edge, we identify its minimal separator set (witness set), perform a conditional
independence test, and record the corresponding p-value. We then sort the edges by ascending
p-value and remove the top a%. Thus, a = 0% corresponds to the unaltered LLM+PC output, while
higher o values yield sparser graphs. Results in Table 5] show that pruning edges generally degrades
performance, with a consistent drop in F1 scores across datasets. These results suggest that, at
least for the datasets considered, retaining the original LLM+PC output without aggressive post-hoc
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Methods || Covid-19 Resp. || Alzheimers || Sweden Transport || Covid-19 Compl.

Pre| Rec F1 Pre| Rec F1 Pre| Rec F1 Pre| Rec F1
GES 0.25| 0.10| 0.14]] 0.08] 0.05| 0.06|| 0.27| 0.27| 0.27 - -
PC(Fisherz) 0.14| 0.05| 0.07|| 0.50| 0.52| 0.51|| 0.54| 0.60 | 0.57| 0.05| 0.03| 0.04
PC(KCI) 0.33] 0.10| 0.15]] 0.36] 0.21] 0.27| 0.28 04| 033 0.05| 0.01] 0.02
ICA LINGAM 0.44 0.2 0.28| 0.58| 0.52| 055 0.71 | 0.50| 0.59] 0.07 | 0.01| 0.01
Direct LINGAM 0.33] 0.10| 0.15]] 0.50| 0.10] 0.17|[ 0.62| 0.50| 0.55| 0.00| 0.00
ANM 044] 0.20| 0.28]] 0.30| 0.15] 0.20([ 0.22 02| 0.21| 0.04| 0.04| 0.04
FCI 0.30| 0.15| 0.20]] 0.42] 0.26] 0.32| 0.50 0.3 0.38|] 0.02| 0.03] 0.03
LLM pairwise 0.26| 0.35| 0.30]] 0.17] 0.31| 0.22f] 0.20| 0.50| 0.29 - -
LLM BFS 0.90 | 0.45 | 0.60 || 0.69 | 047| 056 0.25 04| 031 0.06 | 0.04| 0.05
PC(Fisherz) + LLM || 0.64 | 0.80 | 0.71 0.58| 0.78 | 0.66 || 0.64 | 0.70 | 0.67 || 0.06 | 0.07 | 0.07
PC(KCI) + LLM 0.90 | 0.45 | 0.60 || 0.64 | 0.84 | 0.73 0.50| 0.50| 0.50(| 0.07 | 0.05 | 0.06

Table 4: Results on Non-Linear Observational Dataset. GES and LLM-pairwise are compute-intensive methods
and were not feasible to run for the larger Covid-19 Complications dataset.

a% Edges

COVID-19 Resp. Alzheimer’s Sweden Transport
P R F1 P R F1 P R F1

0 064 0.80 0.71 || 0.58 0.78 0.66 || 0.63 0.70 0.67
5 0.64 0.70 0.67 || 0.58 0.74 0.65 || 0.60 0.60 0.60
10 0.62 0.65 0.63| 0.57 0.68 0.62] 0.66 0.60 0.63
25 055 050 052 053 053 053 062 0.50 0.55
50 042 025 031 061 042 0.50 04 02 027

Table 5: Precision, Recall, and F1 Score after removing edges based on p-Value

pruning yields better results. Future Question: How robust is this result for other constraint-based
algorithms beyond PC?

RQ2: Incorporating Priors on Missing Edges. In this experiment, we ask: should the prior provided
to the PC algorithm be limited to edges believed to exist in the causal graph? In practice, we may also
possess knowledge about edges that should not exist, what we refer to as negative edges. These can
come from expert annotations or be inferred heuristically from LLM predictions. For example, if an
LLM predicts k edges, any subset of the remaining (g) — k pairs can serve as candidates for negative
prior. To assess the value of incorporating such information, we evaluate hybrid performance under
two settings. In the Sweden Traffic dataset, prior work identifies a set of ground-truth negative edges.
For other datasets, we construct a noisy negative prior by randomly sampling edges not predicted by
the LLM, acknowledging that these may include false negatives.

We modify our LLM+PC hybrid algorithm to leverage this information during the skeleton discovery
phase: any edge included in the negative prior is forcibly removed from the skeleton, regardless of
whether the PC algorithm identifies a separating set (i.e., witness set).

* Incorporating ground-truth negative priors enhances performance, as seen in the Sweden Traffic
dataset in Tab. [6] (left). Specifically, the PC+LLM (WITH NEGATIVE PRIOR) method shows
significant gains in precision without loss in recall, leading to improved F1 scores.

» For datasets where negative priors are derived from LLM outputs, the improvements are less
consistent due to potential noise in the inferred prior. Table[6] (right) presents results across varying
levels of o, where o denotes the percentage of edges absent in the LLM-only prediction that are
used as negative priors. Consequently, o = 0 corresponds to the standard PC+LLM method, while
o = 100 reflects LLM-only predictions. We see that our original PC+LLM achieves the best F1
here.

* These results illustrate that although negative priors can be beneficial, their effectiveness is highly
sensitive to their quality—noisy or incorrect priors may in fact impair overall performance. More
work is needed to fully answer this question and explore choices in both prior and algorithm design.

RQ3: Extensions using Open-Source LLMs. Another key question is whether we can move away
from propietary LLMs and develop methods using open LLMs. Two research directions are: 1) How
to train language models to infer cause-effect relationships based on a corpus of documents? For
instance, can we train specific models for domains such as biomedical or climate science? 2 How do
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a% H COVID-19 Resp. H Alz.

P R F1 P R F1
P R F1

PC 0.54 0.60 0.57 100 (LLM) 0.90 0.45 0.60 0.69 0.47 0.56
PC+LLM 0.64  0.70 0.67 0 (PC+LLM) 0.57  0.70 0.63 0.56  0.70 0.62
PC+LLM (-ve prior) | 070 070 070 25 060 062 061 056 061 058
50 0.60 0.54 0.50 0.55 0.55 0.55
75 0.67 0.48 0.56 0.61 0.49 0.54

Table 6: Left: Sweden dataset with expert-provided ground-truth negative prior. Right: PC+LLM performance
under varying levels of randomly sampled LLM-derived negative priors.

we combine language models with existing discovery methods, such that training and/or inference
may happen end-to-end?

(== == PC
S LLM Pairwise B LLM Pairwise
0.8{ EEE LLMBFS 0.8| EEE LLMBFS

B PC+ LM 0.68 0.73 [ PC+ LM

F1 Score
F1 Score
=4
S

o
=

0.

0 Covid-19 Resp ° Covid-19 Resp Alzheimers

Alzheimers

(a) GPT-4 Turbo (b) Llama 3.1

Figure 2: Evaluation of GPT-4-Turbo and Llama 3.1 models on NovoGraphs benchmarks. Notably, these
models were trained after the release of these datasets, so non-memorization is not guaranteed.

4 Conclusion and the Path Forward

We envision a future where causal discovery can be a valuable tool for scientific studies. To support
more work in building science-grounded benchmarks and novel algorithms, we aim to open-source
all our datasets and code used to constructing the four benchmarks and the hybrid algorithm. Having
a general testbed can spur innovation and lead to a robust evaluation of discovery algorithms.

A key concern is whether our benchmark will be relevant as new LLMs keep getting introduced.
To test this hypothesis, we also test latest LLMs on the four datasets. we evaluate a recent version
of GPT-4 and a recent open language model, LLaMA 3.1 (2023 checkpoints) on the novel datasets.
Both models were released after the publication of novel science datasets. Results are presented
in Fig. 2] (nonlinear dataset) and Fig. [7] (linear dataset). In Fig.[2] GPT-4-Turbo yields F1 scores
comparable to earlier models, outperforming on the Alzheimer’s dataset but slightly underperforming
on COVID-19 Resp. for LLM-BFS. These trends are consistent with our broader observations, which
is unsurprising because, although the datasets could technically be part of the training corpus, their
frequency is likely to be very low which makes memorization unlikely. Notably, LLaMA 3.1 departs
from previous patterns: its pairwise comparison strategy surpasses BFS, marking a novel shift in
behavior. Across both datasets, our hybrid method consistently outperforms both LLM-BFS and PC
alone. These ablations affirm the utility of the benchmark even for newer language models. That
said, we would recommend dynamic creation of new benchmarks based on research papers from
each future year.

To conclude, we critically examined the limitations of current benchmarking practices in LLM-based
causal discovery, highlighting the risks of drawing conclusions without first ruling out dataset leakage.
Through a series of targeted memorization experiments, we demonstrated that many widely used
benchmarks are vulnerable and often fail to test genuine causal reasoning. To address this gap,
we introduced a lightweight yet powerful strategy for building more robust benchmarks grounded
in scientific knowledge and human consensus. We hope this sets a new standard for evaluating
causal discovery methods and the community builds more science-grounded benchmarks to evaluate
progress. Finally, we advocate for deeper investment in hybrid approaches: methods that can harness
the complementary strengths of large language models and observational data. As our results suggest,
such integration may hold the key to advancing causal discovery as a key part of scientific studies.
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A Code

We release the anonymous code at the url : https://anonymous.4open.science/r/novographs-5005/

B Background: Types of causal discovery algorithms

We categorize related work into: (a) data-driven methods, which rely solely on observational datasets
to infer the causal graph, (b) LLM-based methods, which rely solely on prompt responses, and (c)
hybrid methods, which use both LLMs and observational datasets.

Data-Driven Methods. Constraint-based methods for causal discovery, such as the PC algorithm [49]
and the FCI algorithm [48], identify causal relationships by testing conditional independencies. Vari-
ants of these methods [12} 42} 211,53} 56, 44]] aim to improve scalability and accommodate different
assumptions. While some of these methods offer asymptotic consistency guarantees, their perfor-
mance in practice often depends on the power of the statistical hypothesis tests applied to determine
conditional independencies from observational data, a factor we examine in our experiments. Standard
tests include Fisher’s z-test [50] for linear dependencies and kernel-based tests [58]] for non-linear
dependencies. Other methods include score-based methods [10l 36| 22 41] that optimize a score
function over graphs, including recent versions based on continuous optimization [60]; and parametric
methods that assume parametric assumptions about the functional relationships among nodes in a
causal graph, e.g., assuming non-gaussian noise [46}131].

Leveraging LLMs for learning Causal Graphs. There is a growing interest in augmenting obser-
vational data with meta-knowledge, aiming for improved causal predictions [1]. Large Language
Models (LLMs) offer a promising source of such augmentation, requiring minimal manual effort.
For instance, the pairwise approach [28l 54} 133] finds the causal graph using prompts like “Does A
cause B?” for each pair of nodes, then coalesces the graph based on the responses. While effective,
this method requires O(n?) prompts for n nodes, making it costly. Alternative approaches [25]
reduce prompt complexity by building the graph with a breadth-first search. Another recent approach
considers querying LLMs over triplet of variables [52].

Hybrid Approaches. ALCM [27] is a recent approach that begins with the PC algorithm and
subsequently queries the LLM to validate each edge predicted by the PC. Other methods in this
category initiate with a prior LLM-based graph and adjust it using observational data [4} 2] or
use LLM as a post-processing critic for data-based output [32} [52]]. [11] introduces a method that
adaptively defers to either expert (LLM) recommendations or data-driven causal discovery based on
their reliability. In their work, [25] presented a variant that incorporates the p-values from statistical
tests into the prompts while constructing the causal graph. However, the authors found that the
inclusion of p-values does not yield any improvement over their standalone LLM variant. This
indicates that merely adding superficial data statistics to the prompts is less effective, highlighting the
necessity for explicit mechanisms to integrate LLM and data-driven graph predictions, and for testing
such mechanisms on non-memorized benchmarks.

However, almost all of the above studies use popular, existing graph datasets such as bnlearn for
evaluation of LLM-based methods. In the next section, we show why such evaluation is not reliable.

C Prompts for Memorization Tasks

Prompt Template for M1 Task

You are provided with the name of the bnlearn dataset: {dataset_name} and the following
nodes: {given_nodes}. Give me the remaining nodes. Strictly output the nodes in the
format: [’nodel’, ’node2’, ’node3’].

Note: Add bnlearn if it is a bnlearn dataset.
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Prompt Template for M2 Task

You are provided with the name of the bnlearn dataset: {dataset_name}, all nodes:
{all_nodes}, and the following edges: {given_edges}. Give me the remaining edges of
the graph. Strictly output the edges in the format: [[’nodel’, ’node2’], [’nodel’,
’node3’], [’node2’, ’node3’]].

Note: Add bnlearn if it is a bnlearn dataset.

Prompt Template for M3 Task

You are provided with the name of the bnlearn dataset: {dataset_name}, the following
nodes: {given_nodes}, and the following edges: {given_edges}. Give me the remaining
nodes and edges. Strictly output the nodes and edges in the format and do not add any text
before or after the list:

{’remaining nodes’: [’nodel’, ’node2’, ’node3’], ’remaining _edges’:
[[’nodel’, ’node2’], [’nodel’, ’node3’], [’node2’, ’node3’]]}

Note: Add bnlearn if it is a bnlearn dataset.

D Visualizations of Novel Sciences benchmark

The Covid-19 respiratory dataset represents the full pathway of Covid-19’s impact on the body,
organized into six distinct subsystems: vascular, pulmonary, cardiac, system-wide, background, and
other organs. This dataset provides a comprehensive view of Covid-19’s effects as observed across
various aspects of human anatomy.

The complexity of this dataset stems from the high level of interconnections between the subsystems,
resulting in a dense causal graph structure with 63 nodes and 138 edges. This density, along with
numerous collider structures, makes it exceptionally challenging to analyze, even with advanced
statistical algorithms and causal discovery methods.
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Figure 4: Consensus causal graphs for Alzheimers benchmark reproduced from [[]], and Covid-19 Respiratory

dataset reproduced from [34]).

D.1 Sweden Urban Bus Operation Delays (Sweden Transport) Dataset Description

The Sweden Transport dataset [59] contains temporal and operational information from a public bus
network. The variables in the dataset are defined as follows:
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Figure 5: Causal graph obtained from the Sweden Urban Bus Operation Delays dataset.

True assertion False assertion

Preceding stop delay — arrival delay Dwell time - preceding stop delay
Dwell time — arrival delay Dwell time — preceding section travel time
Scheduled travel time — arrival delay Scheduled headway — dwell time

Scheduled travel time — previous bus delay Section length — preceding section travel time
Preceding section travel time — preceding stop delay Preceding stop delay — preceding section travel time
Previous bus travel time — previous bus delay Previous bus delay - previous bus travel time
Recurrent delay — previous bus travel time Preceding stop delay — previous bus delay

Origin delay - preceding stop delay Scheduled travel time — preceding section travel time
Preceding section travel time — dwell time Section length — origin delay

Section length — scheduled travel time Origin delay — previous bus delay

Figure 6: Edges obtained from the Sweden Transport dataset. Both positive and negative causal edges
are shown. These tables are quoted from the original paper [59]] for ease of reference.

592 * Arrival Delays: Arrival delay of bus j at stop ¢; the difference between the actual arrival
593 time and the scheduled arrival time.

594 * Dwell Time: Actual dwell time at the preceding stop (i — 1); the difference between actual
595 departure and arrival time at stop ¢ — 1 for bus j.

596 * Preceding Section Travel Time: Actual running time between stops ¢+ — 2 and ¢ — 1; the
597 difference between arrival at ¢ — 1 and departure from ¢ — 2.

598 * Scheduled Travel Time: Scheduled running time between stops ¢ — 1 and i; the difference
599 between scheduled arrival at ¢ and scheduled departure from ¢ — 1.

600 * Preceding Stop Delay: Arrival delay of bus j at stop ¢ — 1; the difference between actual
601 and scheduled arrival time at stop ¢ — 1.

602 * Previous Bus Delay: Arrival delay (knock-on effect) of preceding bus 7 — 1 at stop ¢; the
603 difference between its actual and scheduled arrival time.

604 * Previous Bus Travel Time: Actual running time of bus 5 — 1 between stops ¢ — 1 and ¢;
605 used to indicate current traffic conditions.

606 * Recurrent Delay: Historical mean travel time of bus j at stop ¢ during the same hour on
607 weekdays; reflects recurrent congestion patterns.

608 * Origin Delay: Departure delay of bus j at the first stop; the difference between actual and
609 scheduled departure time.

610 * Scheduled Headway: Planned time interval between arrival times of buses j — 1 and j at
611 stop <.

612 * Section Length: Distance between stop ¢ — 1 and ¢ (in metres).
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Table 7: Results on Linear Observational Dataset.

methods || Covid-19 Resp. || Alzheimers || Sweden Transport || Covid-19 Compl.
Pre| Rec F1 Pre| Rec F1 Pre| Rec F1 Pre| Rec F1
GES 0.16| 0.20| 0.18| 0.26| 0.26| 0.26| 0.21| 0.30| 0.25 - -
PC(Fisherz) 0.31| 045| 0.37|| 047| 047| 047| 044| 0.80 | 0.57| 0.04| 0.02| 0.03
PC(KCI) 0.27| 0.25| 0.26|| 0.57| 042| 0.48] 0.66 | 0.80 | 0.72 0.03|0.015| 0.02
NOTEARS 0.13] 0.10| 0.11| 0.16| 0.26] 0.20| 0.16| 0.20| 0.18 - -
ICA LiINGAM 0.25] 0.20| 0.22 0.11| 0.26| 0.15] 0.21] 0.30| 0.25| 0.05 | 0.17| 0.07
Direct LINGAM 0.18| 0.35] 0.24| 0.20| 0.30| 0.24] 0.16] 0.30| 0.21|| 0.03| 0.17] 0.05
ANM 0.25] 0.20| 0.22 0.19 0.2| 0.19 0 0 -|| 0.04| 0.58 | 0.07
FCI 0.12] 0.15] 0.13]] 0.60 | 0.16| 0.25] 0.50| 0.40| 0.44| 0.04| 0.01] 0.01
LLM Pairwise 0.26| 035| 030 0.17| 031| 0.22 0.20| 0.50 | 0.29 - -
LLM BFS 0.90 | 045| 0.60 || 0.69 | 047| 0.56| 0.25| 0.40| 0.31] 0.06 | 0.04| 0.05
PC(Fisherz) + LLM || 0.46| 0.70 | 0.56| 0.54| 0.68 | 0.60 || 0.53 | 0.80 | 0.64 || 0.06 | 0.06 | 0.06
PC(KCI) + LLM 0.63 | 0.60 | 0.61 || 0.60 | 0.78 | 0.68 || 0.66 | 0.80 | 0.72 || 0.06 | 0.05| 0.05

E Results on Linear Observational Dataset

Statistical methods were applied to linearly generated data, and results were obtained using GPT-4
with a 2021 cutoff, facilitating a comparison of performance between traditional algorithms, the
LLM-based approach and our hybrid method.

F Ablations using Linear dataset

We conduct ablation studies using GPT-4 Turbo and LLaMA 3.1 on linearly generated data and ob-
served that our hybrid PC+LLM method outperforms both individual baselines. This demonstrates the
advantage of combining PC’s statistical rigor with LLM’s contextual reasoning for causal discovery.

m pPC i PC

[ LLM Pairwise [ LLM Pairwise
0.8/ HEE LLM BFS 0.8/ EEE LLM BFS
[ PC + LM [ PC + LM

°
o

F1 Score
o

F1 Score

0.2

0.0

Covid-19 Resp Alzheimers Covid-19 Resp Alzheimers

(a) GPT-4 Turbo (b) Llama 3.1

Figure 7: Evaluation of GPT-4-Turbo and Llama 3.1 models on Novel Sciences benchmarks. Notably, these
models were trained after the release of these datasets, so there is a possibility that they may have encountered
our datasets during training.

G Experiments for Research Question: RQ4

We conduct a series of ablation studies to assess the robustness and generalization ability of our
hybrid PC+LLM approach under various modifications to the data generation process.

Ablation 1: MLP Depth. We evaluate the impact of increasing the depth of the nonlinear generators
by replacing 3-layer MLPs in our default setting with 5-layer MLPs. The results in Table [§] (left)
indicate that performance remains consistent, suggesting insensitivity to architectural depth.
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Ablation 2: Noise Distribution. To assess robustness under different exogenous noise assumptions,
we replace the default A(0,1) noise with A/(0,0.1) and 2/(0,1). As shown in Table [§] (right),
PC+LLM consistently outperforms the PC baseline across all settings.

PC+LLM || 085 0.60 0.70 060 0.63  0.62

Method COVID-19 Resp. Alzheimers Noise Method H CI?VID-I;Resp.Fl H l)Alzheml;ers -
P R F1 P R F1
N(0,0.1) PC H 0.34 0.40 0.37 H 0.38 0.37 0.38
LLM 0.90 0.45 0.60 0.69 0.47 0.56 e PC+LLM 0.58 0.70 0.63 0.56 0.68 0.62
PC 0.35 0.25 0.30 0.44 0.42 0.43 PC 0.60 030 040 058 036 045
PC+LLM || 073 055 063 || 060 078 0.68 u(,1) H . ‘ ; H ‘ ) ‘

Table 8: Left: Effect of deeper MLPs on performance. Right: Performance under noisy LLM-derived priors.

Ablation 3: MLP Initialization. We compare three initialization strategies for MLP weights:
uniform ¢/(0, 1), standard normal, and Xavier normal. As seen in Table E] (left), the hybrid method
retains its advantage across all configurations.

Ablation 4: Linear Coefficient Sampling. We vary the distribution used for sampling linear SEM
coefficients, testing 24 (0, 2), N'(0, 2), and U (—1, 1). Table[9|(right) shows that PC+LLM consistently
achieves superior recall and F1 scores.

Init. Method COVID-19 Resp. Alzheimers Coeff. Dist. Method COVID-19 Resp. Alzheimers
R F1 P R F1 P R F1 P R F1
Std Normal PC 0.44 0.20 0.28 0.35 0.37 0.36 N(0,2) PC 0.14 0.20 0.16 0.44 0.42 0.43
PC+LLM | 0.73 0.55 0.63 0.50 0.57 0.54 PC+LLM 0.66 0.70 0.68 0.59 0.68 0.63

Xavier Normal Uu(-1,1)
PC+LLM | 0.59 0.80 0.68 0.54 0.68 0.60 PC+LLM 0.59 0.65 0.62 0.53 0.79 0.64

Table 9: Left: Performance across different MLP initializations. Right: Effect of different coefficient sampling
distributions.

PC 038 040 0.39‘ 040 047 043 PC H 0.26 0.55 0.36 H 0.48 0.63 0.54

In Summary, these results collectively demonstrate the robustness and effectiveness of our method
across a wide range of data-generating assumptions. Across all ablations, our PC+LLM hybrid
approach consistently outperforms the standalone PC method. These experiments effectively illustrate
the robustness of hybrid approaches.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have justified with corresponding theoretical results as well as accompany-
ing experiments.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Discussed in the main paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: NA.
Guidelines:
» The answer NA means that the paper does not include theoretical results.
 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have uploaded the code in the supplementary material.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have used all public benchmarks, and synthetic datasets.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have discussed all the hyperparameters in the Experiments Section.
Guidelines:
* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Error bars are not reported because the merits of our approach over the
baselines is mostly apparent.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: We need either the API keys or GPUs tp host the LLMs to run our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, it conforms.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our broader impact comes from the positions we have stated in the paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We only worked with public benchmarks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code will be made freely available. Datasets are public.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets added.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We have not used LLMs and all our results are original.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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