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ABSTRACT
Malicious Web crawlers threaten information system due to heav-
ily taking up bandwidth resources and stealing private user data.
Ele.me, a prevalent on-demand food delivery platform in China,
suffers from the negative impact of crawlers. The crawler detection
systems face two major challenges: spatial patterns of the crawler
behaviors and limited labeled data for training. In this paper, we
present efficient solutions to tackle these challenges. Specifically,
we propose a new Attributed Action Net (AANet for short) model
to detect Location-Based Services (LBS) crawlers and a three-stage
learning framework to train the model. AANet consists of three
different embedding modules, including the action token sequence,
temporal-spatial attributes of users, and the context information
of the raw data. We have deployed the model at Ele.me, and both
offline experiments and online A/B tests show that the proposed
method is superior to the state-of-the-art models for sequence data
classification on the food delivery platform.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Neural networks.
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Country wide data of merchants (357 thousands),
dishes (16 millions) of Ele.me.

If you want to customize data collection, please contact us by

QQ:????? (QQ: a popular messaging and social media app in China).

Figure 1: Ele.me platform (left): a prevalent location-based
service platform that provides on-demand food delivery
in China. The merchant information (right) collected by
crawlers are selling in an illicit market. Those information
include address, GPS, and monthly sales, etc.

1 INTRODUCTION
A crawler (a.k.a. Web spider or Web robot) is typically a script or a
program that browses the targeted website in an automated man-
ner [26]. Malicious crawlers may collect and sell data in illicit mar-
kets. In our case, Ele.me1, a popular Location-Based Service (LBS)
company that provides on-demand food delivery in China [30], is
facing the problem that the information of millions of merchants
are collected and sold in illicit markets, as illustrated in Figure 1.
Many websites allow crawlers belonging to search engines to visit,
however, business information on our platform can only be ob-
tained through our app. Thus, in this study, all crawlers are harmful
and need to be detected and eliminated to protect the business
information of registered merchants at Ele.me.

Many companies prohibit web-crawlers accessing their web
pages due to: 1) web-crawlers may degrade the availability of web
servers; 2) contents in web servers are regarded as intellectual
properties of the companies; 3) the pricing system of some specific
products could help companies keep the leading place of the market
(e.g., fluctuation of prices of flight tickets, and the lowest price of
best-selling items). If competitors or other operators steal and use
the data for their purposes, it will affect the company negatively
and in the long run be a threat to their business model [19, 23].

Different from traditional online services, LBS has a special focus
on providing location-centric services. Information is provided
according to user’s location. Thus, LBS crawler varies from web
crawler that it must traverse all points-of-interest (POIs) over the
map to collect data.

1https://www.ele.me
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The main challenges of crawler detection in Location-Based
Services are: i) spatial pattern: different from web crawlers, LBS
crawlers must traverse the whole map to collect data. Figure 3
illustrates some patterns of LBS crawlers. Few studies have paid
attention to learn the spatial patterns of LBS crawlers; ii) limited
labeled data: CAPTCHA [2] can identify potential web robots,
however, false detection leads to negative influence for user experi-
ence, and even brings customer defection to the company.

The most relevant work to address our problem is Attributed
Sequence Embedding (ASE) [31]. They propose self-supervised
sequence embedding learning to alleviate the limited number of
labeled data challenge in fraud detection. The proposed method
embeds the attribute of the sequence via a encoder-decoder net-
work and the encoded attribute is used as the initial hidden state of
long-short term memory, however, this work neglects the temporal-
spatial information in LBS-based crawler detection problem. In this
paper, we propose a three-stage learning framework that is able to
improve the performance of crawler detection by introducing the
auxiliary task learning. Specifically, wemodel the Uniform Resource
Locator (URL) requests as an attributed sequence classification prob-
lem. Different from existing attributed sequence learning methods
such as ASE [31], we incorporate the temporal-spatial information
to detect the LBS-based crawlers. We present a crawler detection
method called Attributed Action Net (AANet) that learns the ac-
tion sequences, temporal-spatial patterns of LBS crawlers, and the
context of the Uniform Resource Locators (URLs) simultaneously.
We propose a three-stage learning framework to leverage the large-
scale data in gateway systems where only a few labeled data are
available.

To summarize, our main contributions in this work are as follows:
• To the best of our knowledge, this is the first effort to study
crawler detection in Location-Based Services using deep
learning;

• We present an Attributed Action Net (AANet) model that
accepts URL request sequences as inputs and simultaneously
learns action sequences, temporal-spatial patterns of LBS
crawlers, and the context information to detect the LBS
crawlers. Moreover, a three-stage learning framework is pro-
posed to handle the large-scale data and alleviate the limited
number of labeled data problem;

• We perform extensive offline experiments to demonstrate
the effectiveness of the proposed model. Online A/B tests
show that the proposed model can detect more crawlers than
the existing systems with a higher precision.

The rest of the paper is organized as follows. Section 2 sum-
marizes the related work. In Section 3, we elaborate the proposed
AANet model and the three-stage training process. Offline and on-
line experiments are presented in Section 4 followed by a case study.
The work is summarized in Section 5.

2 RELATEDWORK
2.1 Crawler Detection
Chen et al. [2] presented an overview of web crawler detection
techniques and categorized detection methods into three classes:
offline web-log mining, honeypot, and online web robot detection.
Honeypot and online detection methods are beyond our discussion.

Menshchikov el al. [19] classified offlineweb-logmining approaches
into two categories: signature traffic analysis and machine learning
methods.

Signature traffic analysis is based on certain characteristics de-
tection, which are inherent in robotic systems contrasting to the
human user, such as too high query rate, downloading HTML-only
pages (without downloading scripts and CSS files) [19]. Ro et al. [23]
proposed an anti-crawling method for distributed web crawlers
named Long-tail Threshold Model (LTM). They concluded that
the access frequency follows an exponentially decreasing curve
and determined the access frequency threshold according to the
Long-tail rule. Opposed to the previous methods that search for
specific patterns in the logs, the aforementioned methods apply
the deviation of the metric values based on typical user behaviors.
These methods would benefit from the high coverage, though they
require sensitivity setting for each metric.

Existing machine learning studies identify web crawlers by ex-
tracting features from sessions and train a classifier with various
off-the-shelf machine learning models, such as Random Forests,
GBDT [8], XGBoost [4], LightGBM [11]. Typical features extracted
from sessions include Total Requests, Session Duration, Average Time,
Standard Deviation Time, Repeated Requestes, HTTP response codes
and Specific Type Requests [2]. Lagopoulos et al. [13] proposed se-
mantic features that are extracted from a session, including total
topics, unique topics, page similarity, page variance and boolean page
variance. Companies with dozens of business units (BU) such as Al-
ibaba may contain thousands of topics in gateway log system. Thus,
semantic features like topics or unique topics should be designed
carefully to achieve a good result, which is a labor intensive work.

Rajabnia and Jahan [22] proposed a hybrid fuzzy inference sys-
tem based on NNGE (non-nested generalized exemplar) algorithm.
In terms of the feature weights obtained by the NNGE algorithm,
the main features are used to train the classification models, thus
the dimension of the problem space is reduced. Bayesian network
is another popular method in web robot detection. Suchacka and
Sobkow [24] proposedWeak Bayesian Approach (WBA) and Strong
Bayesian Approach (SBA) to robot detection based on characteris-
tics of user sessions and compared in two variants: (a) using known
bots’ sessions form the testing samples and (b) using known bots’
sessions from the verifying samples. In general, SBA gave better
results in terms of practical accuracy. Haider and Elbassuoni [9]
developed a two-class Boosted Decision Tree (BDT) for web robot
detection based on website navigation behavior analysis.

2.2 Deep Learning Approaches for Sequence
Classification

Deep learning can produce state-of-the-art results in many areas
without extensive feature engineering [15, 28, 29]. Attention based
deep learning methods, such as Transformers [27], BERT [6], AL-
BERT [14] and GPT [1, 20, 21], are widely used in Natural Language
Processing (NLP) which is a typical sequence data learning problem.

Sequence data analysis by deep learning could also extend from
NLP to other fields, e.g., recommender systems [3, 5, 17, 18, 25] and
fraud detection [16, 31]. For fraud detection tasks, Liu et al. [16]
proposed Local Intention Calibration tree-LSTM for fraud transac-
tion detection. Zhuang [31] proposed Attributed Sequence Embed-
ding (ASE) for fraud detection, which encodes the sequence-level



attribute with an encoder-decoder multi-layer perception (MLP)
and then utilizes the encoded vector as the initialized hidden states
of LSTM.

Applying deep learning for sequence classification directly to
crawl detection will omit the semi-structured information of the
URL requests, especially LBS crawlers. Figure 2(a) shows that the
URL requests contain tremendous attributes that varies from dif-
ferent action tokens. The ASE [31] model aims to to embed the at-
tribute of the sequence but fails to capture the spatial patterns of LBS
crawlers. In this paper, we propose Attributed Action Net (AANet)
to learn the action sequences, temporal-spatial patterns and the
context attributes of LBS crawlers simultaneously.

3 PROPOSED METHOD
We present the proposed method, Attribute Action Net (AANet)
and implementation details in this section. Problem formulation
and feature processing are first discussed in Section 3.1. Then the
architecture of the proposed model is introduced in Section 3.2,
followed by the objective function in Section 3.3. Finally the three-
stage learning framework is introduced in Section 3.4.

3.1 Problem Formulation
We aim to identify web crawlers at Ele.me platform, which can be
formulated as a classification problem using raw gateway requests
within𝑑 days, i.e., [(𝑢𝑟𝑙1, 𝑡𝑖𝑚𝑒_𝑠𝑡𝑒𝑝1), (𝑢𝑟𝑙2, 𝑡𝑖𝑚𝑒_𝑠𝑡𝑒𝑝2), · · · ]. Each
𝑢𝑟𝑙 contains rich information of the user and has a corresponding
𝑡𝑖𝑚𝑒_𝑠𝑡𝑒𝑝 that contains the date and time information. Figure 2(a)
illustrates the input data of the URL sequence.

Features. Gateway requests are raw URL (Uniform Resource
Locator) requests and their corresponding timestamp, resulting
in complex and semi-structured format. We model raw gateway
requests data via three different kinds of features: Action Token
Sequence (𝐴𝑇𝑆), Temporal-Spatial Attributes (𝑇𝑆𝐴), and Context
Attributes (𝐶𝐴).

Action tokens represent user’s actions in the platform. There are
2000 different tokens following the long tail distribution, such as
MP, PP and CART etc. MP denotes main page browsing, PP denotes
promotion page browsing, and CART represent to add something
to the cart. Special tokens are also introduced in the model to help
the model learn a proper representation. [CLS] that stands for the
begin of a sequence is used as the embedding of the whole sequence.
[SEP] means the end or begin of a day. [PAD] is used to pad each
instance to the same length. Following [6], [MASK] is employed to
be a placeholder of a masked token in the self-supervised learning
process. Figure 2(a) shows how raw requests form the action token
sequence. 𝐴𝑇𝑆𝑖 represents action token sequence of the 𝑖𝑡ℎ user
within 𝑑 days. 𝑇 is total time step. Behaviors of a normal user and
a crawler in the app is completely different, thus, the 𝐴𝑇𝑆 features
are significant for identifying crawlers.

As illustrated in Figure 3, spatial information is crucial for a
LBS crawler. Therefore, we design a temporal-spatial module to
learn such information. Temporal-spatial attributes are time series
data. 𝑇𝑆𝐴𝑖 represents the time and spatial information of 𝑖𝑡ℎ user,
in which there are one temporal attribute time_gap and 4 spatial
attributes log_poi, lat_poi, lon_user and lat_user. time_gap repre-
sents the time gap between two adjacent requests in time. log_poi

and lat_poi indicate the longitude and latitude of the searching
points-of-interest (POIs). lon_user and lat_user denote the longi-
tude and latitude of the user’s current place. All these information
is extracted from raw URLs. Most of time, location of searching
POI is the same as the user’s current place. Large distance of these
two place, the continuous change of searching POIs or small time
gap between user’s different locations usually indicates abnormal
behavior of users. Temporal-spatial attribute embedding module is
designed to learn such abnormal pattern.

Context attributes represent attributes such as geohash, shop id
or business channel, which vary over time. There are over 1000 dif-
ferent context attributes, which contain contextual information and
most of them are string-like values rather than numerical values. It
is notable that some of them are strongly related to LBS crawlers,
such as POI_name (crawlers usually travel a lot of POI_name).
While some other attributes are meaningless to humans, such as
RND (a.k.a. ‘random’, which is used for bucket splitting in A/B tests)

Table 1: Symbols and Notations.

Symbols Description
D the whole training data set
d the number of days of a sequence
T time step

𝑁𝑡 𝑗

the number of users of task j,
where 𝑗 ∈ {1, 2, 3}

𝐴𝑇𝑆𝑖
action token sequence of 𝑖𝑡ℎ user,
𝑖 ∈ {1, 2, 3, ..., 𝑁𝑡 𝑗 }

𝑇𝑆𝐴𝑖 ∈ 𝑅𝑇×5 temporal-spatial attribute of 𝑖𝑡ℎ user
𝐶𝐴𝑖 context attribute of 𝑖𝑡ℎ user
𝜃1 parameters of ATS embedding module
𝜃2 parameters of TSA embedding module
𝜃3 parameters of CA embedding module
𝜃4 parameters of tower module
Φ𝜃1 (·) ATS embedding module
Φ𝜃2 (·) TSA embedding module
Φ𝜃3 (·) CA embedding module
Φ𝜃4 (·) tower module
Φ𝑖𝑛 (·) inception network

𝑆𝐴𝑇𝑆
{[CLS], [SEP], [PAD], [MASK], MP
, PP, CART, ...}, and |𝑆𝐴𝑇𝑆 | = 2000

𝑆𝐶𝐴
{geohash, shopid, channel, user_id, ...},
and |𝑆𝐶𝐴 | = 1000

𝑥
𝐴𝑇𝑆𝑖
𝑡 ∈ 𝑆𝐴𝑇𝑆 the 𝑡𝑡ℎ token of 𝐴𝑇𝑆𝑖
𝑥
𝐶𝐴𝑖

𝑡𝑐
∈ 𝑆𝐶𝐴 the 𝑐𝑡ℎ feature of 𝑡𝑡ℎ feature group of 𝐶𝐴𝑖

𝑋𝐶𝐴
𝑖

∈ 𝑅 |𝑆𝐶𝐴 |×3 the context attribute of 𝑖𝑡ℎ user generated
by statistical method using 𝐶𝐴𝑖

𝐸𝑚𝑏𝐴𝑇𝑆 ∈ 𝑅𝑛1
ATS embedding, where n1 is the length of
embedding vector

𝐸𝑚𝑏𝑇𝑆𝐴 ∈ 𝑅𝑛2
TSA embedding, where n2 is the length of
embedding vector

𝐸𝑚𝑏𝐶𝐴 ∈ 𝑅𝑛3
CA embedding, where n3 is the length of
embedding vector

𝜆 ∈ [0, 1] the threshold for determining whether the
user is a crawler
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(c) the overview of the proposed AANet model

Figure 2: (a) A demonstration of rawURL requests in gateway system. (b) The formalized attributed sequence. (c) The overview
of the proposed AANetmodel.We can see from the formalized sequence that the rawURLs (a) are formalized to three different
parts (b). Tokens (in pink color) form a sequence, ⟨time gap, longitude, latitude⟩ (in green color) forms a time series, and
parameters of URLs (in blue color) form a super sparse table with mostly string-like values in it. The overview of proposed
AANet is presented in (c). We can find that different modules are used to process different inputs.

and SPM (Super Position Model, which is used for monitoring page
view log or click log). The entropy of RND could be useful for iden-
tifying some crawlers who forget to change this parameter. As the
gateway system is complex and the context varies among different
business lines, the usefulness of each item will be determined by
the model. We use three statistics of these attributes, which are
the number of features, the number of features after deduplica-
tion and entropy. The entropy of context attributes is defined as
𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑐 = −∑

𝑡 𝑃 (𝑥𝑡𝑐 )𝑙𝑜𝑔2𝑃 (𝑥𝑡𝑐 ) where 𝑐 ∈ 𝑆𝐶𝐴 .
The advantages of the proposed feature processing method are

as follows:
• Rich and different types of data are fully utilized, and it does
not affect the end-to-end model training.

• The processing of temporal-spatial features is greatly suit-
able for LBS crawler detection.

• The parameter values in URL requests, which are mostly
non-numerical and string-like, can be converted to features
without heavy feature engineering process.

Problem. By using 𝐴𝑇𝑆𝑖 , 𝑇𝑆𝐴𝑖 and𝐶𝐴𝑖 that are extracted from
the raw data, we can produce an accurate prediction to output
whether the 𝑖𝑡ℎ user is a crawler or not. We use 𝑦𝑖 to denote the
predicted label from our model. If 𝑦𝑖 equals to 0, the 𝑖𝑡ℎ user is not
a crawler, otherwise, the 𝑖𝑡ℎ user is a crawler, such that:

𝑙𝑜𝑔𝑖𝑡𝑖 = Φ𝜃4 (𝑐𝑜𝑛𝑐𝑎𝑡 (Φ𝜃1 (𝐴𝑇𝑆𝑖 ),Φ𝜃2 (𝑇𝑆𝐴𝑖 ),Φ𝜃3 (𝐶𝐴𝑖 ))) (1)

𝑦𝑖 =

{0, 𝑖 𝑓 𝑙𝑜𝑔𝑖𝑡𝑖 < 𝜆

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

where Φ𝜃1 (·) denotes action token sequence embedding module,

Φ𝜃2 (·) represents the temporal-spatial attribute embedding module,
Φ𝜃3 (·) denotes context attribute embedding module, and Φ𝜃4 (·)
denotes the tower module. Other parameters are defined in Table 1.

3.2 Model architecture
The proposed model consists of the following four parts: action
token sequence embedding module, temporal-spatial attribute em-
bedding module, context attribute embedding module, and tower
module. The model first processes various features using appro-
priate modules, and then these vectors are concatenated and fed
into the tower module. Finally, predictions are given by the tower
module.

3.2.1 Action Token Sequence Embedding Module. Inspired by the
excellent performance of Transformer [27] in Natural Language Pro-
cessing and by considering the similarities between word sequences
and action sequences, we design our action sequence embedding
module using multi-layer bidirectional transformer encoder. The
multi-head self attention mechanism is able to learn superb repre-
sentations of the dependencies between different action tokens and
can capture patterns from crawler actions. We denote the number
of layers as 𝐿, the hidden size as𝐻 , and the number of self-attention
heads as 𝐴. In our experimental settings, we set 𝐿 = 6, 𝐻 = 192,
𝐴 = 6.

Action token sequence embedding is calculated as

𝐸𝑚𝑏𝐴𝑇𝑆𝑖 = Φ𝜃1 (𝐴𝑇𝑆𝑖 ) (3)

where 𝐸𝑚𝑏𝐴𝑇𝑆
𝑖

represents the embedding of action token sequence
of 𝑖𝑡ℎ user and Φ𝜃1 denotes action sequence embedding module.
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Figure 3: A demonstration of the LBS crawler. (a) illustrates a
normal userwho appears in a fewPOIs (home orworkplace).
(b)(c)(d) are different types of LBS crawler whose trajectories
have special patterns. We can see (b) conducts grid search of
themap, (c) randomly picks some POIs where every 5 points
forma square shape and (d) travels almost all places of a city.

3.2.2 Temporal-spatial Attribute EmbeddingModule. The temporal-
spatial attribute embedding module deals with time series data,
which contains time and spatial information. Inspired by Incep-
tionTime [7], we design our model architecture based on Inception
network, which is one of the state-of-the-art backbones for time
series classification. In order to enhance the ability of the Inception
network to express temporal and spatial features, we use three
inception networks at the same time and concatenate their results
as the final temporal-spatial embedding vector. Each of these incep-
tion network is initialized randomly. Therefore, 𝑇𝑆𝐴𝑖 is projected
into a different representation subspace using different inception
network.

𝐸𝑚𝑏𝑇𝑆𝐴𝑖 = Φ𝜃2 (𝑇𝑆𝐴𝑖 )
= 𝑐𝑜𝑛𝑐𝑎𝑡 (Φ𝑖𝑛1 (𝑇𝑆𝐴𝑖 ),Φ𝑖𝑛2 (𝑇𝑆𝐴𝑖 ),Φ𝑖𝑛3 (𝑇𝑆𝐴𝑖 ))

(4)

where 𝐸𝑚𝑏𝑇𝑆𝐴
𝑖

is the TSA embedding vector of 𝑖𝑡ℎ user. Φ𝑖𝑛1 (·),
Φ𝑖𝑛2 (·) and Φ𝑖𝑛3 (·) are identical in model architecture but do not
share the same weight with each other.

3.2.3 Context attribute embedding module. Parameter keys and val-
ues of an URL request contain rich information, which are important
for us to identify which users are crawlers. For a Location-Based
Services like Ele.me, users usually search and browse restaurant
in a few fixed geohash locations. Therefore, whether a user is a
crawler is likely to be reflected by the number of geohash. Consid-
ering that these features are sparse and non-numerical, we use their
statistical values ‘count’, ‘distinct count’ and ‘entropy’ as features.
The statistical features of each context feature are flattened and
input into a fully connected network.

We design our context attribute embedding module as:

𝑉0 = Flatten(𝑋𝐶𝐴
𝑖 )

𝑉𝐶𝐴
1 = 𝜌 (𝑊𝐶𝐴

1 𝑉0 + 𝑏𝐶𝐴1 )

𝐸𝑚𝑏𝐶𝐴𝑖 = 𝜎 (𝑊𝐶𝐴
2 𝑉𝐶𝐴

1 + 𝑏𝐶𝐴2 )

(5)

where 𝜌 and 𝜎 are two activation functions. In the context attribute
embeddingmodule, we use 𝑡𝑎𝑛ℎ function (defined as 𝜌 (𝑧) = 𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧 )
and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function (defined as 𝜎 (𝑧) = 1

1+𝑒−𝑧 ).𝑊
𝐶𝐴
𝑘

is the 𝑘𝑡ℎ

layer weight matrix of context attribute embedding module, 𝑏𝐶𝐴
𝑘

is
the 𝑘𝑡ℎ layer bias vector of the context attribute embedding module.

3.2.4 Tower module. After action sequence embedding, temporal-
spatial attribute embedding and context attribute embedding are
computed, and then be concatenated and fed into the tower module.
The tower module is composed of two fully connected layers and
two dropout layers.

We design our Tower module as:

𝑉𝑇𝑀
1 = 𝜌 (𝛾 (𝑊𝑇𝑀

1 𝑋𝑇𝑀
𝑖 + 𝑏𝑇𝑀1 ))

𝑙𝑜𝑔𝑖𝑡𝑖 = 𝜎 (𝛾 (𝑊𝑇𝑀
2 𝑉𝑇𝑀

1 + 𝑏𝑇𝑀2 ))
(6)

where 𝑋𝑇𝑀
𝑖

= 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐸𝑚𝑏𝐴𝑇𝑆
𝑖

, 𝐸𝑚𝑏𝑇𝑆𝐴
𝑖

, 𝐸𝑚𝑏𝐶𝐴
𝑖

). 𝜌 is 𝑡𝑎𝑛ℎ func-
tion, 𝜎 is 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, and 𝛾 is dropout layer.𝑊𝑇𝑀

𝑘
is the 𝑘𝑡ℎ

layer weight matrix of Tower Module, 𝑏𝑇𝑀
𝑘

is the 𝑘𝑡ℎ layer bias
vector of the Tower module.

The overview of the proposed AANet model is illustrated in
Figure 2.

3.3 Objective function
In the training phase, we minimize the classification error via the
cross entropy loss:

𝐿𝑜𝑠𝑠 =
∑
𝑥𝑖 ∈𝐷

∑
𝑐

𝑦𝑖,𝑐𝑙𝑜𝑔(𝑝𝑐 (𝑥𝑖 )) (7)

where 𝑥𝑖 = (𝐴𝑇𝑆𝑖 ,𝑇𝑆𝐴𝑖 ,𝐶𝐴𝑖 ). 𝐷 is the training data set. 𝑐 ∈ {0, 1},
is the serial number of categories. 𝑝𝑐 (𝑥𝑖 ) denotes the probability of
𝑥𝑖 belonging to class 𝑐 .

3.4 Three-stage learning framework
As shown in Table 2, the parameters of action sequence embedding
module account for a large part of the total parameters. Conven-
tional training methods such as training the whole model directly
in the main task do not work well.

In this section, a three-stage training framework is proposed.
We first use Masked Language Model (MLM) [6] to train the ac-
tion sequence embedding module. Secondly, an auxiliary task that
determines whether a user will have purchase behaviour in the
next week is trained. Finally, we conduct the classification task to
predict whether the user is a crawler.

3.4.1 Stage 1: Self-supervised pre-training. Given user behavior
sequences are different from natural language sequences, existing
pre-trained NLP models are inapplicable directly, therefore, we
need to train from scratch. As the first step, similarly to [6], we
mask 15% of the input tokens in each sequence at random, and then
predict the masked tokens. Among the tokens that are masked, 80%
is replaced with [MASK], 10% is replaced with a random token,



Table 2: Number of parameters of each module.

Module Number of
parameters

Action token sequence embedding module 3,014,208
Temporal-Spatial attribute embedding module 1,135,296
Context attribute embedding module 417,152
Tower module 642,051
total 5,208,707

and 10% remains unchanged. In this step, we use about 90 million
training samples.

3.4.2 Stage 2: Auxiliary task training. In the second step, we use
an auxiliary task to help the training process in the main task. We
observe that determining whether a user is a crawler based on the
past behaviors has a certain relationship with determining whether
the user will have purchase behaviour next week. Therefore, a
prediction of next-week-purchase is used as the auxiliary task for
crawler detection. Somewell-behaved users are filtered according to
some business based rules, which could not be used as the auxiliary
training instance. The number of training instances shrinks from
90 million to 10 million in the auxiliary task.

3.4.3 Stage 3: Main task training. In the final step, the main task for
classifying whether a user is a crawler or not is trained. To train the
main task, we need a well labeled data set. The action of checking
whether the user is a crawler will reduce the experience of normal
users, which limits the size of the main task data set. Therefore, the
results of the previous deployed models and the random sampled
data are checked by CAPTCHA, and the results could be used as the
labels in the main task. In this step, we use about eight thousand
training samples. The tower module of main task is different from
that of auxiliary task, whose parameters are initialized randomly.

In conclusion, we summarize the three-stage learning framework
as follows:

• Since there are a huge number of parameters in action se-
quence embedding module, the amount of labeled data is not
enough to train a robust model. Therefore, we use 90 million
samples to pre-train the modules in a self-supervised way
to alleviate this issue.

• In order to further alleviate the problem of requiring large
amount of labeled data, we use a similar task but the labeled
data is easily to obtain to assist in training the model.

• Finally the main task is able to be trained using a small
amount of labeled data.

4 EXPERIMENTS
In this section, we aim to verify the effectiveness of the proposed
model using both collected historical data and the online data.

4.1 Dataset
Data is collected from historical URL request logs in the gateway
system, called Baxia, at Alibaba. The format of URL is illustrated
in Figure 2(a). Data collected from several days is used for training
and another out-of-time data in a few days is used for testing.

Raw URL of 18 billion requests are processed into 90 million
sequences. Each sub-sequence in a single day is truncated to 100
(including a [SEP]) and 𝑑 = 7 days sub-sequences form a single
sequence instance. Finally, a [CLS] will be added at the head and
the sequence will be padded to make sure the length of it is 𝑇 =

701. For self-supervised pre-train task, almost all data, including
normal users and crawlers, could be used, since the object is to
learn the masked tokens through the rest tokens of the sequence.
In auxiliary task, some well-behaved users are filtered according
to some business based rules, so the number of training samples
drops from 90 million to 10 million. Finally, the main task of crawler
detection is trained on the verified eight thousand instances.

4.2 Evaluation metrics
The evaluation metrics are P90R, AUC, F1 score and KS. The detec-
tion result will be used for crawler verification, include voice calling,
upstream texting, etc. These methods are relatively expensive, but
basically guarantee the credibility of results. User experience may
be hurt if the precision of the detection result is not reliable. So the
evaluation of recall at a high precision threshold is used for such
purpose. P90R is the recall when the precision is 90%. AUC is the
area under receiver operating characteristic curve. AUC presents
the overall performance at every threshold for each algorithm. F1
score is the harmonic mean of precision of recall. KS refers to the
difference (maximum value) of the cumulative distribution between
good and bad samples, and is used to evaluate the risk discrimina-
tion ability of the model. These four metrics can comprehensively
represent the performance of the algorithms.

4.3 Offline Experiments
4.3.1 Ablation study of different attribute modules. In this section
we evaluate the individual contributions of every module and the
effects of different combinations among them. The basic modules
we compared are as follows:

• ATS:ActionToken Sequence embeddingmodule introduced
in section 3.2.1, which learns the action pattern of user.

• TSA: Temporal-Spatial Attribute embedding module which
learns the time gap and its corresponding latitude and longi-
tude as described in section 3.2.2.

• CA:ContextAttribute embedding module which reflects the
detail of whole request session as described in section 3.2.3.

Table 3 shows the ablation study of differentmodules on auxiliary
task, and Table 4 shows the result on main task, which is trained
after auxiliary task. Experiments in both tables use self-supervised
pre-training. The best result is shown in bold.

Both tables show that the performance of two modules combined
is better than single module, and all three modules together perform
best in the 4 metrics. It is clear that, in Table 4, Action Token
Sequence plays the most important role for crawler detection. But
this conclusion does not fit for the auxiliary task.

4.3.2 Ablation study of training methods. For the three-stage train-
ing framework proposed, we conduct ablation experiments on both
our proposed AANet and ASE [31]. And the results are shown in
Table 5. It can be seen that each stage of the three-stage training



0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

0% 10% 20% 30% 40% 50% 60% 70% 80%

R
@

P9
0

of
au

xi
lia

ry
ta

sk

accuracy of self-supervised pre-training task

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

0% 2% 4% 6% 8% 10% 12%

R
@

P9
0

of
m

ai
n

ta
sk

R@P90 of auxiliary task

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

0% 10% 20% 30% 40% 50% 60% 70% 80%

R
@

P9
0

of
m

ai
n

ta
sk

accuracy of self-supervised pre-training task

w Auxiliary
w/o Auxiliary

(a) the relationship between self-
supervised pre-training task and auxiliary 
task in performance

(b) the relationship between auxiliary task
and main task in performance (no self-
supervised pre-training performed)

(c) the relationship between self-supervised
pre-training and main task in performance 
with(without) auxiliary task performed

Figure 4: Sensitivity study of three training stages. It can be concluded that stage 1 (self-supervised pre-training) and stage
2 (the auxiliary task) help to improve the performance of stage 3 (the main task) altogether. The performance of main task
is more sensitive to the accuracy of self-supervised pre-training. A significant improvement of main task relies on a high
accuracy (above 60% accuracy) of self-supervised pre-training and the training of auxiliary task.

Table 3: Ablation study of modules on auxiliary task.

model P90R AUC KS F1 Score
ATS 12.70% 0.6960 0.2641 0.5001
TSA 2.16% 0.6668 0.2609 0.4790
CA 12.70% 0.7073 0.2734 0.5032
ATS+TSA 12.66% 0.6919 0.2640 0.4896
ATS+CA 12.86% 0.7136 0.2822 0.5118
TSA+CA 12.50% 0.7125 0.2855 0.5067
ATS+TSA+CA

(AANet) 13.22% 0.7274 0.3278 0.5294

Table 4: Ablation study of modules on main task.

model P90R AUC KS F1 Score
ATS 28.75% 0.7644 0.3769 0.4570
TSA 3.39% 0.4978 0.0904 0.2906
CA 5.36% 0.6630 0.2728 0.3489
ATS+TSA 28.57% 0.7858 0.4534 0.4600
ATS+CA 28.21% 0.7855 0.4211 0.4656
TSA+CA 3.39% 0.7200 0.3528 0.3864
ATS+TSA+CA

(AANet) 29.46% 0.8245 0.5086 0.5115

method we proposed is useful. If any one or two stages are removed,
the training effect will be dampened.

4.3.3 Sensitivity Study. In this paper, we propose a three-stage
training framework. The ablation study is shown in the previous
subsection. In this subsection, we present how sensitive the self-
supervised task and next-week-purchase auxiliary task affect the
crawler detection (main task). The results are shown in Figure 4.
Experiment is setup as follows:

• (a) Only self-supervised training is employed before main
task training. After the self-supervised task is trained to
reach the target accuracy, fixed learning step 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =

5000 with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 10 is used to train the main task.

Table 5: Ablation study of training methods. P stands for
self-supervisedPre-training,A stands forAuxiliary task and
M stands for Main task.

P A M P90R AUC KS F1 Score

AANet
(ours)

✓ 28.57% 0.2404 0.4313 0.2734
✓ ✓ 16.61% 0.7988 0.4811 0.4956

✓ ✓ 29.11% 0.8107 0.5064 0.4989
✓ ✓ ✓ 29.46% 0.8245 0.5086 0.5115

ASE
[31]

✓ 0.18% 0.5220 0.0414 0.2812
✓ ✓ 5.71% 0.5989 0.2152 0.3340

✓ ✓ - 0.7813 0.4213 0.4537
✓ ✓ ✓ 14.82% 0.8160 0.4975 0.4942

• (b) Only auxiliary task is trained before main task, no self-
supervised training is involved. Learning step is carefully
increased to let main task reach the P90R, then fixed learning
step 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 200 with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 10 is used to train
main task. And the P90R of main task is reported on Y axis.

• (c) Self-supervised training is first performed same as (a).
Then P90R ofmain task trainedwith auxiliary task (solid line)
and without auxiliary task involved (dash line) is plotted.
Auxiliary task and main task are trained using the same
learning step and batch size as used in (a), (b).

From Figure 4(a), we can see that as stage 1 has a relative high
accuracy (above 70%), the self-supervised pre-train can help im-
prove the crawler detection task. In Figure 4(b), we find that the
main task is not sensitive to the next-week-purchase auxiliary
task if no self-supervised pre-train is involved. From Figure 4(c),
two interesting conclusions could be drawn: 1) similar to (a), self-
supervised training can affect the main task only when it reaches a
high masked-token-prediction accuracy (above 60%); 2) the auxil-
iary task could help improve the training of the main task, but the
significance of improvement happens only when self-supervised
pre-train reaches a high accuracy (above 60%).

We can conclude fromTable 5 and Figure 4 that the self-supervised
training and auxiliary task help the main task training altogether.
And the three-stage training framework is more sensitive to the



accuracy of self-supervised stage. A significant improvement of
main task relies on a high accuracy of self-supervised pre-train
stage.

4.3.4 Comparisons between different models. In this section, we
evaluate the performance of the proposed model compared with
the following baseline methods:

• GBDT. Traditional crawler detection methods first extract
statistics features which are described in Section 2, including
Total Requests, Session Duration, Average Time and semantic
features such as total topics, unique topics detailed in [2, 13].
There are 268 extracted features. Then Gradient Boosting
Decision Tree (GBDT) [8] is employed to classify crawlers.

• LSTM. Long Short term memory (LSTM) is a widely used
deep learning sequence classification algorithm [10]. Action
tokens are first converted as embedding then used as input
of LSTM. Auxiliary task and main task are adopted to output
the final result.

• InceptionTime. Fawaz et. al. propose InceptionTime for
time series classification in [7] and show it is one of the
state-of-art time series classification methods. Action token
embeddings and temporal-spatial features are concatenated
and used as inputs to InceptionTime. The auxiliary task is
trained before main task.

• ASE [31]. Zhuang et al. [31] proposed Attributed Sequence
Embedding (ASE), which extends LSTM to attributed se-
quence embedding. The encoded context feature is used
as the initial hidden states of LSTM. The original unsuper-
vised embedding learning phase of ASE is used as the first
pre-training step. And action tokens are first converted as
embedding then used as input of ASE. Auxiliary task is also
trained before main task.

For the proposed AANet, we apply Adam optimizer [12] with
learning rate of 1e-4. We also use the same learning rate for LSTM,
InceptionTime, ASE and AANet. Table 6 shows that our proposed
method, AANet, outperforms other algorithms in all 4 evaluation
metrics.

Table 6: Comparisons between different models.

model P90R AUC KS F1 Score
GBDT 2.50% 0.7327 0.3688 0.4418
LSTM 3.21% 0.5292 0.1314 0.2827
InceptionTime [7] 8.04% 0.7426 0.4044 0.4229
ASE [31] 14.82% 0.8160 0.4975 0.4942
AANet (ours) 29.46% 0.8245 0.5086 0.5115

In conclusion, we obtain the following observations from offline
experiments:

• No matter which evaluation metric is used, the best per-
formance using two modules is better than that using one
module, and the best performance using three modules is bet-
ter than the one using two modules. This conclusion holds
for both the auxiliary task and the main task.

• The three-stage training framework is able to improve the
performance for crawler detection. This is verified by the
ablation study on both AANet and ASE.

• The proposed method is better than other baseline methods
such as GBDT, LSTM, InceptionTime and ASE.

4.4 Online A/B test
A/B test is conducted to verify the online performance of the model
proposed in this paper. Our verification methods include voice
calling, upstream texting, etc. These methods are relatively expen-
sive, but basically guarantee the credibility of results. The existing
crawler detection system is constructed by expert rules and GBDT.
A/B test is performed by splitting grids in 50/50 ratio. Considering
data privacy, we use relative numbers to illustrate crawlers iden-
tified by the model. Compared with the results provided by the
existing system, our new model has a 15.6% significant increase
in the precision of prediction. Meanwhile, our new model detects
25.1% more crawlers.

Table 7: Online A/B test results of the proposed model com-
pared to the existing detection system.

Metric Change
The number of detected crawlers +25.1%
Precision +15.6%

4.5 Case study
Different from traditional web crawlers, LBS crawlers need to travel
as much as POIs on the map to fetch information. As described in
section 3.2.2, we propose a temporal-spatial attribute embedding
module to learn the patterns of LBS crawlers.

We have shown the effectiveness of Temporal-Spatial Attribute
(TSA) module in section 4.3.1 and Table 4. In this section, we demon-
strate some detected crawlers which have a higher prediction score
when TSA module is involved. From Figure 5, we can see that some
simple crawlers may search POIs across provinces (Figure 5(a)) or
cites (Figure 5(b)). Professional LBS crawlers [19] will simulate a
real user’s travel path (Figure 5(c)). Note that sometimes profes-
sional LBS crawlers may fail to fit the simulated path to a real road
on the map, as illustrated in Figure 5(d).

5 CONCLUSION
In this work, an important but under-explored problem of LBS
crawler detection is studied. A new model has been proposed and is
currently deployed at Alibaba, which consists of three different em-
bedding modules for different kinds of features and a tower module
for classification. In order to make full utilization of unlabeled data
and auxiliary task labels, we design a three-stage training frame-
work. Extensive offline and online experiments have demonstrated
the effectiveness of the model.

There are several directions that we intend to extend this work.
Firstly, the main task has limited labeled data, which is not ideal for
deep learning model training. However, there is a large amount of
unlabeled data. In order tomake full utilization of the unlabeled data,
we will investigate semi-supervised methods to improve model
training process. Secondly, the method of using auxiliary tasks is a
valuable and interesting idea to improve the model performance.
We can explore a variety of more effective auxiliary tasks. Thirdly,



(a) w TSA 0.82 (w/o TSA 0.69) (b) w TSA 0.95 (w/o TSA 0.80)

(c) w TSA 0.97 (w/o TSA 0.95) (d) w TSA 0.77 (w/o TSA 0.52)

Figure 5: Case study of the detected crawlers. This figure
demonstrates the predicted score via AANet with and with-
out TSA module. We can see amateur LBS crawlers travels
across provinces (a) or cites (b). Professional crawlers will
simulate a real user’s travel path as shown in (c). In some
cases, the simulation fails to fit local trajectory of POIs into
a real road as show in (d), and the model with TSA module
will assign it a higher score.

our method can be applied to user comprehension task since the
input data of crawler detection and user comprehension are similar.
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