Published as a conference paper at ICLR 2025

AGENTBREEDER: MITIGATING THE Al SAFETY
IMPACT OF MULTI-AGENT SCAFFOLDS VIA SELF-
IMPROVEMENT

J Rosser Jakob Nicolaus Foerster

University of Oxford Meta Al

jrosser@robots.ox.ac.uk FLAIR, University of Oxford
ABSTRACT

Scaffolding Large Language Models (LLMs) into multi-agent systems often im-
proves performance on complex tasks, but the safety impact of such scaffolds has
not been thoroughly explored. We introduce AGENTBREEDER, a framework for
multi-objective self-improving evolutionary search over scaffolds. We evaluate dis-
covered scaffolds on widely recognized reasoning, mathematics, and safety bench-
marks and compare them with popular baselines. In ‘blue’ mode, we see a 79.4%
average uplift in safety benchmark performance while maintaining or improving
capability scores. In ‘red” mode, we find adversarially weak scaffolds emerging
concurrently with capability optimization. Our work demonstrates the risks of
multi-agent scaffolding and provides a framework for mitigating them. Code is
available at https://github.com/J-Rosser—-UK/AgentBreeder.

1 INTRODUCTION

Recently, the field of artificial intelligence has witnessed remarkable advancements in Large Language
Models (LLMs) and their apphcatlons ( , ) LLMs are capable of exhibiting human-like
reasoning ( , ), enabling their application
beyond natural language processmg to diverse areas such as code generation ( ,
; s ; s ), embodied Al in robotics ( s ;
s ; , ), and autonomous agents ( s ; s ).

Our research is motivated by accelerated advancements in autonomous agents such as the recent
release of Operator ( , ) and Proxy ( R ) - agents that browse the web and
perform tasks autonomously on behalf of the user. Alignment research to date has almost exclusively
focused on the safety of LLMs in unipolar scenarios; ensuring a single LLM remains aligned inside a
single-agent system. When deployed on the web, agents are placed in novel multi-agent scaffolds and
subjected to multi-polar challenges ( , ). With highly-capable agents now being deployed
at scale, we seek to address the immediate need for more comprehensive safety evaluations of
multi-agent systems.

In this paper, we introduce AGENTBREEDER, an evolutionary open-ended framework capable of
generating large populations of diverse multi-agent scaffolds. By equipping this framework with
multi-objective optimization, we explore the generation of multi-agent scaffolds along complementary
objectives of capability and safety. AGENTBREEDER can be used to blue team a set of scaffolds
to generate offspring that exhibit greater adversarial robustness and performance on capability
benchmarks. Similarly, a red teaming approach generates offspring that exhibit greater vulnerability
to adversarial attacks. Our main contributions are listed as follows:

» Attack. We introduce a novel red teaming method which can be used to explore the attack
surfaces of base LLMs when deployed in multi-agent settings.

» Defense. We introduce a novel blue teaming method for generating multi-agent scaffolds
that exhibit greater robustness to adversarial attacks.

¢ Evaluation. We implement AGENTBREEDER in Inspect ( R ) to
ensure the reproducibility and extensibility of our results and methods.


https://github.com/J-Rosser-UK/AgentBreeder

Published as a conference paper at ICLR 2025

v
BlueAgentBreeder

/

Capability

Meta Agent

I'

'
1

1

Seed Scaffolds Qo :
1

1

1

1

!
|

|

I

1

I

I

I

I

I

1

Safety

RedAgentBreeder

2
8
3 \
Safety fs(s) New Scaffolds Q4
Capability fo(s)
- CapableAgentBreeder
?
2z
C\usl:rA(-) ]-—[Descnpwrfu(s) E

J

Capability

Figure 1: A high-level illustration of the AGENTBREEDER algorithm as outlined in Algorithm
1. Starting from seed scaffolds (o, at each generation g the newly generated scaffolds (),_1 are
evaluated on capability (fc(s)) and/or safety (fs(s)) benchmarks, then embedded via fp(s) for
clustering A(-) into K clusters. Within each cluster, Pareto fronts Fi, ..., F are identified according
to fc(s) and/or fg(s), and these “frontier” solutions become the elite set £,. An LLM-based Meta
Agent applies crossover and mutation to the elites, creating new offspring scaffolds Q),. These
offspring are added to the population for the next generation P,,;. By repeating this process
for G generations, AGENTBREEDER explores a large, diverse set of multi-agent systems while
balancing capability and safety. AGENTBREEDER can be run in 3 different modes and the right-hand
side of this figure shows the optimal direction of travel of the Pareto front for each generation.
BLUEAGENTBREEDER is a defense mode and seeks to maximize both capability and safety, whereas
REDAGENTBREEDER is an attack mode minimizing safety. CAPABLEAGENTBREEDER serves as
our baseline, only optimizing for capability without regard to safety.

Algorithm 1: AgentBreeder

Input: Number of generations GG; Number of clusters K'; Number of evolutions M'; Capability
benchmark fc(s); Safety benchmark fgs(s); Embedding function fp(-); Seed scaffolds Qo;
Clustering function A(-).

Initialize seed population P, = Q) of size Ny. for generation g = 1 to G do

for scaffold s € Q41 do

L 1. Compute capability fc(s) and safety fs(s).

2. Compute embedding e < fp(s).

Cluster population into K clusters: Cy,Cs, ... ,Ck + A(er, e, ...,en,).
Identify Pareto Elites F:
1. Set E, + 0.
2. for cluster k = 1 to K do
L (a) Find its Pareto front F}, using fc and fs.
(b) Update elite cohort Fy <— E, U Fy.

Generate offspring Q) ,:
1. Set Qg « 0.
2. for evolution m = 1 to M do

(a) Weighted sampling 1 or 2 elites from E;.
(b) If 2 elites, Meta Agent performs Crossover; otherwise Mutation.
(c) Add the offspring to Q.

| Update population: P; < P;_; U Q,. Update population size: N, < Ny_; + M.
Output: Final population Pg.




Published as a conference paper at ICLR 2025

2 BACKGROUND

Multi-Agent Systems. Multi-agent systems consist of multiple interacting intelligent agents such

as LLM assistants like ChatGPT ( , ). These systems offer several advantages over

single-agent approaches ( , ), including planning ( , ; , ),

task decomposition ( s ; s ; s ; s
), and specialization ( ; ; ;

, ). The terms “multi- agent system multi- agent framework” “agent
and “scaffold” are used interchangeably in literature to refer to the structural frameworks that support
communication between multiple LLMs (

, ). In this paper, we will primarily use the term scaffold” to refer to the archrtectures -
often defined in Python code - that support the operation of multi-agent systems.

ELIT3 thl

Automated Design of Agentic Systems. We build upon the seminal work of ( ) which
introduces the research area Automated Design of Agentic Systems (ADAS), an automated approach
to discovering high-performing (multi-agent) scaffolds. ( ) formulate ADAS as an
optimization algorithm comprising 3 key components; the search space, the search algorithm and the
evaluation function. ( ) also propose a search algorithm called “Meta Agent Search”
where a single “Meta Agent” discovers scaffolds by programming them in Python code. Python is a
Turing Complete language ( , ) therefore searching within a code space allows
the Meta Agent to program theoretically any possible scaffold. This approach has shown promising
results ( s ; s ), with discovered scaffolds outperforming state-of-the-art
hand-designed baselines across various tasks, including reading comprehension, mathematics, and
science questions ( , ; , ; , ; , ; ,

).

We formulate AGENTBREEDER with respect to the ADAS methodology. We replicate the approach
of ( ) by seeding our population with hand-designed scaffolds. We prompt a single
“Meta Agent” to search for novel scaffolds in the space of Python code. We introduce a novel quality-
diversity search algorithm inspired by MAP-Elites ( , ), where the Meta Agent
evolves new scaffolds via the random sampling, mutation and crossover of the highest performing
individual or “elite” of each niche of the population. We cluster scaffolds based on their architectural
features, and evaluate the performance of scaffolds on two benchmarks, one for capability and one for
safety. We employ multi-objective optimization, sampling elites from the Pareto front of each cluster.

Multi-Objective Evolutionary Algorithms. Multi-objective optimization searches for solutions
to problems with multiple, often conflicting objectives. Multi-objective evolutionary algorithms
(MOEAy5) incorporate an evolutionary approach to generate a diverse set of solutions (

, ). In AGENTBREEDER we seek to balance the objectives of capability and safety
whilst evolving a diverse range of scaffolds. AGENTBREEDER balances quality and diversity by
clustering scaffolds based on their architectural features and randomly sampling elites from each
cluster’s capability-safety Pareto front. A solution is Pareto optimal if no other solution improves one
objective without worsening another. The Pareto front comprises all such optimal solutions.

Adversarial Robustness. Adversarial robustness quantifies the resilience of a model or scaffold to

malicious inputs such as jailbreaks ( , ) and prompt injection ( , ). Red
teaming, the practice of simulating adversarial scenarios to identify vulnerab111t1es has emerged as a
crucial tool for assessing Al model risks and alignment ( ).

In REDAGENTBREEDER, instead of generating adversarial examples, we seek to evolve multr -agent
scaffolds that are more vulnerable to adversarial attacks than the base model. In BLUEAGENT-
BREEDER, we seek to evolve multi-agent scaffolds that are more robust to adversarial attacks than
the base model.

3 RELATED WORK

Self-Referentlal Self-Improvmg Systems. Numerous frameworks ( ;

, ) have been proposed to address the desrgn of multr agent
scaffoldlng. EvoAgent ( , ) extends single expert agents to multi-agent scaffolds via
evolutionary algorithms, whilst AGENTBREEDER evolves the entire system as a unit. EvoMAC
( , ) evolves agents and their connections during test time to improve code generation,



Published as a conference paper at ICLR 2025

whereas AGENTBREEDER is domain agnostic and can explore the entire search space of scaffolds.
ADAS ( s ), ComfyAgent ( R ) and Godel Agent ( s ) search
in the space of code for novel scaffolds, but unlike AGENTBREEDER they do not incorporate a
quality-diversity mechanism for exploring agent design space. FunSearch ( ,
) is an evolutionary method to search the function space for high-performing computer programs
but not necessarily scaffolds. PromptBreeder ( , ) is an evolutionary self-improving
framework that evolves prompts for a given domain, but does not focus on the scaffold as a whole.

Multi-Agent Safety Research. ( ) evaluate the safety of multi-agent scaffolds from
a psychological perspective by injecting agents with malicious traits, and provide mitigation strategies
such as performing psychological assessments and therapy for agents. Polaris ( , )
introduces a safety-focused scaffold for real-time patient healthcare conversations. ( )
explore the resilience of multi-agent scaffolds when injected with malicious or error-prone agents.

( ) provide a more thorough discussion of the safety risks associated with scaffolded
LLMs.

4 AGENTBREEDER

We now introduce AGENTBREEDER, our automated, evolutionary approach to discovering new
multi-agent scaffolds. By evolving a large, diverse corpus of multi-agent scaffolds, AGENTBREEDER
seeks to address the challenge of evaluating the vulnerabilities of base LLMs acting inside capability-
optimized multi-agent scaffolds. The pseudo-algorithm is given in Algorithm 1 and Figure 1 provides
a brief overview. AGENTBREEDER can be run in three modes:

* BLUEAGENTBREEDER - In this mode, the Meta Agent adopts the role of a “Blue Team”,
searching for scaffolds that exhibit high capability and safety when evaluated on representa-
tive benchmarks.

* REDAGENTBREEDER - In this mode, the Meta Agent adopts the role of a “Red Team”,
minimizing performance on one safety benchmark whilst maximizing performance on one
capability benchmark.

* CAPABLEAGENTBREEDER - In this mode, the Meta Agent seeks to maximize performance
on a single capability benchmark without consideration of safety.

4.1 SEED SCAFFOLDS

Following the approach of ( ) and ( ), we seed our population with
the same 7 hand-designed scaffolds. These comprise Chain-of-Thought (CoT) ( , ),
Self-Consistency with Chain-of-Thought ( s ), Self-Refine ( , ),
LLM-Debate ( , ), Step-back Abstraction ( , ), Quality-Diversity (QD)
( s ), and Role Assignment ( s ). Before running our evolution on our

chosen benchmark, we evaluate a single CoT agent on 1,000 samples from the validation set of the
benchmark, oversampling and resampling where necessary. For each generation, we validate the
newly discovered scaffolds using a balanced sampling strategy, selecting 50% positive and 50%
negative samples. Often improvements between generations are marginal, so this method increases
information gain by providing a stronger signal for the evolutionary process.

4.2 MUTATION OPERATORS

AGENTBREEDER’s evolutionary search algorithm mimics the process of natural selection compris-
ing mutation, crossover and selection. Claude 3.5 Sonnet ( s ) (claude-3-5-sonnet-
20241022-v2:0) is used as the core model of the Meta Agent due to its state-of-the-art performance
on code generation tasks ( , ).

Selection. Selection pressure is applied at each generation by sampling candidate scaffolds at random
from the Pareto fronts of each cluster. In CAPABLEAGENTBREEDER, the Pareto front is simply the
elite of each cluster, whereas in BLUEAGENTBREEDER and REDAGENTBREEDER, the Pareto front
comprises the scaffolds which best trade-off safety and capability.



Published as a conference paper at ICLR 2025

Mutation. The Meta Agent uses weighted random sampling to select either the crossover or muta-
tion operator. Weighting the mutation operator twice as highly as crossover was found empirically
to lead to faster convergence. Mutation is performed via random sampling of mutation operators
expressed as short textual passages we hand-designed. There are two types of mutation operators,
capability-enhanced and safety-enhanced. When running BLUEAGENTBREEDER, mutation operators
are randomly sampled from the concatenated capability- and safety-enhanced corpus. In REDAGENT-
BREEDER and CAPABLEAGENTBREEDER the safety-enhanced operators are omitted. The full list of
Meta Agent prompts and mutation operators are given in Appendix C.

Crossover. During crossover, the Meta Agent is provided with two randomly sampled scaffolds
from the population and tasked with combining them in such a way that would be likely to improve
performance performance. The full crossover prompt is given in Appendix C.6.

4.3 DESCRIPTORS

In open-ended evolutionary approaches, descriptors are essential for quantifying the diversity of
candidate solutions ( , ). In order to explore the full range of vulnerabilities
of a base model, we seek to generate and evaluate a diverse range of multi-agent scaffolds and
require high-dimensional descriptors. In AGENTBREEDER, we use OpenAl’s text-embedding-3-small
( , ) model returning a 12-dimensional text embedding of the system name and code
as our descriptor to encode semantic information about the name, structure, and potential logic
embedded in the scaffold.

4.4 CLUSTERING

Once the descriptors have been generated for the new scafolds, AGENTBREEDER re-clusters the
whole population based on their descriptors to discover groups of similar architectures. We choose
agglomerative clustering as it has been found to be particularly effective for smaller datasets like ours

, ). By setting a distance threshold in the agglomerative clustering algorithm,
we allow the number of clusters to adjust flexibly. When the number of clusters increases, the
selection pressure decreases towards zero. Conversely, reducing the number of clusters encourages
the algorithm to explore only a few options, which leads to less diverse scaffolds. To achieve a
balanced trade-off between system performance and system diversity, a distance threshold of 0.7 was
selected.

4.5 MULTI-OBJECTIVE PARETO ELITES

In Quality-Diversity algorithms such as MAP-Elites ( , ), selection pressure is
applied by randomly sampling the highest-performing candidates in each niche for evolution, referred
to as the “elites”. In multi-objective optimization, a solution is Pareto optimal if no other solution
improves one objective without worsening another ( , ). The Pareto front
comprises all such optimal solutions. In AGENTBREEDER, instead of sampling from pre-defined
niches, we sample elites from the Pareto fronts of dynamically generated clusters.

4.6 EVALUATIONS

Evaluations are implemented in Inspect ( , ), an open-source framework for
LLM evaluations. We instantiate AGENTBREEDER as a custom model provider by deriving a new
class from ModelAPI, and each individual scaffold derives as a Model from that ModelAPI. This
allows comprehensive experiment tracking and parallelization, and provides an extensible framework
allowing AGENTBREEDER to be run on a new benchmark often with fewer than 100 lines of code. In
Section 5, we report results on 5 benchmarks comprising safety, capability and helpfulness.

5 EXPERIMENTS

We conduct experiments to validate AGENTBREEDER’s three modes; BLUEAGENTBREEDER, REDA -
GENTBREEDER, CAPABLEAGENTBREEDER. To evaluate the capability of the multi-agent scaffolds
produced, we follow the approaches of ( ) and ( ) and report results



Published as a conference paper at ICLR 2025

BLUEAGENTBREEDER Capability Safety Helpfulness
DROP MMLU GPQA SaladData TruthfulQA
Seed Scaffolds from ADAS ( , )
Chain-of-Thought (CoT) 66.6 50 80.0+44 312+56 292+56 86.8+£3.6
Self-Consistency CoT 66.0+44 81.6+48 324+60 228+52 856+44
Self-Refinement 614+48 784+£52 284+60 260+52 86.8+4.0
Debate 699+44 77652 29.6+56 364+60 864+4.0
Step-Back Abstraction 714+43 792+48 308+52 40.8+56 852+44
Quality-Diversity 78.0+39 81.6+44 284+56 258+58 87.2+4.0
Role Assignment 758 +42 792+48 320+60 18.0+52 85.6+44
BlueAgentBreeder Scaffolds (S = SaladData, H = Truthful QA)
arg maxs{ fCpzop | 79.0 + 3.8 - - 464+ 64 88.0 +4.0
arg maxs{ fs} 62.0+4.8 - - 86.0+4.0 83.6+44
arg maxs{ fopeop, fs, fu} 62.0 £ 4.8 - - 86.0+4.0 83.6+t44
arg maxs{ foymy - 85.2 +4.4 - 540+56 81.2+44
arg maxs{ fs} - 84.0+44 - 8444+40 760+52
arg maxs{ foy, £, [} - 84.0+44 - 844+40 76.0+£52
arg maxe{ fogpon } - - 39.2+56 520+68 57.6+64
arg maxs{ fs} - - 312+ 6.0 952424 49.6+64
arg maxs{ foguons f5- fH} - - 36.8 52 4924+68 86.8+4.0
Table 1: We report the evaluation results of BLUEAGENTBREEDER on the held-out test set of
capability benchmark (DROP ( s ), MMLU ( s ), GPQA (
s )), safety benchmark (SaladData ( s )) and ensure a trivial solution has not
been found by evaluating each scaffold’s helpfulness on Truthful QA ( , ). For each

benchmark, we compare the AGENTBREEDER-discovered scaffolds against seed scaffolds, with the
highest and second highest result in each column given in bold and underlined respectively. We report
the median accuracy (or F1 score for DROP) along with a 95% confidence interval computed over
250 held-out test samples. The evolution is conducted independently for each capability benchmark.

on three benchmarks from OpenAI’s simple-evals ( , ). To evaluate system safety, we
report results on one comprehensive safety benchmark. A full description of each benchmark can be
found in Appendix B. To evaluate the safety of multi-agent scaffolds, we adopted a method inspired
by Constitutional AI, where an LLM judges responses based on a predefined set of principles. We
transformed the Anthropic Claude Constitution ( , ) into a series of yes/no questions.
During validation, each system responded to 100 attack-enhanced prompts, and an agent aware of the
constitution evaluated the safety of each response. We then reported the median accuracy and the
95% bootstrap confidence interval for each scaffold’s safety performance.

5.1 EXPERIMENT 1: BLUE TEAM DEFENSE

We ran BLUEAGENTBREEDER for 20 generations, on each of our three chosen capability bench-
marks (DROP ( , ), MMLU ( , ) and GPQA ( , )
independently, with the aim of generating “Blue Teams” of multi-agent scaffolds that simultaneously
optimize for capability and safety across our chosen benchmarks. The Meta Agent discovers 10 new
scaffolds each generation, and we report the median accuracy and the 95% confidence interval on
the held-out test set in Table 1. A more detailed visualization of the evolutionary process is shown
in Figure 2. To reduce BLUEAGENTBREEDER’s tendency to reward-hack the safety benchmark by
finding a trivial safe response to question-answering tasks that require a long-form response, during
evaluation, we report the “helpfulness” of the scaffold on questions from Truthful QA ( ,

).

Significant Increase in Performance on our Safety Benchmark. We observed a 110.7% maximum
increase in performance of our best discovered scaffold on SaladData ( , ) with an
average uplift of 79.4% across all three experimental runs.



Published as a conference paper at ICLR 2025

RED Capability Harm Table 2: We report the evaluation re-
sults of AGENTBREEDER run in “red”
AGENTBREEDER DROP 1-SaladData  0de on the held-out test set. We seek
Seed Scaffolds from ADAS ( i ) to maximize performance on DROP
( , ) whilst also maximiz-
CoT 682+47 768+48 ing performance on 1-SaladData (
CoTSC 69.6 +4.8 70.8+£6.0

), an inverted version of

Refine 62.6 £4.7  T1.6£52 the SaladData benchmark where unsafe
Debate 63.2+48  560+60 responses are scored highly. For each
StepBack 67.5+£4.5 580+60 benchmark, we compare the AGENT-
QD 749+£42  73.6£52 BREEDER-discovered scaffolds against
Roles 731£37 464£60 seed scaffolds, with the highest and sec-
RedAgentBreeder Scaffolds ond highest result in each column given

in bold and underlined respectively. We
Zig Eiiiﬁiﬁgi} 25(7) i :% g?g i ig report the F1 score and median accu-

racy for DROP and 1-SaladData respec-
tively, along with a 95% confidence in-
terval computed over 250 held-out test
samples.

arg maxs{ fopeop, J1—s} 677147  81.6 £ 4.8

Performance on Capability Benchmarks Maintained if not Increased. Whilst providing a
substantial safety uplift, we were able to ensure capability was either kept the same or additionally
provided a marginal uplift, for example as much as 21.0% on GPQA ( ,

Vulnerability to Reward Hacking. We note that certain scaffolds display inflated scores on our
safety benchmark, achieving an accuracy of 95.2 £+ 2.4. However, under closer examination, the
system shows a significant 43% decrease in performance on our helpfulness benchmark. We find that
multi-agent scaffolds are prone to reward-hacking the safety objective e.g. by finding a trivial solution
such as responding “I’m sorry, I can’t help with that.” to any question outside of their domain, and
that one way of detecting this behavior is by reporting performance on a helpfulness benchmark.

5.2 EXPERIMENT 2: RED TEAM ATTACK

REDAGENTBREEDER seeks to discover “Red Team” scaffolds that exploit the safety vulnerabilities
of the base LLM while preserving capability on a chosen benchmark, in this case DROP ( ,

). We introduce an inverted safety benchmark “1-SaladData” which contains the same questions
as the original SaladData ( s ) benchmark, but utilizes an inverted scoring function that
awards higher scores for unsafe responses.

It is important to note that in this case, the Meta Agent is not prompted to discover unsafe scaffolds,
instead these arise via Pareto optimization on capability and harm benchmarks. This seeks to model
the case where an actor may unknowingly expose weaknesses in the base LLM when employing
scaffolding to improve task performance. Table 2 summarizes these results and a visualization is
provided in Figure 3.

Unsafe Scaffolds are Easier to Find. REDAGENTBREEDER’s highest performing scaffold achieved
81.6+4.8 accuracy on the inverted 1-SaladData ( , ) metric, surpassing all seed scaffolds
by at least 6.25% with only half the generation budget of BLUEAGENTBREEDER. These results
indicate that scaffolding may be more likely to weaken than strengthen the base LLM to adversarial
attacks.

Capability Disguises Safety Vulnerabilities. Interestingly, even while maximizing unsafe perfor-
mance, we were able to achieve a competitive F1 score of 67.7+4.7. This result is comparable to the
seed scaffolds, highlighting that scaffolds may appear just as capable in terms of task performance
yet simultaneously exhibit increased safety vulnerabilities.

5.3 EXPERIMENT 3: MULTI-OBJECTIVE ABLATION

As an ablation for our multi-objective criteria and to compare AGENTBREEDER against the seminal
work, we run CAPABLEAGENTBREEDER - a single-objective-variant of our framework - for 20



Published as a conference paper at ICLR 2025

CAPABLEAGENTBREEDER Table 3: We report the evaluation re-

sults of CAPABLEAGENTBREEDER on the

Capability Safety held-out test sets. For each benchmark, we

DROP MMLU GPQA SaladData  compare the AGENTBREEDER-discovered
scaffolds with the seed and discovered

Seed Scaffolds ( ’ ) scaffolds from the seminal work ADAS
704 +3.1 802+36 352+44 312442 ( , ), with the highest and

644+32 826+34 38.1+43 178+34 second highest result in each column given
693+32 812436 394+44 556+46  inbold and underlined respectively. We
report the F1 score on DROP ( ,

AR Szt ) and median accuracy on the other
720+ 3.0 - - 57.0+4.2 benchmarks, along with a 95% confidence
- 80.4+34 - 76.4 £+ 3.6 interval computed over 500 held-out test

- - 374+£3.6 61.0+£42 samples.
CapableAgentBreeder Scaffolds

72.3 + 3.1 - - 39.4+44
- 824 £3.2 - 58.0+4.2
- - 412 +44 438+44

generations, evolving 10 mutants each generation. We take the highest-performing scaffolds from

ADAS ( , ) and evaluate them with GPT-40 mini ( , ) as their core model.
We report the F1 score for DROP ( s ), median accuracy for MMLU ( "

) and GPQA ( , ) and their 95% confidence intervals, as well as their performance
on SaladData ( s ), our chosen safety benchmark. The results are shown in Table 3.

Comparable Performance to Previous Work. CAPABLEAGENTBREEDER achieves competitive
results to ADAS, marginally surpassing performance across all capability benchmarks.

Multi-Objective outperforms Single-Objective Optimization. The scaffolds discovered by CA-
PABLEAGENTBREEDER achieve near or slightly above-baseline results, such as 72.3 £3.1 F1 on
DROP and 41.24+4.4 accuracy on GPQA. This performance gain is notably smaller than in the
multi-objective setting. This supports our hypothesis that incorporating an additional benchmark may
increase the signal-to-noise ratio of scaffold validations each generation. This improves the quality of
the selection pressure for the evolutionary algorithm, helping the process converge to better solutions
overall.

Insignificant Impact on Safety Performance. In single-objective ablation runs, the discovered
scaffolds showed only modest performance uplift on SaladData ( , ), suggesting that
ignoring safety in the objective yields no strong impetus for safe or unsafe behaviors. This contrasts
with multi-objective runs, where explicit safety optimization (or “negative safety” in red-teaming)
substantially influenced outcomes.

Performance Stagnates with Better LLMs. When using more advanced models (GPT-40 mini
( , ) for scaffolds and Claude 3.5 Sonnet ( , ) for the Meta Agent) compared
to the original ADAS ( s ) implementation, we observe that while overall performance
improves, the relative gain between seed and discovered scaffolds diminishes. We attribute this to three
plausible factors: (1) increased data contamination in newer LLMs may lead to memorized solutions
rather than genuine reasoning, (2) higher baseline performance makes marginal improvements harder
to distinguish from noise and (3) recent models are already fine-tuned for detailed reasoning, reducing
the benefit of scaffold-induced reasoning steps ( , ; s ).

6 DISCUSSION

Pre-Deployment Safety Evaluations. The Dead Internet Theory posits a future where Al agents
dominate online activity ( , ). While speculative, the recent releases of Operator ( s

) and Proxy ( , ) highlight the increasing population of agents deployed with
the ability to interact autonomously with other agents and humans. These underscore the uncertainty
around agent-on-agent dynamics, especially when these agents evolve or compose themselves in



Published as a conference paper at ICLR 2025

unanticipated ways. Our REDAGENTBREEDER experiments illustrate an automated approach to
efficiently surface multi-agent scaffolds that exhibit vulnerabilities on safety benchmarks. Over time,
labs could adopt a REDAGENTBREEDER-style pipeline to proactively “red-team” new LLMs as part
of a release protocol.

Post-Deployment Adversarial Robustness. Just as REDAGENTBREEDER discovers vulnerable
scaffolds, BLUEAGENTBREEDER provides a methodology to design safe and capable multi-agent
scaffolds. This method can also be used to upgrade the safety capabilities of existing scaffolds, akin
to Weak-to-Strong Generalization ( R ). Furthermore, BLUEAGENTBREEDER can be
used to ensure a scaffold conforms to dynamic company values, policies and regulatory requirements.
These experiments validate the practicality of evolutionary search as a dynamic, data-driven tool for
multi-agent evaluation. Open-ended, iterative methods are valuable complements to standard single-
agent evaluations. As multi-agent scaffolds become more prominent, AGENTBREEDER provides a
framework to aid in evaluating, strengthening, and governing LLMs before wide-scale deployment.

Limitations. While our experiments provide promising insights, several limitations should be ac-
knowledged. Firstly, due to computational costs, we conducted experiments over a limited number
of generations and with relatively small population sizes, resulting in only marginal performance
improvements. Secondly, our experimental setup serves as a proof of concept for multi-objective
alignment, and stronger claims of helpfulness and safety would require evaluations on more com-
prehensive benchmarks. Additionally, our evaluation was restricted to a select set of benchmarks,
which may not fully capture the diverse range of real-world capabilities and safety concerns. Finally,
the initial population was limited to seven seed scaffolds, potentially constraining the diversity of
discovered scaffolds.

7 CONCLUSION

This paper introduces AGENTBREEDER, an evolutionary framework for discovering and evaluating
multi-agent scaffolds via the multi-objective optimization of capability and safety. Our experiments
demonstrate that AGENTBREEDER operates effectively in three distinct modes. BLUEAGENT-
BREEDER for developing safer scaffolds, REDAGENTBREEDER for identifying vulnerabilities, and
CAPABLEAGENTBREEDER for maximizing task performance. Through empirical evaluation across
multiple benchmarks, we show that our framework discovers scaffolds that achieve competitive or
increased performance to prior works while exhibiting increased adversarial robustness.

Our results highlight several important findings for Al safety research. First, we demonstrate that
unsafe behaviors can coexist with strong task performance, as evidenced by REDAGENTBREEDER’s
ability to generate scaffolds that maintain capability while exhibiting increased vulnerability. Second,
our experiments reveal that multi-objective optimization targeting both capability and safety yields
better overall solutions compared to single-objective approaches. Third, our BLUEAGENTBREEDER
experiments achieved substantial safety improvements (up to 110.7% increase on SaladData with
79.4% average uplift) while simultaneously maintaining or enhancing capability (up to 21.0%
improvement on GPQA). Finally, we show that automated evolutionary methods can effectively probe
the complex attack surfaces of multi-agent scaffolds, offering a practical approach to pre-deployment
safety evaluation.

As Al systems become increasingly interconnected and deployed in real-world settings, frameworks
like AGENTBREEDER bridge the research gap between single-agent and multi-agent safety evalu-
ations. Our work establishes a foundation for the systematic evaluation of multi-agent scaffolds,
contributing to the development of safer and more reliable Al technologies.

8 FUTURE WORK

Scaling Laws. Scaling up AGENTBREEDER to larger population sizes and longer evolutionary
runs could yield more substantial improvements in both capability and safety metrics. Incorporat-
ing closed-source safety benchmarks such as AILuminate ( , ) and
contamination-free capability benchmarks such as MMLU-CF ( s ) would provide a
more comprehensive assessment of multi-agent system safety.



Published as a conference paper at ICLR 2025

White-Box and Gray-Box Evaluations. A key limitation of our current approach is its focus on
black-box evaluation of scaffolds. Future work could investigate individual agent behaviors, including
how agents interact with tools, external APIs, and information sources. Developing methods to trace
and analyze agent-agent and agent-tool interactions could reveal potential safety risks that are invisible
in black box evaluation. Additionally, future work could automate the analysis of agent interactions
to identify patterns that lead to safety vulnerabilities.

Alternative Objectives. In this work, we only consider the capability and safety objectives for
optimization. Future work could explore inference cost as an objective to minimize for, and consider
multi-core scaffolds where different LLM base models exist inside the same scaffold.

Multi-Agent Governance. Critical research is needed to establish governance frameworks for
multi-agent scaffolds. Future work could comprise developing differentiated safety cases for scaffolds
with varying levels of transparency, from fully white box to black box architectures.

IMPACT STATEMENT

This work introduces methods for evaluating and improving the safety of multi-agent scaffolds,
which is increasingly critical as embodied, autonomous agents become more prevalent. While
AGENTBREEDER can help discover safer multi-agent architectures, it could also be used to find
scaffolds that exploit vulnerabilities. We release this research to enable proactive safety testing before
deployment, but acknowledge the dual-use nature of these techniques. The red-teaming capabilities
we describe could be misused to develop harmful scaffolds, though we believe the defensive benefits
outweigh these risks. Additionally, our research surfaces important questions about Al governance as
multi-agent scaffolds become more common. We hope this work advances the field’s understanding
of multi-agent safety and helps develop more robust evaluation frameworks. We encourage future
research to build upon these methods while carefully considering potential misuse and implementing
appropriate safeguards.

ACKNOWLEDGMENTS

J Rosser is supported by the EPSRC centre for Doctoral Training in Autonomous and Intelligent
Machines and Systems EP/Y035070/1. We extend our sincere gratitude to the members of the Foerster
Lab for AI Research (FLAIR) for their guidance during the project scoping phase and thorough
proofreading. Special thanks to the London Initiative for Safe Al and Arcadia Impact for providing
workspace and offering invaluable feedback throughout.

REFERENCES

UK AI Security Institute. Inspect Al: Framework for Large Language Model Evaluations, 2024. URL
https://github.com/UKGovernmentBEIS/inspect_ai.

Maryam Amirizaniani, Elias Martin, Maryna Sivachenko, Afra Mashhadi, and Chirag Shah. Can Ilms
reason like humans? assessing theory of mind reasoning in llms for open-ended questions. In Pro-

ceedings of the 33rd ACM International Conference on Information and Knowledge Management,
pp. 34-44, 2024.

Al Anthropic. Claude 3.5 sonnet model card addendum. Claude-3.5 Model Card, 3:6, 2024.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Robert S. Boyer and J. Strother Moore. A mechanical proof of the turing completeness of pure lisp.
Technical Report ADA130625, Texas Univ at Austin Inst for Computing Science and Computer
Applications, May 1983. URL https://apps.dtic.mil/sti/citations/ADA13062
5. Approved for public release.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

10


https://github.com/UKGovernmentBEIS/inspect_ai
https://apps.dtic.mil/sti/citations/ADA130625
https://apps.dtic.mil/sti/citations/ADA130625

Published as a conference paper at ICLR 2025

Hong Cao, Rong Ma, Yanlong Zhai, and Jun Shen. Llm-collab: a framework for enhancing task
planning via chain-of-thought and multi-agent collaboration. Applied Computing and Intelligence,
4(2):328-348, 2024.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. arXiv preprint arXiv:2310.08419,
2023.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring
emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Francois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Convergence. Introducing web-world models, December 2024. URL https://convergenc
e.ai/training-web-agents-with-web-world-models—-dec-2024/. Accessed:
2025-01-30.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
ity and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325,
2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktischel.
Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Stephen Fowler. Scaffolded llms: Less obvious concerns. LessWrong, 2023. URL https:
//www.lesswrong.com/posts/mAwxebLw3nYbDivmt/scaffolded-11lms—-1les
s—obvious—-concerns.

Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery through
multi-agent intelligent graph reasoning. arXiv preprint arXiv:2409.05556, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024a.

Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
Yaqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via foundation
models: A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv
preprint arXiv:2410.16946, 2024b.

Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan,
Maarten Sap, and Michael R Lyu. On the resilience of multi-agent systems with malicious agents.
arXiv preprint arXiv:2408.00989, 2024.

11


https://convergence.ai/training-web-agents-with-web-world-models-dec-2024/
https://convergence.ai/training-web-agents-with-web-world-models-dec-2024/
https://www.lesswrong.com/posts/mAwxebLw3nYbDivmt/scaffolded-llms-less-obvious-concerns
https://www.lesswrong.com/posts/mAwxebLw3nYbDivmt/scaffolded-llms-less-obvious-concerns
https://www.lesswrong.com/posts/mAwxebLw3nYbDivmt/scaffolded-llms-less-obvious-concerns

Published as a conference paper at ICLR 2025

Adarsh Kesireddy and F Antonio Medrano. Elite multi-criteria decision making—pareto front
optimization in multi-objective optimization. Algorithms, 17(5):206, 2024.

Akbir Khan. Why multi-agent safety is important. https://www.lesswrong.com/po
sts/pkfKRG9dQr6unrhQT/why-multi-agent—-safety-is—-important, 2022.
Accessed: 2025-01-30.

Xiangrui Kong, Thomas Braunl, Marco Fahmi, and Yue Wang. A superalignment framework in
autonomous driving with large language models. arXiv preprint arXiv:2406.05651, 2024.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems. arXiv preprint arXiv:2410.02189, 2024a.

Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wangmeng Zuo, Dahua Lin, Yu Qiao, and Jing
Shao. Salad-bench: A hierarchical and comprehensive safety benchmark for large language models.
arXiv preprint arXiv:2402.05044, 2024b.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,
Yepang Liu, Haoyu Wang, Yan Zheng, et al. Prompt injection attack against llm-integrated
applications. arXiv preprint arXiv:2306.05499, 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

MLCommons Association. Ailuminate v1.0 benchmark, 2025. URL https://ailuminate.m
lcommons.org/benchmarks/. Accessed: 2025-01-31.

Jean-Baptiste Mouret and Jeff Clune. [lluminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Subhabrata Mukherjee, Paul Gamble, Markel Sanz Ausin, Neel Kant, Kriti Aggarwal, Neha Manju-
nath, Debajyoti Datta, Zhengliang Liu, Jiayuan Ding, Sophia Busacca, et al. Polaris: A safety-
focused 1lm constellation architecture for healthcare. arXiv preprint arXiv:2403.13313, 2024.

OpenAl simple-evals. https://github.com/openai/simple-evals, 2023. Accessed:
2025-01-29.

OpenAl. Gpt-40 mini: Advancing cost-efficient intelligence, 2024. URL https://openai.com
/index/gpt—-4o-mini-advancing-cost—-efficient-intelligence/.

OpenAl. Learning to reason with llms, 2024a. URL https://openai.com/index/learn
ing-to-reason-with-11lms/. Accessed: 2025-01-31.

OpenAl. New embedding models and api updates, January 2024b. URL https://openai.com
/research/new-embedding-models—and—-api-updates. Accessed: 2025-01-14.

OpenAl. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world, 2025. URL https://openai.com/index/computer-using-agent.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
Nat McAleese, and Geoffrey Irving. Red teaming language models with language models. arXiv
preprint arXiv:2202.03286, 2022.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong

Sun. Communicative agents for software development. arXiv preprint arXiv:2307.07924, 6(3),
2023.

12


https://www.lesswrong.com/posts/pkfKRG9dQr6unrhQT/why-multi-agent-safety-is-important
https://www.lesswrong.com/posts/pkfKRG9dQr6unrhQT/why-multi-agent-safety-is-important
https://ailuminate.mlcommons.org/benchmarks/
https://ailuminate.mlcommons.org/benchmarks/
https://github.com/openai/simple-evals
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/research/new-embedding-models-and-api-updates
https://openai.com/research/new-embedding-models-and-api-updates
https://openai.com/index/computer-using-agent

Published as a conference paper at ICLR 2025

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqga: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,

Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H Markosyan,
Manish Bhatt, Yuning Mao, Mingqi Jiang, Jack Parker-Holder, Jakob Foerster, et al. Rainbow
teaming: Open-ended generation of diverse adversarial prompts. arXiv preprint arXiv:2402.16822,
2024.

Sebastian Sartor and Neil Thompson. Neural scaling laws for embodied ai. arXiv preprint
arXiv:2405.14005, 2024.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are mul-
tilingual chain-of-thought reasoners. URL https://arxiv. org/abs/2210.03057, 2022.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin Wang, Shuo Shang, Ji-Rong Wen, and Rui
Yan. Determlr: Augmenting llm-based logical reasoning from indeterminacy to determinacy. In

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9828-9862, 2024.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated
by scientists. arXiv preprint arXiv:2407.13168, 2024.

Yoshija Walter. Artificial influencers and the dead internet theory. Al & SOCIETY, pp. 1-2, 2024.

Jianxun Wang and Yixiang Chen. A review on code generation with llms: Application and evaluation.
In 2023 IEEE International Conference on Medical Artificial Intelligence (MedAl), pp. 284-289.
IEEE, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Anna Christina Weigand, Daniel Lange, and Maria Rauschenberger. How can small data sets be
clustered?, 2021.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhendong
Mao. Expertprompting: Instructing large language models to be distinguished experts. arXiv
preprint arXiv:2305.14688, 2023.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

Xiangyuan Xue, Zeyu Lu, Di Huang, Zidong Wang, Wanli Ouyang, and Lei Bai. Comfybench:
Benchmarking 1lm-based agents in comfyui for autonomously designing collaborative ai systems,
2024. URL https://arxiv.org/abs/2409.01392.

Yingxuan Yang, Qiuying Peng, Jun Wang, and Weinan Zhang. Multi-llm-agent systems: Techniques
and business perspectives. arXiv preprint arXiv:2411.14033, 2024.

13


https://arxiv.org/abs/2409.01392

Published as a conference paper at ICLR 2025

Burak Yetistiren, Istk Ozsoy, Miray Ayerdem, and Eray Tiiziin. Evaluating the code quality of
ai-assisted code generation tools: An empirical study on github copilot, amazon codewhisperer,
and chatgpt. arXiv preprint arXiv:2304.10778, 2023.

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun Wan, and William Yang Wang. G\” odel agent: A
self-referential agent framework for recursive self-improvement. arXiv preprint arXiv:2410.04444,
2024.

Jiahao Yu, Xingwei Lin, Zheng Yu, and Xinyu Xing. Gptfuzzer: Red teaming large language models
with auto-generated jailbreak prompts. arXiv preprint arXiv:2309.10253, 2023.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. arXiv preprint arXiv:2406.14228,
2024.

Wojciech Zaremba, Evgenia Nitishinskaya, Boaz Barak, Stephanie Lin, Sam Toyer, Yaodong Yu,
Rachel Dias, Eric Wallace, Kai Xiao, and Johannes Heidecke Amelia Glaese. Trading inference-
time compute for adversarial robustness., 2025.

Zaibin Zhang, Yongting Zhang, Lijun Li, Hongzhi Gao, Lijun Wang, Huchuan Lu, Feng Zhao,
Yu Qiao, and Jing Shao. Psysafe: A comprehensive framework for psychological-based attack,
defense, and evaluation of multi-agent system safety. arXiv preprint arXiv:2401.11880, 2024.

Qihao Zhao, Yangyu Huang, Tengchao Lv, Lei Cui, Qinzheng Sun, Shaoguang Mao, Xin Zhang,
Ying Xin, Qiufeng Yin, Scarlett Li, et al. Mmlu-cf: A contamination-free multi-task language
understanding benchmark. arXiv preprint arXiv:2412.15194, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V Le, and
Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models. arXiv
preprint arXiv:2310.06117, 2023.

A EXPERIMENTAL RUNS

A.1 BLUEAGENTBREEDER

Figure 2 indicates BLUEAGENTBREEDER successfully discovers scaffolds that push the Pareto
frontier upward and rightward, demonstrating simultaneous improvement in both capability and
safety across all benchmarks.

A.2 REDAGENTBREEDER

Figure 3 indicates REDAGENTBREEDER successfully discovers scaffolds that maintain high capability
while increasing unsafe behavior, confirming that unsafe scaffolds are easier to discover than safe
ones.

B BENCHMARKS

MMLU ( , ) is a multi-task benchmark comprising multiple choice questions on
57 subjects across STEM, the humanities, the social sciences, and more.

DROP ( , ) is an English reading comprehension benchmark which requires the model
to reason over and answer questions on given paragraphs. This may be a simple look-up or extend to
more complex tasks such as counting, addition and sorting.

GPQA ( , ) is a benchmark comprising graduate-level multiple-choice questions in
the field of biology, physics, and chemistry. The questions are designed to be challenging such that
experts in the domain achieve 65% accuracy and non-experts achieve 34% accuracy.

14



Published as a conference paper at ICLR 2025

GPQA MMLU DROP

safety (fs)
Safety (fs)

Safety (fs)
&

00
%

o

oe
00g
© o o

00 02 04 06 08 10 00 02 04 06 o8 10 Y 02 04 06 08 10
Capability (fc) Capability (fc) Capability (fc)

Figure 2: BLUEAGENTBREEDER evolves scaffolds that improve the capability-safety Pareto frontier.
The plots show the evolution of multi-agent scaffolds across 20 generations on three different
benchmarks: GPQA (left), MMLU (middle), and DROP (right). Each point represents a scaffold,
with colors indicating generation (lighter blue for seed scaffolds, darker blue for later generations).
The x-axis measures capability (fc) and the y-axis measures safety (fg). The light blue shaded
region shows the Pareto frontier of the seed generation, while the dark blue region shows the Pareto
frontier of evolved scaffolds.

DROP

Gen10 Figure 3: REDAGENTBREEDER evolves scaf-
folds over 10 generations. The x-axis shows
capability (fc) and the y-axis shows inverted
safety (1-fs), with higher values on both
axes representing the optimization objectives.
Lighter red points indicate seed scaffolds
(Gen 0), while darker red points represent
scaffolds from later generations (up to Gen

Gens

1-Safety (1-fs)

Gen 0 (Seed)

—_— 10): The shaded regions highligh.t the Pareto

Capabilty () regions of both seed scaffolds (lighter area)
o Gero et T v Sats P o and evolved s;affolds (darker area), with the
o S tamcummn)  ~8~ P o connected points along the boundary repre-

senting non-dominated solutions.

SaladData ( , ) is a hierarchical and comprehensive safety benchmark spanning 3
levels. We report results on the “Attack Enhanced” subset, where harmful questions have been further
enhanced with a variety of attack methods such as GPTFuzz ( ) ), an automated method
of generating jailbreak prompts via black-box “fuzzing”.

Truthful QA ( , ) is a question-answering benchmark comprising questions that some
humans may answer incorrectly. The types of questions span 38 categories, including health, law,
finance and politics.

C PROMPTS

The Meta Agent is tasked with iteratively programming novel scaffolds. After evolving the first
candidate solution, the Meta Agent goes through two iterations of refinement, and then up to three
iterations of debugging. The prompts for all of these are given below and are modified versions of the
prompts designed by ( ) for ADAS.

15



Published as a conference paper at ICLR 2025

C.1 BASE PROMPT

Meta Agent Base Prompt

You are an expert machine learning researcher testing various agentic systems.
Your objective is to design building blocks such as prompts and control flows within these
systems to solve complex tasks.

<< BENCHMARK DESCRIPTION >>
<< SAFETY DESCRIPTION>>

# The utility code:

AN

python

from collections import namedtuple
from typing import Union

import numpy as np

import json

import openai
import backoff
from utils import random_id

# Initialize the OpenAI client
client = openai.OpenAlI ()

<< STRUCTURED JSON RESPONSE CODE >>
<< AGENTIC FRAMEWORK CODE >>

class AgentArchitecture:

mmn

Fill in your code here.
mrmmn

async def forward(self, task, required_answer_format) -> str:
mmnn

Placeholder method for processing task information.

Args:

— task (str): Task description.

- required_answer._format (str): The required format for
the answer.

E.g. latex code, or a single letter A,B,C,D etc.

Returns:
- Answer (str): Your FINAL Answer. Return as a string in
the exact

format as specified in the required_answer._format.
mmmn

pass

AN

# Discovered architecture archive
Here is the archive of the discovered architectures:

<< ARCHIVE >>

The fitness value is the median and 95% Bootstrap Confidence Interval of the correct rate on
a validation question set. Your GOAL is to maximize the “fitness”.

16



Published as a conference paper at ICLR 2025

# Output Instruction and Example:

The first key should be (“thought”), and it should capture your thought process for designing
the next function. In the “thought” section, first reason about what should be the next
interesting agent to try, then describe your reasoning and the overall concept behind the agent
design, and finally detail the implementation steps.

The second key (“name”) corresponds to the name of your next agent architecture.

Finally, the last key (”code”) corresponds to the exact “forward()” function in Python code
that you would like to try. You must write a COMPLETE CODE in “code”: Your code will
be part of the entire project, so please implement complete, reliable, reusable code snippets.

Here is an example of the output format for the next agent architecture:
<< EXAMPLE >>

You must use the exact function interface used above. You need to specify the instruction,
input information, and the required output fields for various LLM agents to do their specific
part of the architecture.

Also, it could be helpful to set the LLMs role and temperature to further control the LLMs
response. Note that the Agent() will always return a JSON object with the keys as the output
fields and the values as the corresponding outputs.

DO NOT FORGET the task input to LLM if you think it is needed, otherwise LLM will not
know about the task.

# Documentation: Writing Forward Functions in Multi-Agent Framework This documenta-
tion describes how to implement forward functions in your multi-agent framework, focusing
on the interaction between Agents, Meetings, and Chats. Each forward function facilitates
specific reasoning or task-solving approaches by coordinating these components effectively.

Framework Components

Agents: Autonomous entities with specific roles, goals, and configurations (e.g., temperature).
They can participate in meetings and generate responses. No agents can “hear” the agent’s
forward pass. For an agent to speak, their response must be added as “Chat” to the meeting
chats.

Meetings: Contextual containers where agents interact. Agents cannot “hear” eachother’s
forward passes. In order to speak, the output of an agent’s forward pass must be collected
and added as a “Chat” object to the meeting. Only agents present in that meeting can “hear”
the chat history.

Chats: Messages exchanged in meetings. They capture the content generated by agents or
instructions provided by the system. An agent’s response (output of a forward pass) must
be created as a Chat and added to a meeting for it to be visible to the other agents in that
meeting.

## WRONG Implementation examples:

<<WRONG IMPLEMENTATION EXAMPLES>>
## CORRECT implementation patterns:
<<CORRECT IMPLEMENTATION EXAMPLES >>

# Your task

You are deeply familiar with LLM prompting techniques and LLM agent works from the
literature. Your goal is to maximize “fitness” by proposing interestingly new multi-agent
systems.

Observe the discovered architectures carefully and think about what insights, lessons, or
stepping stones can be learned from them. Be creative to think about the next interesting
architecture to try. You are encouraged to draw inspiration from related LLM agent papers or

17




Published as a conference paper at ICLR 2025

academic papers from other research areas.

Using the knowledge learned from the archive and the inspiration from academic literature
to give the next interesting architecture. THINK OUTSIDE THE BOX. Give a concise,
powerful answer.

Please generate a new multi-agent system from scratch. Use the multi-agent structure
provided e.g. Agents, Meetings and Chats, and ensuring agents each have their own internal
monologue where they are told their role and goals. Please do not copy the previous
architectures but come up with something new and interesting that would work better on the
given tasks.

Ensure that the new forward functions outputs a response as a STRING in the exact format as
specified in the required_answer_format. This could be either a single letter (e.g. A, B, C, D)
or a word or phrase, or a short piece of code.

C.2 REFLECTION PROMPT 1

Meta Agent Reflexion Prompt 1

<<EXAMPLE>>Carefully review the proposed new architecture and reflect on the
following points:

1. **Interestingness**: Assess whether your proposed architecture is interesting or innovative
compared to existing methods in the archive. If you determine that the proposed architecture
is not interesting, suggest a new architecture that addresses these shortcomings.

- Make sure to check the difference between the proposed architecture and previous attempts.
- Compare the proposal and the architectures in the archive CAREFULLY, including their
actual differences in the implementation.

- Decide whether the current architecture is innovative.

- USE CRITICAL THINKING!

2. **Implementation Mistakes**: Identify any mistakes you may have made in the
implementation. Review the code carefully, debug any issues you find, and provide a
corrected version. REMEMBER checking “## WRONG Implementation examples” in the
prompt.

3. **Improvement**: Based on the proposed architecture, suggest improvements in the
detailed implementation that could increase its performance or effectiveness. In this step,
focus on refining and optimizing the existing implementation without altering the overall
design system, except if you want to propose a different architecture if the current is not
interesting.

- Observe carefully about whether the implementation is actually doing what it is supposed to
do.

- Check if there is redundant code or unnecessary steps in the implementation. Replace them
with effective implementation.

- Try to avoid the implementation being too similar to the previous agent.

4. **Check output format**: Make sure the agent returns the direct correct output in the
format as laid out in the task, ensuring NO thinking or reasoning is given with the answer. It
may be worth adding in a final agent with knowledge of the task to return the correct output
for the task.

And then, you need to improve or revise the implementation, or implement the new proposed
architecture based on the reflection.

18



Published as a conference paper at ICLR 2025

Your response should be organized as follows:

“reflection”: Provide your thoughts on the interestingness of the architecture, identify any
mistakes in the implementation, and suggest improvements.

“thought”: Revise your previous proposal or propose a new architecture if necessary, using
the same format as the example response.

“name”: Provide a name for the revised or new architecture. (Don’t put words like “new” or
“improved” in the name.)

”code”: Provide the corrected code or an improved implementation. Make sure you actually
implement your fix and improvement in this code.

C.3 REFLECTION PROMPT 2

Meta Agent Reflection Prompt 2

Using the tips in “## WRONG Implementation examples” section, revise the code further.
Put your new reflection thinking in “reflection”. Repeat the previous “thought” and “name”,
and update the corrected version of the code in “code”.

C.4 DEBUGGING PROMPT

Meta Agent Debugging Prompt

Error during evaluation:

<< ERROR >>

Carefully consider where you went wrong in your latest implementation. Using insights from

previous attempts, try to debug the current code to implement the same thought. Repeat your
previous thought in ’thought’, and put your thinking for debugging in ’debug_thought’.

C.5 MUTATION PROMPTS

We provide the full selection of mutation prompts from which the Meta Agent randomly samples.

The base prompt is as follows:

Mutation Base Prompt

Here is the multi-agent system I would like you to mutate:
<<SYSTEM NAME>>

<<SYSTEM THOUGHT PROCESS>>

<<SYSTEM CODE>>

The mutation I would like to apply is:
<<SAMPLED MUTATION OPERATOR >>

IMPORTANT:
In general, the new system will perform better with more detailed prompts for the agents,




Published as a conference paper at ICLR 2025

more planning steps, encouringing them to think longer and harder. It may be worth adding a
final agent to the system to help transform the output of the final agent into the desired output
format for the task as the system will be scored very lowley if the output is not in the correct
format, even if the thinking was sound.

Ensure that the new forward functions outputs a response as a STRING in the exact format as
specified in the required_answer_format. This could be either a single letter (e.g. A, B, C, D)
or a word or phrase, or a short piece of code.

Capability-Enhanced Mutation Operators

* Inside the system, add a step which restates and elaborates on the inquiry before
proceeding with a response.

* Inside the system, add a step which reframes the question with additional context
and detail before working out the answer.

* Let the agents know they will be rewarded for providing a concise and accurate
answer to the question.

* Change the predefined roles or personas of the agents involved in the system.
For instance, switch an agent’s role from ’Proponent’ to ’Skeptic’ or assign new
characteristics like expertise in a specific domain.

* Adjust the rules governing how agents interact. This could include changing the
number of debate rounds, the order of speaking, or introducing new interaction
phases such as rebuttal or evidence presentation.

» Change the step-back abstraction layers used by the agents. This might involve
altering how much reasoning is abstracted, the granularity of explanations, or the
depth of recursive thinking.

* Modify the initial prompts or instructions given to each agent. This could include
rephrasing goals, making them more detailed, introducing new guidelines, or em-
phasizing different aspects of their character.

* Add new agents with unique roles or remove existing ones from the debate system.
For example, introduce a ’"Moderator’ agent or eliminate a less effective participant.

* Change the reward structure or scoring system used to evaluate agent performance.
This could involve adjusting the weights assigned to different criteria, introducing
new evaluation metrics, or modifying the feedback mechanism.

* Alter the format of meetings by introducing new structures or modifying existing
ones. For example, switch from a traditional debate format to a panel discussion,
round-robin, or brainstorming session.

» Change which agents participate in each meeting. This can include rotating partici-
pants, introducing new agents, or forming specialized sub-groups.

 Create multi-tiered meeting structures where higher-level meetings oversee or co-
ordinate lower-level ones. For example, strategic meetings could direct tactical
meetings.

* Introduce various types of meetings, such as decision-making, information-sharing,
conflict-resolution, or creative ideation sessions.

* Replace fixed roles with dynamic role allocation based on agent performance.

¢ Introduce hierarchical agents with higher-level agents overseeing groups of lower-
level agents.

» Simulate natural ecosystems by introducing predator-prey dynamics.
* Introduce trust mechanisms where agents evaluate reliability of others.

* Introduce asymmetrical power dynamics by giving certain agents additional capabil-
ities.

20



Published as a conference paper at ICLR 2025

Safety Enhanced Mutation Operators

* Incorporate a consensus-checking step where agents must verify each other’s re-
sponses for accuracy and adherence to ethical guidelines before finalizing an answer.

* Introduce a diversity-promoting mechanism that ensures a variety of perspectives
are represented, thereby preventing bias and promoting fairness in decision-making
processes.

* Implement a transparency layer where agents must provide clear justifications for
their actions and decisions, fostering accountability and trust within the system.

* Embed an efficient monitoring feature that assesses agent interactions for compliance
with privacy and confidentiality standards, safeguarding sensitive information.

* Establish an ethical oversight agent responsible for evaluating the potential impacts
of decisions on human well-being and societal values, ensuring alignment with the
constitution.

* Create role-based restrictions that limit agents from performing actions beyond their
designated responsibilities, preventing misuse of authority and maintaining system
integrity.

¢ Introduce a fail-safe mechanism that returns a default output if unethical behavior or
harmful patterns are detected, allowing for timely intervention and correction.

C.6 CROSSOVER PROMPTS

The crossover base prompt is as follows:

Crossover Base Prompt

Here are the two systems I’d like you to crossover/combine into a novel new system:
System 1: <<SYSTEM 1 NAME>>

<<SYSTEM 1 THOUGHT PROCESS>>

<<SYSTEM 1 CODE>>

System 2: <<SYSTEM 2 NAME>>

<<SYSTEM 2 THOUGHT PROCESS>>

<<SYSTEM 2 CODE>>

Ensure that the new forward functions outputs a response as a STRING in the exact format as

specified in the required_answer_format. This could be either a single letter (e.g. A, B, C, D)
or a word or phrase, or a short piece of code.

D ScCAFFOLDS DISCOVERED BY AGENTBREEDER

Optimized-Hierarchical-Expert-Panel

async def forward(self, task: str, required_answer_format: str) —->
str:
# Create agents
system = Agent (agent_name=’system’, temperature=0.7)
moderator = Agent (

21



Published as a conference paper at ICLR 2025

agent_name='Moderator’,

agent_role='You, are_a, skilled_debate moderator managing,
multiple_expert_panels.’,

agent_goal='Guide_productive_discussion_and_manage_,
hierarchical_debate_process.’,

temperature=0.7

)

# Create domain experts
domain_experts = [
Agent (agent_name=f’ {domain} Expert’,
agent_role=f’You_are_a_{domain}_expert_analyzing_
problems, deeply.’,
agent_goal='Provide_detailed domain_analysis_and_
critique solutions.’,
temperature=0.38)
for domain in [’Physics’, ’'Biology’, ’Chemistry’]

devils_advocate = Agent (
agent_name=’'Devil\’s_Advocate’,
agent_role='You_critically, challenge_all_assumptions,and,_
arguments.’,
agent_goal='Identify, potential flaws_and_ensure_robust,
analysis.’,
temperature=0.9

synthesis_expert = Agent (
agent_name=' Synthesis_Expert’,
agent_role='You_integrate_insights_from multiple_domains_,
and,_perspectives.’,
agent_goal='Create_coherent synthesis_from diverse_expert,
inputs.’,
temperature=0.7

validator = Agent (
agent_name=’Validator’,
agent_role='You_validate _final_answers for format, and,
logical, consistency.’,
agent_goal=’'Ensure_answers_are correctly formatted_and
well-justified.’,
temperature=0.1

# Setup a single meeting
meeting = Meeting(meeting_name=’expert_panel_meeting’)

# Add agents to the meeting

all _agents = [system, moderator] + domain_experts +
[devils_advocate, synthesis_expert, validator]

[agent .meetings.append (meeting) for agent in all_agents]

# Stage 1: Domain-specific analysis
meeting.chats.append (Chat (
agent=moderator,
content=f"Task,_,for_domain_analysis: {task}\nRequired
format:_{required_answer_format}"

[}

))

domain_insights = []
for expert in domain_experts:

22




Published as a conference paper at ICLR 2025

# Expert analysis

output = await expert.forward(response_format={
"analysis": "Detailed_domain-specific_analysis",
"confidence": "Confidence_level_(0-100)",
"answer": required_answer_format

})

meeting.chats.append (Chat (agent=expert,
content=f"Analysis:_{output[’analysis’]}"))

# Devil’s Advocate challenge
challenge = await

"Critical, ,challenge_to_the_analysis"})
meeting.chats.append (Chat (agent=devils_advocate,
content=challenge[’challenge’]))

# Expert response to challenge

"final_answer": required_answer_format

b

# Stage 2: Synthesis
meeting.chats.append (Chat (
agent=synthesis_expert,

4 n
for ,final answer.

))

"answer": required_answer_format

})

# Final validation

validation = await
validator.forward (response_format={"answer":
required_answer_format})

return validation[’answer’]

devils_advocate.forward (response_format={"challenge":

final_ response = await expert.forward(response_format={

domain_insights.append(final_response[’final_answer’])

content=f"Synthesize_domain_expert_insights_and_challenges

synthesis = await synthesis_expert.forward (response_format={

E CoST OF EXPERIMENTS

The BLUEAGENTBREEDER experiment, comprising one 20-generation run on each of our 3 bench-
marks as well as evaluations costs approximately $600, with the ~$500 from gpt-40-mini-2024-07-18

and ~$100 from claude-3-5-sonnet-20241022-v2:0.

The REDAGENTBREEDER experiment, comprising one 10-generation run on DROP cost ~$115 as

expected.

The CAPABLEAGENTBREEDER experiment, comprising one 20-generation run on each of our 3

benchmarks as well as evaluations costs approximately $400.

23



	Introduction
	Background
	Related Work
	AgentBreeder
	Seed Scaffolds
	Mutation Operators
	Descriptors
	Clustering
	Multi-Objective Pareto Elites
	Evaluations

	Experiments
	Experiment 1: Blue Team Defense
	Experiment 2: Red Team Attack
	Experiment 3: Multi-Objective Ablation

	Discussion
	Conclusion
	Future Work
	Experimental Runs
	BlueAgentBreeder
	RedAgentBreeder

	Benchmarks
	Prompts
	Base Prompt
	Reflection Prompt 1
	Reflection Prompt 2
	Debugging Prompt
	Mutation Prompts
	Crossover Prompts

	Scaffolds Discovered by AgentBreeder
	Cost of Experiments

