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Abstract
Large Language Models (LLMs) have shown001
promising in-context learning abilities. How-002
ever, conventional in-context learning ap-003
proaches are often impeded by length limita-004
tions of transformer architecture, which pose005
challenges when attempting to effectively in-006
tegrate supervision from a substantial num-007
ber of demonstration examples. In this paper,008
we introduce a novel framework, called Naive009
Bayes-based Context Extension (NBCE), to010
enable existing LLMs to significantly expand011
their context size without the necessity for012
fine-tuning or reliance on specific model archi-013
tectures, while maintaining linear efficiency.014
NBCE initially splits the context into equal-015
sized windows fitting the target LLM’s max-016
imum length. Then, it introduces a voting017
mechanism to select the most relevant win-018
dow, regarded as the posterior context. Fi-019
nally, it employs Bayes’ theorem to gen-020
erate the test task. Our experimental re-021
sults demonstrate that NBCE substantially en-022
hances performance, particularly as the num-023
ber of demonstration examples increases, con-024
sistently outperforming alternative methods.025
The NBCE code will be made publicly acces-026
sible.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated remarkable capabilities in in-context learn-030

ing (ICL), a paradigm that enables them to excel031

in various unseen tasks based on task examples032

or instructions within their context (Han et al.,033

2021; Qiu et al., 2020). Unlike traditional fine-034

tuning methods, ICL leverages LLMs for down-035

stream tasks solely through inference, eliminating036

the need for parameter updates and making it com-037

putationally efficient, bringing us closer to the goal038

of general AI. This approach has gained promi-039

nence as LLMs continue to grow in scale (Brown040

et al., 2020; Zhang et al., 2022a; Chowdhery et al.,041

2022).042

The 2048-token context limit in popular LLMs 043

like GPT-3 poses challenges for scaling up ICL 044

with more demonstration examples in ICL, due to 045

architectural constraints and computational com- 046

plexity. Recent studies (Garg et al., 2022; Min et al., 047

2022b; Chen et al., 2022) improve ICL through 048

meta-learning and fine-tuning on downstream tasks, 049

but the limited diversity of annotated tasks and bi- 050

ases hinder generalization. Another line of research 051

has explored various approaches to retraining long- 052

range language models with extrapolation, extend- 053

ing them to 128 times the limit of existing LLMs 054

(Li et al., 2023; Gu et al., 2023). However, these 055

approaches require additional training over several 056

steps, which can be time-consuming. Recently, 057

Ratner et al. (2023) have introduced the concept of 058

structured prompting that encodes demonstration 059

examples individually with a designed position em- 060

beddings. Building upon this concept, Hao et al. 061

(2022) proposed a mechanism in which these exam- 062

ples are collectively attended to by the test example 063

through a scaled attention mechanism. Addressing 064

this issue is crucial for leveraging ICL effectively, 065

especially in scenarios with ample examples. 066

In this paper, we introduce a novel frame- 067

work called Naive Bayes-based Context Extension 068

(NBCE) for large language models to significantly 069

expand the number of demonstrations by orders of 070

magnitude while greatly enhancing stability. In- 071

stead of simply merging all demonstrations, we 072

partition the vast number of demonstrations into 073

multiple groups, each independently processed by 074

the language model. This approach ensures that the 075

encoding complexity scales linearly with the num- 076

ber of groups, avoiding the quadratic complexity 077

associated with considering all examples simul- 078

taneously. Following Ratner et al. (2023); Hao 079

et al. (2022), we align the position embeddings of 080

grouped prompts to the right, placing them next to 081

the test input. Subsequently, we leverage the Naive 082

Bayes to encode the input by conditioning it on 083
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these grouped prompts. We conducted experiments084

across various tasks, including text classification,085

multi-choice, and open-ended tasks. NBCE effec-086

tively scales up the number of demonstrations, out-087

performing conventional in-context learning across088

different model sizes and tasks, while also signifi-089

cantly enhancing stability.090

In brief, the contributions can be summarized as091

follows:092

1. We introduce an innovative framework known093

as Naive Bayes-based Context Extension094

(NBCE), designed to substantially increase095

the volume of demonstrations for large lan-096

guage models, thus enhancing stability on a097

significant scale.098

2. We provide detailed technical insights to en-099

able context expending of in-context learning100

tasks. The idea is to encode the test sample by101

conditioning it on a vast array of demonstra-102

tions sourced from the training dataset.103

3. We conducted extensive experiments on104

benchmark NLP datasets, and our findings105

clearly highlight NBCE’s remarkable capa-106

bility to efficiently scale up the number of107

demonstrations, while significantly enhancing108

overall stability.109

2 Related Work110

2.1 In-Context Learning111

In recent years, in-context learning has received112

significant attention in the research community.113

Brown et al. (2020) introduced this concept, spark-114

ing a wave of investigations. Zhao et al. (2021);115

Han et al. (2023) addressed the issue of LLM mis-116

calibrations and explored various calibration meth-117

ods. However, few-shot performance can vary118

based on the order of demonstrations and tem-119

plate choices (Lu et al., 2022). In this context,120

Zhao et al. (2021) identified three biases and sug-121

gested content-free output calibration. Min et al.122

(2022a) demonstrated how these biases shift deci-123

sion boundaries and proposed calibrating through124

prototypical cluster distribution estimation. Oth-125

ers focused on prompt engineering, such as select-126

ing optimal demonstration permutations (Lu et al.,127

2022) and using retrieval modules for semantically128

similar in-context examples (Liu et al., 2022; Ru-129

bin et al., 2022). One promising direction is to130

improve in-context learning by increasing the num-131

ber of demonstrations.132

2.2 Context Extension 133

Expanding the contextual capabilities of LLM con- 134

tinues to pose a formidable challenge and has at- 135

tracted considerable research attention. Various 136

studies have introduced to tackle the memory limi- 137

tations associated with self-attention mechanisms. 138

These approaches can be broadly classified into two 139

categories: fine-tuned approaches and few-shot ap- 140

proaches. Zaheer et al. (2020); Guo et al. (2022), 141

have suggested using sparse attention as a solu- 142

tion to this issue. Press et al. (2022) took a novel 143

approach by incorporating positional information 144

using relative factors in attention weights instead 145

of relying on absolute positional encoding. Despite 146

the impressive capabilities of Press et al. (2022)’s 147

model for extrapolation, it remains computation- 148

ally intensive due to its quadratic self-attention cost, 149

making it slow and resource-demanding for longer 150

prompts. Ivgi et al. (2022) introduced an alterna- 151

tive approach called SLED, which is an encoder- 152

decoder model specifically designed for handling 153

lengthy texts. This model encodes short overlap- 154

ping segments of input text and integrates this in- 155

formation within the decoder, similar to the Fusion- 156

in-Decoder concept by Izacard and Grave (2021). 157

However, these researches require additional train- 158

ing. 159

More recently, Ratner et al. (2023) have intro- 160

duced the concept of Parallel Context Windows 161

(PCW), which enables the concurrent utilization of 162

multiple context windows without requiring addi- 163

tional training. PCW has been purposefully tailored 164

for self-attention models, involving modifications 165

to both position encoding and attention mask mech- 166

anisms to enhance the performance. NBCE and 167

PCW share noteworthy similarities, as they both 168

treat contexts as unordered and apply equal weight- 169

ing. Notably, when NBCE is employed within 170

the context of a single-layer, single-head attention 171

model, the resulting outcomes closely approximate 172

those achieved through the utilization of PCW. To 173

substantiate this claim, we can formulate the lan- 174

guage model tailored to a single-layer, single-head 175

attention configuration. 176

p(xt|x<t) = softmax

(
t∑

i=1

at,iviW

)
(1) 177

hence, approximately: log p(xt|x<t) ∼ 178∑t
i=1 at,iviW . Substituting this into Equa- 179

tion 11 and setting β = 0, we obtain: 180
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log p(T |S1, S2, . . . , Sn) ∼
1

n

n∑
k=1

∑
i∈Sk

aT,ivi

W181

=

 ∑
i∈S1⊕...⊕Sn

aT,i
n
vi

W

(2)

182

here, we assume T represents a single sequence183

(i.e., the query), However, this assumption does184

not lack generality. The symbol ⊕ denotes con-185

catenation and Sk ⊕ T is used for reasoning as186

a continuous segment (as per NBCE’s setup), so187

their positional encodings are adjacent. Addition-188

ally, aT,i/n forms a collective attention for T with189

all Si (with a sum equal to 1). These characteristics190

are consistent with PCW, which is essentially inte-191

grated into each layer more elegantly through an192

attention mask. Therefore, PCW can be thought of193

as a version of NBCE that utilizes average pooling.194

3 Approach195

An example of our proposed NBCE is depicted196

in 1. Assume that we have a sequence, denoted197

as T , which we intend to generate. Furthermore,198

we have multiple relatively independent context199

sets, denoted as S1, S2, . . . , Sn (e.g., n different200

paragraphs), each of which is sufficiently long and201

does not split a sentence into fragments. Suppose202

that the total length of these context sets exceeds203

the training length, but when combined with an204

individual Sk and T , they still fall within the train-205

ing length. Our objective is to generate T based206

on the information contained in S1, S2, . . . , Sn. In207

essence, we seek to estimate the conditional prob-208

ability of T given S1, S2, . . . , Sn, which can be209

represented as p(T |S1, S2, . . . , Sn).210

In straightforward terms, Naive Bayes can be211

understood as a combination of two key elements:212

Bayes’ formula and an independence assumption:213

p(T |S1, S2, . . . , Sn) ∝ p(S1, S2, . . . , Sn|T )p(T ),
(3)214

where, the symbol ∝ denotes proportionality, sig-215

nifying that we are focusing solely on the relevant216

factors in a proportion while disregarding constant217

factors unrelated to the token sequence T . This218

approach aligns with the underlying assumption of219

conditional independence:220

p(S1, S2, . . . , Sn|T ) =
n∏

k=1

p(Sk|T ). (4)221

Figure 1: An example for our NBCE. Initially, NBCE
divides the context into equal-sized windows, each
with the maximum length compatible with LLM in-
target. Subsequently, a voting mechanism is introduced
to select the most relevant context window, regarded as
the posterior context. Finally, it employs Bayes’ theo-
rem to generate the test task.

Thus, we have: 222

p(T |S1, S2, . . . , Sn) ∝ p(T )
n∏

k=1

p(Sk|T ). (5) 223

Furthermore, based on Bayes’ formula p(Sk|T ) ∝ 224
p(T |Sk)
p(T ) , we get: 225

p(T |S1, S2, . . . , Sn) ∝
1

pn−1(T )

n∏
k=1

p(T |Sk).

(6) 226

Or: 227

log p(T |S1, S2, . . . , Sn) =
n∑

k=1

log p(T |Sk) 228

− (n− 1) log p(T ) 229

+ constant, (7) 230

where both p(T |Sk) and p(T ) can be computed di- 231

rectly utilizing existing LLMs, independent of their 232

architecture, and without the need for fine-tuning 233

on extensive textual data. Specifically, p(T |Sk) rep- 234

resents the probability predicted by an individual 235

contextual set, while p(T ) signifies the probabil- 236

ity in the absence of any context or with an empty 237

context. It is noteworthy that multiple contextual 238

sets can be concurrently processed within the same 239

batch, with computational complexity scaling lin- 240

early with the number of contexts. Certainly, Naive 241

Bayes leans heavily on the independence assump- 242

tion, which can restrict its practical utility. To as- 243

pire to enhance its performance beyond the initial 244

state, we further refine Equation 7. 245
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To commence this refinement, we shall introduce246

the following notations:247

log p(T |S) = [log p(T |S1), . . . , log p(T |Sn)],
(8)248

and249

log p(T |S) = 1

n

n∑
k=1

log p(T |Sk), (9)250

where log p(T |S) denotes the Average Pooling of251

log p(T |S). Let β = n − 1, then Equation 7 can252

be rewritten as253

log p(T |S1, S2, . . . , Sn) = (β + 1)log p(T |S)254

− β log p(T )255

+ constant. (10)256

However, the reformulation may prompt the257

emergence of two inherent inquiries:258

• If we consider β as a hyperparameter subject259

to tuning, could this potentially yield superior260

results?261

• Is it conceivable that employing alternative262

pooling techniques, denoted as P , might po-263

tentially yield enhancements in performance?264

That is:265

log p(T |S1, S2, . . . , Sn) = (β + 1)P [log p(T |S)]266

− β log p(T )267

+ constant (11)268

To delve deeper into these inquiries, we conducted269

a series of experiments employing the 7B model270

and garnered preliminary insights. In the realm271

of reading comprehension, a consistent trend of272

robust performance emerges when employing Max273

Pooling with a β value of 0.25 in conjunction with274

Greedy Search. Conversely, outcomes generated275

via Random Sampling frequently yield results that276

are challenging to interpret.277

The observed disparities in outcomes can be at-278

tributed to the inherent characteristics of these two279

methods. Random Sampling, characterized by its280

selection of tokens based on their probability dis-281

tribution, tends to exhibit lackluster performance,282

signaling that the output of Max Pooling may not283

align with a plausible probability distribution. In 284

contrast, Greedy Search operates distinctively by 285

prioritizing the token with the highest probability, 286

disregarding the holistic distribution. Its commend- 287

able performance suggests that the token with the 288

highest probability is more likely to be the accurate 289

choice. Larger probabilities are indicative of lower 290

uncertainty. To enhance the performance of Ran- 291

dom Sampling, we modify the pooling method to 292

directly output the probability distribution with the 293

lowest uncertainty: 294

P [log p(T |S)] = log p(T |Sk), 295

k = argmin{H1, H2, . . . ,Hn}, 296

Hi = −
∑
T

p(T |Si) log p(T |Si), (12) 297

By substituting this expression into Equation 298

11, we arrive at the conclusive formulation of the 299

NBCE. It is noteworthy that while the initial in- 300

spiration for this approach stemmed from Naive 301

Bayes, the generalized Equation 11 transcends the 302

conventional boundaries of traditional Naive Bayes, 303

yet maintains its inherent interpretability. Equation 304

11 assumes an intuitive form: Predictions originat- 305

ing from various contextual sources are collectively 306

amalgamated (or weighted) through the utilization 307

of the method denoted as P (with a weight fac- 308

tor of β + 1). Subsequently, this amalgamation is 309

counterbalanced by subtracting the prediction in 310

the absence of context, weighted by β. The ratio- 311

nale behind subtracting the context-less prediction 312

lies in enhancing the model’s reliance on contextual 313

information, reducing its dependency on inherent 314

knowledge (Shi et al., 2023). 315

The choice of values for β can be tailored to 316

different scenarios. For tasks necessitating compre- 317

hensive reading comprehension and robust context 318

integration, a larger β value may be deemed appro- 319

priate. Conversely, tasks leaning towards creative 320

writing may benefit from a smaller β value. In our 321

experiments, we set β = 0.25. 322

4 Experimental Setup 323

4.1 Datasets 324

In our experiments, we employed a diverse range 325

of benchmark datasets to evaluate our approach. 326

These datasets encompassed various tasks, includ- 327

ing text classification and multiple-choice ques- 328

tions. Fifteen Text Classification Datasets: SST- 329

2 (Socher et al., 2013), CR (Ding et al., 2008), 330
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RTE (Bar-Haim et al., 2014), Subj (Pang and331

Lee, 2004), CB (De Marneffe et al., 2019), AG-332

News (Zhang et al., 2015), SST-5 (Socher et al.,333

2013), YELP (Zhang et al., 2015), TREC (Li and334

Roth, 2002), DBPedia (Zhang et al., 2015), NLU335

(Liu et al., 2019), BANKING77 (Casanueva et al.,336

2020), CLINIC150 (Larson et al., 2019), TREC337

(fine-grained labels) and NLU (fine and coarse-338

grained labels). Five datasets from Multiple-choice339

Domain. Specifically, we consider sentence com-340

pletion: HellaSwag (Zellers et al., 2019); com-341

mensense reasoning: PIQA (Bisk et al., 2020),342

OpenBookQA (Mihaylov et al., 2018), StoryCloze343

(Mostafazadeh et al., 2017), MMLU (Hendrycks344

et al., 2021), ARC-Easy (Bhakthavatsalam et al.,345

2021); and COPA from SuperGLUE benchmark346

(Wang et al., 2019). It is worth noting that we347

conducted evaluations using the standard test sets348

or validation sets when a public test set was not349

available. It is important to mention that all the350

datasets used in our experiments are in the English351

language.352

4.2 Training Sampling and Models353

The effectiveness of ICL has been observed to be354

highly dependent on the selection of training ex-355

amples (Zhao et al., 2021). To ensure a fair and356

consistent comparison, we maintain the approach357

employed in the PCW (Ratner et al., 2023), a com-358

mon practice in prior research (Zhao et al., 2021;359

Lu et al., 2022). Specifically, we randomly se-360

lected 30 sets from the training datasets and report361

the mean and standard deviation calculated across362

these sampled sets.363

Given our limited computational resources,364

our experiments were conducted using eight365

large models: GPT2-Large (0.75B), GPT2-366

XL(1.5B)(Radford et al., 2019), there LLAMA367

models, including 7B, 13B and 30B (Touvron et al.,368

2023), and three OPT models with 1.3B, 6.7B and369

13B parameters (Zhang et al., 2022b).370

4.3 Comparative Baseline371

Note that our proposed solution does not require372

any additional training. As far as our knowledge373

extends, Ratner et al. (2023) initiated the work in374

this line of research. Therefore, we compare our375

approach with methods that also do not require376

further training, as follows.377

• ICL. A traditional ICL approach employs a378

conventional single context window, which379

essentially utilizes the full capacity of the po- 380

sitional embedding in the LLM. 381

• PCW(Ratner et al., 2023). PCW introduces 382

strategic adjustments to both position encod- 383

ing and attention mask mechanisms to enable 384

multiple context windows without requiring 385

additional training. 386

4.4 Prompt Formats 387

We have employed the same prompt formats as 388

those adapted by the comparative baseline, PCW. 389

For the sake of brevity, we have omitted specific 390

details about the prompt format; for a more com- 391

prehensive understanding, we kindly refer you to 392

Ratner et al. (2023). 393

5 Evaluation 394

We evaluate our proposed solution based on two 395

primary criteria: 396

• Ability to Extend the Length of Large 397

Models: Does our solution effectively enable 398

the expansion of the size or capacity of large 399

models? 400

• Impact of Additional Demonstrations on 401

ICL Task Performance: Does the inclusion 402

of more demonstrations have a positive effect 403

on the performance of the ICL task? 404

5.1 Classification Task Evaluation 405

5.1.1 Main Results 406

We conducted an analysis in which we calculated 407

the average accuracy from 30 different runs, each 408

with a unique seed. We compiled the accuracy and 409

standard deviation for various text classification 410

datasets, which are presented in Tables 1, 2, and 411

3. Due to space constraints, the results of more 412

scaled models are presented in the Appendix 413

Section: GPT2-XL Table 6, LLAMA-13B Table 414

7, LLAMA-30B Table 8, and OPT-6.7B Table 415

12. To highlight significant findings, we marked 416

statistical significance with an asterisk (*), based 417

on a t-test with a p-value of less than 0.05. Our key 418

observations are as follows. (1) Vanilla ICL con- 419

sistently showed the lowest performance across all 420

models and datasets, underscoring the critical need 421

for expanded context in ICL tasks. (2) For mod- 422

els with fewer parameters (like GPT-2-Large and 423

OPT-1.3B) and when dealing with a limited number 424

of output classes (five or fewer), we noted minor 425
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Dataset # Labels ICL
B=3 B=6 B=9

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 80.2 ± 11.7 84.1 ± 8.2 85.2 ± 6.7 81.2 ± 7.0 83.6 ± 7.0 78.9 ± 5.3 84.3 ± 5.9∗

CR 2 81.3 ± 6.3 81.2 ± 6.4 82.7 ± 6.3 82.3 ± 5.2 84.7 ± 4.6 81.2 ± 3.4 84.1 ± 4.4∗

SUBJ 2 65.1 ± 11.9 67.0 ± 12.2 66.1 ± 13.2 62.9 ± 10.9 66.2 ± 10.7 60.1 ± 2.8 64.4 ± 9.9∗

CB 2 43.9 ± 3.7 43.9 ± 3.2 45.2 ± 3.7 42.8 ± 2.1 44.8 ± 3.3∗ 42.1 ± 2.2 45.1 ± 5.0∗

RTE 2 52.5 ± 2.2 53.5 ± 1.7 52.9 ± 2.9 54.4 ± 1.0∗ 53.0 ± 2.4 53.9 ± 2.6 54.2 ± 2.5
AGNews 4 61.7 ± 14.2 70.9 ± 9.4 71.0 ± 8.9∗ 67.7 ± 7.0 67.1 ± 10.6 64.8 ± 3.1 72.9 ± 7.6∗

SST5 5 40.8 ± 2.5 41.5 ± 3.1 41.8 ± 2.4 37.4 ± 4.1 42.5 ± 1.9∗ 35.9 ± 2.8 41.9 ± 2.4∗

TREC 6 56.6 ± 7.9 59.0 ± 4.7 63.1 ± 7.0∗ 53.9 ± 3.1 65.3 ± 3.0∗ 50.9 ± 3.4 66.5 ± 2.9∗

DBPedia 14 58.7 ± 20.2 78.9 ± 6.6∗ 71.1 ± 13.7 79.3 ± 4.2 75.9 ± 8.2 68.1 ± 1.9 76.7 ± 5.7∗

NLU Scenario 18 34.8 ± 7.6 28.5 ± 4.3 45.7 ± 6.7∗ 26.9 ± 3.2 41.7 ± 8.5∗ 24.4 ± 1.6 44.1 ± 6.1∗

TREC Fine 50 31.2 ± 7.9 33.9 ± 4.4 36.9 ± 6.3∗ 31.3 ± 3.5 40.3 ± 5.1∗ 26.5 ± 4.2 39.3 ± 3.9∗

NLU Intent 68 24.5 ± 6.1 22.3 ± 5.6 27.5 ± 4.6∗ 19.8 ± 4.7 28.6 ± 6.1∗ 15.5 ± 3.4 31.1 ± 4.7∗

BANKING77 77 28.9 ± 5.1 28.0 ± 3.7 36.0 ± 3.2∗ 23.0 ± 3.3 37.1 ± 3.4∗ 18.5 ± 2.7 38.5 ± 3.6∗

CLINIC150 150 43.9 ± 3.2 44.1 ± 1.9 48.5 ± 2.3∗ 40.4 ± 1.7 49.4 ± 1.5∗ 35.0 ± 1.9 49.7 ± 1.8∗

Table 1: Comparative Analysis of Classification Accuracy (in %) for GPT2-Large Using Various Context Windows
(B=3, B=6, B=9). Note: A single window (B) includes K examples, falling within the model’s capacity (e.g.,
1024 tokens in GPT-2). For detailed information on the maximum number of examples (K) for each dataset and
model, refer to Appendix Section A.2. Best scores are highlighted in bold. An asterisk (*) denotes statistical
significance, as determined by a t-test with a p-value < 0.05. The results of GPT-2-Xl are presented in Appendix
Table 6.

Dataset # Labels ICL
B=3 B=6 B=9

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 93.4 ± 1.3 94.9 ± 0.6∗ 93.8 ± 0.9 91.7 ± 1.0 94.0 ± 0.9∗ 84.5 ± 0.9 94.1 ± 0.7∗

CR 2 93.9 ± 0.7 93.5 ± 0.6 94.1 ± 0.6∗ 90.0 ± 1.0 94.0 ± 0.5∗ 79.3 ± 3.3 94.2 ± 0.5∗

SUBJ 2 70.1 ± 9.9 60.5 ± 7.6 74.2 ± 7.5∗ 49.8 ± 1.8 69.8 ± 7.3∗ 48.4 ± 0.0 71.4 ± 6.9∗

CB 2 81.3 ± 5.7 81.9 ± 7.4 77.8 ± 8.3 76.4 ± 5.2 78.4 ± 7.5 62.2 ± 3.0 83.9 ± 3.7∗

RTE 2 72.9 ± 3.1 73.8 ± 1.9 73.1 ± 3.1 67.2 ± 2.5 74.4 ± 1.8∗ 57.5 ± 1.4 74.2 ± 2.4∗

AGNews 4 87.9 ± 2.8 87.3 ± 1.7 88.6 ± 1.6 87.4 ± 1.1 88.8 ± 1.6∗ 83.1 ± 1.8 89.3 ± 1.0∗

SST5 5 40.8 ± 5.6 44.6 ± 3.8∗ 43.1 ± 3.5 40.4 ± 4.4 42.5 ± 3.2 22.9 ± 3.0 42.9 ± 2.6∗

TREC 6 83.4 ± 5.4 81.1 ± 3.9 83.5 ± 4.7 55.1 ± 3.8 86.4 ± 3.7∗ 41.2 ± 4.0 88.8 ± 3.0∗

DBPedia 14 86.7 ± 6.8 94.9 ± 3.0∗ 93.2 ± 3.3 95.7 ± 1.6 95.6 ± 2.4 92.7 ± 1.3 96.8 ± 1.3∗

NLU Scenario 18 79.6 ± 3.0 79.7 ± 2.5 83.8 ± 2.2∗ 58.4 ± 2.9 85.0 ± 1.6∗ 40.4 ± 4.9 86.3 ± 1.4∗

TREC Fine 50 55.6 ± 6.1 49.5 ± 5.4 57.8 ± 6.8∗ 33.5 ± 3.6 59.8 ± 5.0∗ 16.9 ± 2.9 60.9 ± 4.5∗

NLU Intent 68 59.9 ± 5.2 62.9 ± 3.9∗ 54.3 ± 2.9 37.3 ± 5.6 56.6 ± 3.1∗ 14.8 ± 3.4 57.9 ± 2.5∗

BANKING77 77 46.3 ± 4.0 51.2 ± 3.3∗ 50.5 ± 3.1 26.6 ± 4.5 54.6 ± 3.3∗ 11.2 ± 3.2 58.9 ± 2.5∗

CLINIC150 150 61.3 ± 2.5∗ 57.0 ± 3.2 55.4 ± 2.6 32.8 ± 4.8 57.2 ± 1.8∗ 17.1 ± 4.0 60.8 ± 1.9∗

Table 2: Comparative Analysis of Classification Accuracy (in %) for LLAMA-7B Across Various Context Win-
dows. The results of LLAMA-13B and LLAMA-30B are presented in Appendix Section Tables 7 and 8.

or negligible differences between both PCW and426

NBCE, compared to vanilla ICL. Conversely, in427

models with a larger number of parameters, NBCE428

generally demonstrated superior performance in429

most cases. However, it is important to note that430

several of these differences did not reach statisti-431

cal significance. (3) NBCE enhances ICL by ac-432

commodating a greater number of examples. This433

improvement becomes particularly evident when434

B=9, where both accuracy and stability generally435

show marked improvements. We observed that436

larger models benefit more substantially from our437

approach. This favorable scaling trend of NBCE is438

particularly notable when contrasted with previous439

efforts to enhance ICL (refer to (Zhao et al., 2021;440

Lu et al., 2022)), where improvements in 178B- 441

scale models were less marked compared to those 442

in smaller models 443

5.1.2 PCW enables ICL with a Large 444

Number of Classes 445

To investigate the relationship between the num- 446

ber of classes and our NBCE’s performance, we 447

conducted a detailed analysis, which was adapted 448

by Ratner et al. (2023). In each experiment, we 449

calculated the difference between NBCE and PCW 450

and then averaged the results across all datasets on 451

GPT2 models sharing the same number of classes. 452

As illustrated in Figure 2, a robust positive cor- 453

relation emerged between the quantity of classes 454
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Dataset # Labels ICL
B=3 B=6 B=9

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 85.0 ± 8.5 81.7 ± 10.6 86.0 ± 7.2 81.1 ± 7.7 88.1 ± 5.7* 79.9 ± 9.8 88.8 ± 5.2*
CR 2 89.1 ± 2.4 88.8 ± 2.3 89.7 ± 1.7 88.5 ± 3.3 88.8 ± 1.6 85.6 ± 3.6 89.1 ± 1.5*
SUBJ 2 78.8 ± 9.0* 68.3 ± 7.5 69.0 ± 7.9 68.5 ± 6.6 70.5 ± 7.4 65.2 ± 8.3 70.9 ± 6.3*
CB 2 53.0 ± 6.0 50.5 ± 3.3 50.8 ± 3.3 51.6 ± 5.2 51.5 ± 4.3 49.1 ± 1.0 51.6 ± 3.6*
RTE 2 51.1 ± 3.7 51.8 ± 3.8 52.7 ± 3.2 50.6 ± 3.1 51.4 ± 2.9 50.9 ± 2.1 51.3 ± 2.5
AGNews 4 61.3 ± 10.3 67.4 ± 6.7* 59.6 ± 7.2 65.1 ± 5.9* 60.3 ± 9.0 69.4 ± 5.0* 62.9 ± 6.7
SST-5 5 44.0 ± 3.9 42.7 ± 4.6 44.8 ± 2.8 42.4 ± 4.0 44.8 ± 2.2* 41.6 ± 4.3 45.1 ± 2.0*
TREC 6 59.4 ± 6.3* 55.0 ± 4.3 56.8 ± 4.7 55.2 ± 3.2 55.7 ± 4.3 52.5 ± 2.8 57.1 ± 3.9*
DBPedia 14 86.3 ± 3.8 87.7 ± 2.1 87.9 ± 2.2 88.1 ± 2.6 87.5 ± 2.6 87.0 ± 3.1 87.9 ± 2.6
NLU Scenario 18 67.8 ± 4.0 69.9 ± 3.5 70.2 ± 4.0 69.9 ± 2.6 69.3 ± 4.3 67.7 ± 4.0 72.8 ± 3.8*
TREC Fine 50 39.7 ± 4.5 38.8 ± 4.7 41.5 ± 6.0 40.5 ± 5.8 43.1 ± 6.4 35.3 ± 3.5 42.0 ± 4.7*
NLU Intent 68 45.3 ± 4.9 50.0 ± 4.2 50.9 ± 4.0 48.8 ± 4.2 51.0 ± 4.7 45.4 ± 3.2 54.5 ± 3.3*
BANKING77 77 25.9 ± 4.9 24.8 ± 4.0 28.8 ± 4.5 26.0 ± 3.5 30.1 ± 3.5* 28.9 ± 3.1 32.5 ± 3.5*
CLINIC150 150 50.8 ± 3.0 52.4 ± 2.3 57.7 ± 2.0 52.6 ± 2.0 57.2 ± 2.5* 49.3 ± 2.5 58.4 ± 2.0*

Table 3: Comparative Analysis of Classification Accuracy (in %) for OPT-1.3B models. The results of OPT-6.7B
are presented in Appendix Tables 12.

Figure 2: Average Performance Enhancements with
NBCE over PCW as a Function of Label Count: Each
data point in our analysis signifies the average improve-
ment observed across all datasets on GPT2 models. It
is worth noting a clear and positive correlation between
the quantity of unique labels and the benefits derived
from our NBCE.

and the improvements achieved by NBCE. Specif-455

ically, the Pearson correlation coefficient (r) was456

0.41 when considering the logarithm of class num-457

bers in relation to the average improvement, with a458

slope of 1.15. Remarkably, for datasets featuring459

numerous labels, such as NLU Intent (Liu et al.,460

2019), Banking77 (Casanueva et al., 2020), and461

CLINIC150 (Larson et al., 2019), we observed462

substantial improvements ranging from 3.6 to 5.1463

points in most cases.464

When comparing results across datasets with465

varying numbers of classes, it is crucial to ac-466

count for potential confounding factors, such as467

variations in domain, style, or genre. To miti- 468

gate these effects, we conducted a comparison us- 469

ing two datasets, each featuring both fine-grained 470

and coarse-grained labels. The TREC dataset (Li 471

and Roth, 2002), which includes 6 coarse-grained 472

classes. The NLU dataset (Liu et al., 2019), com- 473

prising 18 scenarios coarse-grained classes and 68 474

intents coarse-grained classes. Our analysis on 475

GPT2 models, as presented in Table 10, reveals that 476

NBCE outperforms PCW by 4.1 and 3.0 improve- 477

ments on GPT2-Large and GPT2-XLarge, respec- 478

tively. Similarly, in the context of NLU, we observe 479

average improvements of 17.2 and 5.2 points on 480

GPT2-XLarge, respectively. These findings under- 481

score the effectiveness of our approach, particularly 482

when confronted with a large number of output 483

classes. 484

5.2 Multi-Choice Tasks 485

Table 4 shows the evaluation of multi-choice tasks. 486

It is important to note that the improvements made 487

by both PCW and our NBCE in these tasks, com- 488

pared to text classification, are relatively modest, 489

with a slight edge for NBCE. Furthermore, em- 490

ploying a greater number of demonstrations does 491

not consistently translate to better performance in 492

multi-choice tasks. Instead, we observe that scal- 493

ing up the model size (Appendix Section Table 494

9), rather than increasing the number of demonstra- 495

tions, tends to yield more substantial improvements 496

in these tasks. 497

5.3 Impact of more Demonstrations on ICL 498

We conducted experiments to validate the impact 499

of additional demonstrations on ICL in NLP mod- 500
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Dataset ICL
B=2 B=3 B=4 B=6

PCW NBCE PCW NBCE PCW NBCE PCW NBCE
PIQA 81.6 ± 0.6 80.6 ± 0.7 82.1 ± 0.4∗ 79.6 ± 0.7 82.9 ± 0.6∗ 79.1 ± 0.6 82.9 ± 0.6∗ 77.5 ± 0.8 83.0 ± 0.5∗

OpenBookAQ 41.9 ± 0.8 41.3 ± 1.0 46.3 ± 0.9∗ 40.9 ± 0.9 49.2 ± 0.8∗ 39.4 ± 0.6 49.3 ± 0.9∗ 35.1 ± 0.8 50.3 ± 1.1∗

COPA 77.8 ± 1.2 78.3 ± 1.1 78.2 ± 1.5 78.9 ± 1.7∗ 77.5 ± 1.2 77.8 ± 1.3 77.6 ± 1.6 65.9 ± 3.6 76.6 ± 0.8∗

HellaSwag 79.4 ± 1.1 80.4 ± 1.1∗ 78.9 ± 0.9 80.2 ± 0.8∗ 79.6 ± 0.7 80.1 ± 0.9 79.9 ± 0.8 78.5 ± 0.8 79.9 ± 0.7∗

ARCE 74.4 ± 1.1∗ 73.8 ± 1.2 72.8 ± 0.7 73.7 ± 1.4 73.5 ± 0.6 74.1 ± 0.8 73.7 ± 0.8 70.8 ± 1.5 73.5 ± 0.8∗

StoryCloze 46.0 ± 0.0 46.1 ± 0.1 78.7 ± 0.9∗ 46.1 ± 0.2 78.9 ± 0.8∗ 46.1 ± 0.2 78.8 ± 1.0∗ 46.3 ± 0.2 79.6 ± 0.7∗

MMLU 33.8 ± 1.9 34.1 ± 2.2 34.3 ± 1.5 33.6 ± 2.3 33.7 ± 1.7 34.1 ± 1.9 34.7 ± 1.9 32.5 ± 3.0 33.9 ± 1.9

Table 4: Comparative Results of Task Completion (e.g., Multiple Choices Task) for LLAMA-7B Using Various
Context Windows. Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as deter-
mined by a t-test with a p-value < 0.05. The results of LLAMA-13B are presented in Appendix Tables 9.

Dataset # Labels
GPT2-Large GPT2-XL LLAMA-7B LLAMA-13B

NBCE (RAN) NBCE NBCE (RAN) NBCE NBCE (RAN) NBCE NBCE (RAN) NBCE
SST-2 2 80.5 ± 4.5 84.3 ± 5.9∗ 91.6 ± 1.5 92.5 ± 1.5 92.3 ± 1.5 94.1 ± 0.7∗ 92.2 ± 1.0 94.9 ± 0.5∗

CR 2 78.0 ± 3.9 84.1 ± 4.4∗ 81.0 ± 2.2 81.9 ± 2.0 91.9 ± 1.2 94.2 ± 0.5∗ 91.1 ± 1.3 93.1 ± 0.6∗

SUBJ 2 57.0 ± 3.8 64.4 ± 9.9∗ 72.0 ± 5.0 76.0 ± 7.0 69.0 ± 3.4 71.4 ± 6.9 89.9 ± 3.0 93.0 ± 1.7∗

CB 2 46.1 ± 4.4 45.1 ± 5.0 55.3 ± 6.2 54.8 ± 8.5 81.6 ± 5.1 83.9 ± 3.7∗ 81.7 ± 4.0 84.1 ± 3.5∗

RTE 2 52.5 ± 2.8 54.2 ± 2.5 53.9 ± 2.9 55.3 ± 2.2 68.2 ± 1.9 74.2 ± 2.4∗ 72.9 ± 2.3 75.1 ± 1.5∗

AGNews 4 66.4 ± 7.5 72.9 ± 7.6∗ 69.5 ± 5.9 76.3 ± 4.7∗ 83.4 ± 2.1 89.3 ± 1.0∗ 85.3 ± 2.3 87.9 ± 1.1∗

SST5 5 41.3 ± 1.8 41.9 ± 2.4 39.1 ± 3.6 41.7 ± 5.3 40.4 ± 2.7 42.9 ± 2.6∗ 44.5 ± 2.1 47.7 ± 2.0∗

TREC 6 61.0 ± 2.8 66.5 ± 2.9∗ 50.7 ± 2.8 51.6 ± 3.0 84.1 ± 3.5 88.8 ± 3.0∗ 81.7 ± 4.4 85.0 ± 2.4∗

DBPedia 14 68.9 ± 8.2 76.7 ± 5.7∗ 84.1 ± 2.5 89.0 ± 2.8∗ 82.8 ± 2.7 96.8 ± 1.3∗ 89.2 ± 3.4 96.9 ± 1.3∗

NLU Scenario 18 40.8 ± 4.8 44.1 ± 6.1 45.3 ± 3.9 55.1 ± 5.4∗ 82.0 ± 2.1 86.3 ± 1.4∗ 81.7 ± 1.8 88.7 ± 1.0∗

TREC Fine 50 33.2 ± 4.2 39.3 ± 3.9∗ 35.2 ± 4.4 41.9 ± 3.7∗ 56.7 ± 3.1 60.9 ± 4.5∗ 57.1 ± 3.5 63.3 ± 4.1∗

NLU Intent 68 28.3 ± 0.8 31.1 ± 4.7∗ 35.1 ± 1.2 40.3 ± 3.6∗ 57.2 ± 2.1 57.9 ± 2.5∗ 62.6 ± 2.4∗ 61.8 ± 2.1
BANKING77 77 29.3 ± 1.6 38.5 ± 3.6∗ 33.6 ± 1.3 38.9 ± 2.4∗ 47.0 ± 1.5 58.9 ± 2.5∗ 48.7 ± 3.2 63.5 ± 2.3∗

CLINIC150 150 43.8 ± 1.7 49.7 ± 1.8∗ 47.7 ± 1.1 51.6 ± 1.7∗ 58.7 ± 2.1 60.8 ± 1.9∗ 62.5 ± 2.2 66.2 ± 2.2∗

Table 5: Ablation Study with Context Window B=9. Best scores are highlighted in bold. An asterisk (*) denotes
statistical significance, as determined by a t-test with a p-value < 0.05.

els. Our focus was to show how extra demonstra-501

tions (B=6 and B=9, where B is the window size)502

enhance model performance by improving context503

understanding and robustness. Note that each win-504

dow contains K samples within the model’s to-505

ken limit (e.g., 2024 tokens for LLAMA). For506

detailed information on the maximum value of K507

for each model and dataset, please see Appendix Ta-508

ble ?? . This approach aligns with the importance509

of training example quantity in model adaptability510

and generalization (Murtadha et al., 2023). Our ob-511

servations indicate that NBCE mostly outperforms512

its counterpart, PCW, and these improvements can513

be considered significant. Additionally, scaling up514

the model size (Appendix Section Tables 6,7, 8,515

and 12) leads to improved performance, especially516

on larger and more complex datasets.517

5.4 Ablation Study518

To better evaluate the proposed voting mechanism,519

i.e., selecting the best k contexts as the posterior520

in Equation 12, we conducted an ablation study521

introducing a new variant, referred to as NBCE522

(RAND). In this variant, rather than deliberately523

choosing k, we randomly select one context from524

the context windows. The results are presented525

in Table 5. The experimental outcomes across a 526

variety of models and datasets demonstrate that a 527

careful selection of k significantly contributes to 528

the quality of the generated tokens. It is notewor- 529

thy that, in this setting, NBCE can be considered 530

as a standard ICL, where only one context win- 531

dow is considered. However, the performance may 532

slightly differ due to the likelihood of the generated 533

text p(T ), as outlined in Equation 11, affecting the 534

final performance. 535

6 Conclusion 536

This paper introduces a novel framework called 537

Naive Bayes-based Context Extension (NBCE) for 538

large language models. NBCE innovatively incor- 539

porates a voting mechanism to select the most ap- 540

propriate window context, and then utilizes Bayes’ 541

theorem to generate the task text. Our results show 542

that NBCE outperforms its alternative PCW across 543

a diverse set of multi-class classification tasks. For 544

future work, while PCW shows effective without 545

additional training, ICL could potentially benefit 546

from more demonstrations in fine-tuning settings; 547

however, further investigation is required to fully 548

comprehend the extent of its advantages. 549
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Limitations550

NBCE facilitates ICL tasks by allowing for more551

demonstrations without the need for fine-tuning.552

However, there are still some limitations to this553

approach:554

• Since NBCE essentially functions as a voting555

mechanism, its effectiveness is constrained in556

tasks that require ordered or interrelated con-557

texts, such as code generation. This is due to558

its inherent nature, which may not adequately559

handle sequential or dependent information in560

certain contexts.561

• Increasing the number of shots does not nec-562

essarily lead to improved performance. Ex-563

perimental results have indicated that expand-564

ing the context window size does not signif-565

icantly enhance performance in completion566

tasks. This suggests a diminishing return on567

performance gains with an increased number568

of contexts.569
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Dataset # Labels ICL
B=3 B=6 B=9

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 90.6 ± 3.5 92.4 ± 2.5 92.7 ± 2.3∗ 89.4 ± 3.5 92.5 ± 2.2∗ 83.7 ± 1.7 92.5 ± 1.5∗

CR 2 79.2 ± 5.9 81.3 ± 4.6 82.5 ± 2.9∗ 81.6 ± 2.4 81.9 ± 2.1 82.7 ± 1.7 81.9 ± 2.0
SUBJ 2 68.8 ± 11.6 64.9 ± 7.3 74.5 ± 8.3∗ 57.0 ± 4.1 78.7 ± 4.8∗ 65.6 ± 3.0 76.0 ± 7.0∗

CB 2 51.9 ± 7.4 57.2 ± 8.5∗ 56.1 ± 7.9 49.6 ± 3.6 55.8 ± 7.8∗ 42.2 ± 2.1 54.8 ± 8.5∗

RTE 2 55.4 ± 2.4 55.6 ± 1.6 54.9 ± 2.5 54.2 ± 1.3 55.2 ± 2.3∗ 50.4 ± 2.0 55.3 ± 2.2∗

AGNews 4 67.2 ± 13.2 79.6 ± 3.4∗ 70.0 ± 9.6 80.4 ± 2.3∗ 74.1 ± 5.8 71.6 ± 2.5 76.3 ± 4.7∗

SST5 5 38.0 ± 6.1 41.4 ± 4.3∗ 41.1 ± 4.7 38.1 ± 3.6 41.5 ± 5.4∗ 35.3 ± 2.2 41.7 ± 5.3∗

TREC 6 47.9 ± 5.1 48.7 ± 2.8 51.7 ± 5.0∗ 45.5 ± 2.3 51.8 ± 4.6∗ 43.1 ± 1.9 51.6 ± 3.0∗

DBPedia 14 77.5 ± 9.8 87.0 ± 4.0 87.7 ± 3.8∗ 88.9 ± 3.3 88.6 ± 3.3 81.4 ± 2.1 89.0 ± 2.8∗

NLU Scenario 18 45.1 ± 9.3 50.0 ± 6.1 51.1 ± 8.1∗ 46.7 ± 5.9 50.3 ± 6.8∗ 38.7 ± 6.3 55.1 ± 5.4∗

TREC Fine 50 36.4 ± 6.2 40.0 ± 3.0 40.1 ± 5.1∗ 35.5 ± 2.6 41.7 ± 3.6∗ 31.0 ± 2.8 41.9 ± 3.7∗

NLU Intent 68 30.2 ± 5.4 33.8 ± 4.6 36.4 ± 4.9∗ 33.4 ± 4.3 38.5 ± 5.4∗ 24.3 ± 3.7 40.3 ± 3.6∗

BANKING77 77 30.7 ± 4.1 33.3 ± 3.5 35.5 ± 2.8∗ 26.8 ± 3.1 37.6 ± 2.4∗ 16.7 ± 2.6 38.9 ± 2.4∗

CLINIC150 150 46.6 ± 2.5 47.1 ± 2.3 49.9 ± 1.9∗ 40.8 ± 2.3 50.9 ± 2.1∗ 34.5 ± 2.5 51.6 ± 1.7∗

Table 6: Comparative Analysis of Classification Accuracy (in %) for GPT-2-XL Across Various Context Windows
(B=3, B=6, B=9). Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as determined
by a t-test with a p-value < 0.05.

Dataset # Labels ICL
B=3 B=6 B=9

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 94.5 ± 0.7 94.1 ± 0.7 94.8 ± 0.5∗ 94.0 ± 0.9 95.0 ± 0.4∗ 90.1 ± 1.2 94.9 ± 0.5∗

CR 2 92.0 ± 1.4 92.2 ± 0.9 92.9 ± 1.0∗ 92.5 ± 0.5 93.0 ± 1.0∗ 91.1 ± 0.9 93.1 ± 0.6∗

SUBJ 2 90.2 ± 3.8 87.5 ± 3.3 90.8 ± 2.9∗ 79.0 ± 7.2 92.5 ± 1.7∗ 67.1 ± 5.4 93.0 ± 1.7∗

CB 2 80.3 ± 8.0 84.6 ± 4.1∗ 79.8 ± 4.9 83.1 ± 4.0∗ 80.3 ± 6.4 74.1 ± 6.3 84.1 ± 3.5∗

RTE 2 74.6 ± 2.7 73.5 ± 2.0 74.0 ± 2.5 71.9 ± 1.6 74.6 ± 1.6∗ 66.4 ± 2.0 75.1 ± 1.5∗

AGNews 4 86.9 ± 2.9 87.9 ± 1.7 86.6 ± 1.8 88.0 ± 0.9 87.3 ± 1.8 87.7 ± 1.1 87.9 ± 1.1
SST5 5 48.0 ± 3.3 49.2 ± 2.6 48.0 ± 3.3 48.4 ± 2.1 47.3 ± 3.4 44.0 ± 2.9 47.7 ± 2.0∗

TREC 6 83.1 ± 3.1 83.7 ± 2.9∗ 81.5 ± 3.4 75.5 ± 3.6 83.0 ± 3.8∗ 49.5 ± 5.4 85.0 ± 2.4∗

DBPedia 14 88.6 ± 6.1 93.6 ± 3.9∗ 93.2 ± 3.9 94.4 ± 2.7 94.7 ± 2.6 94.5 ± 2.7 96.9 ± 1.3∗

NLU Scenario 18 82.1 ± 2.7 85.9 ± 1.8 86.7 ± 1.8∗ 81.2 ± 2.4 87.4 ± 1.4∗ 74.1 ± 2.9 88.7 ± 1.0∗

TREC Fine 50 55.4 ± 5.3 60.1 ± 5.1∗ 57.7 ± 4.7 56.8 ± 5.4 60.4 ± 4.7∗ 47.6 ± 9.0 63.3 ± 4.1∗

NLU Intent 68 68.3 ± 4.1 73.0 ± 2.6∗ 58.1 ± 2.3 65.2 ± 2.6∗ 60.7 ± 2.7 52.6 ± 3.6 61.8 ± 2.1∗

BANKING77 77 46.6 ± 4.2 56.4 ± 2.8∗ 52.8 ± 3.5 50.8 ± 3.1 59.2 ± 2.8∗ 40.2 ± 2.5 63.5 ± 2.3∗

CLINIC150 150 63.7 ± 2.5 66.0 ± 2.7∗ 59.2 ± 2.3 57.5 ± 2.9 62.4 ± 1.7∗ 48.7 ± 2.3 66.2 ± 2.2∗

Table 7: Comparative Analysis of Classification Accuracy (in %) for LLAMA-13B Across Various Context Win-
dows (B=3, B=6, B=9). Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as
determined by a t-test with a p-value < 0.05.
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Dataset # Labels ICL
B=3 B=6

PCW NBCE PCW NBCE
SST-2 2 94.7 ± 0.5 94.9 ± 0.7 95.0 ± 0.3 92.9 ± 0.7 95.0 ± 0.3∗

CR 2 93.8 ± 0.5 93.6 ± 0.5 93.8 ± 0.5 93.3 ± 1.1 93.7 ± 0.4
SUBJ 2 90.3 ± 4.5 91.0 ± 2.7 93.8 ± 1.7∗ 83.7 ± 5.1 94.5 ± 1.6∗

CB 2 88.8 ± 2.5 88.7 ± 1.9 88.0 ± 3.3 83.9 ± 2.4 89.1 ± 2.2∗

RTE 2 79.9 ± 1.9 79.0 ± 1.8 79.4 ± 2.1 73.8 ± 3.4 80.6 ± 1.8∗

AGNews 4 88.0 ± 4.7 89.4 ± 0.7 88.9 ± 1.3 88.0 ± 0.8 88.8 ± 1.4
SST5 5 47.0 ± 2.6 47.5 ± 2.3 45.0 ± 2.8 48.4 ± 1.0∗ 44.5 ± 2.4
TREC 6 87.2 ± 3.3 90.1 ± 1.7∗ 88.8 ± 2.8 67.2 ± 4.8 88.6 ± 1.7∗

DBPedia 14 88.4 ± 8.6 94.5 ± 3.0 95.4 ± 2.6∗ 96.2 ± 3.0 96.7 ± 1.4
NLU Scenario 18 82.6 ± 2.0 85.3 ± 1.5∗ 84.6 ± 1.7 80.2 ± 2.1 85.8 ± 1.2∗

TREC Fine 50 60.7 ± 4.8 67.7 ± 4.3∗ 64.7 ± 3.7 50.1 ± 4.2 68.6 ± 4.2∗

NLU Intent 68 68.6 ± 4.4 74.4 ± 2.7∗ 60.1 ± 2.7 61.6 ± 3.2 61.0 ± 2.2
BANKING77 77 50.3 ± 3.1 63.2 ± 2.5∗ 55.3 ± 3.5 58.1 ± 2.7 63.7 ± 3.6∗

CLINIC150 150 67.0 ± 3.6 71.0 ± 4.2∗ 65.6 ± 3.0 57.2 ± 2.9 67.3 ± 2.3∗

Table 8: Comparative Analysis of Classification Accuracy (in %) for LLAMA-30B Across Various Context Win-
dows (B=3, B=6, B=9). Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as
determined by a t-test with a p-value < 0.05.

Dataset ICL
B=2 B=3 B=4 B=6

PCW NBCE PCW NBCE PCW NBCE PCW NBCE
PIQA 83.0 ± 0.6 83.6 ± 0.6∗ 83.2 ± 0.6 83.5 ± 0.6 83.2 ± 0.7 83.3 ± 0.5 83.2 ± 0.6 81.9 ± 1.0 83.2 ± 0.5∗

OpenBookAQ 51.0 ± 1.7 51.1 ± 1.2∗ 47.0 ± 1.1 50.2 ± 1.3 50.2 ± 1.3 48.8 ± 1.1 49.8 ± 1.0∗ 46.7 ± 1.3 51.1 ± 1.0∗

COPA 79.9 ± 2.5 81.8 ± 2.4∗ 79.0 ± 0.9 86.0 ± 1.9∗ 79.8 ± 2.2 86.5 ± 1.5∗ 79.8 ± 2.1 74.9 ± 3.1 78.4 ± 1.5∗

HellaSwag 82.3 ± 0.7 82.5 ± 1.0 82.5 ± 0.7 82.3 ± 0.7 82.2 ± 0.5 82.2 ± 0.6 82.4 ± 0.5 81.7 ± 0.8 82.2 ± 0.5∗

ARCE 80.3 ± 0.6 80.5 ± 0.7∗ 77.4 ± 0.7 79.8 ± 0.5 79.7 ± 0.5 78.9 ± 0.6 79.8 ± 0.5∗ 76.8 ± 0.9 80.5 ± 0.4∗

StoryCloze 80.5 ± 0.8 82.1 ± 0.9∗ 80.1 ± 0.9 82.0 ± 0.6∗ 80.0 ± 0.9 81.9 ± 0.8∗ 80.1 ± 1.0 81.2 ± 0.8∗ 80.1 ± 0.9
MMLU 45.3 ± 1.8 46.4 ± 1.9∗ 43.6 ± 1.3 45.5 ± 1.9∗ 44.4 ± 1.3 44.7 ± 2.1 44.4 ± 2.0 43.6 ± 2.8 44.6 ± 1.4

Table 9: Comparative Results of Task Completion (e.g., Multiple Choices Task) for LLAMA-13B Using Vari-
ous Context Windows. Best scores are highlighted in bold. An asterisk (*) denotes statistical significance, as
determined by a t-test with a p-value < 0.05.

Dataset # Labels
GPT2-Large GPT2-XLarge

ICL PCW NBCE ICL PCW NBCE
SST-2 2 80.2 ± 11.7 84.1 ± 8.2 85.2 ± 6.7 90.6 ± 3.5 92.4 ± 2.5 92.7 ± 2.3*
CR 2 81.3 ± 6.3 81.2 ± 6.4 82.7 ± 6.3 79.2 ± 5.9 81.3 ± 4.6 82.5 ± 2.9*
SUBJ 2 65.1 ± 11.9 67.0 ± 12.2 66.1 ± 13.2 68.8 ± 11.6 64.9 ± 7.3 74.5 ± 8.3*
CB 2 43.9 ± 3.7 43.9 ± 3.2 45.2 ± 3.7 51.9 ± 7.4 57.2 ± 8.5* 56.1 ± 7.9
RTE 2 52.5 ± 2.2 53.5 ± 1.7 52.9 ± 2.9 55.4 ± 2.4 55.6 ± 1.6 54.9 ± 2.5
AGNews 4 61.7 ± 14.2 70.9 ± 9.4 71.0 ± 8.9 * 67.2 ± 13.2 79.6 ± 3.4* 70.0 ± 9.6
SST-5 5 40.8 ± 2.5 41.5 ± 3.1 41.8 ± 2.4 38.0 ± 6.1 41.4 ± 4.3* 41.1 ± 4.7
TREC 6 56.6 ± 7.9 59.0 ± 4.7 63.1 ± 7.0* 47.9 ± 5.1 48.7 ± 2.8 51.7 ± 5.0*
DBPedia 14 58.7 ± 20.2 78.9 ± 6.6 71.1 ± 13.7 77.5 ± 9.8 87.0 ± 4.0 87.7 ± 3.8*
NLU Scenario 18 34.8 ± 7.6 28.5 ± 4.3 45.7 ± 6.7* 45.1 ± 9.3 50.0 ± 6.1 51.1 ± 8.1*
TREC Fine 50 36.9 ± 6.3 37.4 ± 4.8* 36.9 ± 6.3 36.4 ± 6.2 40.1 ± 3.0* 40.1 ± 5.1
NLU Intent 68 24.5 ± 6.1 22.3 ± 5.6 27.5 ± 4.6* 30.2 ± 5.4 33.8 ± 4.6 36.4 ± 4.9*
BANKING77 77 28.9 ± 5.1 28.0 ± 3.7 36.0 ± 3.2* 30.7 ± 4.1 33.3 ± 3.5 35.5 ± 2.8*
CLINIC150 150 43.9 ± 3.2 44.1 ± 1.9 48.5 ± 2.3* 46.6 ± 2.5 47.1 ± 2.3 49.9 ± 1.9*

Table 10: Comparative analysis of classification results in terms of accuracy (in %) for both the GPT2-Large and
GPT2-XLarge models using a context window of B = 3. Notably, a single window comprises a set of examples
with a total number of tokens equal to the maximum capacity of conventional in-context learning (e.g., 1024 tokens
in GPT-2). The best-performing scores for each model and dataset are highlighted in bold, while ’*’ indicates
statistical significance, determined by a t-test with a p-value < 0.05.
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Dataset # Labels
OPT-1.3B OPT-6.7B OPT-13B

ICL PCW NBCE ICL PCW NBCE ICL PCW NBCE
SST-2 2 85.0 ± 8.5 81.7 ± 10.6 86.0 ± 7.2 93.8 ± 2.6 93.7 ± 3.3 95.8 ± 1.7* 93.1 ± 4.4 93.8 ± 3.1 94.9 ± 2.3
CR 2 89.1 ± 2.4 88.8 ± 2.3 89.7 ± 1.7 90.3 ± 2.5 90.7 ± 2.4 91.7 ± 1.5* 92.7 ± 1.5 92.3 ± 2.5 93.1 ± 1.4
SUBJ 2 78.8 ± 9.0* 68.3 ± 7.5 69.0 ± 7.9 72.3 ± 10.6* 70.9 ± 13.9 64.0 ± 10.7 86.4 ± 9.2 88.0 ± 8.3 90.1 ± 5.9
CB 2 53.0 ± 6.0 50.5 ± 3.3 50.8 ± 3.3 52.4 ± 10.1 59.9 ± 12.1 59.3 ± 10.8 50.5 ± 8.5 49.3 ± 5.8 62.5 ± 10.2
RTE 2 51.1 ± 3.7 51.8 ± 3.8 52.7 ± 3.2 56.1 ± 2.2 56.2 ± 1.6 56.8 ± 2.0 53.0 ± 6.0 56.3 ± 4.9 56.8 ± 6.2
AGNews 4 61.3 ± 10.3 67.4 ± 6.7* 59.6 ± 7.2 74.8 ± 6.7 76.7 ± 4.8* 72.7 ± 5.7 78.6 ± 5.6 82.4 ± 2.3 78.8 ± 3.9
SST-5 5 44.0 ± 3.9 42.7 ± 4.6 44.8 ± 2.8 42.7 ± 5.1 45.2 ± 4.2 42.5 ± 4.6 45.6 ± 3.4 45.7 ± 2.6 42.9 ± 4.2
TREC 6 59.4 ± 6.3* 55.0 ± 4.3 56.8 ± 4.7 70.3 ± 3.3 73.1 ± 2.2* 71.8 ± 3.5 56.7 ± 7.2 62.4 ± 6.2 57.1 ± 6.8
DBPedia 14 86.3 ± 3.8 87.7 ± 2.1 87.9 ± 2.2 89.8 ± 3.5 94.3 ± 2.0* 93.5 ± 2.6 87.3 ± 4.0 94.1 ± 2.1 94.0 ± 2.2
NLU Scenario 18 67.8 ± 4.0 69.9 ± 3.5 70.2 ± 4.0 74.9 ± 3.0 79.0 ± 2.0 77.9 ± 3.0 78.5 ± 3.2 81.8 ± 2.0 83.7 ± 1.8
TREC Fine 50 39.7 ± 4.5 38.8 ± 4.7 41.5 ± 6.0 45.7 ± 6.7 49.6 ± 6.6 50.1 ± 6.7 49.7 ± 6.0 55.5 ± 6.6 51.7 ± 6.6
NLU Intent 68 45.3 ± 4.9 50.0 ± 4.2 50.9 ± 4.0 55.8 ± 3.9 62.5 ± 3.1 63.3 ± 3.1 61.5 ± 2.8 71.8 ± 2.5 71.8 ± 2.7
BANKING77 77 25.9 ± 4.9 24.8 ± 4.0 28.8 ± 4.5 43.6 ± 3.1 51.9 ± 2.8 53.7 ± 3.3 43.3 ± 3.4 53.0 ± 3.8 56.0 ± 3.4
CLINIC150 150 50.8 ± 3.0 52.4 ± 2.3 57.7 ± 2.0 60.4 ± 2.4 63.0 ± 1.9 65.5 ± 1.9 59.7 ± 2.3 65.1 ± 2.7 66.1 ± 2.1

Table 11: Comparative analysis of classification results measured by accuracy (in %) for OPT models with B = 3.
The best scores are highlighted in bold, while ’*’ indicates p-value < 0.05.

Dataset # Labels ICL
B=3 B=4 B=5

PCW NBCE PCW NBCE PCW NBCE
SST-2 2 93.8 ± 2.6 93.7 ± 3.3 95.8 ± 1.7* 93.9 ± 2.7 96.1 ± 0.9* 92.3 ± 4.2 96.3 ± 0.9*
CR 2 90.3 ± 2.5 90.7 ± 2.4 91.7 ± 1.5* 90.8 ± 2.3 91.9 ± 1.6* 90.0 ± 2.7 91.5 ± 1.4*
SUBJ 2 72.3 ± 10.6* 70.9 ± 13.9 64.0 ± 10.7 66.6 ± 13.2 65.7 ± 9.7 67.3 ± 14.2 68.4 ± 9.8
CB 2 52.4 ± 10.1 59.9 ± 12.1 59.3 ± 10.8 55.6 ± 10.4 59.8 ± 12.0 60.7 ± 8.7 56.1 ± 9.9
RTE 2 56.1 ± 2.2 56.2 ± 1.6 56.8 ± 2.0 55.7 ± 1.6 56.6 ± 2.0 55.0 ± 1.4 56.9 ± 1.9*
AGNews 4 74.8 ± 6.7 76.7 ± 4.8* 72.7 ± 5.7 75.7 ± 5.3 73.0 ± 5.6 77.7 ± 3.9 77.1 ± 5.1
SST-5 5 42.7 ± 5.1 45.2 ± 4.2 42.5 ± 4.6 44.3 ± 4.5* 41.3 ± 3.5 46.3 ± 3.6* 42.8 ± 3.4
TREC 6 70.3 ± 3.3 73.1 ± 2.2* 71.8 ± 3.5 72.1 ± 2.9 72.0 ± 3.4 73.6 ± 2.7 72.9 ± 2.9
DBPedia 14 89.8 ± 3.5 94.3 ± 2.0* 93.5 ± 2.6 94.4 ± 2.1 93.4 ± 2.3 94.7 ± 1.5* 93.7 ± 2.0
NLU Scenario 18 74.9 ± 3.0 79.0 ± 2.0 77.9 ± 3.0 76.8 ± 4.3* 76.8 ± 3.1* 77.7 ± 3.8 79.3 ± 2.1*
TREC Fine 50 45.7 ± 6.7 49.6 ± 6.6 50.1 ± 6.7 48.2 ± 6.7 49.4 ± 6.9 51.5 ± 6.9 50.7 ± 5.2
NLU Intent 68 55.8 ± 3.9 62.5 ± 3.1 63.3 ± 3.1 61.8 ± 3.6 62.4 ± 3.9 61.1 ± 3.7 66.4 ± 2.3*
BANKING77 77 43.6 ± 3.1 51.9 ± 2.8 53.7 ± 3.3 51.5 ± 3.2 53.8 ± 3.2 52.2 ± 2.0 56.4 ± 2.6
CLINIC150 150 60.4 ± 2.4 63.0 ± 1.9 65.5 ± 1.9 62.7 ± 2.2 65.5 ± 2.5* 61.9 ± 1.8 67.1 ± 2.2*

Table 12: The comparative results of context extension, measured by accuracy (in %), for OPT-6.7B models with
windows (B = 4 and B = 5).

Dataset # Labels
GPT2-Large GPT2-XLarge

B = 4 B = 5 B = 4 B = 5
PCW NBCE PCW NBCE PCW NBCE PCW NBCE

SST-2 2 83.3 ± 7.8 83.9 ± 7.9 85.0 ± 6.9 83.7 ± 8.6 91.3 ± 2.9 92.6 ± 2.6 91.4 ± 3.1 92.4 ± 2.4
CR 2 82.1 ± 5.9 84.1 ± 5.7 81.7 ± 4.7 82.4 ± 5.1 82.1 ± 2.9 82.7 ± 3.0 82.0 ± 2.4 81.7 ± 2.5
SUBJ 2 68.1 ± 11.9 63.1 ± 10.5 66.5 ± 10.3 68.9 ± 10.5 63.9 ± 6.0 76.2 ± 6.7 59.3 ± 5.2 79.3 ± 5.5*
CB 2 44.0 ± 3.4 44.7 ± 4.3 42.8 ± 2.0 43.8 ± 2.8 53.9 ± 6.2 53.8 ± 9.1 51.1 ± 4.4 56.7 ± 7.7*
RTE 2 53.5 ± 1.5* 52.1 ± 3.0 54.0 ± 1.2 53.7 ± 2.2 55.3 ± 1.1 54.7 ± 3.0 54.9 ± 1.7 55.7 ± 1.7
AGNews 4 69.2 ± 9.6 68.1 ± 12.5 67.9 ± 8.1 70.7 ± 8.4 80.5 ± 3.3* 72.5 ± 8.8 80.0 ± 2.5* 73.0 ± 6.7
SST-5 5 40.1 ± 4.0 42.4 ± 1.7* 40.4 ± 3.9 42.6 ± 1.6 41.5 ± 4.2* 38.5 ± 5.7 39.2 ± 4.4 41.7 ± 5.8*
TREC 6 57.4 ± 4.1 64.8 ± 4.0* 55.3 ± 4.0 64.6 ± 4.8* 48.9 ± 3.4 51.6 ± 3.7 48.1 ± 2.2 53.0 ± 2.7*
DBPedia 14 80.7 ± 5.0* 74.8 ± 12.1 79.3 ± 4.4 76.5 ± 8.4 88.5 ± 3.3 87.5 ± 4.7 89.8 ± 3.2 89.1 ± 3.6
NLU Scenario 18 27.8 ± 3.6 46.6 ± 7.4 27.5 ± 3.3 44.4 ± 6.5 49.7 ± 5.7 51.7 ± 7.6 48.7 ± 6.0 52.8 ± 5.5*
TREC Fine 50 32.4 ± 5.1 37.4 ± 4.8* 31.2 ± 4.1 39.9 ± 3.6* 38.6 ± 3.1 39.8 ± 6.1 37.2 ± 2.3 41.6 ± 3.8*
NLU Intent 68 24.3 ± 4.7 26.0 ± 5.6 20.3 ± 5.4 27.3 ± 4.4 34.8 ± 5.1 35.9 ± 5.2 37.1 ± 5.1 38.6 ± 3.3*
BANKING77 77 26.6 ± 3.2 35.2 ± 3.8* 25.5 ± 3.2 36.0 ± 3.8* 31.0 ± 3.5 35.4 ± 3.2* 29.6 ± 2.8 37.7 ± 2.6*
CLINIC150 150 43.2 ± 1.8 48.1 ± 1.9* 41.6 ± 2.2 49.4 ± 2.0* 45.9 ± 2.9 49.3 ± 2.3* 43.0 ± 2.4 50.3 ± 2.5*

Table 13: The comparative results of classification tasks, quantified in terms of accuracy (in %), for both GPT2-
Large and GPT2-XLarge models using different context windows (B = 4 and B = 5). The best scores for each
model and dataset are highlighted in bold, while an asterisk (*) denotes statistical significance (as determined by a
t-test with a p-value < 0.05).
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Dataset # Labels
OPT-1.3B OPT-6.7B

B = 4 B = 5 B = 4 B = 5
PCW NBCE PCW NBCE PCW NBCE PCW NBCE

SST-2 2 81.1 ± 7.7 88.1 ± 5.7* 79.9 ± 9.8 88.8 ± 5.2* 93.9 ± 2.7 96.1 ± 0.9* 92.3 ± 4.2 96.3 ± 0.9*
CR 2 88.5 ± 3.3 88.8 ± 1.6 85.6 ± 3.6 89.1 ± 1.5* 90.8 ± 2.3 91.9 ± 1.6* 90.0 ± 2.7 91.5 ± 1.4*
SUBJ 2 68.5 ± 6.6 70.5 ± 7.4 65.2 ± 8.3 70.9 ± 6.3* 66.6 ± 13.2 65.7 ± 9.7 67.3 ± 14.2 68.4 ± 9.8
CB 2 51.6 ± 5.2 51.5 ± 4.3 49.1 ± 1.0 51.6 ± 3.6* 55.6 ± 10.4 59.8 ± 12.0 60.7 ± 8.7 56.1 ± 9.9
RTE 2 50.6 ± 3.1 51.4 ± 2.9 50.9 ± 2.1 51.3 ± 2.5 55.7 ± 1.6 56.6 ± 2.0 55.0 ± 1.4 56.9 ± 1.9*
AGNews 4 65.1 ± 5.9* 60.3 ± 9.0 69.4 ± 5.0* 62.9 ± 6.7 75.7 ± 5.3 73.0 ± 5.6 77.7 ± 3.9 77.1 ± 5.1
SST-5 5 42.4 ± 4.0 44.8 ± 2.2* 41.6 ± 4.3 45.1 ± 2.0* 44.3 ± 4.5* 41.3 ± 3.5 46.3 ± 3.6* 42.8 ± 3.4
TREC 6 55.2 ± 3.2 55.7 ± 4.3 52.5 ± 2.8 57.1 ± 3.9* 72.1 ± 2.9 72.0 ± 3.4 73.6 ± 2.7 72.9 ± 2.9
DBPedia 14 88.1 ± 2.6 87.5 ± 2.6 87.0 ± 3.1 87.9 ± 2.6 94.4 ± 2.1 93.4 ± 2.3 94.7 ± 1.5* 93.7 ± 2.0
NLU Scenario 18 69.9 ± 2.6 69.3 ± 4.3 67.7 ± 4.0 72.8 ± 3.8* 76.8 ± 4.3* 76.8 ± 3.1* 77.7 ± 3.8 79.3 ± 2.1*
TREC Fine 50 40.5 ± 5.8 43.1 ± 6.4 35.3 ± 3.5 42.0 ± 4.7* 48.2 ± 6.7 49.4 ± 6.9 51.5 ± 6.9 50.7 ± 5.2
NLU Intent 68 48.8 ± 4.2 51.0 ± 4.7 45.4 ± 3.2 54.5 ± 3.3* 61.8 ± 3.6 62.4 ± 3.9 61.1 ± 3.7 66.4 ± 2.3*
BANKING77 77 26.0 ± 3.5 30.1 ± 3.5* 28.9 ± 3.1 32.5 ± 3.5* 51.5 ± 3.2 53.8 ± 3.2 52.2 ± 2.0 56.4 ± 2.6
CLINIC150 150 52.6 ± 2.0 57.2 ± 2.5* 49.3 ± 2.5 58.4 ± 2.0* 62.7 ± 2.2 65.5 ± 2.5* 61.9 ± 1.8 67.1 ± 2.2*

Table 14: The comparative results of context extension, measured by accuracy (in %), for OPT models with
windows (B = 4 and B = 5).
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Dataset Number of shots per window B
Prompt Example Labels

kmax GPT2 kmax LLAMA

SST-2 27 48
Sentence: {Sentence}
Label: Label

[negative, positive]

CR 21 39
Review:{Sentence}
Sentiment:{Label}

[negative, positive]

SUBJ 18 32
Input:{Sentence}
Type:{Label}

[objective, subjective]

CB 5 10
Premise:{Sentence}
Hypothesis:{ hypothesis}
Prediction:{Label}

[true, false, neither]

RTE 5 10
Premise:{Sentence}
Hypothesis:{ hypothesis}
Prediction:{Label}

[True, False]

AGNews 11 20
Input:{Sentence}
Type:{Label}

[world, sports, business, technology]

SST-5 20 36
Review:{Sentence}
Sentiment:Sentiment

[terrible, bad, okay, good, great]

TREC 38 69
Question:{Sentence}
Type:{Label}

[abbreviation, entity, description, hu-
man, location, numeric]

DBPedia 7 14
Input:{Sentence}
Type:{Label}

[company, school, artist, athlete, poli-
tics, transportation, building, nature, vil-
lage, animal, plant, album, film, book]

NLU Scenario 43 80
Utterance:{Sentence}
Scenario:{Label}

[lists, weather, general, cooking, email,
alarm, datetime, calendar, social, trans-
port, iot, recommendation, takeaway,
play, music, qa, news, audio]

TREC Fine 37 65
Question:{Sentence}
Type:{Label}

[abbreviation abbreviation, abbreviation
expansion, entity animal, entity body,
entity color, entity creation, entity cur-
rency, entity disease, entity event, entity
food...

NLU Intent 43 80
Utterance:{Sentence}
Intent:{Label}

[alarm query, alarm remove, alarm
set, audio volume down, audio volume
mute, audio volume other, audio vol-
ume up, calendar query, calendar re-
move, calendar set...

BANKING77 27 51
Query:{Sentence}
Intent:{Label}

[activate my card, age limit, apple
pay or google pay, atm support, auto-
matic top up, balance not updated after
bank transfer, balance not updated after
cheque or cash deposit...

CLINIC150 39 72
Sentence:{Sentence}
Intent:{Label}

[restaurant reviews, nutrition info, ac-
count blocked, oil change how, time,
weather, redeem rewards, interest rate,
gas type...

Table 15: Classification datasets with used prompts and kmax for GPT2 and LLAMA. Note that OPT shares the
same length of LLAMA (i.e., 2048)
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