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Abstract

Current implementations of Bayesian Additive Regression Trees (BART) are based on axis-
aligned decision rules that recursively partition the feature space using a single feature at
a time. Several authors have demonstrated that oblique trees, whose decision rules are
based on linear combinations of features, can sometimes yield better predictions than axis-
aligned trees and exhibit excellent theoretical properties. We develop an oblique version
of BART that leverages a data-adaptive decision rule prior that recursively partitions the
feature space along random hyperplanes. Using several synthetic and real-world benchmark
datasets, we systematically compared our oblique BART implementation to axis-aligned
BART and other tree ensemble methods, finding that oblique BART was competitive with
— and sometimes much better than — those methods.

1 Introduction

1.1 Motivation

Tree-based methods like CART (Breiman et al., 1984), random forests (RF; Breiman, 2001), and gradient
boosted trees (GBT; Friedman, 2001) are extremely popular and effective machine learning algorithms. They
are simple to train and typically deliver accurate predictions (Hastie & Friedman, 2005, §9.2).

Compared to these models, the Bayesian Additive Regression Trees (BART; Chipman et al., 2010) model is
used much less frequently in the wider machine learning community. Like RF and GBT, BART approximates
unknown functions using regression tree ensembles. But unlike RF and GBT, BART is based on a fully
generative probabilistic model, which facilitates natural uncertainty quantification (via the posterior) and
allows it to be embedded within more complex statistical models. For instance, BART has been extended
to models for survival (Sparapani et al., 2016; Linero et al., 2022) and semi-continuous (Linero et al., 2020)
outcomes; conditional density regression (Orlandi et al., 2021; Li et al., 2023b); non-homogeneous point
process data (Lamprinakou et al., 2023); regression with heteroskedastic errors (Pratola et al., 2020); and
integrating predictions from multiple models (Yannotty et al., 2024a;b). BART and its extensions typically
return accurate predictions and well-calibrated uncertainty intervals without requiring users to specify the
functional form of the unknown function and without hyperparameter tuning. Its ease-of-use and generally
excellent performance makes BART an attractive “off-the-shelf” modeling tool, especially for estimating
heterogeneous causal effects (Hill, 2011; Dorie et al., 2019; Hahn et al., 2020).

Virtually every implementation of RF, GBT, and BART utilizes axis-aligned regression trees, which partition
the underlying predictor space into rectangular boxes (Figure 1a) and correspond to piecewise constant step
functions. Although step functions (i.e., regression trees) are universal function approximators, several
authors have proposed modifications to make regression trees even more expressive and flexible. One broad
class of modifications replaces the constant output in each leaf node with simple parametric models (e.g.,
Quinlan, 1992; Landwehr et al., 2005; Chan & Loh, 2004; Künzel et al., 2022) or nonparametric models
(e.g., Gramacy & Lee, 2008; Starling et al., 2020; Maia et al., 2024). Another broad class involves the use of
“oblique” decision rules, which allow trees to partition the predictor space along arbitrary hyperplanes (see,
e.g., Figure 1b). As we detail in Section 2.1, several authors have found that oblique trees and ensembles
thereof often outperform their axis-aligned counterparts in terms of prediction accuracy. For instance,
Bertsimas & Dunn (2017) reported oblique decision trees can outperform CART by 7% while Breiman
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(2001) noted that an oblique version of RF can improve performance by up to 8.5%. Beyond these empirical
results, Cattaneo et al. (2024) recently demonstrated that oblique decision trees and their ensembles can
sometimes obtain the same convergence rates as neural networks. To the best of our knowledge, however,
there has been no systematic exploration of oblique trees in the Bayesian setting.
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Figure 1: Example of step functions defined over [−1, 1]2 and their corresponding axis-aligned (a) and oblique
(b) regression tree representations.

1.2 Our contributions

In this work, we introduce obliqueBART and systematically compare its predictive ability to the original
BART model and several other tree-based methods. As a preview, consider the functions in Figures 2a
and 2d, whose discontinuities are not closely aligned with the coordinate axes. Although axis-aligned BART
captures the general shape of the decision boundaries, it requires very deep trees to do so and inappropriately
smoothes over the functions’ sharp discontinuities (Figures 2b and 2e). obliqueBART, in sharp contrast,
recovers the boundaries much more precisely and with shallower trees (Figures 2c and 2f). We will return
to these examples in Section 4.1.

The rest of the paper is organized as follows. In Section 2, we review the literature on oblique trees and
briefly review the basic axis-aligned BART model. In Section 3, we introduce our prior on oblique decision
rules and discuss our implementation of obliqueBART. We compare the performance of obliqueBART to
axis-aligned BART and several popular tree-based machine learning models across a range of synthetic and
benchmark datasets in Section 4. We discuss potential extensions and further refinements in Section 5.

2 Background

Before reviewing existing oblique tree models (Section 2.1) and BART (Section 2.2), we introduce some
notation and briefly review RF and GBT. For simplicity, we focus on the standard nonparametric regression
problem with continuous predictors: given n observations (x1, y1), . . . , (xn, yn) with xi ∈ [−1, 1]p from the
model y ∼ N

(
f(x), σ2) , we wish to recover the unknown function f and residual variance σ2. A decision

tree over [−1, 1]p is a pair (T ,D) containing (i) a binary tree T that contains several terminal or leaf nodes
and several non-terminal or decision nodes and (ii) a collection of decision rules D, one for each decision
node in T . Axis-aligned decision rules take the form {Xj < c} while oblique decision rules take the form
{φ>x < c} where φ ∈ Rp. Notice that axis-aligned rules form a subset of all oblique rules.

Given a decision tree (T ,D), for each point x ∈ [−1, 1]p, we can trace a path from the root to a unique leaf
as follows. For axis-aligned trees (resp. oblique trees), starting from the root, whenever the path reaches a
node with decision rule {Xj < c} (resp. {φ>x < c}), the path proceeds to the left if xj < c (resp. φ>x < c)
and to the right otherwise. We let `(x; T ,D) denote the leaf reached by x’s decision-following path. By
associating a scalar µ` to each leaf in T , the regression tree (T ,D,M) represents a piecewise constant step
function over [−1, 1]p. Given a regression tree (T ,D,M), we denote the evaluation function that returns the
scalar associated to the leaf reached by x as g(x; T ,D,M) = µ`(x;T ,D).
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Figure 2: True function (a,d), axis-aligned BART estimate (b,e), and obliqueBART estimate (c,f).

In the nonparametric regression problem, CART estimates a single regression tree such that f(x) ≈
g(x; T ,D,M) using an iterative approach. After initializing T as the root node, CART visits every current
leaf node, finds an optimal decision rule for that leaf, and attaches two children to the leaf, turning it into
a decision node. This process continues until each leaf contains a single observation. Typically CART trees
are pruned back according to a cross-validation criterion. At each step, CART exhaustively searches for the
optimal decision rule using a variance reduction criteria. See Hastie & Friedman (2005, §9.2) for an overview
of the CART algorithm.

RF, GBT, and BART instead learn a collection (or ensemble) of M regression trees E = {(Tm,Dm,Mm)}
such that f(x) ≈

∑M
m=1 g(x; Tm,Dm,Mm). These methods differ significantly in how they learn E .

RF estimates each tree in E using independent bootstrap sub-samples of the training data. Each tree in
an RF ensemble is trained using an iterative procedure similar to CART. However, instead of exhaustively
searching over p features, at each iteration, RF identifies the optimal rule over a random subset of features.
When the number of training observations n is very large, each tree-growing iteration of RF can be slow, as it
involves searching over all possible cutpoints for the randomly selected features. The Extremely Randomized
Trees (ERT) procedure of Geurts et al. (2006) overcomes this limitation by randomizing both the splitting
variable and cutpoint. That is, in each iteration, ERT draws a small collection of splitting variable and
cutpoint pairs and then finds the optimal rule among this small collection. ERT also differs from RF in that
each tree is trained using the whole sample, rather than independent bootstrap re-samples. Typically, the
trees in an RF or ERT ensemble are un-pruned.

GBT, on the other hand, trains the trees sequentially, with each tree trained to predict the residuals based
on all preceding trees. Specifically for each m, GBT trains (Tm,Dm,Mm) to predict the residuals yi −
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∑m−1
m′=1 g(xi; Tm′ ,Dm′ ,Mm′). Unlike CART, RF, and ERT, trees in a GBT ensemble are constrained to have

a fixed depth, typically three or less. Although BART shares some algorithmic similarities with ERT and
GBT, there are crucial differences, which we will exploit when developing obliqueBART.

2.1 Inducing oblique trees

Conceptually, extending CART to use oblique rules seems straightforward: one need only find an optimal
direction φ and cutpoint c that most decreases the variance of the observed responses that reach a given node.
Unfortunately, the resulting optimization problem is extremely challenging; in the case of classification, the
problem is NP-complete (Heath et al., 1993, Theorem 2.1). Consequently, researchers rely on heuristics to
build oblique trees. These heuristics fall into three broad classes. The first class of heuristics are model-based:
at each decision node, one selects φ after fitting an intermediate statistical model and then finds an optimal
cutpoint for the feature φ>x. For instance, Menze et al. (2011) set φ to be the parameter estimated by fitting
a ridge regression at each decision node. Zhang & Suganthan (2014) and Rainforth & Wood (2015) instead
performed linear discriminant, principal component, and canonical correlation analyses at each decision node
to determine φ. Compared to the axis-aligned random forests, ensembles of these model-based oblique trees
respectively improved prediction accuracy by 20%, 2.9%, and 28.7%.

The second class of heuristics involve randomization: instead of searching over all possible directions φ,
one draws D random directions φ1, . . . , φD; computes D new features φ>1 x, . . . φ>Dx; and then identifies the
optimal axis-aligned rule among these new features. Notable examples of randomization-based approaches are
Breiman (2001), Blaser & Fryzlewicz (2016), Tomita et al. (2020), and Li et al. (2023a), which differ primarily
in the distribution used to draw the candidate directions φ1, . . . , φD. Breiman (2001), for instance, restricted
the φd’s to have k non-zero elements drawn uniformly from [−1, 1]. The resulting random combination
forests algorithm had out-of-sample errors 3% to 8.5% lower than the errors of axis-aligned random forests.
By allowing a variable number of non-zero entries in φd but restricting those entries to ±1, Tomita et al.
(2020) obtained similar performance gains.

Methods based on the first two classes of heuristics estimate or propose new oblique rules in each iteration
of the tree growing procedure. An alternative strategy involves pre-computing a large number of feature
rotations or projections and then training a standard axis-aligned model using the newly-constructed features.
Rodriguez et al. (2006), for instance, combine a PCA pre-processing step with the standard random forest
algorithm. Blaser & Fryzlewicz (2016) instead generate a large number of randomly rotated features before
building a random forest ensemble. Their random rotation random forest method outperformed axis-aligned
methods in about two-third of their experiments.

Before proceeding, it is worth mentioning Bertsimas et al. (2021) does not utilize model- or randomization-
based heuristics to grow oblique trees. They instead find optimal oblique decision rules using mixed-integer
programming. Their procedure, however, restricts the depth and structure of the tree T a priori, is generally
not scalable beyond depth three, and led to small increases in the predictive R2.

2.2 Review of BART

Like RF, ERT, and GBT, BART expresses the unknown regression function f(x) with an ensemble of trees
E = {(Tm,Dm,Mm)}. Unlike these methods, which learn only a single ensemble, BART computes an entire
posterior distribution over tree ensembles. Since the posterior is analytically intractable, BART uses Markov
chain Monte Carlo (MCMC) to simulate posterior samples.

2.2.1 The BART prior

Key to BART’s empirical success is its regularizing prior over the regression tree ensemble. BART models
each tree (Tm,Dm,Mm) as a priori independent and identically distributed. We can describe the regression
tree prior compositionally by explaining how to sample from it. First, we draw the tree structure T by
simulating a branching process. Starting from the root node, which is initially treated as a terminal node
at depth 0, whenever a terminal node at depth d is created, the process attaches two child nodes to it
with probability α(1 + d)−β . Then, at each decision node, decision rules of the form {Xj < c} are drawn
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conditionally on the rules at the nodes’ ancestors. Drawing a decision rule involves (i) uniformly selecting the
splitting axis j; (ii) computing the interval of valid values of Xj at the current tree node; and (iii) drawing
the cutpoint c uniformly from this interval. The set of valid Xj values at any node is determined by the
rules at the node’s ancestors in T . For instance in Figure 1a, if we were to draw a decision rule at node 5,
[−1, 0.4] is the set of valid X1 values and [0.2, 1] is the set of valid X2 values. Finally, conditionally on T ,
the leaf outputs inM are drawn independently from a N

(
0, τ2/M

)
distribution.

Chipman et al. (2010) completed their prior by specifying σ2 ∼ Inv. Gamma (3/2, 3λ/2) . They further
recommended default values for each prior hyperparameter. They suggested setting α = 0.95 and β = 2, so
that the branching process prior concentrates considerable prior probability on trees of depth less than 5.
For any x, the marginal prior for f(x) is N

(
0, τ2) . Chipman et al. (2010) recommended setting τ so that

this marginal prior places 95% probability over the range of the observed data. They similarly recommended
setting λ so that there was 90% prior probability on the event that σ was less than the standard deviation
of the observed outcome. Finally, they recommended setting M = 200. Although some of these choices are
somewhat ad hoc and data-dependent, they have proven tremendously effective across a range of datasets.

2.2.2 Sampling from the BART posterior

To simulate draws from the tree ensemble posterior, Chipman et al. (2010) introduced a Metropolis-within-
Gibbs sampler. In each iteration, the sampler sweeps over the entire ensemble and sequentially updates each
regression tree (Tm,Dm,Mm) conditionally fixing the remaining M − 1 trees. Each regression tree update
consists of two steps. First, a new decision tree (T ,D) is drawn from its conditional distribution given the
data, σ, and all other regression trees in the ensemble. Then, new leaf outputsM are drawn conditionally
given the new decision tree, the data, σ, and the remaining regression trees. In the standard nonparametric
regression setting, the leaf outputs are conditionally independent given the tree structure, which allows us
to draw M with standard normal-normal conjugate updates. Most implementations of BART update the
decision tree (T ,D) by first drawing a new decision tree from a proposal distribution and accepting that
proposal with a Metropolis-Hastings step. The simplest proposal distribution involves randomly growing or
pruning (T ,D) with equal probability.

In each MCMC iteration, BART updates each regression tree conditionally fixing the other trees in the
ensemble E . Consequently, each individual regression tree in a BART ensemble does not attempt to estimate
the true regression function well. Instead, like GBT, each tree is trained to fit a partial residual based on the
fits of other tres. However, unlike GBT, which trains trees sequentially, each tree in the BART ensemble is
dependent on every other tree a posteriori. This is in sharp contrast to RF and ERT, which independently
train each tree to predict the outcome using a bootstrap sample (RF) or full training data (ERT).

BART is, nevertheless, similar to ERT, insofar as both methods grow trees using random decision rules.
Recall that at each iteration, ERT grows a tree by selecting the best decision rule among a small collection
of random proposals. BART, on the other hand, uses a Metropolis-Hastings step to accept or reject a single
random proposal. As a result, BART can sometimes grow a tree with a rule that does not significantly
improve overall fit to data or remove a split that does. Thus, unlike CART, RF, ERT, and GBT, we cannot
regard the decision rules appearing in a BART ensemble as optimal in any sense.

3 BART with oblique decision rules

Suppose that we observe n pairs (x1, y1), . . . , (xn, yn) of p-dimensional vectors of predictors x and scalar
outcomes y. For regression problems, we model y ∼ N

(
f(x), σ2) and for binary classification problems,

we model P(y = 1) = Φ(f(x)) where Φ is the cumulative distribution function for a standard normal
distribution. Further suppose that we have pcont continuous predictors and pcat = p − pcont categorical
predictors. Without loss of generality, we will arrange continuous predictors first; assume that all continuous
predictors lie in interval [−1, 1]pcont ; and that the j-th categorical predictor lies in a discrete set Kj . That is,
we assume that all predictor vectors x = (x>cont,x

>
cat)> lie in the product space [−1, 1]pcont ×K1 × · · · Kpcat .

obliqueBART expresses the unknown regression function f(x) with an ensemble of M regression trees E =
{(T1,D1,M1), . . . , (TM ,DM ,MM )} whose decision rules take the form {φ>xcont < c} or {Xpcont+j ∈ C}
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where j ∈ {1, . . . , pcat} and C ⊆ Kj . Formally, this involves specifying a prior and computing a posterior over
E , from which we can approximately sample using MCMC. Like in the original BART model, we model the
individual trees (Tm,Dm,Mm) as a priori i.i.d. Similarly, we simulate posterior samples using a Metropolis-
within-Gibbs sampler that updates each regression tree one-at-a-time while fixing the others. The main
differences between obliqueBART and the original, axis-aligned BART are the decision rule prior and the
conditional regression tree updates.

3.1 The obliqueBART prior

For obliqueBART, we adopt exactly the same priors for T and M as Chipman et al. (2010). That is, we
specify the same branching process prior for T and independent normal priors for outputs in M with the
same default hyperparameters described in Section 2.2. We specify the obliqueBART decision rule prior
implicitly, by describing how to draw a rule at a non-terminal node in a tree T . To this end, suppose we
are at internal node nx in T and that we have drawn rules at all of nx’s ancestors. With probability pcat/p,
we draw a categorical decision rule of the form {Xpcat+j ∈ C} where C ⊂ Kj and j ∈ {1, . . . , pcat} and with
probability pcont/p, we draw a continuous decision rule of the form {φ>xcont < c}.

Drawing a categorical decision rule involves (i) selecting the splitting variable index j; (ii) computing the set
A of valid values of the j-th categorical predictor Xpcont+j ; and (iii) forming a subset C ⊂ A by randomly
assigning each element of A to C with probability 1/2. The set A is determined by the decision rules of
nx’s ancestors in the tree. Although Chipman et al. (1998) initially used such categorical decision rules in
their Bayesian CART procedure, most implementations of BART do not use this prior and instead one-hot
encode categorical features. A notable exception is Deshpande (2024), who demonstrated these categorical
decision rules often produced more accurate predictions than one-hot encoding.

Drawing a continuous decision rule involves (i) drawing a random vector φ; (ii) computing the interval of
valid values of φ>xcont at nx; and (iii) drawing the cutpoint c uniformly from that interval. Both Breiman
(2001) and Tomita et al. (2020) recommend the use of sparse φ’s when inducing oblique decision trees. While
Breiman (2001) fixed the number of non-zero elements of φ, Tomita et al. (2020) demonstrated that allowing
the number of non-zero entries to vary across decision rules improved prediction. Motivated by their findings,
we specify a hierarchical spike-and-slab prior for φ, which encourages sparsity and also allows the number of
non-zero entries of φ to vary adaptively with the data.

Formally, we introduce a parameter θ ∈ [0, 1] that controls the overall sparsity of φ. Conditionally on θ, we
draw p binary indicators γ1, . . . , γp|θ

i.i.d.∼ Bernoulli (θ) . Then, for each j = 1, . . . , pcont, we draw φj ∼ N (0, 1)
if γj = 1 and φj = 0 otherwise. Finally, we re-scale φ to have unit norm. By specifying a further prior on
θ, we allow obliqueBART to learn an appropriate level of sparsity of φ from the data. For simplicity, we
specify a conjugate Beta (aθ, bθ) prior with fixed aθ, bθ > 0.

Once we draw φ, we draw c uniformly from the range of valid values of φ>xcont available at nx. This range
is determined by the continuous decision rules used at the ancestors of nx in the tree and can be computed
by solving two linear programs maximizing and minimizing φ>xcont over the polytope corresponding to nx.

obliqueBART depends on several hyperparmeters: the number of trees M, the hyperparameters aθ, bθ > 0
for θ, and ν and λ for the prior on σ2 (for regression). Following Chipman et al. (2010), we recommend
setting M = 200, ν = 3, and tuning λ so that there is 90% prior probability on the event that σ2 is less
than the observed variance of Y. For the spike-and-slab prior, we recommend fixing aθ = M and bθ so that
the prior mean of θ is 2/pcont. We have found that obliqueBART’s performance is not especially sensitive to
these choices; see Appendix C.

3.2 Posterior computation

For simplicity, we describe the posterior sampling algorithm used for regression. For binary classification, we
use essentially the same algorithm but with an additional data augmentation step, which was first described
in Albert & Chib (1993).
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To simulate draws from the obliqueBART posterior, we deploy a Metropolis-within-Gibbs sampler that is
almost identical to the original BART sampler described in Section 2.2. In each Gibbs sampler iteration, we
update each of E , θ, and σ2 conditionally on the other two. Simple conjugate updates are available for θ and
σ2. Like Chipman et al. (2010), we update the trees in E one-at-a-time in two steps: a marginal decision tree
update followed by a conditional update for the leaf outputs. We further utilize grow and prune proposals
to update each decision tree. The only difference between our obliqueBART sampler and the original BART
sampler lies in the generation of grow proposals.

3.2.1 Regression tree updates

To describe the update of the m-th regression tree (Tm,Dm,Mm), let E− denote the collection of the
remainingM −1 regression trees in the ensemble. For every node nx in T , let I(nx) denote the set of indices
of the observations xi whose decision-following paths visit the node nx. Further let nnx = |I(nx)| count the
number of observations which visit nx. The full conditional posterior density of the m-th regression tree
factorizes over the leafs of T :

p(T ,D,M|y, E−, σ2, θ) ∝ p(T ,D|θ)×
∏
leafs
`

τ−1 exp

−1
2

σ−2
∑
i∈I(`)

(ri − µ`)2 + τ−2µ2
`


, (1)

where ri is the i-th partial residual based on the trees in E− given by ri = yi−
∑
m′ 6=m g(xi; Tm′ ,Dm′ ,Mm′).

From Equation (1), we compute

p(T ,D|y, E−, σ2, θ) ∝ p(T ,D|θ)×
∏
leafs
`

[
τ−1P

− 1
2

` exp
{

Θ2
`

2P`

}]
(2)

p(M|T ,D, E−,y, σ2) ∝
∏
leafs
`

P
1
2
` exp

{
−
P`(µ` − P−1

` Θ`)2

2

}
(3)

where, for any node nx in T , Pnx = nnxσ
−2 + τ−2 and Θnx = σ−2∑

i∈I(nx) ri. We see immediately from
Equation (3) that, given the decision tree structure, the leaf outputs are conditionally independent and
normally distributed. Specifically, in leaf `, we have µ` ∼ N

(
P−1
` Θ`, P

−1
`

)
conditionally on T ,y, E(−), and

σ2. This means that when n` is large, µ`’s conditional posterior is sharply concentrated near the average of
the partial residuals in the leaf. This is in marked contrast to CART, RF, and ERT where the leaf outputs
are exactly the average of the outcomes in the leaf.

Efficient decision tree updates. It remains to describe how to sample a new decision tree from the
distribution in Equation (2). Although its density is available in closed form, this distribution does not
readily admit an exact sampling procedure. Instead, assuming that currently (Tm,Dm) = (T ,D), we use
a single Metropolis-Hastings (MH) step in which we first propose a random perturbation (T ?,D?) of the
(T ,D) and then set (Tm,Dm) = (T ?,D?) with probability

α(T ,D → T ?,D?) = min
{

1, q(T ,D|T
?,D?)

q(T ?,D?|T ,D) ×
p(T ?,D?|y, E−, σ2, θ)
p(T ,D|y, E−, σ2, θ)

}
, (4)

where q(·|·) is a to-be-specified proposal kernel.

In obliqueBART, we use a simple proposal mechanism that randomly grows or prunes the tree, each with
probability 1/2. To generate a grow proposal, we (i) attach two child nodes to a leaf node selected uniformly
at random; (ii) draw a new decision rule to associate with the selected node; and (iii) leave the rest of the
tree and the other decision rules unchanged. To generate a prune proposal, we (i) delete two leafs with a
common parent and their incident edges in T ; (ii) delete the decision rule associated with the parent of the
deleted leafs; and (iii) leave the rest of the tree and the other decision rules unchanged. See Figure 3 for a
cartoon illustration.
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φ>1 xcont < c1

φ>3 xcont < c3

φ>1 xcont < c1

φ>3 xcont < c3

φ>6 xcont < c6

φ>1 xcont < c1

φ>3 xcont < c3

φ>6 xcont < c6 φ>7 xcont < c7

←− −→

Prune move Current tree Grow move

Figure 3: Cartoon illustration of a grow and prune move with oblique, continuous decision rules

The local nature of grow and prune proposals — they change at most two leaves — and the fact that the
conditional posterior density of (T ,D) factorizes over leafs (Equation (2)) yields considerable cancelation in
the acceptance probability in Equation (4); see Appendix B.

During a grow move, we must draw a decision rule to associate to the newly created decision node from
some proposal distribution; in Figure 3, this rule is highlighted in dark green. In principal, we can use
any distribution over decision rules for the proposal. For simplicity, we choose to propose decision rules in
grow moves from the prior described in Section 3.1. That is, we first randomly decide whether to draw a
categorical or continuous decision rule. If we draw a categorical rule, we select the splitting variable and
form a random subset of the available levels of that variable. If we decide to draw continuous decision rule,
then, conditionally on θ, we draw the entries of φ independently from the spike-and-slab prior.

Note that there is positive probability that the proposed φ contains all zeros. When this occurs, we set c = 1
so that the decision rule {0>x < 1} sends all observations to the left child and none to the right child in
the proposed decision tree (T ?,D?). Such proposals provide exactly the same fit to the data as the original
tree but receives less prior support due to their increased complexity. Consequently, these proposal tends to
be rejected in the MH step. When φ contains at least one non-zero element, we solve two linear programs
to compute the maximum and minimum values of φ>xcont over the linear polytope corresponding to the
node nx. In our implementation, we solve these programs using the numerical optimization library ALGLIB
4.01.0 (Bochkanov, 2023).

At first glance, it may seem counter-intuitive to propose rules completely at random and independently
of the data. One might anticipate that completely random rules would lead to very low MH acceptance
probabilities. One might further expect that proposing new rules in a data-dependent fashion, for instance
using the model-based heuristics of Menze et al. (2011), Zhang & Suganthan (2014), or Rainforth & Wood
(2015), could lead to larger acceptance probabilities and more efficient MCMC exploration. In fact, drawing
overly-informed proposals can result in slower MCMC exploration than drawing proposals from the prior.

To develop some intuition for this phenomenon, we note that the MH acceptance probability can be decom-
posed into the product of two terms (Equation (B1)). The first balances tree complexity against data fit while
the other is the ratio between the prior and proposal probabilities of the new rule. Although informed pro-
posals might increase the first term by improving the data fit, they generally make the second term extremely
small, deflating the acceptance probability. The resulting Markov chain tends to explore the posterior very
slowly. See Deshpande (2024, §2.2 and Appendix B) for more discussion about this phenomenon.

To summarize, in each Gibbs sampler iteration, while keeping σ2 and θ fixed, we first sweep over the trees
in E , updating each one conditionally on all the others. Each regression tree update involves (i) sampling a
new decision tree from Equation (2) with a MH step and grow/prune mechanism and then (ii), conditionally
on the new decision tree, drawing leaf `’s output from a N

(
P−1
` Θ`, P

−1
`

)
distribution. When generating

grow proposals, we draw new decision rules from the prior described in Section 3.1.
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3.2.2 Updating θ and σ2

Once we update each tree in E , we draw σ2 and θ from their full conditional posterior distributions, which
are both conjugate. We compute

σ2|y, E , θ ∼ Inv. Gamma

ν + n

2 ,
νλ

2 + 1
2

n∑
i=1

(
yi −

M∑
m=1

g(xi; Tm,Dm,Mm)
)2

θ|y, E , σ2 ∼ Beta (aθ + nφ, bθ + zφ) ,

where nφ (resp. zφ) counts the number of non-zero (resp. zero) entries in the φ’s appearing in E .

An R package implementing obliqueBART is available at link to GitHub repository blinded for
review.

4 Experiments

We compared the performance of obliqueBART to other tree models using several synthetic and benchmark
datasets. In Section 4.1, we use the synthetic data from Figure 2 to compare obliqueBART to axis-aligned
BART with the original features and several randomly rotated versions of the features. Then, in Section 4.2,
we compare obliqueBART to other axis-aligned tree ensemble methods fit, respectively, with the original
features and randomly pre-rotated features on benchmark datasets for both regression and classification
problems. Generally speaking, obliqueBART performed very well on regression tasks and was competitive
with the other methods on classification tasks. We further found that randomly pre-rotating features before
fitting axis-aligned RF, ERT, or GBT models tended to yield worse results than simply fitting obliqueBART.

We performed all of our experiments on a shared high-throughput computing cluster. For obliqueBART
and BART, we compute posterior means of f(x) (for regression) and P(y = 1|x) (for classification) based
on 1000 samples obtained by simulating a single Markov chain for 2000 iterations and discarding the first
1000 as “burn-in.” We fit BART, RF, ERT, and XGBoost models using implementations available in the
R packages BART (Sparapani et al., 2021), randomForest (Liaw & Wiener, 2002), ranger (Wright &
Ziegler, 2017), and xgboost (Chen et al., 2024). We used package default settings for all experiments and
did not manually tune any hyperparameters.

4.1 Synthetic data experiments

We compared obliqueBART to axis-aligned BART with data from the two simple functions in Figure 2. Since
obliqueBART partitions the feature space along randomly selected directions, we additionally compared it
with a hybrid procedure that first computes R random rotations of the feature space and then trains an
axis-aligned BART model using the rotated features. This random rotation BART model is a direct analog
of the random rotation ensemble methods studied in Blaser & Fryzlewicz (2016).

For these experiments, we sampled n covariate vectors xi ∼ Uniform([0, 1]2) and generated yi ∼
N (f(xi; θ,∆), 1) , where the function f(x; θ,∆) takes on two values ±∆ and depends on a parameter θ.
We considered two such functions, the rotated axes function (Figure 2a) and the sinusoid function (Fig-
ure 2a).

Rotated axes. Given any θ ∈ [0, π/4], let u(x) be the point obtained by rotating x θ radians counter-
clockwise around the origin. The value of rotated axes function is determined by the quadrant in which u
lies. Specifically, for rotation angle θ ∈ {0, π/36, . . . , π/4} and jump ∆ ∈ {0.5, 1, 2, 4}, we set f(x; θ,∆) =
∆× (2× 1 (u1u2 > 0)− 1).

Sinusoid. The value of f(x; θ,∆) depends on which side of a particular sinusoid the point x lies.
Specifically, for a given amplitude θ ∈ {0, 0.1, . . . , 1} and jump ∆ ∈ {0.5, 1, 2, 4}, we set f(x; θ,∆) =
∆× (2× 1 (x2 > θ sin (10x1))− 1) .

For each combination of n ∈ {100, 1000, 10000}, function f, jump ∆, and parameter θ, we generated 20
datasets of size n. Figure 4a shows how axis-aligned BART and random rotation BART’s out-of-sample

9
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RMSE (averaged over 20 replications) relative to oblique BART changes as the decision boundaries becomes
less and less axis-aligned (i.e., as θ increases) with ∆ = 4.

(a) (b)

Figure 4: Performance of axis-aligned BART (AA) and axis-aligned BART with random rotations relative to
obliqueBART in terms of out-of-sample predictive error in the (a) rotated axes partition and (b) sinusoidal
partition.

As we might expect, obliqueBART substantially outperformed axis-aligned BART on the rotated axes prob-
lem. Interestingly, we see that obliqueBART even out-performs axis-aligned BART when θ = 0 and the true
decision boundary is axis-aligned. When θ = 0, the obliqueBART ensemble used, on average, axis-aligned
rules 70.2% of the time compared to 52.9% of the time when θ = π/4. This suggests that obliqueBART,
through the hierarchical spike-and-slab prior for φ, can adaptively adjust the number of axis-aligned or
oblique rules. obliqueBART further outperformed axis-aligned BART on the sinusoid problem, even though
the decision boundary was highly non-linear (see Figure 4b).

Although obliqueBART also outperformed random rotation BART with a small number of random rotations,
the gap between the methods diminished as the number of rotations R increased. For these data, random
rotation BART run with at least 50 rotations performed as well as — and, at times, slightly outperformed —
obliqueBART. As we discuss in Section 4.2, matching oblique BART’s performance with a random rotation
ensemble is much harder when the number of continuous predictors pcont is large.

4.2 Results on benchmark datasets

We next compared obliqueBART’s performance to that of RF, ERT, XGB, BART, and rotated versions of
these methods with R = 200 random rotations on 18 regression and 22 classification benchmark datasets.
The regression datasets contain between 96 and 53,940 observations and between 4 and 31 predictors and
the classification datasets contain between 61 and 4601 observations and between 4 and 72 predictors. We
obtained most of these datasets from UCI Machine Learning Repository (https://archive.ics.uci.edu);
the Journal of Applied Econometrics data archive (http://qed.econ.queensu.ca/jae/); and from several
R packages. See Table A1 for the dimensions of and links to these datasets.

We created 20 random 75%-25% training-testing splits of each dataset. For regression tasks, we computed
each methods’ standardized out-of-sample mean square error (SMSE), which is defined as the ratio be-
tween the the mean square errors of a model, n−1

test
∑ntest
i=1 (Ytest,i − Ŷi)2 and the mean of the training data

n−1
test
∑ntest
i=1 (Ytest,i − Y train)2. For classification problems, we formed predictions by truncating the outputted

class probability at 50% and computed out-of-sample accuracy. We performed one-sided paired t-tests to
determine whether oblique BART’s error were significantly less than the competing methods’ errors.
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4.2.1 Comparison to axis-aligned methods

Figure 5 compares obliqueBART’s SMSE and accuracy to those of the axis-aligned methods across every
fold and dataset. We defer dataset-by-dataset tabulations of these error metrics to Tables A2 and A3 in
Appendix A.

(a) (b)

Figure 5: obliqueBART’s SMSE (a) and accuracy (b) across all splits and datasets, compared to XGB, ERT,
RF, and BART. Models with lower SMSE’s and higher accuracies are preferred.

Although no single method performed the best across all regression datasets, obliqueBART had the the
smallest overall average SMSE (0.296). For comparison, the SMSEs for the axis-aligned methods were
0.316 (BART), 0.330 (RF), 0.332 (ERT), and 0.342 (XGB). obliqueBART’s SMSE was also statistically
significantly lower (at the 5% level) than BART’s on nine datasets, RF’s on nine datasets, ERT’s on 12
datasets, and XGB’s on nine datasets.

obliqueBART had the smallest classification accuracy (0.846) averaged across all folds and datasets while
ERT had the highest (0.866). ERT had the largest accuracy on nine datasets while obliqueBART was the
best-performing method for five datasets. Generally speaking, however, obliqueBART was still competitive
with the other methods for classification. The difference in accuracy between obliqueBART and ERT was
less than 2% in 15 of the 22 datasets. Similarly, the difference in accuracy between obliqueBART and BART
was less than 1.7% in 14 of the datasets.

Because BART and obliqueBART generate many samples of the regression tree ensemble, we would expect
them to be slower than RF, ERT, and XGB, which only generate a single ensemble. Further, because
obliqueBART involves solving two linear programs when proposing new decision rules, we would expect it
to be slower than BART. This was generally the case in our experiments: for most datasets, obliqueBART
was about twice as slow as BART and slower than RF, ERT, and XGB. Surprisingly, however, obliqueBART
was much faster on the diamons dataset.

4.2.2 Comparison with random rotation ensembles

Next, we compared oblique BART’s performance to randomly rotated versions of BART, RF, ERT, and XGB
with R ∈ {1, 4, 16, 50, 100, 200} random rotations. We report dataset-by-dataset SMSEs and accuracies
in Tables A4 and A5. We additionally determined how many random rotations were needed for each of
these methods to match obliqueBART’s performance (Tables A6 and A7). Figure 6 shows the SMSEs and
accuracies of oblique BART and the random rotation ensembles with R = 200 for all datasets and folds.

Somewhat surprisingly, the randomly rotated random forests (rotRF) performed markedly worse than the
other methods. For regression, obliqueBART and the rotated version of BART (rotBART) had the smallest
average SMSEs (0.297 and 0.296, resp.). obliqueBART was also competitive with the rotERT and rotXGB
for classification; it’s average accuracy was 0.846 while the best performing method, rotERT, had an average
accuracy of 0.859. We additionally observed that obliqueBART was, on average, 20 times faster than rotRF
and twice as fast as rotBART run with R = 200 random rotations.

11
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(a) (b)

Figure 6: oblique BART’s SMSE and accuracy (resp. left and right) across all splits and datasets, compared
to XGB, ERT, RF, and BART with 200 random rotations. Models with lower SMSE’s and higher accuracies
are preferred.

Interestingly, there was substantial variation in the minimum number of rotations needed for rotBART,
rotRF, rotERT, and rotXGB to match obliqueBART’s performance. For instance, rotBART was unable to
match obliqueBART’s performance on 19 datasets even with 200 rotations and required only one rotation for
17 datasets; four rotations for two datasets; 16 rotations for one dataset; and 50 rotations for one dataset.
rotXGB, on the other hand, was unable to match obliqueBART’s performance on 24 datasets using 200
rotations and required one rotation for nine datasets; four rotations for four datasets; 16 rotations for one
dataset; 50 rotations for one dataset; and 100 rotations for one dataset. These results suggest that running
obliqueBART is often more effective and faster than tuning the number of random pre-rotations used to
train a random rotation ensemble.

5 Discussion

We introduced obliqueBART, which extends the expressivity of the BART model by building regression trees
that partition the predictor space based on random hyperplanes. Unlike oblique versions of CART or RF,
obliqueBART does not search for optimal decision rules and instead grows trees by randomly accepting (via
a Metropolis-Hastings step) completely random decision rules. Although obliqueBART does not uniformly
outperform BART across the 40 benchmark datasets we considered, its performance is generally not signifi-
cantly worse than BART’s and can sometimes be substantially better. On this view, we would not advocate
for a wholesale replacement axis-aligned BART in favor of our obliqueBART implementation. It is possible,
for instance, that alternative priors for φ may yield somewhat larger improvements.

While we have focused primarily on the tabular data setting, we anticipate that our obliqueBART implemen-
tation can be fruitfully extended to accommodate structured input like images. Li et al. (2023a) demonstrated
that oblique tree ensembles can close the performance gap between non-neural network methods and convo-
lutional deep networks for image classification. Their manifold oblique random forests (MORF) procedure
recursively partitions images based on the average pixel value within random rectangular sub-regions of an
image. Developing a BART analog of MORF would involve modifying the decision rule prior to ensure that
the non-zero elements of φ correspond to a connected sub-region of an image. We leave this and similar
extensions for other types of structured inputs (e.g., tensors, functional data) to future work.
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A Additional benchmarking details and results

Table A1 lists the dimensions and sources of each benchmark dataset. Most datasets are from the UCI data
repository, though some are from individual R packages (bolded), the Journal of Applied Econometrics data
archive, and the CMU Statlib data repository.

Table A1: Dimensions and hyperlinked sources of benchmark datasets

Regression Data Classification Data
Data (Source) n p pcont Data n p pcont

abalone (UCI) 4177 8 7 banknote(UCI) 1372 4 4
ais (DAAG) 202 12 10 blood transfusion (UCI) 748 4 4
ammenity (JAE) 3044 25 20 breast cancer diag (UCI) 569 30 30
attend (JSE) 838 9 6 breast cancer (UCI) 683 9 9
baseball(ISLR) 263 19 16 breast cancer prog. (UCI) 194 32 32
basketball (SMIS) 96 4 3 climate crashes (UCI) 540 18 18
boston (MASS) 506 4 3 connectionist sonar (UCI) 208 60 60
budget (JAE) 1729 10 10 credit approval (UCI) 653 15 6
cane (OzDASL) 3775 31 25 echocardiogram (UCI) 579 10 9
cpu (UCI) 209 7 6 fertility (UCI) 100 9 3
diabetes (lars) 442 10 9 german credit (UCI) 1000 20 7
diamonds (ggplot2) 53940 9 6 heptatitis (UCI) 80 19 7
edu (JAE) 2338 6 5 ILPD (UCI) 579 10 9
labor (Ecdat) 5320 6 4 ionosphere (UCI) 351 34 34
mpg (UCI) 392 8 7 ozone1 (UCI) 1848 72 72
rice (JAE) 1026 18 14 ozone8 (UCI) 1847 72 72
servo (UCI) 167 4 2 parkinsons (UCI) 195 22 22
strikes (Statlib) 625 6 5 planning relax (UCI) 182 12 12

qsar bio. (UCI) 1055 41 38
seismic bumps (UCI) 2584 18 14
spambase (UCI) 4601 57 57
spectf heart (UCI) 267 44 44

Tables A2 and A3, respectively, show the out-of-sample standardized mean square and accuracy of oblique-
BART, RF, ERT, BART, and XGB for each benchmark dataset, averaged over 20 training-testing splits.
We marked entries in these tables with asterisks whenever obliqueBART achieved statistically significantly
lower SMSE or higher accuracy than the competing method. Throughout, we assessed significance using a
paired t-test and a 5% threshold. We report analogous results from comparison obliqueBART to rotated
versions of RF, ERT, BART, and XGB run with 200 random rotations in Tables A4 and A5.
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Table A2: Standardized mean square errors on regression benchmark datasets, averaged across 20 training-
testing splits, for obliqueBART and axis-aligned methods. Best performing method is bolded and errors that
are statistically significantly larger than obliqueBART’s are marked with an asterisk.

data obliqueBART BART ERT RF XGB
abalone 0.44 0.449* 0.454* 0.448* 0.467*
ais 0.122 0.133* 0.137* 0.113 0.147*
amenity 0.283 0.278 0.315* 0.279 0.283
attend 0.246 0.302* 0.420* 0.433* 0.252
baseball 0.390 0.399* 0.410* 0.418* 0.48*
basketball 0.762 0.669 0.642 0.708 0.735
boston 0.778 0.6 0.587 0.662 0.637
budget 0.003 0.003 0.010* 0.007* 0.003
cane 0.183 0.193* 0.350* 0.185 0.174
cpu 0.139 0.272* 0.155* 0.162 0.151
diabetes 0.495 0.500* 0.517* 0.538* 0.666*
diamonds 0.020 0.019 0.018 0.019 0.025*
edu 0.020 0.020 0.020 0.020* 0.022*
labor 0.221 0.693* 0.719* 0.630* 0.506*
mpg 0.135 0.125 0.141 0.136 0.146*
rice 0.015 0.027* 0.055* 0.037* 0.012
servo 0.167 0.149 0.193* 0.302* 0.076
strikes 0.926 0.863 0.837 0.843 1.290*

Table A3: Accuracies on each classification benchmark datasets, averaged across 20 training-testing splits for
obliqueBART and axis-aligned methods. Best performing method is bolded and errors that are statistically
significantly larger than obliqueBART’s are marked with an asterisk.

data obliqueBART BART ERT RF XGB
banknote 0.997 0.997 0.999 *0.992 *0.991
blood transfusion 0.769 0.795 0.776 0.768 0.798
breast cancer diag. 0.922 0.966 0.965 0.961 0.967
breast cancer 0.975 *0.973 0.975 0.975 *0.964
breast cancer prog. 0.758 0.76 0.754 0.756 *0.733
climate crashes 0.917 0.944 0.919 0.926 0.951
connectionist sonar 0.802 0.824 0.871 0.835 0.832
credit approval 0.866 0.87 0.874 0.876 0.872
echocardiogram 0.714 0.712 0.733 0.707 *0.692
fertility 0.86 0.86 *0.846 *0.842 0.846
hepatitis 0.84 0.865 0.858 0.868 0.855
ILPD 0.714 0.71 0.725 0.706 *0.692
ionosphere 0.902 0.926 0.936 0.928 0.924
ozone 1 0.97 0.97 *0.969 *0.969 0.97
ozone 8 0.933 0.938 0.94 0.939 0.938
parkinsons 0.865 0.861 0.91 0.899 0.88
planning relax 0.717 *0.708 *0.697 *0.686 *0.621
qsar bio. 0.823 0.845 0.868 0.862 0.855
seismic bumps 0.935 0.935 *0.93 *0.933 *0.934
spambase 0.771 0.932 0.956 0.953 0.945
spectf heart 0.799 0.813 0.802 0.814 0.796
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Table A4: Standardized mean square errors on regression benchmark datasets, averaged across 20 training-
testing splits, for obliqueBART and rotated versions of axis-aligned methods with 200 random rotations.
Best performing method is bolded and errors that are statistically significantly larger than obliqueBART’s
are marked with an asterisk. NA indicates that the method could not be run with 200 random rotations.

data obliqueBART rotBART rotERT rotRF rotXGB
abalone 0.44 0.448* 0.45* 1.08* 0.47*
ais 0.122 0.129 0.151* 1.33* 0.167*
amenity 0.283 0.281 0.349* 1.07* 0.357*
attend 0.246 0.297* 0.304* 1.06* 0.305*
baseball 0.39 0.406* 0.446* 1.07* 0.544*
basketball 0.762 0.691 0.68 1.06* 0.767*
boston 0.778 0.577 0.833 22.6* 0.853
budget 0.003 0.003 0.010* 1.200* 0.019*
cane 0.183 0.191 0.315* 1.580* 0.294*
cpu 0.139 0.313* 0.201* 1.480* 0.249*
diabetes 0.495 0.499 0.520* 0.967* 0.606*
diamonds 0.020 0.020 NA NA NA
edu 0.020 0.020 0.022* 1.150* 0.024*
labor 0.221 NA NA NA NA
mpg 0.135 0.138 0.14 1.09* 0.16*
rice 0.015 0.026* 0.204* 1.670* 0.234*
servo 0.167 0.196* 0.25* 2.24* 0.225*
strikes 0.926 0.805 0.915 36.2* 1.31

Table A5: Accuracies on classification datasets, averaged across 20 training-testing splits, for obliqueBART
and rotated versions of axis-aligned methods with 200 random rotations. Best performing method is bolded
and accuracies that are statistically significantly worse than obliqueBART’s are marked with an asterisk.

data obliqueBART rotBART rotERT rotRF rotXGB
banknote 0.997 0.999 1 *0.451 0.998
blood transfusion 0.769 0.793 *0.734 *0.748 0.789
breast cancer diag. 0.922 0.973 0.977 *0.635 0.97
breast cancer 0.975 0.975 0.973 *0.647 0.972
breast cancer prog. 0.758 0.759 0.751 *0.303 *0.733
climate crashes 0.917 0.932 0.926 *0.56 0.952
connectionist sonar 0.802 0.801 0.849 *0.474 0.824
credit approval 0.866 *0.859 0.87 *0.453 0.871
echocardiogram 0.714 0.708 0.712 *0.343 *0.695
fertility 0.86 0.86 *0.848 *0.726 *0.84
hepatitis 0.84 0.858 0.858 *0.725 0.842
ILPD 0.714 *0.7 0.711 *0.336 0.708
ionosphere 0.902 *0.881 0.93 *0.361 0.892
ozone 1 0.97 *0.97 *0.968 *0.0314 0.969
ozone 8 0.933 0.941 0.939 *0.0695 0.939
parkinsons 0.865 0.859 0.911 *0.265 0.894
planning relax 0.717 *0.711 *0.653 *0.283 *0.63
qsar bio. 0.823 0.847 0.851 *0.568 0.857
seismic bumps 0.935 *0.934 *0.919 *0.0648 *0.929
spambase 0.771 0.936 0.951 *0.413 0.945
spectf heart 0.799 0.817 0.813 0.799 0.791
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Table A6: Number of random rotations of the data for difference between obliqueBART’s and rotated
method’s MSE to be statistically insignificant. Model and data combinations with “-” had MSE’s that were
larger than obliqueBART, even with 200 random data rotations.

data rotBART rotERT rotRF rotXGB
abalone - - - -
ais 1 - - -
amenity 1 - - -
attend - - - -
baseball - - - -
basketball - - - 1
boston - 1 1 1
budget 1 - - -
cane 50 - - -
cpu - - - -
diabetes 1 - - -
diamonds - - - -
edu 1 - - -
labor - - - -
mpg 1 16 - -
rice - - - -
servo - - - 100
strikes - 4 1 -

Table A7: Number of random rotations of the data for difference between obliqueBART’s and rotated
method’s accuracies to be statistically insignificant. Model and data combinations with “-” had smaller
accuracies than obliqueBART, even with 200 random data rotations.

data rotBART rotERT rotRF rotXGB
banknote 1 1 1 4
blood transfusion - - 4 -
breast cancer diag. - - - -
breast cancer 1 1 1 4
breast cancer prog. 1 1 1 1
climate crashes - 1 4 -
connectionist sonar 1 - - 1
credit approval 1 1 1 1
echocardiogram 1 1 1 16
fertility 1 4 4 16
hepatitis - 16 4 1
ILPD 1 1 1 4
ionosphere - - 1 50
ozone 1 1 - - 1
ozone 8 - - - -
parkinsons 1 - - 1
planning relax 16 - - -
qsar bio. - - - -
seismic bumps 1 - - 1
spambase - - - -
spectf heart 1 4 4 1
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B Metropolis-Hastings acceptance probabilities

Grow move. Suppose we are updating the m-th decision tree (Tm,Dm) = (T ,D). Further suppose that we
formed the proposal (T ?,D?) by growing (T ,D) from an existing leaf nx at depth d(nx) and then drawing a
new rule rule to associate with nx in (T ?,D?). Let q(rule|T ,D) denote the proposal probability of drawing
rule at nx. Additionally, let nleaf(·) and nnog(·) count the number of leaf nodes and decision nodes with
no grandchildren in a tree. The acceptance probability of a grow move decomposes the product of three
terms.

α(T ,D → T ?,D?) =
α(1 + d(nx))−β

[
1− α(2 + d(nx))−β

]2
1− α(1 + d(nx))−β × nleaf(T )

nnog(T ?)

× τ−1 ×
(
PnxlPnxr

Pnx

)− 1
2

× exp
{

Θ2
nxl

2Pnxl
+ Θ2

nxr

2Pnxr
− Θnx

2Pnx

}
× p(rule|T ?)

q(rule|T ) .

(B1)

The terms in the first two lines of Equation (B1) respectively compare the complexity (i.e., depth) and
overall fit to the partial residual R of (T ?,D?) and (T ,D). More specifically, the term in second line tends
to be larger than one whenever splitting the tree at nx along rule yields a better fit to the current partial
residual than not splitting the tree at nx. The term in the final is the ratio between the prior and proposal
probability of drawing the rule rule. When we draw rule from the prior, the MH acceptance probability
depends only on terms that compare the fit and complexity of the two trees. However, if the proposal
distribution is much more sharply concentrated around rule than the prior, this term will artificially deflate
the acceptance probability.

Prune move. Suppose instead that we form (T ?,D?) by removing leafs nxl and nxr and turning their
common parent nx into a leaf. Let rule denote the rule associated with nx in (T ,D). The acceptance
probability of a prune move is

α(T ,D → T ?,D?) = 1− α(1 + d(nx))−β ]
α(1 + d(nx))−β [1− α(2 + d(nx))−β ]2

× nnog(T )
nleaf(T ?)

× τ ×
(

Pnx

PnxlPnxr

)− 1
2

× exp
{

Θ2
nx

2Pnx
− Θ2

nxl

2Pnxl
− Θ2

nxr

2Pnxr

}
× q(rule|T ?,D?)
p(rule|T ?,D?) .

(B2)

C Hyperparameter Sensitivity Analysis

As noted in Section 3, obliqueBART depends on several hyperparameters. In this section, we perform
a sensitivity analysis using the benchmark datasets from the experiments in Section 4. Specifically, we
investigate the sensitivity to the hyperparameters for the sparcity parameter θ, which regulates the number
of non-zero entries in φ. We also assess the sensitivity to the number of trees, M , on the performance of
obliqueBART.

Sensitivity to θ

We ran obliqueBART with multiple combinations for the hyperparameters on the Beta (aθ, bθ) prior on θ.
Specifically, we ran obliqueBART with aθ ∈ {1, p,M}, with M = 200, and bθ such that E[θ] ∈ { 1

p ,
2
p ,
√
p

p ,
1
2}.

Holding bθ constant, increasing aθ allows obliqueBART to be less sensitive to the data. Recall that the
conjugate update for θ is

θ|y, E , σ2 ∼ Beta (aθ + nφ, bθ + zφ)
So, when aθ is small, the effect of nφ (resp. zφ), the number of non-zero (resp. zero) entries, is more
substantial, compared to when aθ is large. The other hyperparameter, bθ is chosen to control the sparsity of
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φ, and we test the performance of obliqueBART when the prior mean for θ is dependent and independent
of p. Figure C7 depicts boxplots for out of sample SMSE across all splits and datasets for the difference
combinations of (aθ, bθ).

(a) (b)

Figure C7: obliqueBART’s SMSE (a) and accuracy (b) across all splits and datasets, compared at different
combinations of (aθ, bθ). Models with lower SMSE’s and higher accuracies are preferred.

obliqueBART seems insensitive to the choices of aθ and bθ. For the vast majority of datasets, predictive
accuracy is very similar. We note that, generally, setting bθ so that E[θ] is dependent on p tended to produce
better results than E[θ] = 1/2. We move forward with aθ = M and bθ set so that E[θ] = 2/p for the rest of
the experiments and recommend this as the default setting for obliqueBART.

Sensitivity to M

Fixing aθ to M and bθ so that E[θ] = 2/p, we ran obliqueBART with M ∈ {10, 25, 100, 200}. Figure C8
shows the resulting boxplots for out of sample SMSE across all splits and benchmark datasets. We find that
M = 200 generally produced the best predictive accuracy, although the accuracies were quite similar, but
slightly worse, for M = 100.

(a) (b)

Figure C8: obliqueBART’s SMSE (a) and accuracy (b) across all splits and datasets, compared at different
levels of M . Models with lower SMSE’s and higher accuracies are preferred.

Broader Impact Statement

In this optional section, TMLR encourages authors to discuss possible repercussions of their work, notably
any potential negative impact that a user of this research should be aware of. Authors should consult the
TMLR Ethics Guidelines available on the TMLR website for guidance on how to approach this subject.
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