Dynamic causal discovery in Alzheimer’s disease
through latent pseudotime modelling
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Abstract

The application of causal discovery to diseases like Alzheimer’s (AD) is limited
by the static graph assumptions of most methods; such models cannot account
for an evolving pathophysiology, modulated by a latent disease pseudotime. We
propose to apply an existing latent variable model to real-world AD data, inferring
a pseudotime that orders patients along a data-driven disease trajectory independent
of chronological age, then learning how causal relationships evolve. Pseudotime
outperformed age in predicting diagnosis (AUC 0.82 vs 0.59). Incorporating
minimal, disease-agnostic background knowledge substantially improved graph
accuracy and orientation. Our framework reveals dynamic interactions between
novel (NfL, GFAP) and established AD markers, enabling practical causal discovery
despite violated assumptions.

1 Introduction

With nearly $380 billion allocated annually to Alzheimer’s disease (AD) research [[1I], clinical trials
continue failing to halt disease progression [29]]. This ongoing challenge arises from the complexity
of the disease, involving thousands of pathways whose interactions remain poorly understood [3].
Causal inference offers a powerful framework for modelling these relationships. For example, causal
graph discovery methods can recover causal graphs from observational data, enabling identification
and estimation of causal effects. Mapping AD’s underlying causal relationships could yield more
effective treatments, facilitate biomarker discovery, and enable personalised treatment plans.

Applying causal discovery to healthcare data presents distinct challenges. First, the absence of empir-
ical ground truth hinders development and validation of domain-specific tools. Second, fundamental
assumptions of causal discovery, such as absence of cyclical graphs and unobserved confounders, are
frequently violated or untestable. While recent methodological advances allow analysis of more real-
istic data by relaxing these assumptions [15; 38} 124], practical applications remain limited. Current
AD studies predominantly focus on static consensus graphs, neglecting dynamic relationships and
latent variables that characterise the disease [41]. Developing robust models of causal relationships
in AD will advance both disease understanding and clinical application.
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Disease progression rates vary across AD patients [44]], partly reflecting "cognitive reserve" - pro-
tective brain mechanisms arising from poorly characterised biological, lifestyle, and genetic factors
[435134]. While approximating cognitive reserve through education and socioeconomic status partially
explains individual variation, explicitly modelling latent disease pathway modulators remains crucial
for comprehensive understanding of AD. The abstraction of pseudotime, which is a latent (unob-
served) dimension measuring the progress of cell states through a transition is frequently applied to
molecular-level disease modelling, and recent research has adopted this abstraction (both categorical
and continuous) for modelling disease progression using electronic health records [22; 53]].

Here, we apply causal discovery to real-world AD data through a latent pseudotime model introduced
by Zhou et al. [58], investigating how causal interactions evolve along disease progression. We
leverage known causal relationships from literature and validate our model through qualitative and
quantitative evaluation against a consensus graph. Our analysis incorporates key AD biomarkers to
characterise their interactions, including plasma NfL and GFAP, recently emerged as novel biomarkers
for AD detection [515 255 7].

2 Methods

Data We analysed data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [36],
selecting 16 variables with established or putative causal roles in AD aetiology. These comprised
demographic variables (years of education, sex, age, and APOE genotype), segmented brain region
volumetric measurements (total intracranial volume (ICV), hippocampus, amygdala, temporal lobe),
plasma biomarkers (A340, A342, pTau217, NfL, GFAP), and cognitive scores (Trail Making Test
Part B (TRABSCORE), ADAS-Cog-13 (ADAS13), Rey Auditory Verbal Learning Test immediate
(RAVLT)). The sample consisted of the following participant numbers, broken down by diagnosis:
48 AD, 117 MCI (mild cognitive impairment), and 215 CN (cognitively normal).

Pseudotime model of Alzheimer’s disease We modelled AD progression using cross-sectional
data from the ADNI dataset with Bayesian Networks with Latent Time Embedding (BN-LTE), a
model proposed by Zhou et al. [58] to estimate causal graphs as a function of pseudotime. In disease
modelling, pseudotime represents a latent variable that orders samples along a continuous trajectory
of disease progression, capturing relative disease states rather than chronological time [21}23]]. This
enables modelling of dynamic changes in biomarkers or molecular states when using irregularly
sampled or cross-sectional data.

Theoretical identifiability of the pseudotime variable up to monotonic transformations is shown by
Zhou et al. [58] under the condition that causal relationships change along the pseudotime axis.

We implemented the framework of Zhou et al. [58]], described as follows. We assume faithfulness and
causal sufficiency when incorporating the latent pseudotime variable. Let X = (X7, ..., X,) € RP be
a p-dimensional random variable vector, and let G = (V, E') denote a directed acyclic graph (DAG)
consisting of a node set V' = {1, ..., p} corresponding to elements of X, and edge set E C V x V
representing causal relationships between them. The distribution of X factorizes as
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where Z € R™ denotes pseudotime, pac(z)(j) denotes the parent nodes of j, and © represents model
parameters. The conditional probability distribution of a single biomarker, I}, is modelled as
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where a;(Z) represents the baseline function governing biomarker progression across pseudotime,
b;i(Z) captures pseudotime-dependent causal effects, and €; denotes per-variable noise. Both
functions are parametrised as cubic b-splines, following Zhou et al. [58]]. Parameter posteriors
were obtained using Markov chain Monte Carlo (MCMC). Details of the priors, sampling, posterior
estimation, and convergence statistics are provided in the Supplementary Material.

Background knowledge Background or expert knowledge is commonly used to improve causal graph
discovery performance when model assumptions are violated [42; |8} [11]]. We introduced disease-



agnostic background knowledge to enhance model performance. To minimize bias, our background
knowledge exclusively constrained causal and pseudotime relationships directed towards immutable
variables (e.g., sex, genotype — considered root nodes) and prohibited cognitive score variables
from forming outgoing causal effects (sink nodes). Although cognitive variables may influence
lifestyle choices, such effects are unlikely to significantly impact other variables in the elderly ADNI
population. Additional implementation details are found in the Supplementary Material.

3 Results

The patient distribution along the pseudotime axis corresponded to disease severity (Fig. [T), with
cognitively normal participants clustering at early pseudotime, MCI patients concentrated in the
intermediate region, and AD patients positioned towards late pseudotime. This ordering aligned
with expected AD-associated biomarker trajectories, including decreased hippocampal volume,
deteriorating cognitive scores, and elevated NfL. and GFAP levels. To verify that pseudotime captured
disease progression rather than chronological ageing, we compared predictive performance using a
logistic generalized additive model, which captures complex, non-linear relationships. Pseudotime
demonstrated superior predictive performance for diagnosis, achieving a mean AUC of 0.82 (95%
CI: 0.81, 0.82) (p < 0.001) compared to 0.59 (p < 0.01) for age alone. We identified edges with the
highest posterior inclusion probability throughout pseudotime for edges between variables with no
background knowledge across different settings and validated them against literature evidence (Table
[I). The model correctly identified several known disease-related pathways, including the causal effect
of plasma NfL on hippocampal volume reduction and pTau-induced NfL elevation [[16; [13].
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Figure 1: Demographic variables and biomarkers plotted as a function of the posterior mean of
the inferred pseudotime values (z) of a single chain inferred by the BN-LTE model, with patients
colour-coded according to their diagnosis.

Edge PIP (No mod.) PIP (RN) PIP (RN + SN) Lit. consensus
pTau217 — GFAP 0.64 (0.38) 0.93 (0.13) 0.80 (0.16) Possible/unknown [[13]
AP42 — AP40 0.75 (0.04) 0.75(0.43) 0.75 (0.43) Present [49]
pTau217 — NfL 0.35 (0.27) 0.61 (0.17) 0.57 (0.15) Possible [13]
NfL — Hippocampus 0.25 (0.18) 0.63 (0.01) 0.53(0.18) Possible [27]
AP42 — NfL 0.60 (0.07) 0.49 (0.12) 0.46 (0.07) Possible [56]

Table 1: Causal edges identified using BN-LTE with background knowledge, with the posterior
probability of inclusion (PIP) junder different background knowledge settings. Values shown are
chain-level mean and standard deviation for modifications of root nodes (RN) and sink nodes (SN).

To comprehensively evaluate model performance, we compared our estimated graphs against a
consensus graph constructed from Alzheimer’s literature (Fig. [2} further details listed in the Supple-
mentary Material). The baseline model without modifications performed poorly across both edge
detection and directionality metrics. Performance improved substantially with the incorporation of
background knowledge and static features (Table[2). The improvement was particularly pronounced
in orientation metrics and was reflected in the reconstruction accuracy.



After incorporating background knowledge for root and sink nodes, we evaluated performance
improvements for variables without background knowledge constraints - specifically, biomarkers
and brain volumetric measures. Given the induced orientation bias, we assessed this graph subset
based only on edge presence rather than directionality. The model with background knowledge
outperformed the unmodified model across various metrics (Table [2)).
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Figure 2: Established consensus graph compared to estimated causal graphs presented as adjacency
matrices with edge indices averaged across pseudotime and over the four chains, resulting in an
edge inclusion probability (only PIP > 0.5 shown). The matrices on the diagonal reflect the resulting
matrices from different settings, while the strictly lower triangular matrices reflect differences between
each pair of matrices.

. Presence Orientation Subset (Presence) Subset
Modif. P R P R P R MSE SHD SHD
None 0.80 0.16 0.62 0.50 0.67 0.10 0.98 67 21
[0.80,82] [0.16,16] [0.62,0.63]  [0.49,0.50]  [0.65,0.71]  [0.10,0.10]  (0.045) [67,67]  [21,21]

RN 0.72 0.35 0.89 0.84 0.74 0.29 0.95 53 23
[0.70,0.74]  [0.33,0.36]  [0.89,0.90]  [0.84,0.84]  [0.72,0.74]  [0.29,0.30]  (0.016)  [55,53]  [24,23]

RN + 0.88 0.45 0.96 0.88 0.79 0.39 0.93 41 21

SN [0.88,0.89] [0.42,0.45] [0.96,0.96] [0.88,0.88] [0.79,0.79] [0.38,0.39]  (0.025)  [43,41] [21,21]

Table 2: Statistics of causal graphs estimated with BN-LTE. Presence precision (P) and recall
(R) measure edge presence using symmetric adjacency matrices. Orientation metrics evaluate
directionality for edges present in both consensus and estimated graphs. Subset metrics exclude
variables with background knowledge. Values presented as median, [95% CI] apart from MSE (SD).

The causal relationships between variables exhibited dynamic changes across pseudotime; for ex-
ample, age showed a constant effect on GFAP, while pTau’s influence on NfL. manifested early in
pseudotime progression (FigB)[18]. This pattern is consistent with AD pathophysiology, where the
effect of pTau is known to plateau, while the effect of age on neuroinflammation most likely remains
constant over the course of the disease [4].

We also identified edges that contradict established literature; for example, the proposed causal effect
of pTau — GFAP and NfL — AB40 (Fig. 2) contradict studies that show that amyloid dysfunction
precedes neurodegeneration, and GFAP elevation precedes changes in pTau [3].
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Figure 3: Biomarkers plotted against pseudotime, with solid lines representing the mean baseline
trajectory of biomarkers and the corresponding effect of changing a specific parent variable. Parent
variables are changed to the 5th, 50th, and 95th percentiles of the standardized values. The solid lines
correspond to the mean of posteriors with shaded areas being 95% CI.

4 Discussion

Our findings demonstrate significant progress toward clinically applicable causal discovery in AD.
Using BN-LTE, we estimated causal graphs as a function of pseudotime. Importantly, incorporating
background knowledge proved essential for generating reliable causal graphs when analysing real-
world data where model assumptions are violated. Notably, this knowledge remained disease-agnostic,
constraining only demographic variables and cognitive outcomes, which significantly improved the
recovered graphs. We identified both known and novel causal dynamics along the latent pseudotime
through incorporation of emerging biomarkers (NfL and GFAP).

This pseudotime framework offers immediate translational potential. It can revolutionize clinical trial
design by precisely stratifying patients for targeted interventions at optimal disease stages, potentially
explaining heterogeneous treatment responses and identifying therapeutic windows. Furthermore,
dynamic causal relationships across pseudotime suggest that combination therapies may require
tailored sequencing based on a patient’s disease stage.

AD progression arises from a complex interplay of unobserved factors such as cognitive reserve and
lifestyle-driven neuroprotection, alongside other modulators of its pathological pathways [55]]. Under
the framework of [24]], our approach treats pseudotime as a surrogate for latent modulating factors that
drive non-stationary causal mechanisms throughout disease progression, ensuring identifiability of
the causal graph. The inferred pseudotime separates patients by disease stage, predicts disease status
better than age, and captures causal dynamics consistent with known AD pathology, demonstrating
that it serves as a robust and clinically meaningful proxy for true disease progression. While this
work demonstrates the value of a one-dimensional abstraction, future work could model these drivers
as a multivariate construct to achieve a more granular understanding of AD’s heterogeneity.

Several methodological advances would strengthen clinical applicability. First, model assumptions
must be relaxed to accommodate biomedical systems with unobserved confounders. Second, our
analysis was limited by dataset size and variable selection, preventing the inclusion of factors like
ethnicity due to insufficient cohort heterogeneity. Expanding variables and sample size should
enhance causal graph accuracy. Recent multi-dataset causal discovery advances [33] could enable
more robust causal identification through cross-validation across independent cohorts. In addition, an
evaluation of this model using longitudinal data could both validate the model and provide insights
on AD progression through predictions grounded in causal reasoning.

In summary, our work establishes a foundation for integrating causal discovery into AD research and
clinical practice. Combining pseudo-time modelling with disease-agnostic background knowledge
provides a practical framework for balancing theoretical rigour with clinical applicability. As we
refine these methods and expand to larger, diverse datasets, causal discovery can transform our
understanding of AD heterogeneity and guide precision medicine development.
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S Supplementary material

5.1 MCMC procedure and convergence statistics

In order to confirm the stability of the MCMC results, we ran 4 chains across 5000 iterations with
1000 iterations for burn-in and evaluate their convergence statistics. We used 5 knots for both causal
and baseline cubic b-splines. The rest of the hyperparameters were set according to Zhou et al. [58]].
The R values and ESS values are presented in the table below.

Variable No mod. SF SF + BK
R ESS R ESS R ESS
Per-variable noise 1.02 1269.58 1.03 364.62 1.01 400.10
variance
Causal spline 1.00  4041.07 1.00 730.3 1.00  723.14
coefficients
Baseline spline 1.03 346.7 1.01 432.10 1.01 21742
coefficients
Roughness parameter 1.00 1504.03  1.00 711.52 1.01 250.85
Variance of spline 1.01 233.74 1.01 219.91 1.01 199.33
coefficients

Table S1: Convergence statistics on the MCMC results

We followed the procedure outlined in the supplementary material of Zhou et al. [58]] in order to
sample the parameter posteriors. To obtain the PIPs of the edges, we averaged the edge inclusion
indicator parameters (r;;) across the four chains, and used a threshold of P > 0.5 to construct the
final causal graphs, which were then used to calculate statistics in Table 2}

In addition, we remove the Coulomb prior as described by Zhou et al. [58] from the model, which
serves to ensure a distance between samples and prevent clustering, as we do not make an assumption
that there exists a uniform distribution of patients across disease pseudotime due to the uneven
distribution of patient diagnoses, as outlined in the Methods section.

All experiments were performed on a MacBook Pro with an Apple M4 Pro CPU and 24GB of RAM.
A single run of the MCMC algorithm (4 chains) required approximately 30 minutes to complete.

Implementation of background knowledge involved specifying the variables that were root nodes
and sink nodes. Root nodes were then skipped during sampling of baseline and incoming causal
trajectory variables, and remained set at 0. For sink nodes, only outgoing causal trajectories were set
to 0. When calculating residuals in the sampling, root nodes were excluded.

For settings with background knowledge, MSE was calculated over only the variables that were
non-root nodes.

5.2 Consensus and Estimated Causal Graph

The consensus causal graph was created using a literature search of consensus mechanisms of AD
progression. Where variables are grouped together, the citation shows evidence of the effect across
all the variables. Below are the identified causal relationships:

Age — ICV[1Q], [Hippocampus, Amygdala, Temporal lobe][50], pTau [12], [AB42, AB40] [57],
GFAP [2], [RAVLT, TRABSCORE, ADAS13]

Education — [RAVLT, TRABSCORE, ADAS13] [45]

Sex — [ICV, Hippocampus, Amygdala, Temporal lobe] [39]], pTau [46], RAVLT, TRABSCORE,
ADASI13 [45]

APOE — pTaul[[14;[54; 305 48], [AR42, A340] [28]

ICV — Hippocampus, Amygdala, Temporal lobe
Hippocampus — [RAVLT, TRABSCORE, ADAS13] [31; 9]
Amygdala — [RAVLT, TRABSCORE, ADAS13] [32}126]]
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Temporal lobe — [RAVLT, TRABSCORE, ADAS13] [40; 37

pTau — [A342, A340] [6], NfL [13], [RAVLT, TRABSCORE, ADAS13] [35]]
AP42 — AB40 [20], pTau217 [17;152; 6] NfL [56], GFAP [19]

AR40 — AP42 [20], pTau217 [17]

NfL — [Hippocampus, Amygdala, Temporal lobe] [16]]

GFAP — [RAVLT, TRABSCORE, ADAS13] [47]

The rest of the edges were marked as being absent, aside from the following, which were left out of
the analysis due to a lack of causal understanding in literature:

Education — [pTau217, A340, AB42, NfL, GFAP]
Hippocampus - [Temporal Lobe, Amygdala]

[Af342, A342] — [RAVLT, TRABSCORE, ADAS13]
[NfL, GFAP] — [pTau217, A340, A3442]

GFAP — NfL

These edges were not included when calculating statistics such as precision, recall, and SHD. It is
important to note that the consensus graph contains three feedback systems, namely between pTau217
and AB42 and AB40. This must be taken into account when considering the accuracy values obtained
for graph recovery, as the model restricts any cyclical relationships.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the novel application of
a latent pseudotime model for dynamic causal discovery in Alzheimer’s disease. The
claims align with the results presented, which demonstrate the model’s ability to infer
evolving causal relationships the improvement to the model via the addition of background
knowledge.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The discussion section explicitly addresses the limitations of the study. The
authors acknowledge that their analysis was constrained by the dataset size and the selection
of variables, as well as theoretical identifiability. We also mention that important factors
such as ethnicity could not be included due to a lack of cohort heterogeneity.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not introduce new theoretical results that would require formal
proofs. Instead, it applies an existing framework (BN-LTE) to a new domain. The key
assumptions of the model are stated in the Methods section.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a good overview of the methodology and the data used
(ADNI dataset). The supplementary material further details the MCMC procedure and the
construction of the consensus causal graph, which should be sufficient for other researchers
to replicate the study.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code has not been provided as it is not a novel algorithm, although it will
be made public upon publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The Methods section and the supplementary material provide the necessary
details about the experimental setup. This includes the number of MCMC chains and
iterations, the hyperparameters used, and the specifics of the BN-LTE model implementation

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports 95% confidence intervals for the performance metrics in
Table 2 and the p-values for the AUC comparison. This provides a clear indication of the
statistical significance of the findings.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computational hardware details (Apple M4 Pro CPU, 24GB
RAM) and approximate execution time in the Supplementary Material. This information is
sufficient for others to gauge the resources required for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The authors ackowledge that the paper conforms to the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The discussion section highlights the potential positive societal impacts,
such as revolutionizing clinical trial design and enabling personalized treatment plans for
Alzheimer’s patients. The paper does not explicitly discuss negative societal impacts, as this
work should not have a negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not introduce any models that have a high risk of misuse
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: The ADNI dataset was used in this work, and a citation for the original dataset
was included to credit the data source.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets have been introduced in the paper
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The usage of LLMs is not a component of this paper
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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