AUTOMATED PARAMETER EXTRACTION FOR BIOLOG-ICALLY REALISTIC NEURAL NETWORKS: AN INITIAL EXPLORATION WITH LARGE LANGUAGE MODELS

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

028

031 032

034

038

040

041

042

043

044

Paper under double-blind review

Abstract

In computational neuroscience, extracting parameters for constructing biologically realistic neural models is a resource-intensive task that requires continuous updates as new research emerges. This paper explores utilizing large language models (LLMs) in automating parameter extraction from scientific literature for biologically realistic neural models. We utilized open-source LLMs via Ollama to construct KGs, capturing parameters such as neuron morphology, synapse dynamics, and receptor properties. SNNBuilder Gutierrez et al. (2022), a framework for building spiking neural network (SNN) models, serves as a key validation example for our framework. However, the methodology we outline here can extend beyond SNNs and could applied to systematic modelling of the brain.By experimenting with different prompting strategies—general extraction, in-context hints, and masked prompting-we evaluated the ability of LLMs to autonomously extract relevant data and organize it within an expert-base or data-driven ontology, as well as to infer missing information for neural model construction. Additionally, we implemented retrieval-augmented generation (RAG) via LangChain to further improve the accuracy of parameter extraction through leveraging external knowledge sources. Analysis of the the generated KGs, demonstrated that LLMs, when guided by targeted prompts, can enhance the data-to-model process, paving the way for more efficient parameter extraction and model construction in computational neuroscience.

1 INTRODUCTION

In computational neuroscience, parameterization of brain models is a timeconsuming task. As it requires identifying parameters related to the structure and function of the brain region being modeled. Data-to-model frameworks, such as SNNbuilder (Spiking Neural Network builder) Gutierrez et al. (2022), can assist in model building; however, since these parameters primarily come from scientific publications, their extraction requires continuous updates as new research emerges, making the process both time and resource intensive.

LLMs (Large Language Models) can enhance the data-to-model process in computational neuroscience and have shown promise in certain generalization tasks out of their domain Yang et al. (2024). LLMs provide a valuable metholdogy for exploring vast amounts of information structred and unstructed information through their large paramter counts and pretrained weights.

However, their full potential in research remains largely untapped without agumenting external data. By augmenting LLMs with external data in a process known as retrieval augmented generation (RAG) Lewis et al. (2020), model performance in NLP tasks can be greatly improved. In neuroscience researchers could have access to a more intuative approach to identify paramters by utilizing scientific publications and interacting via natural language with the model and database.
Furthermore, extracted brain data can be structured to mirror the brain's architecture. Experts could develop a brain ontology to organize this information intuitively and in an easily understandable format. State-of-the-art research for creating graph structures based on scientific text, such as Graph RAG Edge et al.

(2024), can often generate structures based on their probabilistic reasoning rather than expert-driven design, which results in less interpretable outcomes.

The degree to which these LLM-generated structures align with expert-based ontologies remains largely unexplored. In this work, we carried out experiments with different promoting strategies to guide the graph construction process towards a more comprehensive model.

2 RELATED WORK

Recent work on ontology-guided knowledge graph (KG) construction Cauter & Yakovets (2024) has demonstrated the effectiveness of LLMs such as Llama-2 and Llama-3 in extracting domain-specific facts. Using a few semantically similar examples, the researchers could compare their performance to state-of-the-art fine-tuning methods on the Llama-3-70B-Instruct model. This approach aligns with this research, with LLMs used to extract SNN parameters from scientific literature and relying on similar prompting techniques.

Our work aligns with the broader trends we have seen in AI in healthcare, where LLMs can aid in parsing large amounts of unstructured medical data Kather et al. (2024). Recent work with LLMs in clinical health extraction contexts has shown improvement when using in-context learning approaches and external knowledge bases Li et al. (2024). Such progress highlights the trend in AI in health domains toward identifying valuable data points from large volumes of unstructured texts, thus reducing the human need to adhere to strictly structured formats, which is typical for electronic health records Nashwan & AbuJaber (2023).

3 PRELIMINARIES

Early experimentation in this research explored using RAG with baseline proprietary models such as GPT-40 based on the GPT-4 architecture OpenAI (2024) to automate the extraction of neural parameters from the scientific literature.

We implemented a one-shot promoting approach to extract key neural parameters that match specific fields within a KG. The graph was based on a hand-authored ontology with a predefined structure, as seen in Figure 1. The graph aimed to represent brain circuits and their components, including species, brain regions, neurons, and their connections. The graph structure was provided to the LLM as Cypher, the query language used by the open-source graph database Neo4j. This prompting approach of providing a base hand-authored graph to augment additional nodes has been shown to be effective in prior research Jhajj et al. (2024). We carried out a baseline prompting approach using the GPT-40. An example of this approach with a truncated prompt and response can be seen in Table 1.

This baseline RAG implementation was carried out using LangChain¹, and it did provide useful insights outside of pronpt. For example, the LLM could suggest other similar parameters that were outside of the ontology we had provided. In Table 1, for example, we can see the model replied with the neuron parameter of "Firing Rate" when that was not provided in the initial prompt.

054

056

059

060 061

062

063

064

065

067

068

069

070

071

073

074

075

076 077

078 079

081

082

084

085

090

092

093

095

104

105

106 107

¹⁰² 103

¹https://www.langchain.com/

108		
109		
110	5	
111	CATED.	Connecti
112	Connecti.	
113	SinceD_TO Region 1	
114	2 autre	ļ
115	and the second se	Region 3 LOCATED a.
116	Mouse	
117	Connect	COMMECT.
118	Interconduct and a second	MITER
119	*UB	CONNECTS -Connect
120	Region 2	
121	under the State	
122	Connecti	
123		
124		
125		
126	Figure 1: Handcrafted Ont	ology for Brain Modelling
127		
128		
129	Table 1: Truncated prompt and resp	onse for neural parameter extraction
130		
131	Prompt	Response
132	Please go through the attached paper	I extracted the relevant information
133	and extract parameters that match or	from the paper to match your speci-
134	are similar to the following fields: [list	fied fields: neuron types, firing rates,
135	of parameters]. So they can be aug-	and numbers/morphology. Here are
136	mented to this KG.	the details:
137	CREATE (A:BrainCircuit	Neuron Types:
138	(name: 'Brain Circuit')	- Medium Spiny Neurons (MSN) East Spiking Interneurons (FSI)
139	(Species ())	- Subthalamic Nucleus Neurons
140	CREATE (A2.BrainRegions	(STN)
141	{name: 'Brain Regions'})	- Globus Pallidus externus Neurons
142	CREATE (A3:Neurons {name:	(GPe)
143	'Neurons'})	- Globus Pallidus internus/Substantia
144	CREATE (A4:Connections	Nigra reticulata Neurons (GPi/SNr)
145	<pre>{name: 'Connections'})</pre>	- Corticostriatal Neurons (CSN)
146	CREATE (A5:Inputs {name:	- Pyramidal Tract Neurons (PTN)
147	'Inputs'})	- Centromedian/Parafascicular Thala-
148		mic Nucleus Neurons (CM/Pf)
1/0		Firing Rates:
150		MSN: 500 HZ STN: 200 Hz
151		SIN. 500 HZ GD_{2} : 400 Hz
152		GPi/SNr: 400 Hz
152		
15/		
154		
155		
157	Later experimentation shifted towards u	ising Graph RAG Edge et al. (2024) to
157	and in KG generation. Graph RAG is an	approach to RAG that creates a graph-
150	utilizes KCs allowing for a deeper under	espond Edge et al. (2024). Graph RAG
100	unizes NOS, anowing for a deeper under	standing of ualasets and providing ficher

1-G utilizes KGs, allowing for a deeper understanding of datasets and providing richer responses as demonstrated in Larson & Truitt (2024). Recent has shown LLMs are effective in triplet extraction for KG construction Papaluca et al. (2024); Zhang et al. (2024)

160

161

162	3.1 HAND AUTHORED ONTOLOGY
163	A detailed hierarchical anteleast guided the model's understanding of neurol struc
164	A detailed inerarchical ontology guided the model's understanding of neural struc- tures. The ontology can be seen following this:
165	tures. The ontology can be seen following tins.
166	• Neuron
167	– Neuron name
168	- Number of neurons (depends on the species)
169	– Dendrite
170	* Morphology
171	· Diameter
172	• Spatial domain (length, mean length, size of the dendritic field, spatial
173	distribution, extent, spread)
174	· Spine density
175	– Axon
176	* Topology
177	• Boutons count (number of boutons)
178	\cdot Spatial domain (length, mean length, size of the axonal arbor, spatial
179	distribution, extent, spread)
180	– Synapse
181	* Synaptic delay
182	* Neurotransmitter release
183	– Receptor
184	* Receptor type
185	* Neurotransmitter related
186	* Receptor spatial location (distance to the soma)
187	* Dynamics
188	• PSPs (post-synaptic-potential amplitude, rise time)
189	· Plasticity (rules, dynamics)
190	– Electrophysiology
191	* Firing rates (at resting, during activity, during disease, etc.)
192	* Membrane dynamics (resting potential, membrane potential, capaci-
193	tance, resistance, time constant, refractory period, spike threshold, re-
194	set potential)
195	When provided with this detailed, hierarchical structure, the potential of the Graph
190	RAG approach to generate a KG that preserves these higher-order relationships
108	between the entities was a key focus of our research. For this, we used a similar
190	prompt to that in Table 1 but with a different ontology with LLama-3.1-70B Dubey
200	et al. (2024). However, as shown in Figure 2, the resulting KG failed to maintain
201	to understanding the complex relationships that are present in the brain, such as
202	between neurons synapses and receptions. Structurally this loss is a critical
203	limitation in this approach, adversely impacting the interpretability and utility of
204	the created graph in reflecting the complexity of neural structure and function.
205	This result suggests that the LLM with the Graph RAG KG generation approach
206	can struggle to maintain the intended multi-level hierarchy of the ontology when
207	generating the graph, mainly when using the Base Prompt alone.
208	
209	4 Methodology
210	
211	4.1 KNOWLEDGE GRAPH CONSTRUCTION
212	Our approach focused on creating KGs by astroating structured information from
213	scientific literature using LLMs. For this open-source models such as Llama 3.1
214	Dubey et al. (2024) via Ollama ² to construct KGs representing the content within

²¹⁴ 215

²https://github.com/ollama/ollama

234 235

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

253 254

256

257 258

259

260 261

264

265

267

Figure 2: Base graph rag generated graph

the scientific texts and to support the parameterization of the architecture of spiking neural networks (SNNs). We identified key attributes such as neuron morphology, synapse dynamics, and receptor properties using different prompting strategies. The LLM outputs were parsed into nodes and edges, which were subsequently visualized as KGs and stored in Neo4j, a graph database. This allows for unstructured biological data to be formatted into coherent structures that can be analyzed and compared.

This work only utilized open-source models as proprietary LLMs such as GPT-4 OpenAI (2024) often lack reproducibility due to their black box nature and constant updates Ollion et al. (2024); Ferrari et al. (2023). Besides that, the cloudhosted nature of many proprietary models and the deprecation of older models may hinder reproducibility. There is ongoing concern surrounding reproducibility for proprietary and open-source models as new architectures are released Vaugrante et al. (2024). However, leveraging open-source models gives users greater control and understanding of model usage and performance Ollion et al. (2024). It can allow researchers to maintain their implementations without concerns of cloud-based depreciation, over which they have minimal control.

4.2 EXPERIMENTAL SETUP

To assess the performance of different LLMs in extracting relevant SNN parameters, we trialed three different prompting strategies.

4.2.1 EXPERIMENT 1: BASE EXTRACTION

We used a general prompting strategy with minimal guidance in the first experiment. The goal was to evaluate the LLM's ability to extract key SNN parameters autonomously without domain-specific hints. The following prompt was used:

"Extract spiking neural network parameters from the following scientific text:"

Through this first experiment, the LLM was expected to identify critical SNNrelated information, such as neuron morphology, synaptic delay, and receptor properties, based solely on its pre-trained understanding of scientific texts and the provided scientific article. These results provided a baseline for the LLM's ability to extract relevant information with little external knowledge. The resulting parameters for this KG can be seen in 3a. The goal was to see nodes representing entities such as neurons and synapses and edges representing relationships between them

210	4.2.2 EXPERIMEN	т 2: Ім-Сой	NTEXT	Hints		
271			1.	1	· .1 · .1	
272	In the second experim	n the second experiment, we used in-context hints within the prompt. This we used in context hints within the prompt. This we began the LLM in focusing on specific SNN peremeters. The hint was been		his would		
273	the prior optology in	cusing on sp	becine a	sinin para	ameters. The mint was	based on
274	the prior ontology in	the prior ontology in 3.1.				
275	"You are tasked	"You are tasked with extracting important parameters for building spik-			spik-	
276	ing neural netwo	orks (SNNs)	. Focus	on parai	neters such as neuron i	mor-
277	phology, dendri	te structure,	synapse	e delay, 1	receptor types, and elec	ctro-
278	physiological pr	operties.				
279	This experiment was	s done to assess the impact of domain specific hints on the				
280	L I Ms ability to gene	This experiment was done to assess the impact of domain specific hints on LLMs ability to generate more completensive responses when prompted for ac		for accu-		
281	rate parameters. The	resulting K(F can be	e see in 3	b	101 accu
282	fute parameters. The	resulting rec	o cuir o	0 500 11 5		
283	423 EXPERIMEN	τ 3. Μάςκε		MPTING		
284		1.5. 101716101	LD I RO			
285	This experiment use	d a masked	prompt	ting strat	egy where the model	was only
286	provided with a parti	al prompt wi	ith diffe	erent part	s of the ontology from	3.1. This
287	was done to evaluate	the LLM's a	ability to	o determ	ine entities and relation	iships not
288	stated in the input pro	ompt. The pi	rompt w	ve used v	vas:	
289	You are tasked	with extract	ing par	ameters	for building spiking ne	eural
290	networks (SNNs	s). Focus on	- Neuro	on Name	- Dendrite (Morpholog	gy) -
291	Axon (Topology	, Spatial dor	main) T	ry to infe	er missing details relate	ed to
292	synapse dynami	cs, receptor	types, a	and mem	brane properties."	
293			. 1. 1.		· · · · · · · · · · · · · · · · · · ·	•.•
294	I he LLM, with this p	The LLM, with this prompt, was guided to infer connections between entities ever		ities even		
295	II there was a fack of	mormation	in the t	lext. The	resulting KO can be se	en m sc.
296						
297	5 EXPERIMENT	TS AND RE	ESULT	S		
298						
298 299	The KGs generated fr	om all three	experin	nents we	re evaluated using sever	ral graph-
298 299 300	The KGs generated fr based metrics to asse	rom all three ess their qua	experin lity and	nents we l structur	re evaluated using sever e. The results in Table	ral graph- e 2 and 3
298 299 300 301	The KGs generated fr based metrics to asse were created from a	rom all three ess their qua small corpu	experin lity and is of ne	nents wei 1 structur euroscien	re evaluated using sever re. The results in Table ce papers. The resulti	ral graph- e 2 and 3 ing set of
298 299 300 301 302	The KGs generated fr based metrics to asse were created from a KGs described by the	rom all three ess their qua small corpu e metrics in 7	experin lity and is of ne Fable 2	nents we l structur euroscien can be se	re evaluated using sever e. The results in Table ce papers. The resulti een in Figure 3.	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303	The KGs generated fr based metrics to asse were created from a KGs described by the	rom all three ess their qua small corpu e metrics in 7	experin lity and is of ne Table 2	nents wei l structur euroscien can be se	re evaluated using sever e. The results in Table ce papers. The resulti een in Figure 3.	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304	The KGs generated fr based metrics to asse were created from a KGs described by the	rom all three ess their qua small corpu e metrics in 7 Table	experin lity and is of ne Table 2 2: Pron	nents wei 1 structur euroscien can be so npting re	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305	The KGs generated fr based metrics to asse were created from a KGs described by the	rom all three ess their qua small corpu e metrics in 7 Table	experin lity and is of ne Table 2 2: Pror	nents we structur euroscien can be se npting re	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt	rom all three ess their qua small corpu e metrics in 7 Table Type N	experin lity and is of ne Table 2 2: Pron	nents wei d structur euroscien can be so npting re Edges	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt N	experim lity and is of ne Table 2 2: Prom Iddes	nents wei 1 structur euroscien can be so npting re Edges 141	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt	experim lity and us of ne Table 2 2: Pror odes 144 325	nents wei l structur euroscien can be so npting re Edges 141 422	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in T Table Type N ompt Prompt Prompt	experim lity and us of ne Table 2 2: Pron odes 144 325 326	nents wei l structur curoscien can be se mpting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in T Table Type N ompt Prompt Prompt	experim lity and is of ne Table 2 2: Pron fodes 144 325 326	nents wei l structur euroscien can be so npting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in T Table Type N ompt Prompt Prompt	experim lity and us of ne Table 2 2: Pron 0des 144 325 326	nents wei l structur euroscien can be se npting re Edges 141 422 360	re evaluated using sever e. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt Prompt	experim lity and is of ne Table 2 2: Pror 144 325 326	nents wei l structur euroscien can be so npting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt Prompt	experim lity and is of ne Table 2 2: Pror 144 325 326	nents wei l structur euroscien can be so npting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt 2 Prompt 2	experim lity and so of ne Table 2 2: Pron 0des 144 325 326	nents wei l structur euroscien can be so npting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt Prompt	experim lity and so of ne Table 2 2: Pron lodes 144 325 326	nents wei d structur curoscien can be se npting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt 2 Prompt 2	experim lity and is of ne Table 2 2: Pron odes 144 325 326	nents wei d structur euroscien can be se mpting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt Prompt	experim lity and is of ne Table 2 2: Pron 0des 144 325 326	nents wei l structur euroscien can be so npting re Edges 141 422 360	re evaluated using sever re. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in T Table Type N ompt Prompt Prompt	experim lity and is of ne Table 2 2: Pror 0des 144 325 326	nents wei l structur can be so npting re Edges 141 422 360	re evaluated using sever e. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	The KGs generated fr based metrics to asse were created from a KGs described by the Prompt Base Pr In-context Masked F	rom all three ess their qua small corpu e metrics in 7 Table Type N ompt Prompt Prompt	experim lity and so of ne Table 2 2: Pror 144 325 326	nents wei l structur euroscien can be so npting re Edges 141 422 360	re evaluated using sever e. The results in Table ce papers. The resulti een in Figure 3. sults Leiden Modularity 0.63 0.60 0.55	ral graph- e 2 and 3 ing set of

321 322

323

(b) In-Context Prompt Graph

(c) Masked Prompt Graph

Figure 3: Comparison of knowledge graphs generated using different prompting methods

Experiment	Node Count	Edge Count	Average Degree Centrality
Base Prompt	66	61	0.0284
In-Context Prompt	370	379	0.0055
Masked Prompting	386	447	0.0060

Table 3: Average degree centrality results for different prompting methods

6 DISCUSSION

Table 2 contains the results for experiments 4.2.1, 4.2.2, and 4.2.3. For these experiments, we used Leiden Modularity Traag et al. (2019) to assess the community structure within the KGs. A higher modularity score indicates a more well-defined cluster of entities.

Despite producing the fewest nodes, 144, and edges, 141, the base prompt achieved the highest Leiden Modularity score of 0.63. This suggests that while fewer nodes and entities were created with this method, they were clustered into more well-defined communities. It also indicates that there are more intra-cluster relationships.

The in-context prompt extracted a significantly larger number of nodes at 325 and edges at 422 but saw a slight reduction in Leiden Modularity. While the LLM did extract more entries and relationships, the lower score suggests that additional noise may have been introduced through these new connections. However, we still see a well-defined community structure via a modality of 0.60, suggesting that the graph's coherence was not severely compromised when compared to the base graph.

The masked prompt did produce the largest graph with 326 nodes but had slightly fewer edges at 360. It also had the lowest modularity score of 0.55. This suggests that while it did capture a comparable amount of entities to the in-context approach, they were not as well connected and formed and had more diffuse clusters. This could entail that this approach suggests inferred relationships that may not strongly correlate, resulting in a lower modularity score of 0.55.

Using another small corpus of neuroscience papers, we tested the Average Degree Centrality, which is used to evaluate the connectivity within each graph. The results for this can be seen in Table 3

The formula for Average Degree Centrality is given by:

Average Degree Centrality
$$= \frac{1}{N} \sum_{i=1}^{N} C_D(v_i)$$

where N represents the total number of nodes, and $C_D(v_i)$ is the degree centrality of node v_i . This metric provides insight into how densely connected the graph is, with higher values indicating more connections per node on average.

When looking at the prompting approaches we can see that the base prompt generated a smaller, denser graph with the highest average degree centrality 0.0284, this shows that extracted entities were more connected. However, for these results it should be noted that the generaated graph for the base prompt was much smaller the other two prompting approaches.

Compared to this the in-context prompt nad masked prompt made a largber graph
structure but had lower average degree centrality values of 0.0055 and 0.0060
respectivly. This shows a broader but more sparge network of relationships.

372The current approach to KG generation using Graph RAG faces several limitations373that impact the quality and accuracy of the generated graphs. The small corpus374size, which was only selected to be a few papers, would affect how representative375the graphs are. A smaller corpus will not be as generalizable to the entire domain,376resulting in less robust graphs. We also currently lack a mechanism to validate our377nodes. Currently, Graph RAG can incorporate large amounts of text as it is good at
modeling domain knowledge, but for our use case, it struggles at only identifying

and extracting key entities for brain modeling. This can make the overall graph structure more nosy and include poorly correlated information.

7 CONCLUSION

378

379

380 381

382 383

384

385

386

387

388

389

391

392

393

396

397

399

400

401

402

403

404

405

406

407

408

410

411

412 413

414

415

416

417

418

419

420

421 422

423

424

425

426 427

428

429

430

As a first step in exploring the use of Graph RAG for modeling brain-related knowledge graphs, we generated graphs based on a limited corpus of neuroscience papers. These initial experiments helped understand how KGs were by using LLMs and the impact of prompting approaches on their structures. However, several significant challenges remain to ensure its alignment with real-world brain modeling, and currently, the results of our experiments do not fully capture the complexities of modeling the brain; the current graphs may not fully capture the structure of the brain and various organizations.

Future work can focus on two main areas to address the aforementioned limitations. The first is to use a larger corpus of papers to represent more of the complexity of neuroscience and brain modeling. Second, we can use a node validation step to ensure that only relevant entities based on ontology are present in the graph. Techniques such as prompt tuning and finetuned models can aid in achieving this. Additionally, the creation of a neuroscience-based QA dataset to validate neuronal parameters can help evaluate our generated KGs.

References

- Zeno Cauter and Nikolay Yakovets. Ontology-guided knowledge graph construction from maintenance short texts. In Russa Biswas, Lucie-Aimée Kaffee, Oshin Agarwal, Pasquale Minervini, Sameer Singh, and Gerard de Melo (eds.), *Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024)*, pp. 75–84, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https://aclanthology.org/ 2024.kallm-1.8.
 - Abhimanyu Dubey et al. The llama 3 herd of models, 2024. URL https: //arxiv.org/abs/2407.21783.
 - Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization, 2024. URL https://arxiv. org/abs/2404.16130.
 - Fabian Ferrari, José van Dijck, and Antal van den Bosch. Foundation models and the privatization of public knowledge. *Nat. Mach. Intell.*, 5(8):818–820, July 2023.
- Carlos Enrique Gutierrez, Henrik Skibbe, Hugo Musset, and Kenji Doya. A spiking neural network builder for systematic data-to-model workflow. Frontiers in Neuroinformatics, 16, July 2022. ISSN 1662-5196. doi: 10.3389/fninf. 2022.855765. URL http://dx.doi.org/10.3389/fninf.2022.855765.
- Gaganpreet Jhajj, Xiaokun Zhang, Jerry Ryan Gustafson, Fuhua Lin, and Michael Pin-Chuan Lin. Educational Knowledge Graph Creation and Augmentation via LLMs, pp. 292–304. Springer Nature Switzerland, 2024. ISBN 9783031630316. doi: 10.1007/978-3-031-63031-6_25. URL http://dx. doi.org/10.1007/978-3-031-63031-6_25.
- Jakob Nikolas Kather, Dyke Ferber, Isabella C Wiest, Stephen Gilbert, and Daniel Truhn. Large language models could make natural language again the universal interface of healthcare. *Nat. Med.*, August 2024.
- 431 Jonathan Larson and Steven Truitt. GraphRAG: A new approach for discovery using complex information microsoft.com.

/00	
432	https://www.microsoft.com/en-us/research/blog/
433	graphrag-unlocking-llm-discovery-on-narrative-private-data/,
434	2024. [Accessed 8-15-2024].
435	
436	Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
437	Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
438	Rocktaschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented genera-
439	tion for knowledge-intensive nip tasks. In <i>Proceedings of the 34th International</i>
440	Conference on Neural Information Processing Systems, NIPS '20, Red Hook,
441	NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
442	Diva Li Asim Kaday Ajjing Gao Ruj Li and Richard Bourgon Automated
1/12	clinical data extraction with knowledge conditioned llms. 2024. URL https:
445	//arxiv.org/abs/2406.18027.
444	, ,
445	Abdulqadir J Nashwan and Ahmad A AbuJaber. Harnessing the power of
446	large language models (llms) for electronic health records (ehrs) optimiza-
447	tion. Cureus, July 2023. ISSN 2168-8184. doi: 10.7759/cureus.42634. URL
448	http://dx.doi.org/10.7759/cureus.42634.
449	Étioner Ollier Dubies Sher, Ang Massacris and Amerult Chatalain. The day
450	Ellenne Olilon, Rubing Snen, Ana Macanovic, and Arnault Chalelain. The dan-
451	gers of using proprietary LLIVIS for research. <i>Nut. Much. Much.</i> , 0(1).4–3, Jan-
452	uary 2024.
453	OpenAI. Gpt-4 technical report. 2024. URL https://arxiv.org/abs/
454	2303.08774.
455	
456	Andrea Papaluca, Daniel Krefl, Sergio Rodríguez Méndez, Artem Lensky, and
457	Hanna Suominen. Zero- and few-shots knowledge graph triplet extraction with
458	large language models. In Russa Biswas, Lucie-Aimée Kaffee, Oshin Agar-
450	wal, Pasquale Minervini, Sameer Singh, and Gerard de Melo (eds.), Proceed-
459	ings of the 1st Workshop on Knowledge Graphs and Large Language Mod-
400	els (KaLLM 2024), pp. 12–23, Bangkok, Thailand, August 2024. Associa-
461	tion for Computational Linguistics. doi: 10.18653/v1/2024.kallm-1.2. URL
462	https://aclanthology.org/2024.kallm-1.2.
463	V. A. Traag, L. Waltman, and N. J. van Eck. From louvain to leiden: guaranteeing
464	well-connected communities. Scientific Reports, 9(1), March 2019, ISSN 2045-
465	2322. doi: 10.1038/s41598-019-41695-z. URL http://dx.doi.org/
466	10.1038/s41598-019-41695-z.
467	
468	Laurène Vaugrante, Mathias Niepert, and Thilo Hagendorff. A looming replica-
469	tion crisis in evaluating behavior in language models? evidence and solutions,
470	2024. URL https://arxiv.org/abs/2409.20303.
471	Haoran Vang, Vumeng Zhang, Jiagi Yu, Hongguan Lu, Dhang Ann Hang, and
472	Wai Lam Unveiling the generalization nower of fine-tuned large language
473	models In Kevin Duh Helena Gomez and Steven Rethard (eds.) Proceed.
474	ings of the 2024 Conference of the North American Chanter of the Associa-
475	tion for Computational Linguistics. Human Language Technologies (Volume
476	1: Long Papers), pp. 884–899, Mexico City. Mexico. June 2024 Association
477	for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.51. URL
170	https://aclanthology.org/2024.naacl-long.51.
470	
4/9	Yujia Zhang, Tyler Sadler, Mohammad Reza Taesiri, Wenjie Xu, and Marek
480	Reformat. Fine-tuning language models for triple extraction with data aug-
481	mentation. In Russa Biswas, Lucie-Aimée Kaffee, Oshin Agarwal, Pasquale
482	Minervini, Sameer Singh, and Gerard de Melo (eds.), Proceedings of the
483	1st Workshop on Knowledge Graphs and Large Language Models (KaLLM
484	2024), pp. 116–124, Bangkok, Thailand, August 2024. Association for Com-
485	putational Linguistics. doi: 10.18653/v1/2024.kallm-1.12. URL https://aclanthology.org/2024.kallm-1.12.