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Abstract

Recent works have made significant progress in multi-agent
path finding (MAPF), with modern methods being able to
scale to hundreds of agents, handle unexpected delays, work
in groups, etc. The vast majority of these methods have fo-
cused on 2D “grid world” domains. However, modern ware-5

houses often utilize multi-agent robotic systems that can
move in 3D, enabling dense storage but resulting in a more
complex multi-agent planning problem. Motivated by this,
we introduce and experimentally analyze the application of
MAPF to 3D warehouse management, and release the first10

open-source 3D MAPF dataset. We benchmark two state-of-
the-art MAPF methods, EECBS and MAPF-LNS2, and show
how different hyper-parameters affect these methods across
various 3D MAPF problems. We also investigate how the
warehouse structure itself affects MAPF performance. Based15

on our experimental analysis, we find that a fast low-level
search is critical for 3D MAPF, EECBS’s suboptimality sig-
nificantly changes the effect of certain CBS techniques, and
certain warehouse designs can noticeably influence MAPF
scalability and speed.20

1 Introduction

Multi-Agent Path Finding (MAPF) algorithms try to find
a set of collision-free paths for multiple agents that min-
imize their aggregate cost, usually the sum of their travel
times. These methods were initially motivated by computer25

games (Silver 2005). Since most computer games require
agents traversing in 2D gridworlds, MAPF methods focused
on these domains. In the last decade, the rise of large ware-
houses involving many robotic pick-up and drop-off agents
has inspired more MAPF works that consider additional30

challenges in these tasks, as well as warehouse-specific 2D
gridworld maps.

However, modern warehouses and robotic systems are no
longer constrained to 2D navigation. Technologies like At-
tabotics1, AutoStore Kardex2, Retanus Robotics3, all utilize35

robotic agents that travel in 3D grids along rails. This en-
ables dense and customizable storage at the expense of a
more complex MAPF problem. Agents now have increased
flexibility in planning by reasoning about the z-axis, which

1https://www.attabotics.com/
2https://www.kardex.com/en/technology/products/autostore
3https://www.renatus-robotics.com/

Figure 1: A 3D warehouse with six main map parameters:
aisle length, number of aisles, aisle gap, number of levels,
level gap, and number of elevators.

in turn leads to a substantially larger variety of paths and 40

conflicts than are possible in 2D scenarios. Additionally, cer-
tain MAPF techniques that rely on 2D geometry are not ap-
plicable in a 3D environment. Given these changes, it is un-
clear how state-of-the-art MAPF problems will scale to such
3D warehouse environments. 45

Our objective is straightforward; analyze how MAPF
methods work in realistic 3D warehouse scenarios. We try
to address the following questions: How do MAPF methods
scale in 3D? What are the unique challenges in 3D ware-
houses that are not explored in existing 2D literature? How 50

does the geometry of the 3D warehouse affect performance?
Before we can start answering these questions, we first

need to create realistic 3D scenarios. To this end, we ob-
tained an approximate 3D warehouse vertex-edge schematic
from an industry partner and created a parametrized 3D 55

warehouse dataset that emulates real-world warehouses.
Furthermore, unlike typical MAPF instances where agents
just travel from start to goal locations, 3D warehouse agents
typically travel from one bin location to a drop-off goal
location and then back to their original position to return 60

their bin. This returning step is an important distinction as



it changes the difficulty of the task. These “start-goal-start”
problems can be used to evaluate congestion at drop-off goal
locations by having multiple agents have the same drop-off
location, which occurs in practice. Succinctly, our main con-65

tributions are the following:
1. Creating a realistic open-source 3D warehouse domain

that others can use.
2. Showing how certain warehouse geometries (e.g. aisle

length) can significantly impact MAPF performance.70

Also evaluating the effect of goal congestion on MAPF
performance.

3. Conducting a large ablation study of EECBS and dis-
covering how suboptimality plays a big role in CBS’s
improvements’ performance and how certain (EE)CBS75

improvements (e.g. Safe Interval Path Planning, Multi-
Value Decision Diagrams) impact performance differ-
ently compared to existing 2D literature.

2 Related Work

2.1 Benchmark80

The vast majority of MAPF methods are run on 2D grid-
world environments. A non-comprehensive but representa-
tive list of MAPF works developed and tested in 2D envi-
ronments are Conflict-Based Search methods (Sharon et al.
2015; Barer et al. 2014; Boyrasky et al. 2015; Li, Ruml,85

and Koenig 2021; Li et al. 2021), priority based meth-
ods (Erdmann and Lozano-Perez 1987; Ma et al. 2019; Li
et al. 2022), and other MAPF solvers (Lam et al. 2022).
In their corresponding experiments, these methods are all
tested on MAPF scenarios which originate from the Moving90

AI benchmark by (Sturtevant 2012). These original Moving
AI maps consist of several types of maps, notably city maps,
computer game maps, and randomly generated maps that
were then used for MAPF. Later on, warehouse grids were
added to more closely replicate MAPF robotic planning in95

warehouse settings. Stern et al. (2019) describes these sce-
narios in detail, and notes that although there are different
ways of assigning start-goal pairs, these scenarios contain
randomly sampled start-goal pairs.

Recent research studies have also been extended to ac-100

commodate agents with large geometric shapes and vol-
umes (Li et al. 2019b) or impose kinematic constraints over
agents’ move actions (Hoenig et al. 2017). These works con-
sider variations in agents’ size and actions where we con-
sider a variation in the dimensionality of the environment.105

To the best of our knowledge, our work introduces the first
realistic (3D) warehouse dataset for MAPF. Our hope is that
this dataset will spur new methods that handle complexities
in 3D warehouses and serve as a benchmark similar to the
existing 2D MAPF datasets.110

2.2 MAPF and Start-Goal-Start Problems

The two most common MAPF problem variants are one-shot
and life-long. In one-shot MAPF, we are given a graph and
a set of agents with unique start and goal location. We must
find paths for agents to reach their location that avoid obsta-115

cle collisions, vertex collisions (two agents at the same lo-
cation), and edge collisions (two agents swapping locations

at consecutive timesteps). When agents reach their goal lo-
cation, they rest (without incurring cost) until the solution
terminates when all agents reach their goal location. Life- 120

long MAPF has initial start-goal locations similar to one-
shot MAPF. However, when an agent reaches its goal loca-
tion, it is assigned a new goal location instead of resting.
Since goals are constantly changing, lifelong MAPF plan-
ners almost always require receding horizon planning, i.e. 125

they repeatedly re-plan conflict-free partial paths instead of
full paths as in one-shot MAPF. This requires additional
hyper-parameters on methods like partial-plan length (e.g.
horizon) and re-plan frequency which affects performance.
Lifelong evaluation also suffers from “starved” tasks where 130

certain start-goal tasks are not completed, which is not al-
lowable in real warehouse scenarios.

Start-goal-start problems are a simplified version of the
multi-goal sequence MAPF problem introduced in Li et al.
(2020) or multi-label sequence MAPF problem introduced 135

in Grenouilleau, Hoeve, and Hooker (2021). We report re-
sults for standard start-goal problems as is typical. We addi-
tionally choose to include start-goal-start results as it is more
realistic and evaluates the effect of goal congestion. We do
not report life-long MAPF as it introduces several additional 140

hyper-parameters that require tuning (our experimental sec-
tion already includes plenty of hyper-parameters), and it has
the task starvation issue which is not feasible in real ware-
houses. Future work could look into life-long MAPF perfor-
mance in 3D warehouses. 145

2.3 Modern MAPF methods

There are several different state-of-the-art MAPF ap-
proaches that can be used to benchmark how existing meth-
ods perform on 3D scenarios, like EECBS (Li, Ruml, and
Koenig 2021), BCP (Lam et al. 2022), and MAPF-LNS2 150

(Li et al. 2022). EECBS is a bounded sub-optimal method
that employs the popular Conflict Based-Search framework
with a focal low-level search and an explicit estimation high-
level search. It additionally employs CBS improvements
like Symmetry Reasoning (Li et al. 2021), Prioritized Con- 155

flicts (Boyarski et al. 2015), Bypassed Conflicts (Boyrasky
et al. 2015), and others. Branch-and-Cut-and-Price (BCP)
finds non-intersecting paths by using linear programming
and the general branch-cut-price framework for reasoning
over sets of paths. Both EECBS and BCP are complete and 160

bounded-suboptimal methods. On the other hand, MAPF-
LNS2 modifies prioritized planning (Erdmann and Lozano-
Perez 1987) to find paths with minimum conflicts and then
replans groups of conflicting agents to find a solution. Ad-
ditionally, MAPF-LNS2 incorporated a version of Space- 165

Interval Path Planning (SIPP) (Phillips and Likhachev 2011)
which speeds up the low-level planner by reasoning away
wait actions, and found this speeds up planning by 5⇥
compared to regular space-time planning. MAPF-LNS2 re-
tains no theoretical guarantees but was found to outperform 170

EECBS while having near-optimal solutions.
We chose to focus on EECBS and MAPF-LNS2 for

our initial benchmark as this provides us with a mod-
ern bounded-suboptimal and non-bounded method. Running
these methods on the 3D scenarios provides an accurate pic- 175



ture of how strong state-of-the-art MAPF methods scale to
this new problem setting.

3 3D Warehouse Benchmark Suite

To ensure practicality and real-world accuracy, we collab-
orated with an industry-leading 3D warehouse company180

that provided us with an actual 3D warehouse schematic.
Leveraging this resource, we derived six key attributes that
parametrized the 3D warehouses: aisle length, number of
aisles, aisle gap, number of levels, level gap, and number
of elevators depicted in Figure 1.185

Aisle Length: Aisles are depicted as elongated lines on
the x-axis whose length is defined as the number of nodes.

# of Aisles: The total number of aisles in the x-y plane.
Aisle Gap: The y-axis spaces between adjacent aisles.
# of Levels: The number of stacked levels in the z-axis.190

Level Gap: The spacing between levels along the z-axis.
# of Elevators: Elevators are depicted as vertical bars lo-

cated at both ends of the aisles to interconnect levels along
the z-axis. This sparse arrangement of elevators mimics the
real-world map.195

Besides the six main attributes, we also attach two dense
grid structures at each end of the levels, which we refer to as
margins. In real-world warehouses, they are used as buffer
areas for robots to rest on while they are waiting for the pre-
vious agent to traverse the aisle, or used as placeholders for200

non-moving robots. We keep the dimension of each margin
the same for every map.

We conducted experiments to identify the values for the
six parameters that would yield similar results to the real-
world map. Specifically, we found that the representative205

values are as follows: aisle length = 50, number of aisles
= 10, aisle gap = 5, number of levels = 10, level gap = 5, and
number of elevators = 2. We ran EECBS and MAPF-LNS2
on the real map and this representative parametrized map
and validated that both algorithms produced similar results.210

In order to investigate the diverse effects of different map
configurations on MAPF algorithms, we expand our anal-
ysis by generating 14 additional maps. The first 12 maps
are generated through systematic variations of individual pa-
rameters. For each of these maps, we selectively modify one215

of the six parameters, either doubling or halving its value,
while keeping the remaining five parameters constant, fol-
lowing the specifications of the base map. This approach al-
lows us to discern the distinct influence of each parameter
on the MAPF algorithms’ behavior. The last two maps are220

constructed by doubling or halving all six parameters.
By systematically generating these 14 additional maps,

we ensure a comprehensive exploration of the varying ef-
fects that different 3D map configurations can have on
MAPF algorithm performance. Additionally, this dataset225

provides valuable insights for understanding algorithm be-
havior under diverse and representative scenarios.

4 General Implementation Changes

We have two main sources of change that might require
modifying EECBS or MAPF-LNS2. First, running MAPF230

on the 3D graph could require some algorithmic changes to
the single-agent planners or conflict-resolution algorithms.

Instead of finding (x, y, t) paths, we must find (x, y, z, t)
paths, which might seem like a combinatorially harder chal-
lenge. However, conceptually and implementationally, we 235

can think of our 3D graph as just a generic graph with ver-
tices v with corresponding edges to neighboring vertices v0.
In 2D, these vertices v have an associated (x, y), in 3D they
now have an associated (x, y, z). Regardless of 2D or 3D,
we are still searching over a (v, t) state-space and thus re- 240

quire no changes to the low-level or high-level search. Sec-
ond, computing start-goal-start paths could require chang-
ing how the low-level planner works. This is easily done
via small modifications to the state space and transition ex-
plained in the next section. We assume that edges take one 245

unit timestep to travel regardless of their physical length.

4.1 Start-Goal-Start Paths

Most MAPF works just plan paths from start-goal locations.
However, many real-world warehouse applications require
the agent to pick up a bin from the start location, navigate to 250

a drop-off location, and then return back to the start location
to return the bin. We briefly describe how to change a MAPF
planner for start-goal-start paths but note these changes are
not novel and similar to changes in Li et al. (2020).

We want the MAPF planner to directly plan “start-goal- 255

start” paths. This requires changing the state space from
(v, t) to (v, t, i) where i is a boolean indicating if we are
traveling either from start to goal (i = false) or goal to start
(i = true). The agent is not required to “hold” at the goal
location, it instead holds at the end of its path (so it will rest 260

at the start in the end).
This requires modifying the low-level planner for both

EECBS and MAPF-LNS2 as it must plan paths that reach
the goal and then navigate to the start. Implementationally,
our agent starts at (vstart, t = 0, i = 0) and must reach 265

(vstart, ⇤, i = 1). i can only be switched to 1 when the
agent reaches (vgoal, t, i = 0). Thus based on i, our search
should go towards vgoal or vstart. We can compute an accu-
rate heuristic ignoring constraints by using a backward Di-
jkstra that starts at (vgoal, ⇤, i = 1). 270

A nice practical aspect of planning start-goal-start is that
we can now easily control goal congestion by changing the
number of agents that share the same intermediate goal.
For example, we could have an “8 start-goal-start” problem
where 8 agents share the same intermediate goal location. 275

Controlling the number of agents sharing goals (e.g. to 4
or 16) allows us to manipulate (less or more) congestion in a
way not as easily possible if we just planned start-goal paths.
This also mimics real-world applications where robots usu-
ally have many start bins but few drop-off locations. 280

5 Conflict Based Search Changes

EECBS is a bounded sub-optimal MAPF solver that em-
ploys a high-level search over Conflict Tree (CT) nodes to
resolve space-time conflicts in path proposals and a low-
level search that proposes a new path for a single agent 285

given CT node space-time constraints. By iteratively resolv-
ing conflicts in CT nodes, a goal CT node will provide a so-
lution (if there exists) free of conflicts. Getting EECBS with



all its optimizations working in the 3D scenario with start-
goal-start paths requires some modifications. Note that these290

modifications are mildly novel (as prior work with multi-
goal MAPF did not use these optimizations), but are straight-
forward. MAPF-LNS2 does not require any additional mod-
ifications other than the low-level change described earlier.

5.1 Multi-Value Decision Diagram changes295

Multi-Value Decision Diagrams (MDDs) are efficient data
structures that store all paths of length K between a start
and goal, where K is an input parameter based on the use-
case (Sharon et al. 2013). For our start-goal-start purposes,
the MDD is modified from finding start-goal paths of length300

K to finding start-goal-start paths of length K (searches in
(v, t, i) space). MDDs are powerful data structures that rea-
son about sets of paths and are required for certain CBS im-
provements which we discuss in the next section.

5.2 CBS Improvements305

Recent works have created several improvements that can
speed up CBS. Several require modifications to work in the
3D setting as well as for start-goal-start path planning, while
others can work out of the box.

Directly usable. Bypassing conflicts (Boyrasky et al.310

2015): This technique reasons that instead of creating chil-
dren N 0 CT nodes of CT node N , we can instead replace
N with N 0 if N 0 resolves a conflict and has cost(N 0) 
cost(N ). Conceptually, this lets us produce smaller CTs and
improve performance. This technique does not need to be315

modified and can be used out of the box.
Target reasoning (Li et al. 2021): Target reasoning occurs

when an agent I traverses over another agent J’s goal after
agent J reaches it and is resting at its goal location. Target
reasoning applies a constraint on agent J reaching its goal320

location before or after a specific time. Target reasoning is
directly usable when applied to (vstart, ⇤, 1).

Corridor reasoning (Li et al. 2021): This method detects
if agents are conflicting in a corridor (defined by a consec-
utive set of vertices with degree 2) and applies constraints325

on when the agents can enter the corridor. This method can
directly be applied in the 3D workspace and start-goal-start
paths without changes.

Usable with changes to MDD. Prioritized conflicts (PC)
(Boyarski et al. 2015): PC determines which conflicts the330

CT node should decide to split on. It uses an MDD to de-
termine if splitting on a conflict will increase the child CT
node’s cost and prefers such conflicts. Since we are able to
generalize the creation of MDDs as described in section 5.1,
we can use PC without further modifications.335

Weighted Dependency Graph heuristic (WDG) (Li et al.
2019a): The WDG heuristic is an admissible heuristic for
the high-level search. It computes pair-wise MDDs and uses
an edge-weighted minimum vertex cover to compute the
heuristic value. Again due to section 5.1, we can use this340

without further modifications.

Not usable. Rectangular reasoning (Li et al. 2021): Rect-
angular reasoning reasons for conflicts that occur in rectan-
gular regions in 2D grid maps, and avoids a large number

CBS Improvement Is Effective in Our Work
Common Intuition (2D) (2D & 3D)

SIPP Yes Yes
Bypassing Conflict Yes Yes
Prioritized Conflicts Yes Depends on wso

Corridor Reasoning Yes Depends on wso

Target Reasoning Yes Yes
WDG Yes Depends on wso

Table 1: A summary of which CBS improvements are ben-
eficial. We found that EECBS’s suboptimality (wso) signifi-
cantly affects the utility of certain improvements in both 2D
and 3D. SIPP is much more useful in 3D than 2D scenarios.

of space-time conflicts by placing barrier constraints around 345

the entire rectangular region. This method is unfortunately
not usable in our 3D warehouse graph as the rectangular
logic is not applicable as we can travel in the z-axis.

6 Experimental Results

We aim to answer the following questions: 350

1. How do modern MAPF methods (EECBS and MAPF-
LNS2) scale to the 3D scenario as there are many more
potential paths and conflicts?

2. How do EECBS and MAPF-LNS2 hyper-parameters af-
fect performance? 355

3. How does goal congestion via start-goal-start problems
affect performance?

4. How do map parameters affect performance?

6.1 Method Results and Analysis

As described in section 2, we specifically choose to 360

use EECBS and MAPF-LNS2 as they are state-of-the-
art bounded suboptimal and non-bounded methods respec-
tively. Additionally, EECBS contains several Conflict-Based
Search improvements that have been effective in 2D search
but it is unclear how these will help in our 3D domain. We 365

report median statistics across 10 random seeds, with each
seed containing a unique set of start and goal locations sam-
pled from a uniform distribution.

EECBS We examine the effectiveness of the six EECBS
improvements: SIPP (Safe Interval Path Planning), By- 370

pass/BP (Bypass Conflicts), PC (Prioritized Conflicts), CR
(Corridor Reasoning), Target/T (Target Reasoning), and
WDG (Weighted Dependency Graph high-level heuristic).
A summary of their impact on performance under different
suboptimalities is given in Table 1. 375

We choose to use two suboptimalities wso = 1.02 (often
used in the literature) and wso = 5 in this study. We choose
wso = 5 for two reasons. First, existing unbounded meth-
ods, e.g. MAPF-LNS2 (Li et al. 2022) and LaCAM (Oku-
mura 2022) compare against EECBS with wso = 5 as a fair 380

comparison (they deemed that suboptimality should be suf-
ficiently high). Second, in real-life warehouse settings with
many agents, Table 2 shows that a larger suboptimality is re-
quired for scalability and significantly faster planning time.

For a small EECBS suboptimality (wso = 1.02), all six 385

improvements demonstrate clear benefits as shown in Table



EECBS Parameters Scenario Parameters
Start-goal 1 start-goal-start 2 start-goal-start 8 start-goal-start

wso Improvements Max # Slowdown Max # Slowdown Max # Slowdown Max # Slowdown

5

Best (SIPP+T+BP) 700 1 650 1 650 1 500 1
Best-SIPP 500 22.77 250 37.19 300 20.46 200 44.49

Best-Bypass 550 1.37 500 1.74 500 1.67 450 1.39
Best+PC 550 1.27 550 1.20 600 1.19 450 1.07
Best+CR 700 1.17 550 1.05 650 1.02 450 1.05

Best-Target 500 1.21 500 1.48 500 1.38 500 1.33
Best+WDG 600 1.26 500 1.28 650 1.25 450 1.17

1.02

Best (All) 170 1 70 1 50 1 30 1
All-SIPP 130 1.30 60 1.14 40 1.52 30 1.94

All-Bypass 130 1.00 70 1.07 40 1.06 30 0.86
All-PC 130 0.84 50 0.95 50 0.51 30 0.88
All-CR 110 1.02 70 0.64 40 1.07 30 0.20

All-Target 100 2.44 50 1.12 40 1.04 30 0.35
All-WDG 170 0.84 70 0.94 40 1.00 30 1.17

Table 2: We conduct an “add-or-substract-one” ablation study of CBS’s improvements across different EECBS wso subopti-
malities and scenario configurations. We choose the “Best” configurations (SIPP+Target+Bypass) and “All” improvements as
the baseline for wso = 5 and wso = 1.02 respectively. We experiment with SIPP (Safe Interval Path Planning), Bypass/BP
(Bypass Conflicts), PC (Prioritized Conflicts), CR (Corridor Reasoning), Target/T (Target Reasoning), and WDG (Weighted
Dependency Graph high-level heuristic). For each configuration, we ran start-goal problems and start-goal-start problems with
group size 1, 2, 8. For each scenario, we ran a different number of agents in step sizes of 50 (wso = 5) and 10 (wso = 1.02),
and stopped when they timed out (60 seconds) on over half their seeds (10 total seeds, needs to fail � 5 to stop). We report
the largest number of agents with � 50% success rate in the “Max #” column, and the median relative slowdown compared to
the corresponding baseline. Since each row contains adding/removing (+/-) certain parameters (e.g. Best-SIPP means SIPP was
removed from Best, resulting in T+BP), a slowdown > 1 means that making this change hurts EECBS performance (as doing
so slows EECBS). We highlight that the suboptimality significantly the impact of certain improvements (e.g. PC, WDG).

2 where the first row in entry wso = 1.02 produces the best
max # agent result, which is consistent with existing findings
in 2D scenarios (Li, Ruml, and Koenig 2021). However, as
the suboptimality is increased to 5, PC, CR, and WDG neg-390

atively impact runtime. We verified that this behavior also
occurred in a 2D map (warehouse-10-20-10-2-1) when wso

is changed from 1.02 to 5. Existing work has only explored
the effect of CBS improvements in the low suboptimality
regime, and our study of these parameters in the high sub-395

optimality regime with the warehouse context leads to dif-
ferent optimal parameter settings. We encourage the reader
to take a look at Appendix A which contains a comprehen-
sive analysis of individual EECBS parameters and wso. The
only notable difference between 2D and 3D we found with400

wso = 5 is that using SIPP in 3D yields a runtime speedup
of 20⇥ and above while (Li et al. 2022) reports speedups
of roughly 5⇥ in 2D scenarios. In general, this highlights
that making careful choices regarding which parameters to
activate becomes crucial in attaining optimal performance.405

Our start-goal-start (s-g-s) results show that CBS im-
provements have a similar effect in start-goal-start across
multiple group sizes and with regular start-goal problems.
Additionally, we see that under wso = 1.02, s-g-s problems
are much harder than start-goal problems shown from a large410

difference in max # agents achieved between the start-goal
and 1 start-goal-start column. We see goal congestion affects
the scalability of EECBS shown by the decrease in max #
agents across group sizes of 1, 2, and 8.

Method Start-goal 1 s-g-s 2 s-g-s
Max # Slowdown Max # Slowdown Max # Slowdown

LNS2 1250 1 650 1 700 1
LNS2- 500 27.79 250 7.48 250 14.16
EECBS 700 1.80 650 1.22 650 1.19

8 s-g-s 32 s-g-s 64 s-g-s
LNS2 650 1 450 1 450 1
LNS2- 250 35.07 100 12.64 150 20.56
EECBS 500 1.19 400 1.04 450 0.86

Table 3: We compare LNS2 with SIPP (LNS2), LNS2 with-
out SIPP (LNS2-), and EECBS wso = 5 with the best im-
provements from Table 2 on different start-goal and start-
goal-start with different group sizes g. The “Max #” column
is the maximum number of agents where the method has
a success rate � 50% across 10 seeds with a timeout of
1 minute. The “Slowdown” column is the relative runtime
with the LNS2 row (e.g. a slow of 2.56 means it took 2.56⇥
longer to plan a path than LNS2). We see that removing SIPP
dramatically slows down search and that EECBS performs
around 1.8⇥ slower for easier problems but starts perform-
ing similarly to LNS2 when g becomes large.

MAPF-LNS2 Table 3 compares “LNS2” (MAPF-LNS2 415

with SIPP), “LNS2-” (MAPF-LNS2 without SIPP), and
“EECBS” (EECBS with wso = 5, SIPP, BP, and Target)
across start-goal and g start-goal-start problems. The “Max
#” values are the maximum numbers of agents that the plan-
ner can solve in � 50% of the 10 seeds with a 1-minute time- 420

out, while “Slowdown” is the median relative slowdown in
runtime comparing against “LNS2”. We first see that SIPP



Figure 2: Our 3D scenarios have two different axes of
change, the total number of agents as well as the start-goal-
start group/congestion size g. We plot the average agent path
cost of successful seeds when running EECBS (dashed) and
LNS2 (solid) on different group sizes g. Each color corre-
sponds to a unique group size. We plot the solution cost of
start-goal problems in solid yellow, and 2⇤ the cost in dotted
yellow to provide context. We see that for low group sizes,
e.g. 4, even 8, the path cost does not increase substantially
and stays fairly close to the 2⇤ expectation. However, as con-
gestion at goals becomes large (g � 16), agents start taking
large detours/waits causing the path cost to increase substan-
tially. Comparing the dashed (EECBS) and solid (LNS2)
lines within each color, we see LNS2’s solution cost de-
grades as g becomes large g = 32, 64, where LNS2 starts
finding large suboptimal paths while EECBS is able to find
significantly shorter paths.

significantly speeds up performance in LNS2 by approxi-
mately 20⇥ on average. Additionally, we see that although
EECBS is just 1.8⇥ slower on start-goal instances on solved425

start-goal problems, LNS2 is able to scale significantly bet-
ter and solve 1250 agents while EECBS struggles after 700.

6.2 Goal Congestion Analysis

We investigate how goal congestion through g start-goal-
start problems (where g agents go to the same intermediate430

goal location) differs from that of regular start-goal prob-
lems. Figure 2 depicts how the group size (the number of
agents per intermediate goal location) impacts path length
for EECBS and LNS2. We provide 2⇤ the start-goal loca-
tion as a comparison if start-goal-start paths simply copied435

start-goal paths on their way back. We see for small g that
this is roughly the case as they hug the 2⇤ yellow dotted
line. However, as g increases � 8, both methods need to
find longer solutions, suggesting that the problems are get-
ting harder. Additionally, we see that LNS2 performs a lit-440

tle worse than EECBS for low g and starts finding highly
suboptimal paths for g = 32, 64. This highlights a possible
drawback with using prioritized planning as LNS2’s under-
lying low-level planner, which in these situations is forced to

Figure 3: We plot across different group sizes (0 denotes
start-goal) among all maps. Each colored line represents a
unique map, e.g. longAisles refers to the map where the aisle
length is doubled. The left subplots show the absolute max-
imum number of agents achieved, and the right ones show
the ratio of max # of agents to the total map size measured
as the number of nodes.

Figure 4: The y-axis of these figures represents the ratio of
the final sum of cost to the initial sum of cost denoted as
normalized solution cost. We only show the plots for group
size 0 as it shows a similar trend with all other group sizes.
The x-axis denotes the density of agents (# of agents over
map size) and is capped at a density of 0.075. The different
colored lines represent different maps. They clearly show
that longer aisle length increases solution cost.

take long detours when congestion is high. This also high- 445

lights how start-goal-start problems can be practical tools in
figuring out how different methods perform under different
levels of congestion.

6.3 Benchmark Results

Figure 3 presents a comprehensive analysis of the scalability 450

of the MAPF-LNS2 and EECBS algorithms across 15 maps
by examining the maximum number of agents achieved from



Change in Map Map EECBS LNS2
Parameters Size Speedup Speedup

base 1.0 1.0 1.0
aisle length⇥2 1.38 0.48 0.31
aisle length/2 0.81 2.00 4.63

# aisles⇥2 2.05 0.97 1.85
# aisles/2 0.48 0.72 0.84

aisle gap⇥2 1.41 0.91 1.17
aisle gap/2 0.75 0.79 1.03
# levels⇥2 2.02 0.89 1.55
# levels/2 0.49 0.78 0.61

level gap⇥2 1.14 1.07 0.86
level gap/2 0.92 1.03 1.19

# elevators⇥2 1.14 1.21 1.82
# elevators/2 0.93 0.96 0.72

8 ⇥ 2 9.09 0.43 0.45
8/2 0.11 0.22 0.29

Table 4: A summary of how different map parameters affect
performance on 200-agent start-goal problems. The first col-
umn varies each of the six map parameters by doubling or
halving it. The last two rows double and half all six param-
eters. The second column describes the relative change of
the number of map nodes to that of the base map. The third
and fourth columns show the runtime speedup for running
EECBS and MAPF-LNS2 respectively.

different group sizes. To eliminate the confounding influ-
ence of varying map sizes, we present the data in two ways:
the left figures employ the maximum number of agents as455

the y-axis, while the right ones use the maximum density
of agents (i.e., the ratio of the maximum number of agents
to the map size). We observe that the lines decrease sharply
from group size 0 to group size 1, and a shallow slope after
group size 1. This indicates that any start-goal-start problem460

is much harder than the goal-start problem, and congestion
caused by larger group sizes does not hugely hinder perfor-
mance compared to that caused by smaller group sizes.

Figure 4 shows the normalized solution cost (the ratio of
the final sum of cost to the initial sum of cost) at different465

agent densities across all maps. Higher values mean that we
need to find longer paths to avoid conflicts. It is interesting
to note that the relationship between cost and agent density
is roughly linear in most cases. Table 4 offers a perspective
on the impact of map parameters on algorithmic runtime for470

200 agents on start-goal problems. Note that the change in
map size affects the agent density and can be a confounder
of the relative speedup in relation to the base map.

Together these visualizations describe how the map con-
figuration affects performance. Specifically, we see that aisle475

length has the biggest impact affecting speedup (Table 4),
solution quality (Figure 4), and scalability (Figure 3). For
any 3D warehouse designer, decreasing aisle length seems
to boost performance across all metrics. Another interest-
ing parameter is the number of elevators which noticeably480

impacts solution cost and speedup. This could imply that el-
evators are a computational bottleneck (e.g. many collisions

occur here) in the search algorithms.
Most existing work cast their focus on how different at-

tributes of algorithms affect performance. We hope this anal- 485

ysis motivates future work to investigate manipulating ware-
house structures to gain better performance.

7 Conclusion and Future Work

The main goal of our work is to create a realistic 3D ware-
house benchmark and evaluate how existing MAPF meth- 490

ods perform across different realistic scenarios. We found
that specific warehouse configurations exert a substantial in-
fluence on algorithmic performance. We additionally dis-
covered that the suboptimality of EECBS has implications
for the effectiveness of CBS-based enhancements. MAPF- 495

LNS2 demonstrates strong scalability, yet faces challenges
with solution costs under heightened congestion which we
were able to manipulate via our start-goal-start scenarios
that are frequently encountered in warehouse environments.
We see many exciting directions to build off this work. 500

Evaluating more MAPF methods and variants: Recent
methods like LaCAM (Okumura 2022) have shown impres-
sive scalability on 2D environments at the expense of path
cost. It is unclear how they will work in 3D warehouses with
goal congestion. Likewise evaluating methods and hyper- 505

parameters for life-long MAPF could produce meaningful
insights on their behaviour and shortcomings.
Speeding up MDD creation: Our results showed that con-
structing MDDs is a bottleneck for using certain CBS opti-
mizations, and is not practical when scaling to large num- 510

bers of agents. Future work should figure out efficient ways
to create MDDs or use them more selectively.
Generalizing rectangular reasoning: Rectangular reason-
ing could potentially be generalized to 3D geometry. Careful
consideration is required as the 3D “rectangle” may not be 515

fully connected as in our warehouses.
Developing specialized techniques for handling goal con-

gestion: We saw that goal congestion can negatively affect
performance, especially for MAPF-LNS2. Developing tech-
niques like special constraints or developing conventions 520

(e.g. always entering/leaving the goal along specific edges
near the goal) could improve goal congestion performance.
Warehouse structure optimization: Our analysis showed
how the aisle length and elevators have outsized impacts on
performance. Additional warehouse structure like elevators 525

in the middle could have non-trivial impacts. Directed edges
could also decrease goal congestion degradation.
Drop off location optimization: Given a warehouse struc-
ture, optimizing the (goal) drop-off locations could reduce
start-goal-start congestion and boost overall performance. 530

Using Machine Learning for 3D MAPF: Nearly all cur-
rent machine learning approaches for MAPF have been de-
signed for 2D environments. A crucial design in their models
is inputting the graph as an image and using CNN architec-
tures. A 3D warehouse renders CNNs useless and requires 535

non-trivial consideration of what the inputs and network ar-
chitecture should be. Additionally, it is possible that goal
congestion is a specific task that learned models could ex-
ceed as they could potentially learn non-trivial congestion-
avoiding behaviour and coordination. 540
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