
Under review as a conference paper at ICLR 2021

CLASS IMBALANCE IN FEW-SHOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Few-shot learning aims to train models on a limited number of labeled samples
from a support set in order to generalize to unseen samples from a query set. In
the standard setup, the support set contains an equal amount of data points for
each class. This assumption overlooks many practical considerations arising from
the dynamic nature of the real world, such as class-imbalance. In this paper, we
present a detailed study of few-shot class-imbalance along three axes: dataset
vs. support set imbalance, effect of different imbalance distributions (linear, step,
random), and effect of rebalancing techniques. We extensively compare over 10
state-of-the-art few-shot learning methods using backbones of different depths on
multiple datasets. Our analysis reveals that 1) compared to the balanced task, the
performances of their class-imbalance counterparts always drop, by up to 18.0%
for optimization-based methods, although feature-transfer and metric-based meth-
ods generally suffer less, 2) strategies used to mitigate imbalance in supervised
learning can be adapted to the few-shot case resulting in better performances, 3)
the effects of imbalance at the dataset level are less significant than the effects at
the support set level. The code to reproduce the experiments is released under an
open-source license.

1 INTRODUCTION

Deep learning methods are well known for their state-of-the-art performances on a variety of tasks
(LeCun et al., 2015; Russakovsky et al., 2015; Schmidhuber, 2015). However, they often require to
be trained on large labeled datasets to acquire robust and generalizable features. Few-Shot Learning
(FSL) (Chen et al., 2019; Wang et al., 2019b; Bendre et al., 2020) aims at reducing this burden by
defining a distribution over tasks, with each task containing a few labeled data points (support set)
and a set of target data (query set) belonging to the same set of classes. A common way to train
FSL methods is through episodic meta-training (Vinyals et al., 2017) with the model repeatedly
exposed to batches of tasks sampled from a task-distribution and then tested on a different but similar
distribution in the meta-testing phase. The prefix “meta” is commonly used to distinguish the high-
level training and evaluation routines of meta-learning (outer loop), from the training and evaluation
routines at the single-task level (inner loop).

Limitations. Standard meta-training overlooks many challenges stemming from real-world dy-
namics, such as class-imbalance (CI). The standard setting assumes that all classes in the support set
contain the same number of data points, whereas in many practical applications, the number of sam-
ples for each class may vary (Buda et al., 2018; Leevy et al., 2018). Given the limited amount of data
used in FSL, a small difference in the number of samples between classes could already introduce
significant levels of imbalance. Most FSL methods are not designed to cope with these more chal-
lenging settings. Figure 1 exemplifies these considerations by showing that several state-of-the-art
FSL methods underperform when tested under three CI regimes (linear, step, random).

Previous work. Previous work mainly focuses on the single imbalance case or grouping several
settings into one task, offering limited insights into the effects of CI on FSL and making it chal-
lenging to quantify its effects (Guan et al., 2020; Triantafillou et al., 2020; Lee et al., 2019; Chen
et al., 2020). A common approach to mitigate imbalance is Random-Shot meta-training (Triantafil-
lou et al., 2020), which exposes the model to imbalanced tasks during meta-training. However,
previous work provides little insight into the effectiveness of this procedure on the imbalanced FSL
evaluation task. Furthermore, minimal work exists that investigates meta-training outcomes un-
der an imbalanced distribution of classes at the (meta-)dataset level, while this case is common in
recent FSL applications (Ochal et al., 2020; Guan et al., 2020) and meta-learning benchmarks (Tri-
antafillou et al., 2020). The CI problem is well-known within the supervised learning community,

1

Under review as a conference paper at ICLR 2021

Baseline

(1-NN)
Baseline

(fine-tune)
Baseline++

Matching

Net ProtoNet
ProtoNet

(20-way)
Relation

Net (C
E) DKT

SimpleShot
MAML

ProtoMAML
BMAML

BMAML

(chaser)
20
30
40
50
60
70

pre-trained baselines metric-based models optimization-based models

5shot (balanced) 4-6shot linear 1-9shot step 1minor 1-9shot random

Ac
cu

ra
cy

 %

Figure 1: Accuracy (mean percentage on 3 runs) and 95% confidence intervals on FSL methods
with balanced tasks (red bars) vs 3 imbalanced task (blue bars). Most methods perform significantly
worse on the imbalanced tasks, as showed by the lower accuracy of the blue bars.

which has systematically produced strategies to deal with the problem, such as the popular Random
Over-Sampling (Japkowicz & Stephen, 2002) that aims at rebalancing minority classes by uniform
sampling. While such strategies have been extensively studied on many supervised learning prob-
lems, there is little understanding of how they behave with the recently proposed FSL methods in
the low-data regime.

Our work and main contributions. In this paper, we provide, for the first time, a detailed anal-
ysis of the CI problem within the FSL framework. Our results show that even small CI levels can
introduce a significant performance drop for all the methods considered. Moreover, we find that only
a few models benefit from Random-Shot meta-training (Triantafillou et al., 2020; Lee et al., 2019;
Chen et al., 2020) over the classical (balanced) episodic meta-training (Vinyals et al., 2017); while
pairing the meta-training procedures with Random Over-Sampling offers a substantial advantage.
The experimental results show that imbalance severity at the dataset level depends on the size of the
dataset. Our contributions can be summarized as follows:

1. A systematic, comprehensive and in-depth study of the effects of CI within the FSL frame-
work along three axes: (i) dataset vs. support set imbalance, (ii) effect of different im-
balance distributions (linear, step, random), (iii) effect of rebalancing techniques, such as
random over-sampling and the recently proposed Random-Shot meta-training (Triantafillou
et al., 2020).

2. We reveal novel insights into the meta-learning and support set adaptation capabilities to the
CI regime, supported by extensive results on over 10 FSL methods with different imbalance
settings, backbones, support set sizes, and datasets.

3. We provide insight into the previously unaddressed CI problem in the (meta-)training
dataset, showing that the effects of imbalance at the dataset level are less significant than
the effects at the support set level.

2 RELATED WORK

2.1 CLASS IMBALANCE

In classification, imbalance occurs when at least one class (the majority class) contains a higher num-
ber of samples than the others. The classes with the lowest number of samples are called minority
classes. If uncorrected, conventional supervised loss functions, such as (multi-class) cross-entropy,
skew the learning process in favor of the majority class, introducing bias and poor generalization
toward the minority class samples (Buda et al., 2018; Leevy et al., 2018). Imbalance approaches
are categorized into three groups: data-level, algorithm-level, and hybrid. Data-level strategies ma-
nipulate and create new data points to equalize data sampling. Popular data-level methods include
Random Over-Sampling (ROS) and Random Under-Sampling (RUS) (Japkowicz & Stephen, 2002).
ROS randomly resamples data points from the minority classes, while RUS randomly leaves out
a randomly selected portion of the majority classes to decrease imbalance levels. Algorithm-level
strategies use regularization or minimization of loss/cost functions. Weighted loss is a common ap-
proach where each sample’s loss is weighted by the inverse frequency of that sample’s class. Focal
loss (Lin et al., 2017) is another type of cost function that has seen wide success. Hybrid methods
combine one or more types of strategies (e.g. Two-Phase Training, Havaei et al. (2017)).

2

Under review as a conference paper at ICLR 2021

Modeling Imbalance. The object recognition community studies class imbalance using real-
world datasets or distributions that approximate real-world imbalance (Buda et al., 2018; Johnson &
Khoshgoftaar, 2019; Liu et al., 2019). Buda et al. (2018) note that two distributions can be used: lin-
ear and step imbalance (defined in our methodology Section 3). At large-scale, datasets with many
samples and classes tend to follow a long-tail distribution (Liu et al., 2019; Salakhutdinov et al.,
2011; Reed, 2001), with most of the classes occurring with small frequency and a few classes oc-
curring with high frequency. Our work primarily focuses on the tail-end of the distribution and does
not consider the case of large sample size. Therefore, we do not examine the long-tail mechanisms.

2.2 FEW-SHOT LEARNING

FSL methods can be broadly categorized into metric-learning, optimization-based, hallucination,
data-adaptation, and probabilistic approaches (Chen et al., 2019). Metric-learning approaches such
as Prototypical Networks (Snell et al., 2017), Relation Networks (Sung et al., 2017), the Neural
Statistician (Edwards & Storkey, 2017) and Matching Networks (Vinyals et al., 2017), learn a fea-
ture extractor capable of parameterizing images into embeddings, and then use distance metrics to
classify mapped query samples based on their distance to support points. Optimization-based ap-
proaches such as MAML (Finn et al., 2017) and Meta-Learner LSTM (Ravi & Larochelle, 2016)),
are meta-trained to use guided optimization steps on the support set for quick adaptation. Hallu-
cination or data augmentation techniques perform affine and color transformations on the support
set to create additional data points (Zhang et al., 2018). Probabilistic methods use Bayesian infer-
ence to learn and classify samples, for example, the recently proposed Deep Kernel Transfer (DKT)
(Patacchiola et al., 2020), which uses Gaussian Process at inference time. We use the term domain
adaptation to represent those approaches using standard transfer-learning with a pre-training stage
on a large set of classes and a fine-tune stage on the support set – examples are Baseline and Base-
line++ from Chen et al. (2019), and the recently proposed Transductive Fine-Tuning from Dhillon
et al. (2020). The details of the methods used in our experiments are reported in Appendix A. For
completeness, it is worth mentioning Incremental Few-Shot Learning (Ren et al., 2018; Gidaris &
Komodakis, 2018; Hariharan & Girshick, 2017) which is an extension of FSL. It considers main-
taining performance on base classes (meta-training dataset) while incrementally learning about novel
classes using limited data, typically without re-training from scratch on all data. Here, we focus on
studying how imbalance affects the learning of novel classes only; therefore, we will not consider
incremental FSL further.

2.3 IMBALANCE IN FEW-SHOT AND META LEARNING

Class Imbalance in the low-data regime has received some attention, although the current work is
not comprehensive (Guan et al., 2020; Triantafillou et al., 2020; Lee et al., 2019; Chen et al., 2020).
We identify that in FSL, class-imbalance occurs at two levels: the task-level and the meta-dataset
level. At the task level, class-imbalance occurs in the support set or the query-set, directly affecting
learning and evaluation procedures. Class imbalance at the meta-dataset level is caused by im-
balanced dataset classes in one (or more) of the three data splits: meta-training, meta-validation,
meta-testing. This disproportion affects the distribution of tasks that a model is exposed to during
meta-training, affecting their ability to generalize to new tasks. In Figure 2, we highlight the dif-
ferences between imbalanced task and imbalanced meta-dataset. Related to, but distinct from, these
two class-imbalance types is task-distribution imbalance (Lee et al., 2019); skewed task-distribution
can occur as a result of meta-dataset level class-imbalance or as a result of the task-sampling pro-
cedure. In extreme cases, task-distribution imbalance can lead to out-of-distribution tasks during
meta-evaluation. Task-distribution imbalance has already received some attention (Lee et al., 2019;
Cao et al., 2020); therefore, it will not be considered in this work.

Class Imbalance in Tasks. Triantafillou et al. (2020) uses imbalanced support sets to create a
more realistic and challenging benchmark for meta-learning. The authors use random-shot tasks
with randomly selected classes (way) and samples (shot), which replace the balanced task during
meta-training and meta-evaluation. A similar idea is explored by Lee et al. (2019), Chen et al.
(2020), and Guan et al. (2020) with the last two using a fixed number of classes (way). However,
none of these works quantify the impact of class-imbalance on the FSL task nor the advantages
of Random-Shot meta-training. Lee et al. (2019) explores a small range of class-imbalance in the
support set. However, details into the effects of class-imbalance are lost when combined with task-
distribution imbalance, making it challenging to attribute any performance changes caused by class-
imbalance. Chen et al. (2020) explore a pure class-imbalance problem on the support set, but their

3

Under review as a conference paper at ICLR 2021

Task	3

C
la
ss
es

Samples

S
am
pl
in
g

Ta
sk

Dataset

Imbalanced	Support	Set

Task	1 Task	2

C
la
ss
es

Samples

S
am
pl
in
g

Ta
sk

Dataset

Imbalanced	Meta-Training	Dataset

Task	1

Task	3

Task	2

Figure 2: The two types of imbalance settings investigated in this work. Left: Imbalanced support
set. Classes are balanced at the dataset level, but tasks are imbalanced by one of I-distributions:
linear (task 1), step (task 2), and random (task 3) Right: Imbalanced meta-training dataset.
Classes are imbalanced at the dataset level, but all the support sets are balanced at the task level.
Following standard practice in the literature, query sets are kept balanced in both settings.

analysis is limited to just two methods (their proposal and MAML). In Guan et al. (2020), meta-
learning is applied on aerial imagery, exploring step imbalance ranging from 5 to 140 samples per
class (shot); however, only two FSL methods are compared (Prototypical Networks and their RF-
MML method). Previous work provides limited insight into class-imbalance at the task level.

Class Imbalance in the Meta-Dataset. Standard meta-datasets (e.g. Mini-ImageNet) can be
swapped for other domain-specific datasets, such as CUB (Wah et al., 2011), VGG Flowers (Nils-
back & Zisserman, 2008), and others (Triantafillou et al., 2020). These datasets sometimes contain
an unequal number of class samples, but previous work has never reported the effects of class-
imbalance in the meta-training dataset (Guan et al., 2020; Triantafillou et al., 2020; Lee et al., 2019;
Chen et al., 2020). We emphasize that studying the impact of imbalance at this level is important
since imbalanced domain-specific meta-datasets are common in real-world applications (Guan et al.,
2020; Ochal et al., 2020) and recent benchmarks (Triantafillou et al., 2020). Our work is the first to
provide quantitative insights into this setting.

3 METHODOLOGY

3.1 STANDARD FSL
A standard K-shot N -way FSL classification task is defined by a small support set, S =
{(x1, y1), ..., (xs, ys)} ∼ D, containing N × K image-label pairs drawn from N unique classes
with K samples per class (|S| = K × N). The goal is to correctly predict labels for a query set,
Q = {(x1, y1), ..., (xt, yt)} ∼ D, containing a different set of M samples drawn from the same N
classes (i.e. Q(x) ∩ S(x) = ∅ and Q(y) ≡ S(y)). The support set can also be referred to as sample
set and the query set as target set.

3.2 CLASS-IMBALANCED FSL
We define a class-imbalanced FSL task as a Kmin-Kmax-shot N -way I-distribution task. Similarly
to the standard FSL task, a model is given a small support set, S ∼ D and a query set, Q ∼ D,
containing a different set of samples drawn from the same N classes. However, in the imbalance
case, the support set contains between Kmin to Kmax (inclusive) number of samples per class
distributed according to the imbalance I-distribution, where I ∈ {linear, step, random} (Buda
et al., 2018). Similarly, the query set can contain Mmin to Mmax samples per class distributed
according to the I-distribution. In our experiments, we keep a balanced query set (M = Mmin =
Mmax) for fair evaluation.1 For brevity, but without loss of generality, we define imbalance I-
distribution in relation to the support set (see Figure 2) as:

• Linear imbalance. The number of class samples, Ki, for classes i ∈ {1..N} is defined by:
Ki = round (Kmin − c+ (i− 1)× (Kmax + c ∗ 2−Kmin)/(N − 1)) , (1)

1This is a standard procedure used in the class-imbalance literature (Buda et al., 2018), which reduces
the number of variables and allows isolating the effect of imbalance. Note that an imbalanced query set would
influence methods such as SCA (Antoniou & Storkey, 2019), which use the query set as an additional unlabeled
set during the inner-loop. We do not consider such methods in our experiments since they assume immediate
access to the query set, which limits their practical application.

4

Under review as a conference paper at ICLR 2021

where c = 0.499 for rounding purposes. For example, this means that for linear 1-9-shot
5-way task, Ki ∈ {1, 3, 5, 7, 9}, and for linear 4-6-shot 5-way task Ki ∈ {4, 4, 5, 6, 6}.

• Step imbalance. The number of class samples, Ki, is determined by an additional variable
Nmin specifying the number of minority classes. Specifically, for classes i ∈ {1..N}:

Ki =

{
Kmin, if i ≤ Nmin,

Kmax, otherwise.
(2)

For example, in a step 1-9-shot 5-way task with 1 minority class Ki ∈ {1, 9, 9, 9, 9}.
• Random imbalance. The number of class samples, Ki, is sampled from a uniform distribu-

tion, i.e. Ki ∼ Unif(Kmin,Kmax), with Kmin and Kmax inclusive. This is appropriate
for the problem at hand (small number of classes), but it could be replaced by a Zipf/Power
Law (Reed, 2001) for a more appropriate imbalance in problems with a large number of
classes.

We also report the imbalance ratio ρ, which is a scalar identifying the level of class-imbalance; this
is often reported in the CI literature for the supervised case (Buda et al., 2018). We define ρ to be
the ratio between the number of samples in the majority and minority classes in the support set:

ρ =
Kmax

Kmin
. (3)

3.3 CLASS-IMBALANCED META-DATASET

Training FSL methods involves three phases: meta-training, meta-validation, and meta-testing. Each
phase samples tasks from a different dataset, Dtrain, Dval, and Dtest, respectively. A balanced
dataset containsDN

∗ classes withDK
∗ samples per class, where ∗ ∈ {train, val, test}. However, in

the real-world, datasets can contain any number of samples with imbalance. For fair evaluation, we
control dataset imbalance according to the I-distribution described in Section 3.2 but with Kmin,
Kmax, N , Nmin changed for DKmin

∗ , DKmax
∗ , DN

∗ , DNmin
∗ . Similarly, we report the imbalance

ratio ρ. In our experiments, we apply imbalance only at the meta-training stage to limit the factors
of interest, but a similar procedure could be used at the meta-testing and meta-validation stages.

3.4 REBALANCING TECHNIQUES AND STRATEGIES

Random Over-Sampling. We apply Random Over-Sampling (ROS) and for each class-
imbalanced task, we match the number of support samples in the non-majority classes to the number
of support samples in the majority class, Ki = maxi(Ki). This means that for I ∈ {linear, step},
the number of samples in each class is equal to Kmax. We match Ki to maxi(Ki) by resampling
uniformly at random the remaining maxi(Ki)−Ki support samples belonging to class i, and then
appending them to the support set. When applying ROS with augmentation (ROS+), we perform
further data transformation on the resampled supports. A visual representation of a class imbalanced
task after applying ROS and ROS+ is presented in the Appendix A (Figure 7).

Random-Shot Meta-Training. We apply Random-Shot meta-training similarly to the Standard
episodic (meta-)training (Vinyals et al., 2017) but with the balanced tasks exchanged with Kmin-
Kmax-shot random-distribution tasks, as defined above. We use random-distribution following pre-
vious work (Triantafillou et al., 2020; Lee et al., 2019), since in real-world applications, the actual
imbalance distribution is likely to be unknown at (meta-)evaluation time.

Rebalancing Loss Functions. We apply two rebalancing loss functions: Weighted Loss (Buda
et al., 2018) and Focal Loss (Lin et al., 2017). Both of them have been applied to the inner loop of
optimization-based methods. Full details are reported in the supplementary material (Appendix A).

4 EXPERIMENTS

4.1 SETUP

Class Imbalance Scenarios and Tasks. We address two class-imbalance scenarios within the FSL
framework: 1) imbalanced support set, and 2) imbalanced meta-training dataset. For the imbalanced
support set scenario, we first focus on the very low-data range with an average support set size of 25
samples (5 avr. shot). We train FSL models using Standard (episodic) meta-training (Vinyals et al.,
2017) using 5-shot 5-way tasks, as well as Random-Shot meta-training (Triantafillou et al., 2020;

5

Under review as a conference paper at ICLR 2021

Lee et al., 2019; Chen et al., 2020) using 1-9shot 5-way random-distribution tasks (as described in
Section 3.2). We pre-train baselines (i.e., Fine-Tune, 1-NN, Baseline++) using mini-batch gradient
descent, and then fine-tune on the support or perform a 1-NN classification. We evaluate all baselines
and models using a wide range of imbalanced meta-testing tasks. In contrast to previous work, we
evaluate models using two additional imbalance distributions, linear and step; this allows us to
control the imbalance level deterministically and provide insights from multiple angles. For the
imbalanced meta-dataset scenario, we vary the class distributions of the meta-training datasets. We
isolate this level of imbalance by meta-training and meta-evaluating on balanced FSL tasks. All main
experiments are repeated three times with different initialization seeds. Each data point represents
the average performance of over 600 meta-testing tasks per run.

Additional details. We adapted a range of 11 unique baselines and FSL methods: Fine-tune base-
line (Pan & Yang, 2010), 1-NN baseline, Baseline++ (Chen et al., 2019), SimpleShot (Wang et al.,
2019a), Prototypical Networks (Snell et al., 2017), Matching Networks (Vinyals et al., 2017), Re-
lation Networks (Sung et al., 2017), MAML (Finn et al., 2017), ProtoMAML (Triantafillou et al.,
2020), DKT (Patacchiola et al., 2020), and Bayesian MAML (BMAML) (Yoon et al., 2018). Imple-
mentation details of these algorithms are supplied in Appendix A. We used a 4 layer convolutional
network as backbone for each model, following common practice (Chen et al., 2019). We train and
evaluate all methods on MiniImageNet (Ravi & Larochelle, 2016; Vinyals et al., 2017), containing
64 classes with 600 image samples each. In the imbalanced meta-dataset setting, we half the Mini-
ImageNet dataset to contain 300 samples per class on average, and control imbalance as described
in section 3.3. For full implementation details, see Appendix A.

4.2 CLASS IMBALANCED SUPPORT SET

Effect of Class Imbalance with Standard Meta-Training. Figure 1 highlights the crux of the
class-imbalance problem at the support set level. Specifically, the figure shows standard meta-
trained FSL models (Vinyals et al., 2017) and pre-trained baselines, evaluated on the balanced 5-
shot 5-way task and three imbalanced tasks. We observe that introducing even a small level of
imbalance (linear 4-6-shot 5-way, ρ = 1.5) produces a significant2 performance difference for 6 out
of 13 algorithms, compared with the balanced 5-shot task. The average accuracy drop is −1.5% for
metric-based models and −8.2% for optimization-based models. On tasks with a larger imbalance
(1-9shot random, ρ = 9.0), the performance drops by an average −8.4% for metric-based models
and −18.0% for optimization-based models compared to the balanced task. Interestingly, despite
the additional 12 samples in the support set in 1-9shot step tasks with 1 minority class (ρ = 9.0), the
performance drops by −5.0% on the balanced task with 25 support samples in total.

20
30
40
50
60
70

Baseline (1-NN) Baseline (fine-tune) Baseline++ Matching Net ProtoNet

20
30
40
50
60
70

ProtoNet (20-way) Relation Net (CE) DKT SimpleShot MAML

1 2 3 4 5 6 7 8 9
20
30
40
50
60
70

ProtoMAML

1 2 3 4 5 6 7 8 9

BMAML

1 2 3 4 5 6 7 8 9

BMAML (chaser) Standard
Standard (ROS+ at inference)
Random-Shot
Random-Shot (ROS+ at inference only)
Random-Shot with ROS
Random-Shot with ROS (ROS+ at inference only)
Random-Shot with ROS+

Imbalance, = Kmax/Kmin

Ac
cu

ra
cy

, %

Figure 3: Standard episodic training (Vinyals et al., 2017) vs. random-shot episodic training (Tri-
antafillou et al., 2020). We explore pairing methods with Random Over-Sampling (ROS) without
and with augmentation (ROS+).

2Non-overlapping 95% confidence intervals indicate ‘significant’ performance difference.

6

Under review as a conference paper at ICLR 2021

Standard vs. Random-Shot Meta-Training. In Figure 3, we show the accuracy for increasing
imbalance levels (ρ) using evaluation tasks with a linear distribution and fixed support set size (Ki ≈
5) for a fair comparison. Comparing Standard and Random-Shot meta-training (solid black and solid
red lines) reveals that only a few methods benefit from Random-Shot meta-training. On the balanced
5-shot task, we observe a −6.0% decrease in accuracy, caused by Random-Shot over Standard
meta-training. On the imbalanced 1-9shot random task, Random-Shot offers a limited improvement
over the Standard, with a significant increase in performance for only 3 out of 10 models. Those
improvements include +2.5% for Relation Net, and +6.6% for BMAMLs. These results suggest
that exposing FSL methods to imbalanced tasks during meta-training does not automatically lead to
improved performance at meta-test time. Interestingly, in an extreme imbalance case (1-21shot step
4minor, Appendix E) only ProtoNet and RelationNet obtained a significantly higher performance
with Random-Shot (+18% compared to Standard). This suggests that the advantage may emerge
from coupling Random Shot with the prototype calculation mechanism unique to those methods.
The results also suggest that some models have natural robustness to imbalance: Relation Net,
MatchingNet, and DKT only drop slightly compared to other methods.

Random-Shot with Random Over-Sampling. In Figure 3, we observe that the performances
of optimization-based methods such as MAML and BMAML significantly improve by applying
random over-sampling with augmentation (ROS+) and without augmentation (ROS). In the largest
imbalance case in the graph (ρ=9), we observe that models using ROS+ at inference (dotted and
yellow lines) improve over the Standard (solid black) by +6.7%; in particular, optimization-based
methods improve by +12.2%, fine-tune baselines by +7.4%, and metric-based by +2.8%. In the
imbalanced task, the least affected model is MatchingNet only dropping −1.9% compared to the
balanced task; we provide a list of top-50 performing models in Table 3 (Appendix C.1). Standard
(ROS+ at inference) achieves the highest average performance gains (+8.5%); tieing for second
best is Random-Shot with ROS (ROS+ at inference) with +6.9% and Random-Shot with ROS+
(+6.4%). We breakdown the results by type in Appendix C.2 (Figure 9).

Imbalance with More Shots. We explored additional settings with a higher number of shots, see
Figure 4. Specifically, we train models using Random-Shot meta-training with 1-29 shot and 1-49
random episodes. We then evaluate those models on imbalanced tasks with an average number of 15
shots and 25 shots, respectively. The bottom row of Figure 4 shows the difference in performance
between the imbalance and balanced tasks. We observe that for the high-shot condition (right col-
umn), the general model performance increases while the models are less affected by imbalance;
however, the gap with respect to the balanced condition remains significant. Models achieve 55-
60% of their performance on the balanced task within first 5 avr. shots; increasing the number of
shots to 15 only boosts their performance by +7%. This may explain why imbalance will have an
inevitable impact on small classification tasks: better performance achieved via a higher numbers of
support samples in the majority classes, does not offset the performance lost due to lack of samples
in the minority classes. In Appendix C.2, we breakdown the results for each model type.

45
50
55
60
65
70

5 avr. shot 15 avr. shot 25 avr. shot

1 2 3 4 5 6 7 8 9
-15
-10

-5
0

1 2 3 4 5 6 7 8 9

Standard
Random-Shot
Random-Shot with ROS
Random-Shot with ROS+

Standard (ROS+ at inference)
Random-Shot (ROS+ at inference)
Random-Shot with ROS (ROS+ at inference)

1 2 3 4 5 6 7 8 9
Imbalance, = Kmax/Kmin

Ac
cu

ra
cy

, %
Ac

c.
 D

iff
.

to
 b

al
an

ce
d,

 %

Figure 4: Comparing imbalance levels via support sets of
different size. Each line represents the average across all
models in each training and imbalance setting.

Conv4
Conv6

ResNet10
ResNet34

48
50
52
54
56
58
60

5shot (balanced)
4-6shot linear

1-9shot step 1minor
1-9shot random

Conv4
Conv6

ResNet10
ResNet34

0

-2

-4

-6

-8

-10

Ac
cu

ra
cy

, %

Ac
c.

 D
iff

. t
o

5s
ho

t,
%

Figure 5: Combined average model
performance against different back-
bones and imbalanced tasks. Left:
combined performance of all models
and training scenarios. Right: relative
performance w.r.t. the balanced task.

7

Under review as a conference paper at ICLR 2021

Backbones. In Figure 5, we report the combined average accuracy of all models and imbalance
strategies against different backbones (Conv4, Conv6, ResNet10, ResNet34). Overall, deeper back-
bones seem to perform slightly better on the imbalanced tasks, suggesting a higher tolerance for
imbalance. For instance, using Conv4 gave −8.6% difference between the balanced and the 1-9shot
random task, while using ResNet10 the gap is smaller (−6.8%). The performance degradation ob-
served with ResNet34 is similar to that reported by Chen et al. (2019), and is most likely caused by
the intrinsic instability of meta-training routines on larger backbones. In Appendix C.3, we break-
down the results across different models and training strategies.

Precision and Recall. Looking at the precision and recall tables in Appendix C.4, provides ad-
ditional insights about each algorithm. For instance, DKT (Patacchiola et al., 2020) shows very
strong performance in classes with a small number of shots and well-balanced performances for
higher shots. This may be due to the partitioned Bayesian one-vs-rest scheme used for clas-
sification by DKT, with a separate Gaussian Process for each class; this could be more robust
to imbalance. BMAML, on the other hand, fails to correctly classify samples with K = 1
and K = 3 samples, showing that the method has a strong bias towards the majority classes.

1 2 3 4 5 6 7 8 9
30
35
40
45
50
55
60
65

1 2 3 4 5 6 7 8 9-25
-20
-15
-10

-5
0

Standard (ROS+)
Standard (Focal Loss)
Standard (Weighted Loss)

Random-Shot (ROS+)
Random-Shot (Focal Loss)
Random-Shot (Weighted Loss)

Imbalance, = Kmax/Kmin

Ac
cu

ra
cy

, %

Ac
c.

 D
iff

.,
%

Figure 6: Combined average model performance
against re-balancing strategies applied at test-time
only. Left: all models and training scenarios.
Right: performance w.r.t. the balanced task.

Rebalancing Cost Functions We applied
Focal Loss (Lin et al., 2017) and Weighted Loss
(Buda et al., 2018; Japkowicz & Stephen, 2002)
to the inner-loop of optimization-based meth-
ods at inference time only. Results in Fig-
ure 6 and Appendix D.1 show that overall, Fo-
cal Loss is not as effective as ROS+ techniques.
However, ROS+ and Weighted Loss perform
very similarly, suggesting a similar effect on
the imbalanced task. The advantage of using
ROS/ROS+ is their versatility; any FSL algo-
rithm can use ROS, while algorithm-level bal-
ancing approaches, such as Weighted Loss, do
not straightforwardly extend to metric-learning
methods.

4.3 CLASS IMBALANCED META-DATASET

Imbalanced Mini-ImageNet. To induce dataset imbalance, we half the number of samples per
class in Mini-ImageNet. In table 1 (left), we show the accuracy after training via standard episodic
(meta-)training (Vinyals et al., 2017) with (balanced) 5-shot 5-way tasks. In this particular scenario,
we use significantly higher imbalance levels (ρ = 19) compared to those in the previous section;
despite this, we observe small, insignificant performance differences between balanced and imbal-
anced conditions. In additional experiments, we further reduced the dataset size to contain a total
of 4800 images and 32 randomly selected classes. In Figure 10 (Appendix C.5), we observe a more
significant performance drop as we increase the number of minority classes. Meta-evaluating on
CUB showed a similar trend, with an average drop of −1.6% on the most extreme imbalance set-
ting: 30-510 step with 24 minority classes and ρ = 17.0 (Appendix C.5). When we breakdown
the results by model in Appendix C.5, we observe that optimization-based approaches and fine-tune
baselines have a slight advantage over the metric-based, most likely due to the ability to adapt during
inference. Interestingly, in this setting RelationNet performs the worse with a drop of −4.3% w. r.
t. the balanced task in the most extreme setting (24 minority, Mini-ImageNet).

Additional results. To evaluate the performance under a strong dataset shift, we evaluated Mini-
ImageNet trained models on tasks sampled from CUB-200-2011. In Table 1 (right), we observe that
models are not affected at all by the imbalanced setting despite the harder scenario. In Appendix D,
we provide additional experiments with BTAML (Lee et al., 2019), and an analysis of the correlation
between meta-dataset size and performance

5 DISCUSSION

FSL robustness to class imbalance. All examined FSL methods are susceptible to class im-
balance, although some show more robustness (e.g., Matching Net, Relation Net, and DKT).

8

Under review as a conference paper at ICLR 2021

Table 1: Training on imbalanced meta-training dataset. Imbalanced distributions represent
ρ = 19 (DKmin = 30, DKmax = 570) with step imbalance containing DNmin = 32 minority
classes (out of 64 available in the dataset). Small differences in accuracy between balanced and
I-distributions, suggest insignificant effect of imbalance at dataset level. Left: Evaluation on the
meta-testing dataset of Mini-ImageNet. Right: Evaluation on the meta-testing dataset of CUB.

Imbalanced Mini-ImageNet Imbalanced Mini-ImageNet→ CUB
Imbalance I balanced linear random step balanced linear random step

Baseline (1-NN) 42.69±0.66 43.42±0.68 42.15±0.66 41.45±0.65 43.21±0.68 43.42±0.69 43.39±0.69 42.19±0.66

Baseline (fine-tune) 51.26±0.70 50.13±0.69 54.16±0.72 52.47±0.70 53.19±0.71 51.95±0.72 53.52±0.72 52.68±0.70

Baseline++ 48.44±0.65 47.18±0.64 51.47±0.67 51.88±0.69 49.38±0.69 46.83±0.67 50.48±0.67 48.42±0.67

Matching Net 58.26±0.68 58.24±0.69 58.45±0.68 56.53±0.69 50.92±0.74 51.32±0.73 50.77±0.76 50.51±0.73

ProtoNet 60.65±0.70 59.17±0.68 60.16±0.70 58.69±0.72 52.86±0.73 51.85±0.72 52.06±0.71 52.42±0.71

ProtoNet (20-way) 60.91±0.70 60.64±0.70 60.37±0.70 58.83±0.70 52.80±0.72 52.60±0.74 52.31±0.73 51.33±0.72

Relation Net (CE) 62.78±0.70 61.39±0.69 62.35±0.70 57.93±0.72 54.32±0.68 54.41±0.71 52.13±0.65 49.90±0.62

DKT 58.09±0.69 57.59±0.68 57.81±0.67 55.91±0.67 54.62±0.71 54.19±0.71 54.86±0.72 54.44±0.71

SimpleShot 59.55±0.72 59.78±0.71 58.74±0.72 58.89±0.71 53.16±0.71 53.46±0.71 52.88±0.72 52.87±0.71

MAML 54.43±0.69 55.14±0.72 54.97±0.73 54.30±0.70 53.46±0.67 53.26±0.70 55.14±0.67 53.96±0.69

ProtoMAML 51.31±0.72 54.57±0.69 45.94±0.73 53.56±0.71 48.52±0.72 51.25±0.69 45.27±0.70 51.64±0.67

Avr. Diff. to balanced 0.0 -0.1 -0.2 -0.7 0.0 -0.2 -0.3 -0.6

Optimization-based methods and fine-tune baselines suffer more as they use conventional supervised
loss functions in the inner-loop which are known to be particularly susceptible to imbalance (Buda
et al., 2018; Johnson & Khoshgoftaar, 2019; Japkowicz & Stephen, 2002). Moreover, the problem
of class imbalance persists as the backbone complexity and support set size increase. Those results
suggest that current solutions will offer sub-optimal performance in real-world few-shot problems.

Effectiveness of Random-Shot meta-training. Our experiments test a simple solution to class
imbalance that has been popular in the meta-learning community – Random-Shot meta-training
(Triantafillou et al., 2017; Lee et al., 2019; Chen et al., 2020). Contrarily to popular belief, our
findings reveal that this method is scarcely effective when applied by itself. Extensive analysis
and validation performance through epochs (see Appendix B) suggest that these results are genuine
and unlikely to be the result of inappropriate parameter tuning. This finding has an important con-
sequence, suggesting that robustness to imbalance cannot be obtained by the simple exposure to
imbalanced tasks.

Effectiveness of re-balancing procedures. The results suggest that a simple procedure, Random
Over-Sampling (ROS), is quite effective in tackling class imbalance issues. Therefore, we encourage
the community to include it in their evaluation as ROS is simple to implement, and it can be applied
to almost any algorithm. However, ROS does not provide any particular advantage to methods in the
highest performance ranking levels, like MatchingNet and DKL. This could be due to diminishing
returns and should be investigated on a case-by-case basis.

Effect of imbalance at the meta-dataset level. Our results suggest that imbalance in the meta-
dataset has minimal effect on the meta-learning procedure. This could result from standard episodic
(meta-)training that samples classes with equal probability and causes natural re-sampling. Likely,
datasets with lower intra-class variation and larger imbalance (Liu et al., 2019; Wang et al., 2017;
Salakhutdinov et al., 2011) could produce more dramatic performance changes.

6 CONCLUSION

In this work, we have provided a detailed analysis of class-imbalance in FSL, showing that class-
imbalance at the support set level is problematic for many methods. We found that most metric-based
models present a built-in robustness to support-set imbalance, while in optimization-based models
imbalance issues can be alleviated using oversampling. In our experiments, Random-Shot meta-
training provided minimal benefits suggesting that meta-learning methods do not learn to balance
from random-shot episodes alone. Results on meta-dataset imbalance showed just a small negative
effect, but this effect is not as dramatic as with the task-level imbalance. In future work, the insights
gained with our investigation could be used to design novel few-shot methods that can guarantee a
stable performance under the imbalance condition.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Antreas Antoniou and Amos Storkey. Learning to learn via Self-Critique. arXiv preprint
arXiv:1905.10295, 2019.

Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining Bench-
marks for Continual Few-Shot Learning. arXiv preprint arXiv:2004.11967, 2020.

Nihar Bendre, Hugo Terashima Marı́n, and Peyman Najafirad. Learning from Few Samples: A
Survey. arXiv preprint arXiv:2007.15484, 2020.

Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

Tianshi Cao, Marc T Law, and Sanja Fidler. A theoretical analysis of the number of shots in few-shot
learning. In International Conference on Learning Representations (ICLR), 2020.

Wei Yu Chen, Yu Chiang Frank Wang, Yen Cheng Liu, Zsolt Kira, and Jia Bin Huang. A closer look
at few-shot classification. International Conference on Learning Representations (ICLR), 2019.

Xinshi Chen, Hanjun Dai, Yu Li, Xin Gao, and Le Song. Learning to Stop While Learning to Predict.
International Conference on Machine Learning (ICML), 2020.

Zhi-Qi Cheng, Xiao Wu, Siyu Huang, Jun-Xiu Li, Alexander G. Hauptmann, and Qiang Peng.
Learning to Transfer Learn. In 2018 ACM Multimedia Conference on Multimedia Conference -
MM ’18, pp. 90–98. ACM Press, 2018.

Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A Baseline for
Few-Shot Image Classification. In International Conference on Learning Representations, 2020.

Harrison Edwards and Amos Storkey. Towards a Neural Statistician. International Conference on
Learning Representations (ICLR), 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adapta-
tion of Deep Networks. International Conference on Machine Learning (ICML), 2017.

Spyros Gidaris and Nikos Komodakis. Dynamic Few-Shot Visual Learning Without Forgetting. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Jian Guan, Jiabei Liu, Jianguo Sun, Pengming Feng, Tong Shuai, and Wenwu Wang. Meta Metric
Learning for Highly Imbalanced Aerial Scene Classification. In ICASSP 2020 - 2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4047–4051.
IEEE, 2020.

Bharath Hariharan and Ross Girshick. Low-Shot Visual Recognition by Shrinking and Hallucinating
Features. IEEE International Conference on Computer Vision (ICCV), 2017.

Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville, Yoshua Ben-
gio, Chris Pal, Pierre Marc Jodoin, and Hugo Larochelle. Brain tumor segmentation with Deep
Neural Networks. Medical Image Analysis, 35:18–31, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. International Conference on Machine Learning (ICML), 2015.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intelli-
gent Data Analysis, 6:429–449, 2002.

Justin M. Johnson and Taghi M. Khoshgoftaar. Survey on deep learning with class imbalance.
Journal of Big Data, 6, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–444, 2015.

10

Under review as a conference paper at ICLR 2021

Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, and Sung Ju
Hwang. Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution
Tasks. International Conference on Machine Learning (ICML), 2019.

Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder, and Naeem Seliya. A survey on
addressing high-class imbalance in big data. Journal of Big Data, 5, 2018.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to Learn Quickly for
Few-Shot Learning. arXiv preprint arXiv:1707.09835, 2017.

Tsung-yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense
Object Detection. IEEE International Conference on Computer Vision (ICCV), 2017.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Large-
Scale Long-Tailed Recognition in an Open World. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2537–2546, 2019.

Maria Elena Nilsback and Andrew Zisserman. Automated flower classification over a large num-
ber of classes. Proceedings - 6th Indian Conference on Computer Vision, Graphics and Image
Processing, ICVGIP 2008, pp. 722–729, 2008.

Mateusz Ochal, Jose Vazquez, Yvan Petillot, and Sen Wang. A Comparison of Few-Shot Learning
Methods for Underwater Optical and Sonar Image Classification. OCEANS 2020 preprint, 2020.

Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge
and Data Engineering, 22:1345–1359, 2010.

Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O’Boyle, and Amos Storkey.
Bayesian Meta-Learning in the Few-Shot Setting via Deep Kernels. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. International
Conference on Learning Representations (ICLR), 2016.

William J Reed. The pareto, zipf and other power laws. Economics Letters, 2001.

Mengye Ren, Renjie Liao, Ethan Fetaya, and Richard S. Zemel. Incremental Few-Shot Learning
with Attention Attractor Networks. arXiv preprint arXiv:1810.07218, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115:211–252, 2015.

R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for multiclass
object detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Jake Snell and Richard Zemel. Bayesian Few-Shot Classification with One-vs-Each Polya-Gamma
Augmented Gaussian Processes. arXiv preprint arXiv:2007.10417, 2020.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical Networks for Few-shot Learning.
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales.
Learning to Compare: Relation Network for Few-Shot Learning. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-Shot Learning Through an Informa-
tion Retrieval Lens. Advances in Neural Information Processing Systems (NeurIPS), 2017.

11

Under review as a conference paper at ICLR 2021

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-
Dataset: A Dataset of Datasets for Learning to Learn from Few Examples. International Confer-
ence on Learning Representations (ICLR), 2020.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing Networks for One Shot Learning. Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Evan Vogelbaum, Rumen Dangovski, Li Jing, and Marin Soljačić. Contextualizing Enhances Gra-
dient Based Meta Learning. arXiv preprint arXiv:2007.10143, 2020.

C. Wah, S Branson, P Welinder, P Perona, and S Belongie. The Caltech-UCSD Birds-200-2011
Dataset. In California Institute of Technology, 2011.

Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten. SimpleShot: Revis-
iting Nearest-Neighbor Classification for Few-Shot Learning. arXiv preprint arXiv:1911.04623,
2019a.

Yaqing Wang, Quanming Yao, James Kwok, and Lionel M. Ni. Generalizing from a Few Examples:
A Survey on Few-Shot Learning. arXiv preprint arXiv:1904.05046, 1, 2019b.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yangqiu Song, Yoshua Bengio, and Yangqiu Song.
MetaGAN : An Adversarial Approach to Few-Shot Learning. Advances in Neural Information
Processing Systems (NeurIPS), 2018.

12

Under review as a conference paper at ICLR 2021

A IMPLEMENTATION DETAILS

A.1 DATASETS

For the imbalanced support set experiments, we used MiniImageNet (Vinyals et al., 2017; Ravi
& Larochelle, 2016) following the same version popular version as (Ravi & Larochelle, 2016;
Cheng et al., 2018). All meta-learning models used 64, 16, 20 classes for the meta-training Dtrain,
meta-validation Dval, and meta-testing Dtest datasets, respectively, with each class containing
600 samples. All images are resized to 84 by 84px. For the feature-transfer baselines (1-NN,
fine-tune, and Baseline++), we used a conventionally partitioned training and validation datasets.
Specifically, we combined Dtrain and Dval classes (i.e., 64 + 16 = 80 classes), then partitioned the
samples of each class into 80% - 20% split for pre-training - validation, forming D′train and D′val
(where D′(y)train ≡ D

′(y)
val). Thus, the baseline were trained on the same number of training samples

as the meta-learning methods, albeit with more classes and less samples per class. All models were
evaluated on FSL tasks sampled from Dtest.

For the imbalanced meta-dataset experiments, we used two variants of MiniImageNet. In the
first, referring to Table 13, we halved the average number of samples per class in the meta-training
datasetDtrain to allow us to introduce imbalance artificially into the dataset. In the second scenario,
referring to Figure 10, we reduced the size of the meta-training by a more considerable degree.
Specifically, the size of the meta-training dataset was controlled to contain a total of 4800 images
distributed among 32 randomly selected classes from the meta-training dataset of Mini-ImageNet.
For meta-learning methods, we kept the original 16 and 20 classes for meta-validation and
meta-testing with 600 samples each. To allow as fair comparison as possible, we used the same
meta-training datasets for the baselines and meta-learning models. However, the baselines used a
balanced validation set created from the leftover samples from the original meta-training dataset.

For the imbalanced meta-dataset experiments, we also evaluated on tasks sampled from 50
randomly selected classes from CUB-200-2011 (Wah et al., 2011), following the same line of work
as Chen et al. (2019).

A.2 TRAINING PROCEDURE.

All methods follow a similar three-phase learning procedure: meta-training, meta-validation, and
meta-testing. During meta-training, an FSL model was exposed to 100k tasks sampled fromDtrain.
After every 500 tasks, the model was validated on tasks from Dval and the best performing model
was updated. At the end of the meta-training phase, the best model was evaluated on tasks sampled
fromDtest. The baselines (i.e., fine-tune, 1-NN, Baseline++) follow a similar three-phase procedure
but with the meta-training / meta-validation phases exchanged for conventional pre-training / vali-
dation on mini-batches (of size 128) sampled from D′train and D′val as outlined above. In all three
meta- phase’s tasks, we used 16 query samples per class, except for the 20-way Prototypical Net-
work, where we used 5 query samples per class during meta-training to allow for a higher number
of samples in the support set.

Meta-/Pre- Training Details. In the imbalanced support set setting, we meta-train FSL methods
using standard episodic meta-training (Vinyals et al., 2017) using 5-shot 5-way tasks. We also
explore random-shot episodic training (Lee et al., 2019) using 1-9shot 5-way random-distribution
tasks (as described in section 3). We meta-/pre- trained on 100k tasks/mini-batches, using a learning
rate of 10−3 for the first 50k episodes/mini-batches, and 10−4 for the second half. The baselines
and SimpleShot are trained using 100k balanced mini-batches with a batch size of 128. All methods
were meta-validated on 200 tasks/mini-batches every 500 meta-training tasks/mini-batches to select
the best performing model.

Meta-Testing. The final test performances were measured on a random sample of 600 tasks. We
report the average 95% mean confidence interval in brackets/errorbars. In the imbalanced support
set experiments, we evaluate tasks with various imbalance levels and distributions, as specified in
figures and tables. In the imbalanced meta-dataset experiments, we evaluate using regular, balanced
5-shot 5-way tasks.

13

Under review as a conference paper at ICLR 2021

Data Augmentation. During the meta-/pre-training phases, we apply standard data augmentation
techniques, following a similar setup to Chen et al. (2019), with a random rotation of 10 degrees,
scaling, random color/contrast/brightness jitter. Meta-validation and meta-testing had no augmenta-
tion apart from in the Random-Shot (ROS+) setting where the same augmentations were applied on
the oversampled support images. All images are resized to 84 by 84 pixels.

A.3 BACKBONE ARCHITECTURES

All methods shared the same backbone architecture. For the core contribution of our work, we used
Conv4 architecture consisting of 4 convolutional layers with 64 channels (padding 1), interleaved by
batch normalization (Ioffe & Szegedy, 2015), ReLU activation function, and max-pooling (kernel
size 2, and stride 2) (Chen et al., 2019). Relation Network used max-pooling only for the last 2
layers of the backbone to account for the Relation Module. The Relation Module consisted of two
additional convolutional layers, each followed by batch norm, ReLU, max-pooling).

For experiments with different backbones: Conv6, ResNet10, and ResNet34 (Chen et al.,
2019). Conv6 extended the Conv4 backbone to 6 convolutional layers, and max-pooling applied af-
ter each first 4 layers. ResNet models (He et al., 2016) followed the same setup as Chen et al. (2019).

For imbalanced meta-dataset and imbalanced reduced meta-dataset, we used the Conv4 model, with
32 channels instead of 64, due to less training data.

A.4 FSL METHODS AND BASELINES

In our experiments, we used a wide range of FSL methods (full details can be found in our source
code):

1. Baseline (fine-tune) (Pan & Yang, 2010) represents a classical way of applying transfer
learning, where a neural network is pre-trained on a large dataset, then fine-tuned on a
smaller domain-specific dataset. The baseline’s backbone followed a single linear classifi-
cation layer with a single output for each meta-training dataset class. The whole network
was trained during pre-training. During meta-testing, the baseline’s pre-trained linear layer
was exchanged for another randomly initialized classification layer with outputs matching
the task’s number of classes (N -way). Fine-tuning was performed on the new randomly
initialized classification layer using the support set S.

2. Baseline (1-NN) is another classical method of applying transfer learning but using a k-
nearest neighbor classifier instead of the classification layer during meta-validation. Pre-
training was performed in the same was the fine-tune baselines. During the meta-testing
time, instead of fine-tuning, the model matched query samples to the nearest support sam-
ple’s class based on Euclidian distance.

3. Baseline++ (Chen et al., 2019) augments the fine-tune baseline by using Cosine Similarity
on the last layer.

4. Matching Network (Matching Net) (Vinyals et al., 2017) uses context embeddings with
an LSTM to effectively perform k-nearest neighbor in embedding space using cosine simi-
larity to classify the query set.

5. Prototypical Networks (ProtoNet) (Snell et al., 2017) maps images into a feature space
and calculates class means (called prototypes). The query samples are then classified based
on the closest Euclidian distance to a classes’ prototype. We evaluate two models, one
meta-trained like the others on 5-way episodes, and another variation trained on 20-way
episodes. During 20-way meta-training, we set the class’ query size to 5.

6. Relation Networks (Relation Net) (Sung et al., 2017) augment the classical Prototypical
Networks by introducing a relation module (another neural network) that compares the
distance instead of using Euclidian. The original method uses Mean Squared Error to
minimize the relation score between samples of the same type. However, we follow work
by Chen et al. (2019), use cross-entropy loss that expediates meta-training. The structure
of the relation module is described in section A.3.

7. DKT (formally called GPShot) proposed by Patacchiola et al. (2020) is a probabilistic ap-
proach that utilizes the Gaussian Processes with a deep neural network as a kernel function.
We used Batch Norm Cosine distance for the kernel type.

14

Under review as a conference paper at ICLR 2021

8. SimpleShot (Wang et al., 2019a) augments the 1-NN baseline model by normalizing and
centering the feature vector using the dataset’s mean feature vector. The query samples
are assigned to the nearest prototype’s class according to Euclidian distance. In contrast
to the baseline models, pre-training is performed on the meta-training dataset like other
meta-learning algorithms, and meta-validation is used to select the best model based on
performance on tasks sampled from Dval.

9. MAML (Finn et al., 2017) is a meta-learning technique that learns a common initialization
of weights that can be quickly adapted for task using fine-tuning on the support set. The task
adaptation process uses a standard gradient descent algorithm minimizing Cross-Entropy
loss on the support set. The original method uses second-order derivates; however, due to
more efficient calculation, we use the first-order MAML, which has been shown to work
just as well. We set the inner-learning rate to 0.1 with 10 iteration steps. We optimize
the meta-learner model on batches of 4 meta-training tasks. These hyperparameters were
selected based on our hyperparameter fine-tuning.

10. ProtoMAML (Triantafillou et al., 2020) augments traditional first-order MAML by reini-
tializing the last classification layer between tasks. Specifically, the weights of the layer
are assigned to the prototype for each class’s corresponding output. This extra step com-
bines the fine-tuning ability of MAML and the class regularisation ability of Prototypical
Networks. We set the inner-loop learning rate to 0.1 with 10 iterations. Unlike for MAML,
we found that updating the meta-learner after a single meta-training task gave the best
performance.

11. Bayesian-MAML (BMAML) (Yoon et al., 2018) augments the MAML method by re-
placing the inner loop’s standard stochastic gradient descent with Bayesian gradient-based
updates. BMAML uses Stein Variational Gradient Descent that is a non-parametric varia-
tional inference method combining strengths of Monte Carlo approximation and variational
inference. The algorithm learns to approximate a posterior over the initialization parame-
ters conditioned on the task support set. Yoon et al. (2018) also adds a chaser loss, which
utilizes the samples in the query set during meta-training to approximate the true task pos-
terior. Minimization of the KL divergence between the true task posterior and the estimated
task parameter posterior can be used to drive the meta-training process. We set the inner-
loop learning rate to 0.1 with 1 inner-loop step. We found that using a higher inner-loop
step number destabilized performance. We used 20 particles. The chaser loss variation
used a learning rate of 0.5. Again, we found these combinations of hyperparameters to give
the best results.

12. Bayesian-TAML (BTAML) (Lee et al., 2019) [Left out of the main paper body.] This
method augments the MAML method with four main changes: 1) task-dependent pa-
rameter initialization z, 2) task-dependent per-layer learning rate multipliers γ, 3) task-
dependent per-class learning rate multiplier ω, 4) meta-learned per-parameter learning rate
α (similar to Meta-SGD, Li et al. (2017)). However, our results for BTAML were un-
stable, suggesting a fault in our implementation. Unfortunately, we did not identify it in
time for the submission, and we decided to move the method’s results to the appendix.
In our experiments, we explored several variations to this method with various parameters
(z, ω, γ, α) turned on and off, as well as different hyperparameters. We found that using
a meta-learning rate of 10−4 performed better than 10−3 in contrast to the other models.
We set the inner-learning rate to 0.1 with 10 iteration steps, and optimize the meta-learner
model on batches of 4 meta-training tasks. Again, we found this set up worked best in our
experiments.

A.5 CLASS IMBALANCE TECHNIQUES AND STRATEGIES

We pair FSL methods with popular data-level class-imbalance strategies:

1. Random Over-Sampling (ROS) (Japkowicz & Stephen, 2002) without and with data
augmentation (ROS and ROS+). For the augmentations we used: random sized crop-
ping between 0.15 and 1.1 scale of the image, random horizontal flip, and random
color/brightness/contrast jitter. A visualization of ROS and ROS+ is presented in Figure 7.
During meta-training, ROS+ augmentations were applied twice: once when sampling from
the meta-training dataset, and the second time during the support set resampling. This may
have slightly destabilized meta-training, which would explain why sometimes Random-

15

Under review as a conference paper at ICLR 2021

Shot with ROS (ROS+ at inference only) achieved better performance than Random-Shot
with ROS+ in Figures 3 and 4.

2. Random-Shot Meta-Training (Triantafillou et al., 2020; Lee et al., 2019; Chen et al.,
2020) was applied as specified in the main body of the paper (Section 3.4).

3. Focal Loss (Lin et al., 2017). Focal Loss has been found to be very effective in combating
the class-imbalance problem on the one-stage object detectors. We exchanged the inner-
loop cross-entropy loss of optimization-based algorithms and fine-tune baselines with the
focal loss with γ = 2 and α = 1. Results are presented in Figure 6 in the main paper body
and in Appendix D.1.

4. Weighted Loss. Weighted loss is also commonly used to rebalance the effects of class-
imbalance (Buda et al., 2018; Leevy et al., 2018). We weight the inner-loop cross-entropy
loss of optimization-based algorithms and fine-tune baselines by inverse class frequency
of support set samples. Results are presented in Figure 6 in the main paper body and in
Appendix D.1.

Figure 7: Visualisation of linear 1-5shot support sets. Left: no ROS. Middle: ROS. Right: ROS+.

16

Under review as a conference paper at ICLR 2021

B VERIFICATION OF IMPLEMENTATION

We implement the FSL methods in PyTorch, adapting the implementation of (Chen et al., 2019)
but also borrowing from other implementations online (see individual method files in the source
code for individual attribution). However, we have heavily modified these implementations to fit our
imbalanced FSL framework, which also offers standard and continual FSL compatibility (Antoniou
et al., 2020). We provide our implementations for ProtoMAML and BTAML for which no open-
source implementation in PyTorch existed as of writing. To verify our implementations, we compare
methods on the standard balanced 5-shot 5-way task with reported accuracy. Results are presented
in Table 2. We see that algorithms achieve very similar performance with no less than 3% accuracy
points compared to the reported performance. The discrepancies can be accounted for due to smaller
training batch for SimpleShot, different augmentation strategies for the other methods, and natural
variance stemming from random initialization. We show the validation performance over epochs for
each method in Figure 8 on the next page.

Table 2: Results of standard 5-shot 5-way experiments on Mini-ImageNet as achieved with our
implementation compared to the original (reported) accuracy and other work. Other Sources’s Ac-
curacies were taken from: ∗ (Chen et al., 2019), † (Snell & Zemel, 2020), ‡ (Vogelbaum et al.,
2020)

Our Acc (95%CI) Original
Acc(95%CI)

Other Sources’
Acc(95%CI)

Model

Baseline (1-NN) 39.72±0.73 - -
Baseline (fine-tune) 62.67±0.70 62.53±0.69 -
Baseline++ 66.43±0.66 66.43±0.63 -
Matching Net 62.27±0.69 55.31±0.73 63.48±0.66

∗

ProtoNet 64.37±0.71 65.77±0.70 64.24±0.72
∗

ProtoNet (20-way) 65.76±0.70 68.20±0.66 66.68±0.68
∗

Relation Net (CE) 64.76±0.68 65.32±0.70 66.60±0.69
∗

DKT 62.92±0.67 64.00±0.09 62.88±0.46
†

SimpleShot 63.74±0.69 66.92±0.17 -
MAML 61.83±0.71 63.15±0.91 62.71±0.71

∗

ProtoMAML 59.86±0.76 - 60.70±0.99
‡

BMAML 59.89±0.68 - 59.23±0.34
†

BMAML (chaser) 56.45±0.67 - 59.93±0.31
†

17

Under review as a conference paper at ICLR 2021

0 50 100 150 200
Epoch

20

30

40

50

60

70

Ac
cu

ra
cy

Baseline (1-NN)

Standard
Random-Shot
Random-Shot (ROS)
Random-Shot (ROS with aug.)

0 50 100 150 200
Epoch

30

40

50

60

70

Ac
cu

ra
cy

Baseline (fine-tune)

0 50 100 150 200
Epoch

10

20

30

40

50

60

Ac
cu

ra
cy

Baseline++

0 50 100 150 200
Epoch

35

40

45

50

55

60

65

Ac
cu

ra
cy

Matching Net

0 50 100 150 200
Epoch

30

40

50

60

Ac
cu

ra
cy

ProtoNet

0 50 100 150 200
Epoch

30

40

50

60

Ac
cu

ra
cy

ProtoNet (20-way)

0 50 100 150 200
Epoch

40

50

60

Ac
cu

ra
cy

Relation Net (CE)

0 50 100 150 200
Epoch

40

45

50

55

60

65

Ac
cu

ra
cy

DKT

0 50 100 150 200
Epoch

40

45

50

55

60

Ac
cu

ra
cy

SimpleShot

0 50 100 150 200
Epoch

30

40

50

60

Ac
cu

ra
cy

MAML

0 50 100 150 200
Epoch

20

30

40

50

60

Ac
cu

ra
cy

ProtoMAML

0 50 100 150 200
Epoch

30

40

50

60

Ac
cu

ra
cy

BMAML

0 50 100 150 200
Epoch

30

40

50

Ac
cu

ra
cy

BMAML (chaser)

Figure 8: Validation performance through epochs on Standard 5-shot 5-way meta-training, and Ran-
dom Shot (1-9shot random). The shaded areas show ± 1 standard deviation over three repeats on
different seeds.

18

Under review as a conference paper at ICLR 2021

C BREAKDOWN OF RESULTS

In this section, we breakdown the results from the main body of the paper. Specifically, we provide
the top-50 performing models on the imbalaned 1-9shot linear task in subsection C.1. The break-
down of higher shots experiment (Figure 4) is provided in subsection C.2. In subsection C.3, we
include the breakdown of the backbone experiment (Figure 5) showing the performance by algo-
rithm type and training procedure. We provide precision and recall tables of linear 1-9shot 5-way
tasks for each meta-training procedure in subsection C.4. In section C.5, we provide the results for
the imbalanced reduced meta-dataset (Figure 10).

C.1 TOP-50 PERFORMING MODELS ON 1-9SHOT LINEAR

Table 3: Top-50 models using different meta-training strategies, showing absolute and relative dif-
ference between the balanced and the imbalanced task. Results sorted by relative difference.

5shot 1-9shot linear Abs. Diff. Rel. Diff
Model Training Method

Matching Net Random-Shot (ROS+ at inference) 58.12±0.67 56.17±0.69 -1.94861 -0.0335301
Random-Shot with ROS (ROS+ at inference) 60.59±0.68 58.30±0.69 -2.28958 -0.0377858

Standard (ROS+ at inference) 60.26±0.66 57.90±0.67 -2.36208 -0.0391952
Relation Net (CE) Random-Shot with ROS+ 60.48±0.71 57.99±0.72 -2.49653 -0.0412758
ProtoNet (20-way) Random-Shot with ROS+ 61.21±0.72 58.58±0.69 -2.62778 -0.0429288
Matching Net Random-Shot with ROS 61.75±0.70 59.07±0.72 -2.67431 -0.0433091
Relation Net (CE) Random-Shot 63.50±0.70 60.64±0.71 -2.86181 -0.0450648
Matching Net Random-Shot with ROS+ 60.05±0.68 57.24±0.69 -2.81111 -0.0468096
Baseline (1-NN) Standard 39.72±0.73 37.85±0.72 -1.87222 -0.0471337
BMAML Random-Shot (ROS+ at inference) 49.97±0.67 47.53±0.66 -2.43611 -0.0487513
Baseline (1-NN) Random-Shot with ROS 39.90±0.75 37.95±0.73 -1.95139 -0.0489112
BMAML (chaser) Random-Shot (ROS+ at inference) 45.00±0.62 42.79±0.63 -2.20833 -0.0490748
Relation Net (CE) Random-Shot with ROS (ROS+ at inference) 62.97±0.70 59.84±0.71 -3.13403 -0.0497668

Random-Shot with ROS 64.12±0.71 60.93±0.71 -3.19444 -0.0498181
DKT Random-Shot (ROS+ at inference) 62.33±0.66 59.17±0.67 -3.15486 -0.0506178
Relation Net (CE) Random-Shot (ROS+ at inference) 62.53±0.71 59.30±0.71 -3.22361 -0.0515549
Baseline++ Random-Shot (ROS+ at inference) 65.52±0.66 62.14±0.68 -3.37847 -0.0515628
DKT Random-Shot with ROS (ROS+ at inference) 62.40±0.67 59.18±0.68 -3.22083 -0.0516159
Baseline++ Random-Shot with ROS (ROS+ at inference) 65.00±0.66 61.60±0.69 -3.40694 -0.0524117
Baseline (1-NN) Random-Shot 40.83±0.74 38.68±0.72 -2.14236 -0.0524749
ProtoNet Random-Shot with ROS+ 60.05±0.71 56.89±0.68 -3.15764 -0.0525823
BMAML Standard (ROS+ at inference) 58.82±0.68 55.72±0.70 -3.10458 -0.0527811

Random-Shot with ROS (ROS+ at inference) 58.00±0.68 54.84±0.69 -3.15486 -0.0543948
Baseline++ Standard (ROS+ at inference) 65.27±0.66 61.72±0.68 -3.55583 -0.0544764
DKT Standard (ROS+ at inference) 61.96±0.66 58.57±0.67 -3.3925 -0.054749

Random-Shot with ROS+ 61.16±0.67 57.71±0.70 -3.44722 -0.0563623
MAML Random-Shot (ROS+ at inference) 50.39±0.69 47.52±0.68 -2.86597 -0.0568763
BMAML (chaser) Random-Shot with ROS 53.52±0.64 50.46±0.68 -3.05417 -0.057068
ProtoNet Random-Shot (ROS+ at inference) 50.67±0.68 47.76±0.66 -2.90972 -0.0574303
BMAML Random-Shot with ROS+ 56.52±0.69 53.23±0.71 -3.28403 -0.0581087
ProtoNet Random-Shot 51.65±0.68 48.57±0.65 -3.08194 -0.0596698
BMAML (chaser) Random-Shot with ROS (ROS+ at inference) 51.87±0.62 48.74±0.65 -3.13194 -0.0603821
ProtoNet (20-way) Random-Shot (ROS+ at inference) 58.31±0.72 54.79±0.69 -3.52153 -0.0603935
Baseline (1-NN) Random-Shot with ROS (ROS+ at inference) 39.22±0.69 36.83±0.68 -2.39028 -0.0609506
MAML Random-Shot with ROS+ 54.60±0.72 51.25±0.74 -3.35069 -0.0613626

Random-Shot with ROS (ROS+ at inference) 58.36±0.72 54.70±0.72 -3.66319 -0.0627707
Relation Net (CE) Standard (ROS+ at inference) 63.89±0.69 59.85±0.69 -4.035 -0.0631558
BMAML (chaser) Standard (ROS+ at inference) 55.40±0.65 51.89±0.68 -3.50958 -0.0633513
ProtoNet (20-way) Random-Shot with ROS (ROS+ at inference) 58.32±0.70 54.62±0.70 -3.70556 -0.0635359
BMAML Random-Shot with ROS 58.98±0.68 55.23±0.72 -3.75139 -0.0636038
Baseline (1-NN) Standard (ROS+ at inference) 39.75±0.71 37.18±0.68 -2.57042 -0.0646625
MAML Standard (ROS+ at inference) 61.00±0.71 57.04±0.72 -3.96083 -0.0649286
ProtoNet Random-Shot with ROS (ROS+ at inference) 54.39±0.69 50.74±0.66 -3.64375 -0.0669961
Baseline (fine-tune) Random-Shot with ROS+ 60.46±0.70 56.12±0.69 -4.33819 -0.0717551
DKT Random-Shot with ROS 63.21±0.67 58.65±0.68 -4.55625 -0.0720799
Baseline (1-NN) Random-Shot (ROS+ at inference) 39.98±0.71 37.08±0.70 -2.90417 -0.0726382
Baseline (fine-tune) Random-Shot with ROS (ROS+ at inference) 61.82±0.69 57.03±0.67 -4.79236 -0.0775149

Standard (ROS+ at inference) 61.46±0.71 56.65±0.68 -4.8075 -0.0782216
ProtoMAML Random-Shot (ROS+ at inference) 54.09±0.71 49.73±0.71 -4.35903 -0.0805921
Baseline (fine-tune) Random-Shot (ROS+ at inference) 61.63±0.70 56.55±0.66 -5.07569 -0.0823633

19

Under review as a conference paper at ICLR 2021

C.2 RANDOM 1-29SHOT AND 1-49SHOT TASKS

40
45
50
55
60
65
70
75

5 avr. shot

40
45
50
55
60
65
70
75

15 avr. shot

Baselines, Standard
Baselines, Standard (ROS+ at inference)
Baselines, Random-Shot
Baselines, Random-Shot (ROS+ at inference only)
Baselines, Random-Shot with ROS
Baselines, Random-Shot with ROS (ROS+ at inference only)
Baselines, Random-Shot with ROS+
Metric-based, Standard
Metric-based, Standard (ROS+ at inference)
Metric-based, Random-Shot
Metric-based, Random-Shot (ROS+ at inference only)
Metric-based, Random-Shot with ROS
Metric-based, Random-Shot with ROS (ROS+ at inference only)
Metric-based, Random-Shot with ROS+
Optimization-based, Standard
Optimization-based, Standard (ROS+ at inference)
Optimization-based, Random-Shot
Optimization-based, Random-Shot (ROS+ at inference only)
Optimization-based, Random-Shot with ROS
Optimization-based, Random-Shot with ROS (ROS+ at inference only)
Optimization-based, Random-Shot with ROS+

1 2 3 4 5 6 7 8 9
40
45
50
55
60
65
70
75

25 avr. shot

Imbalance, = Kmax/Kmin

Ac
cu

ra
cy

, %

Figure 9: Linear imbalance by model type. Best viewed in color on a computer. The metric-based
methods (represented by green-cyan lines) tend to be perform better than the baselines (red-orange)
and the optimization-based models (purple-pink).

20

Under review as a conference paper at ICLR 2021

C.3 BACKBONE EXPERIMENTS

We run additional experiments with different backbone models. In Tables 4 and 5, we show the
random 1-9 shot 5-way performance on Conv6, ResNet10, and ResNet34. We can observe that for
many of the methods, ROS still benefits the models. However, the reader should exercise caution
since we used the same hyper-parameterization as for the four-layered CNN. We did not perform
any hyperparameter fine-tuning on these backbones; the results would likely be higher if we allowed
for longer meta-training. Some results are missing due to destabilization in meta-training caused by
deeper backbones.

Table 4: Standard vs Random Shot (accuracy)

Standard Random-Shot
Conv6 ResNet10 ResNet34 Conv6 ResNet10 ResNet34

Baseline (1-NN) 51.21±0.74 53.18±0.78 53.25±0.75 50.01±0.70 52.24±0.74 52.49±0.77

Baseline (fine-tune) 54.12±0.79 58.55±0.87 59.02±0.86 54.62±0.80 58.36±0.86 60.54±0.85

Baseline++ 51.95±0.83 50.94±0.84 54.18±0.86 52.23±0.83 50.99±0.83 52.91±0.80

Matching Net 54.99±0.70 58.60±0.72 60.00±0.74 53.70±0.73 - 56.34±0.73

ProtoNet 57.92±0.78 62.06±0.74 64.35±0.74 56.31±0.72 60.00±0.73 59.81±0.73

ProtoNet (20-way) 57.66±0.76 60.61±0.80 - - 62.17±0.79 62.46±0.77

DKT 55.60±0.70 57.98±0.73 57.07±0.75 57.44±0.72 58.77±0.70 -
SimpleShot 54.36±0.88 60.95±0.81 60.48±0.88 54.90±0.81 61.33±0.80 55.25±0.74

MAML 52.53±0.77 57.69±0.79 52.52±0.74 46.91±0.72 52.61±0.77 -
ProtoMAML 53.00±0.75 53.59±0.86 51.22±0.85 49.72±0.76 54.37±0.74 52.48±0.72

BMAML 38.54±0.83 34.61±0.84 39.39±0.85 47.82±0.76 48.09±0.72 46.76±0.71

BMAML (chaser) 35.81±0.71 30.90±0.57 30.27±0.57 33.03±0.54 31.62±0.59 26.41±0.48

Table 5: Random Shot (ROS) vs Random Shot (ROS+) (accuracy)

Random-Shot (ROS) Random-Shot (ROS with aug.)
Conv6 ResNet10 ResNet34 Conv6 ResNet10 ResNet34

Baseline (1-NN) 51.05±0.75 52.65±0.75 - 46.75±0.79 50.69±0.76 -
Baseline (fine-tune) 55.32±0.80 59.77±0.88 61.51±0.83 54.48±0.77 59.02±0.80 60.48±0.80

Baseline++ 61.08±0.75 57.41±0.74 58.07±0.75 56.95±0.78 54.81±0.77 55.49±0.81

Matching Net 58.32±0.72 60.48±0.72 - 56.24±0.74 59.89±0.70 55.19±0.71

ProtoNet 56.99±0.79 60.47±0.73 - 58.60±0.72 62.05±0.76 -
ProtoNet (20-way) 57.66±0.77 59.85±0.73 61.60±0.73 58.82±0.72 - 61.78±0.78

DKT 57.01±0.72 59.12±0.71 - 56.36±0.73 58.09±0.73 -
SimpleShot 52.99±0.82 60.46±0.80 - 51.44±0.79 54.20±0.83 37.14±0.69

MAML 56.25±0.74 59.72±0.76 - 50.27±0.78 46.76±0.74 -
ProtoMAML 56.99±0.77 55.96±0.79 45.96±0.70 41.45±0.69 47.17±0.75 40.85±0.77

BMAML 56.58±0.74 58.20±0.74 61.02±0.76 53.55±0.70 57.25±0.75 60.50±0.74

BMAML (chaser) 52.23±0.69 35.18±0.64 32.33±0.60 47.76±0.71 38.84±0.66 23.68±0.42

21

Under review as a conference paper at ICLR 2021

C.4 PRECISION AND RECALL TABLES

Table 6: Precision and recall for linear 1-9shot 5-way tasks after Standard meta-training.

Precision(95%CI) Recall(95%CI) Avr. F1(95%CI)
K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 -

Baseline (1-NN) 0.32±0.32 0.46±0.25 0.50±0.19 0.48±0.15 0.45±0.13 0.13±0.10 0.29±0.19 0.41±0.20 0.50±0.21 0.57±0.20 0.32±0.02

Baseline (fine-tune) 0.05±0.10 0.63±0.34 0.63±0.08 0.50±0.04 0.41±0.03 0.00±0.00 0.19±0.08 0.53±0.12 0.75±0.07 0.90±0.02 0.39±0.01

Baseline++ 0.02±0.04 0.45±0.44 0.66±0.13 0.52±0.05 0.39±0.02 0.00±0.00 0.13±0.08 0.48±0.17 0.76±0.09 0.94±0.01 0.37±0.01

Matching Net 0.54±0.39 0.67±0.13 0.62±0.06 0.55±0.04 0.48±0.03 0.15±0.08 0.41±0.14 0.61±0.12 0.73±0.08 0.84±0.04 0.50±0.02

ProtoNet 0.18±0.28 0.70±0.15 0.62±0.07 0.54±0.06 0.51±0.05 0.03±0.01 0.37±0.12 0.65±0.09 0.78±0.06 0.84±0.03 0.47±0.01

ProtoNet (20-way) 0.10±0.18 0.71±0.21 0.64±0.08 0.55±0.06 0.49±0.05 0.01±0.00 0.31±0.12 0.63±0.10 0.79±0.06 0.88±0.03 0.45±0.01

Relation Net (CE) 0.42±0.43 0.67±0.10 0.62±0.06 0.56±0.05 0.54±0.05 0.09±0.04 0.48±0.12 0.68±0.09 0.76±0.06 0.81±0.04 0.51±0.01

DKT 0.57±0.26 0.63±0.09 0.61±0.06 0.57±0.05 0.55±0.04 0.22±0.11 0.48±0.13 0.65±0.11 0.73±0.08 0.79±0.06 0.53±0.02

SimpleShot 0.01±0.02 0.59±0.41 0.66±0.09 0.51±0.06 0.41±0.04 0.00±0.00 0.15±0.07 0.52±0.12 0.77±0.06 0.90±0.02 0.38±0.01

MAML 0.00±0.01 0.65±0.19 0.58±0.07 0.48±0.03 0.42±0.02 0.00±0.00 0.26±0.08 0.55±0.10 0.75±0.06 0.85±0.03 0.41±0.01

ProtoMAML 0.18±0.26 0.59±0.28 0.55±0.16 0.44±0.11 0.38±0.08 0.03±0.02 0.23±0.10 0.49±0.16 0.68±0.20 0.76±0.21 0.36±0.02

BMAML 0.00±0.00 0.06±0.10 0.38±0.38 0.51±0.14 0.27±0.01 0.00±0.00 0.01±0.00 0.16±0.12 0.51±0.22 0.98±0.00 0.22±0.01

BMAML (chaser) 0.00±0.00 0.00±0.00 0.15±0.22 0.46±0.20 0.24±0.00 0.00±0.00 0.00±0.00 0.04±0.03 0.37±0.20 0.99±0.00 0.16±0.01

Table 7: Precision and recall for linear 1-9shot 5-way tasks after Random Shot meta-training.

Precision(95%CI) Recall(95%CI) Avr. F1(95%CI)
K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 -

Baseline (1-NN) 0.32±0.32 0.48±0.26 0.51±0.19 0.49±0.15 0.46±0.13 0.13±0.10 0.30±0.18 0.42±0.20 0.50±0.20 0.58±0.19 0.33±0.02

Baseline (fine-tune) 0.06±0.11 0.63±0.33 0.63±0.08 0.50±0.04 0.41±0.02 0.00±0.00 0.19±0.08 0.53±0.12 0.76±0.06 0.90±0.02 0.39±0.01

Baseline++ 0.02±0.03 0.45±0.44 0.67±0.13 0.52±0.05 0.39±0.02 0.00±0.00 0.13±0.08 0.49±0.17 0.77±0.08 0.94±0.01 0.37±0.01

Matching Net 0.58±0.27 0.65±0.17 0.62±0.08 0.55±0.05 0.45±0.03 0.24±0.12 0.36±0.15 0.55±0.15 0.68±0.11 0.84±0.04 0.49±0.02

ProtoNet 0.47±0.28 0.51±0.09 0.51±0.06 0.49±0.05 0.48±0.05 0.17±0.08 0.44±0.11 0.57±0.09 0.61±0.08 0.63±0.07 0.45±0.01

ProtoNet (20-way) 0.52±0.35 0.60±0.09 0.58±0.06 0.55±0.06 0.54±0.05 0.16±0.07 0.50±0.11 0.65±0.08 0.70±0.07 0.73±0.06 0.51±0.01

Relation Net (CE) 0.55±0.09 0.62±0.07 0.64±0.06 0.63±0.06 0.64±0.06 0.48±0.13 0.58±0.11 0.64±0.09 0.66±0.09 0.67±0.08 0.59±0.01

DKT 0.58±0.27 0.63±0.09 0.61±0.06 0.57±0.04 0.55±0.04 0.21±0.11 0.48±0.14 0.65±0.11 0.74±0.08 0.79±0.05 0.53±0.02

SimpleShot 0.06±0.10 0.64±0.30 0.62±0.08 0.50±0.05 0.44±0.04 0.01±0.00 0.22±0.09 0.56±0.11 0.76±0.06 0.87±0.03 0.41±0.01

MAML 0.07±0.13 0.45±0.30 0.50±0.08 0.42±0.03 0.36±0.01 0.01±0.00 0.16±0.07 0.44±0.13 0.64±0.10 0.81±0.04 0.33±0.01

ProtoMAML 0.15±0.24 0.59±0.22 0.55±0.10 0.45±0.06 0.39±0.04 0.02±0.01 0.23±0.07 0.49±0.11 0.68±0.10 0.79±0.09 0.37±0.01

BMAML 0.14±0.22 0.42±0.32 0.51±0.15 0.44±0.06 0.37±0.03 0.03±0.02 0.19±0.13 0.44±0.21 0.62±0.18 0.82±0.08 0.33±0.02

BMAML (chaser) 0.06±0.10 0.31±0.29 0.44±0.15 0.40±0.05 0.35±0.02 0.01±0.00 0.13±0.09 0.36±0.19 0.60±0.16 0.78±0.09 0.28±0.01

Table 8: Precision and recall for linear 1-9shot 5-way after Random Shot (ROS) meta-training.

Precision(95%CI) Recall(95%CI) Avr. F1(95%CI)
K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 -

Baseline (1-NN) 0.31±0.31 0.47±0.25 0.50±0.20 0.49±0.15 0.46±0.13 0.13±0.10 0.29±0.18 0.42±0.21 0.50±0.20 0.57±0.20 0.32±0.02

Baseline (fine-tune) 0.16±0.26 0.69±0.22 0.62±0.08 0.52±0.04 0.44±0.03 0.02±0.01 0.26±0.10 0.57±0.11 0.76±0.06 0.88±0.02 0.42±0.01

Baseline++ 0.49±0.45 0.71±0.11 0.64±0.06 0.57±0.04 0.52±0.04 0.12±0.06 0.45±0.14 0.66±0.11 0.78±0.07 0.86±0.03 0.52±0.02

Matching Net 0.56±0.11 0.60±0.07 0.62±0.06 0.61±0.05 0.61±0.05 0.46±0.14 0.57±0.11 0.62±0.11 0.64±0.10 0.66±0.09 0.57±0.02

ProtoNet 0.49±0.32 0.55±0.10 0.54±0.07 0.51±0.05 0.49±0.04 0.15±0.07 0.44±0.11 0.58±0.09 0.65±0.07 0.71±0.06 0.47±0.01

ProtoNet (20-way) 0.51±0.36 0.60±0.11 0.58±0.07 0.54±0.06 0.52±0.05 0.15±0.07 0.47±0.12 0.62±0.09 0.69±0.07 0.75±0.05 0.50±0.02

Relation Net (CE) 0.56±0.09 0.62±0.07 0.64±0.06 0.63±0.06 0.64±0.05 0.48±0.13 0.58±0.11 0.64±0.09 0.66±0.09 0.69±0.07 0.60±0.01

DKT 0.59±0.21 0.63±0.08 0.61±0.05 0.59±0.05 0.57±0.04 0.27±0.12 0.51±0.13 0.66±0.10 0.72±0.08 0.77±0.06 0.55±0.02

SimpleShot 0.10±0.17 0.61±0.27 0.60±0.09 0.50±0.05 0.41±0.03 0.01±0.00 0.22±0.09 0.50±0.11 0.71±0.07 0.86±0.03 0.39±0.01

MAML 0.52±0.34 0.59±0.10 0.56±0.05 0.52±0.04 0.49±0.03 0.15±0.06 0.43±0.11 0.60±0.09 0.70±0.06 0.76±0.05 0.49±0.01

ProtoMAML 0.35±0.39 0.58±0.16 0.53±0.12 0.46±0.12 0.44±0.10 0.07±0.03 0.37±0.12 0.54±0.15 0.63±0.20 0.72±0.17 0.40±0.02

BMAML 0.49±0.09 0.57±0.10 0.59±0.09 0.61±0.10 0.63±0.10 0.54±0.17 0.55±0.17 0.58±0.17 0.55±0.18 0.54±0.18 0.52±0.02

BMAML (chaser) 0.45±0.08 0.52±0.09 0.54±0.09 0.55±0.10 0.57±0.12 0.51±0.17 0.51±0.17 0.54±0.17 0.50±0.18 0.47±0.18 0.47±0.02

Table 9: Precision and recall for linear 1-9shot 5-way after Random Shot (ROS+) meta-training.

Precision(95%CI) Recall(95%CI) Avr. F1(95%CI)
K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 K1 = 1 K2 = 3 K3 = 5 K4 = 7 K5 = 9 -

Baseline (1-NN) 0.36±0.09 0.33±0.05 0.42±0.39 0.46±0.38 0.48±0.35 0.57±0.19 0.73±0.13 0.10±0.05 0.13±0.07 0.15±0.08 0.26±0.01

Baseline (fine-tune) 0.60±0.19 0.56±0.08 0.63±0.07 0.58±0.05 0.55±0.05 0.28±0.10 0.52±0.11 0.53±0.10 0.69±0.07 0.78±0.05 0.53±0.01

Baseline++ 0.61±0.15 0.61±0.11 0.64±0.08 0.60±0.05 0.54±0.04 0.37±0.14 0.47±0.15 0.54±0.14 0.72±0.09 0.82±0.05 0.55±0.02

Matching Net 0.55±0.10 0.60±0.09 0.62±0.06 0.59±0.05 0.56±0.04 0.43±0.14 0.47±0.13 0.58±0.12 0.66±0.10 0.72±0.08 0.55±0.02

ProtoNet 0.59±0.19 0.55±0.07 0.56±0.05 0.59±0.06 0.63±0.06 0.28±0.10 0.58±0.11 0.67±0.08 0.68±0.07 0.64±0.07 0.55±0.01

ProtoNet (20-way) 0.62±0.23 0.56±0.07 0.57±0.06 0.62±0.06 0.68±0.07 0.25±0.10 0.63±0.10 0.72±0.07 0.69±0.07 0.63±0.08 0.56±0.01

Relation Net (CE) 0.55±0.12 0.57±0.07 0.60±0.06 0.60±0.06 0.62±0.06 0.41±0.14 0.54±0.12 0.63±0.10 0.66±0.09 0.66±0.08 0.56±0.02

DKT 0.56±0.13 0.61±0.10 0.62±0.06 0.58±0.05 0.57±0.04 0.37±0.13 0.45±0.13 0.61±0.12 0.70±0.09 0.76±0.06 0.55±0.02

SimpleShot 0.50±0.38 0.56±0.12 0.58±0.09 0.52±0.06 0.52±0.06 0.11±0.04 0.41±0.11 0.51±0.12 0.76±0.06 0.79±0.04 0.47±0.01

MAML 0.48±0.10 0.47±0.07 0.52±0.07 0.53±0.05 0.56±0.05 0.38±0.10 0.47±0.09 0.54±0.09 0.59±0.08 0.60±0.07 0.50±0.01

ProtoMAML 0.43±0.11 0.43±0.10 0.47±0.10 0.48±0.09 0.51±0.09 0.32±0.09 0.44±0.13 0.48±0.14 0.53±0.14 0.53±0.14 0.43±0.02

BMAML 0.48±0.09 0.57±0.16 0.60±0.14 0.59±0.10 0.56±0.07 0.54±0.18 0.41±0.18 0.47±0.19 0.57±0.19 0.68±0.15 0.49±0.02

BMAML (chaser) 0.44±0.08 0.51±0.11 0.57±0.11 0.56±0.08 0.54±0.06 0.48±0.16 0.41±0.15 0.46±0.17 0.55±0.16 0.63±0.14 0.47±0.02

22

Under review as a conference paper at ICLR 2021

C.5 IMBALANCED REDUCED META-TRAINING DATASET

In this section, we present the results for the reduced meta-training MiniImageNet dataset (with 32
classes).

0 8 16 24

48

50

52

MiniImageNet CUB

8 16 24

0.0

0.5

1.0

1.5

Minority

Ac
cu

ra
cy

, %

Ac
c.

 D
iff

. t
o

ba
la

nc
ed

, %

Figure 10: Combined model average performance with increasing minority classes. Left: Com-
bined accuracy of all models and training scenarios. Right: Relative performance difference to the
balanced dataset.

Table 10: Table showing full results for the reduced meta-training MiniImageNet dataset (with 32
classes), evaluated on (meta-test split of) MiniImageNet. The last two columns show the average
and maximum model’s (absolute) performance difference to the balanced task. RelationNet suffers
the most from the imbalanced meta-training.

Imbalance I balanced step Avr. Diff. Max. Diff.
Max. # class samples 150 190 270 510 - -
Min. # class samples 150 30 30 30 - -
Minority - 16 32 48 - -

Baseline (1-NN) 40.46±0.65 41.86±0.66 40.93±0.67 40.52±0.66 0.5 0.0
Baseline (fine-tune) 54.13±0.70 53.72±0.68 53.36±0.69 52.45±0.72 -0.7 -1.7
Baseline++ 54.40±0.64 54.15±0.65 53.55±0.64 52.89±0.65 -0.7 -1.5
Matching Net 53.56±0.68 53.34±0.69 52.69±0.67 51.62±0.67 -0.8 -1.9
ProtoNet 54.14±0.69 53.54±0.70 53.38±0.69 52.81±0.70 -0.7 -1.3
ProtoNet (20-way) 55.05±0.69 54.98±0.70 53.40±0.70 51.98±0.69 -1.2 -3.1
Relation Net (CE) 53.83±0.68 52.80±0.69 49.97±0.66 49.55±0.67 -2.3 -4.3
DKT 54.09±0.66 53.57±0.64 53.01±0.66 52.27±0.67 -0.9 -1.8
SimpleShot 56.05±0.71 55.96±0.71 55.70±0.71 54.83±0.71 -0.4 -1.2
MAML 50.40±0.73 49.95±0.71 49.27±0.72 49.07±0.72 -0.7 -1.3
ProtoMAML 42.57±0.66 40.75±0.68 42.10±0.67 45.96±0.68 0.3 -1.8

Table 11: Table showing full results for the reduced meta-training MiniImageNet dataset (with
32 classes), evaluated on (meta-test split of) CUB. The last two columns show the average and
maximum model’s (absolute) performance difference to the balanced task. RelationNet suffers the
most from the imbalanced meta-training dataset.

Imbalance I balanced step Avr. Diff. Max. Diff.
Max. # class samples 150 190 270 510 - -
Min. # class samples 150 30 30 30 - -
Minority - 16 32 48 - -

Baseline (1-NN) 41.87±0.66 41.85±0.66 41.38±0.66 40.42±0.67 -0.5 -1.4
Baseline (fine-tune) 53.16±0.69 52.63±0.69 52.98±0.69 50.69±0.69 -0.8 -2.5
Baseline++ 51.65±0.69 52.40±0.69 52.31±0.72 48.67±0.67 -0.4 -3.0
Matching Net 49.89±0.72 49.12±0.70 49.12±0.69 47.82±0.69 -0.9 -2.1
ProtoNet 50.01±0.71 49.78±0.72 49.34±0.71 48.97±0.71 -0.5 -1.0
ProtoNet (20-way) 50.09±0.72 49.40±0.72 49.16±0.71 47.74±0.67 -1.0 -2.4
Relation Net (CE) 50.71±0.71 50.31±0.69 48.68±0.69 46.78±0.66 -1.6 -3.9
DKT 53.84±0.71 52.45±0.69 53.75±0.70 52.42±0.69 -0.7 -1.4
SimpleShot 53.01±0.72 52.60±0.70 52.03±0.71 50.44±0.70 -1.0 -2.6
MAML 51.15±0.71 50.67±0.70 50.23±0.71 49.90±0.69 -0.7 -1.2
ProtoMAML 45.20±0.68 43.22±0.69 43.81±0.68 48.69±0.68 0.0 -2.0

23

Under review as a conference paper at ICLR 2021

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL IMBALANCE STRATEGIES

In Figure 11, we compare Standard meta-training and Random-Shot meta-training with focal loss.
We observe no significant advantage of using Focal Loss Random-Shot meta-training over the Stan-
dard meta-training experiments.

20
30
40
50
60
70

Baseline (fine-tune) Baseline++ MAML ProtoMAML

1 2 3 4 5 6 7 8 9
20
30
40
50
60
70

BMAML

1 2 3 4 5 6 7 8 9

BMAML (chaser)
Standard (ROS+ at inference)
Standard (Focal Loss at inference)
Standard (Weighted Loss at inference)
Random-Shot (ROS+ at inference)
Random-Shot (Focal Loss at inference)
Random-Shot (Weighted Loss at inference)

Imbalance, = Kmax/Kmin

Ac
cu

ra
cy

, %

Figure 11: Standard episodic (meta-)training (Vinyals et al., 2017) and random-shot episodic meta-
training (Triantafillou et al., 2020) with Weighted Loss (Buda et al., 2018) and Focal Loss (Lin et al.,
2017), applied to the inner-loop of optimization-based functions and fine-tune baselines.

D.2 BTAML
We implemented and trained Bayesian TAML (Lee et al., 2019); however, the training performance
graphs suggest a mistake in our implementation, which we did not manage to identify in time for
the submission. For this reason, we have left out these results from the main paper. The BTAML
(α, ω, γ, z) corresponds to full BTAML, while others indicate variants with the corresponding com-
ponents turn off. We provide models’ performances with the full performance in Appendix E.

Table 12: Performance of our implementation of BTAML on 5shot 5-way task. The BTAML
(α, ω, γ, z) indicates the full version of the proposed model.

Acc (95%CI) F1 (95%CI)
Model

BTAML (α, ω, γ, z) 52.94±0.76 52.30±1.43

BTAML (α, γ, z) 54.89±0.75 54.52±1.39

BTAML (α) 52.19±0.76 51.85±1.41

0 50 100 150 200
Epoch

20

30

40

50

60

Ac
cu

ra
cy

BTAML (, , z)

0 50 100 150 200
Epoch

10

20

30

40

50

Ac
cu

ra
cy

BTAML (, , , z)

Figure 12: Validation performance of BTAML through epochs using Standard 5-shot 5-way meta-
training, and Random Shot (1-9shot random). The shaded areas show ± 1 standard deviation over
three repeats on different seeds.

D.3 ANALYSIS OF SAMPLES PER CLASS IN META-TRAINING DATASET

24

Under review as a conference paper at ICLR 2021

Table 13: Meta-/Pre- Training with reduced number of samples in the meta-training dataset of Mini-
ImageNet (all 64 classes are balanced). Setting with 600 ∗ samples uses 64 channels for each 4
convolutional layers instead of 32 channels as was done for the other ‘#Class Samples’ settings. In
addition, all three Baselines were trained using conventional split on Dtrain instead of D′train. The
table suggests that the number of samples per class in the meta-training dataset is not very significant
on the performance of FSL algorithms beyond a certain point. All settings were trained on 50k tasks,
apart from 600 ∗ trained on 100k tasks.

Class Samples 50 100 300 600 ∗
Model

Baseline (1-NN) 38.75±0.61 39.82±0.60 42.69±0.66 39.72±0.73

Baseline (fine-tune) 44.34±0.68 46.10±0.69 51.26±0.70 62.67±0.70

Baseline++ 41.63±0.64 49.51±0.68 48.44±0.65 66.43±0.66

Matching Net 55.90±0.70 58.30±0.70 58.26±0.68 62.27±0.69

ProtoNet 58.43±0.69 60.09±0.70 60.65±0.70 64.37±0.71

ProtoNet (20-way) 57.87±0.72 59.88±0.70 60.91±0.70 65.76±0.70

Relation Net (CE) 56.50±0.70 60.93±0.68 62.78±0.70 64.76±0.68

DKT 56.27±0.65 57.93±0.69 58.09±0.69 62.92±0.67

25

Under review as a conference paper at ICLR 2021

E FULL RESULTS FOR MAIN EXPERIMENTS

Figures 14 and 13 show accuracy and F1 scores, respectively, on imbalanced tasks of Standard (5-
shot) and Random Shot (1-9shot) meta-training. Their corresponding result tables are in Tables 14
to 21. Table 22 provides the full results for the main imbalanced meta-dataset experiments.

010203040506070 5shot (balanced)

(Standard, accuracy)
(Random-Shot, accuracy)

(Random-Shot (ROS), accuracy)
(Random-Shot (ROS with aug.), accuracy)

010203040506070 1-9shot random

010203040506070 3-7shot random

010203040506070 4-6shot linear

010203040506070 3-7shot linear

010203040506070 1-9shot linear

010203040506070 1-9shot step 1minor

010203040506070 1-9shot step 4minor

010203040506070 1-6shot step 1minor

Ba
se

lin
e

(1
-N

N)
Ba

se
lin

e
(fi

ne
-tu

ne
)

Ba
se

lin
e+

+

M
at

ch
in

g
Ne

t

Pr
ot

oN
et

Pr
ot

oN
et

(2
0-

wa
y)

Re
la

tio
n

Ne
t (

CE
)

DK
T

Si
m

pl
eS

ho
t

M
AM

L

Pr
ot

oM
AM

L

BM
AM

L

BM
AM

L
(c

ha
se

r)
BT

AM
L

(
,

,
,z

)
BT

AM
L

(
,

,z
)

BT
AM

L
(

)

010203040506070 1-21shot step 4minor

Ac
cu

ra
cy

, %
Ac

cu
ra

cy
, %

Ac
cu

ra
cy

, %
Ac

cu
ra

cy
, %

Ac
cu

ra
cy

, %
Ac

cu
ra

cy
, %

Ac
cu

ra
cy

, %
Ac

cu
ra

cy
, %

Ac
cu

ra
cy

, %
Ac

cu
ra

cy
, %

Figure 13: Accuracy

26

Under review as a conference paper at ICLR 2021

0
10
20
30
40
50
60

5shot (balanced)

(Standard, f1)
(Random-Shot, f1)

(Random-Shot (ROS), f1)
(Random-Shot (ROS with aug.), f1)

0
10
20
30
40
50
60

1-9shot random

0
10
20
30
40
50
60

3-7shot random

0
10
20
30
40
50
60

4-6shot linear

0
10
20
30
40
50
60

3-7shot linear

0
10
20
30
40
50
60

1-9shot linear

0
10
20
30
40
50
60

1-9shot step 1minor

0
10
20
30
40
50
60

1-9shot step 4minor

0
10
20
30
40
50
60

1-6shot step 1minor

Ba
se

lin
e

(1
-N

N)
Ba

se
lin

e
(fi

ne
-tu

ne
)

Ba
se

lin
e+

+

M
at

ch
in

g
Ne

t

Pr
ot

oN
et

Pr
ot

oN
et

(2
0-

wa
y)

Re
la

tio
n

Ne
t (

CE
)

DK
T

Si
m

pl
eS

ho
t

M
AM

L

Pr
ot

oM
AM

L

BM
AM

L

BM
AM

L
(c

ha
se

r)
BT

AM
L

(
,

,
,z

)
BT

AM
L

(
,

,z
)

BT
AM

L
(

)

010203040506070 1-21shot step 4minor

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

F1
 S

co
re

s,
%

Figure 14: F1 Scores.

27

Under review as a conference paper at ICLR 2021

Table 14: Standard (accuracy)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 39.72±0.73 38.30±0.71 39.68±0.73 39.72±0.73 37.85±0.72 39.67±0.69 31.68±0.68 29.81±0.65 11.6
Baseline (fine-tune) 62.67±0.70 49.72±0.85 57.17±0.74 59.78±0.70 47.40±0.59 58.39±0.57 21.26±0.18 20.33±0.08 7.8
Baseline++ 66.43±0.66 49.28±0.89 57.20±0.76 61.17±0.69 46.16±0.59 60.93±0.54 21.17±0.21 20.28±0.09 6.5
Matching Net 62.27±0.69 57.26±0.73 60.77±0.69 61.41±0.68 54.69±0.65 59.09±0.60 40.35±0.71 34.17±0.64 4.4
ProtoNet 64.37±0.71 55.54±0.82 61.68±0.73 63.10±0.70 53.42±0.60 59.28±0.57 27.11±0.50 25.64±0.44 4.1
ProtoNet (20-way) 65.76±0.70 54.14±0.87 61.86±0.72 63.92±0.71 52.43±0.61 60.18±0.56 23.42±0.35 22.50±0.29 4.0
Relation Net (CE) 64.76±0.68 58.86±0.78 63.50±0.70 64.14±0.69 56.59±0.63 60.28±0.58 37.36±0.70 35.77±0.67 2.0
DKT 62.92±0.67 58.66±0.73 61.52±0.69 62.32±0.67 57.30±0.67 60.54±0.63 47.27±0.71 45.18±0.71 2.6
SimpleShot 63.74±0.69 49.05±0.89 56.41±0.77 59.77±0.70 46.75±0.60 58.89±0.56 20.22±0.06 20.13±0.04 8.6
MAML 61.83±0.71 50.83±0.80 57.70±0.70 59.87±0.69 48.41±0.60 56.77±0.59 23.09±0.30 20.32±0.07 7.4
ProtoMAML 59.86±0.76 46.14±0.92 54.00±0.87 56.76±0.81 43.62±0.86 45.00±0.84 21.89±0.19 20.79±0.11 10.1
BMAML 59.89±0.68 37.04±0.85 44.35±0.81 48.27±0.68 33.10±0.60 54.93±0.59 20.00±0.00 20.00±0.00 12.6
BMAML (chaser) 56.45±0.67 32.05±0.75 37.73±0.77 40.47±0.56 27.90±0.51 52.25±0.59 20.00±0.00 20.00±0.00 13.5
BTAML (α, ω, γ, z) 52.94±0.76 36.46±1.28 51.39±0.74 52.06±0.74 20.00±0.00 20.00±0.00 - - 14.6
BTAML (α, γ, z) 54.89±0.75 37.32±1.33 52.92±0.75 53.51±0.74 20.00±0.00 20.00±0.00 - - 13.5
BTAML (α) 52.19±0.76 46.15±0.73 50.16±0.75 51.04±0.75 44.61±0.64 49.41±0.66 - - 12.6

Table 15: Random-Shot (accuracy)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 40.83±0.74 39.13±0.72 40.44±0.72 40.53±0.74 38.68±0.72 40.60±0.70 32.18±0.70 30.08±0.66 11.8
Baseline (fine-tune) 62.83±0.70 49.96±0.84 57.31±0.73 59.94±0.69 47.44±0.58 58.60±0.55 21.24±0.18 20.33±0.08 6.6
Baseline++ 66.74±0.65 49.06±0.89 57.44±0.77 61.41±0.69 46.46±0.60 61.07±0.54 21.13±0.20 20.28±0.09 6.5
Matching Net 59.58±0.69 54.79±0.74 58.24±0.69 58.79±0.69 53.47±0.69 58.19±0.65 39.20±0.68 33.11±0.62 5.1
ProtoNet 51.65±0.68 49.24±0.69 50.87±0.70 51.31±0.68 48.57±0.65 50.89±0.63 39.88±0.66 39.43±0.65 7.2
ProtoNet (20-way) 59.79±0.70 56.03±0.76 58.99±0.71 59.52±0.71 54.66±0.67 57.32±0.62 42.24±0.72 41.29±0.72 4.1
Relation Net (CE) 63.50±0.70 61.33±0.74 62.99±0.71 63.30±0.70 60.64±0.71 63.33±0.69 51.20±0.76 51.69±0.75 1.1
DKT 63.23±0.66 58.92±0.71 61.97±0.68 62.72±0.67 57.42±0.67 60.75±0.62 47.37±0.71 45.20±0.70 2.2
SimpleShot 61.99±0.71 50.41±0.88 56.77±0.73 59.35±0.71 48.19±0.60 57.57±0.59 21.08±0.16 20.67±0.12 7.1
MAML 50.79±0.67 43.14±0.71 47.75±0.68 49.25±0.67 41.49±0.58 48.32±0.61 23.88±0.28 20.28±0.07 11.2
ProtoMAML 54.78±0.72 46.09±0.78 51.61±0.74 53.12±0.72 44.04±0.65 49.69±0.66 22.20±0.22 21.10±0.14 9.0
BMAML 50.51±0.64 43.60±0.71 48.12±0.66 49.35±0.64 41.95±0.62 47.26±0.58 26.61±0.49 21.33±0.22 10.2
BMAML (chaser) 45.63±0.61 38.66±0.65 42.70±0.62 44.03±0.61 37.63±0.56 43.35±0.57 23.48±0.34 20.45±0.10 12.4
BTAML (α, ω, γ, z) 20.00±0.00 20.00±0.00 20.00±0.00 20.00±0.00 20.00±0.00 20.00±0.00 - - 16.0
BTAML (α, γ, z) 20.00±0.00 20.00±0.00 20.00±0.00 20.00±0.00 20.00±0.00 20.00±0.00 - - 15.0
BTAML (α) 52.66±0.77 46.85±0.74 51.13±0.76 52.10±0.77 45.08±0.65 50.12±0.67 - - 10.2

Table 16: Random-Shot (ROS) (accuracy)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 39.90±0.75 38.29±0.74 39.43±0.74 39.63±0.75 37.95±0.73 39.83±0.70 31.76±0.68 29.81±0.65 14.4
Baseline (fine-tune) 63.01±0.69 51.38±0.85 58.61±0.72 60.78±0.69 49.75±0.60 58.90±0.56 23.53±0.32 21.64±0.22 7.8
Baseline++ 66.25±0.66 59.53±0.77 64.36±0.68 65.27±0.67 57.27±0.64 62.31±0.56 36.63±0.70 29.80±0.60 4.0
Matching Net 61.75±0.70 59.53±0.73 61.13±0.70 61.50±0.69 59.07±0.72 61.92±0.69 51.53±0.76 51.86±0.75 3.1
ProtoNet 55.35±0.68 51.32±0.70 53.79±0.68 54.40±0.68 50.40±0.64 53.76±0.62 39.72±0.67 39.08±0.65 8.9
ProtoNet (20-way) 59.52±0.71 54.84±0.74 57.67±0.72 58.30±0.72 53.49±0.67 56.89±0.63 41.50±0.73 40.62±0.72 6.5
Relation Net (CE) 64.12±0.71 61.32±0.77 62.86±0.71 63.31±0.70 60.93±0.71 64.20±0.68 52.16±0.76 52.60±0.76 1.4
DKT 63.21±0.67 59.80±0.72 62.18±0.68 62.85±0.68 58.65±0.68 61.52±0.65 48.85±0.72 46.92±0.72 3.1
SimpleShot 59.52±0.73 47.63±0.80 53.35±0.75 55.39±0.71 46.04±0.63 55.67±0.60 22.20±0.24 21.60±0.20 11.0
MAML 59.10±0.70 54.09±0.73 57.61±0.70 58.30±0.69 52.81±0.66 56.71±0.63 39.24±0.69 37.23±0.68 7.5
ProtoMAML 54.50±0.90 48.04±0.84 52.59±0.84 53.96±0.85 46.59±0.80 45.06±0.81 31.19±0.60 29.23±0.55 12.2
BMAML 58.98±0.68 55.99±0.73 57.70±0.71 58.24±0.69 55.23±0.72 57.54±0.71 48.22±0.74 48.38±0.74 5.8
BMAML (chaser) 53.52±0.64 50.90±0.67 52.62±0.66 52.87±0.64 50.46±0.68 52.20±0.67 44.48±0.73 44.61±0.72 9.5
BTAML (α, ω, γ, z) 47.75±0.73 45.57±0.74 47.17±0.74 47.47±0.74 45.04±0.73 47.44±0.73 - - 15.1
BTAML (α, γ, z) 53.34±0.75 50.84±0.78 52.75±0.76 52.84±0.76 49.97±0.75 53.33±0.74 - - 12.4
BTAML (α) 51.59±0.77 49.00±0.78 50.90±0.77 51.23±0.77 48.62±0.75 51.68±0.74 - - 13.4

Table 17: Random-Shot (ROS+) (accuracy)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 28.83±0.53 29.00±0.56 28.49±0.53 28.93±0.54 33.48±0.61 34.74±0.63 33.89±0.64 34.75±0.65 15.1
Baseline (fine-tune) 60.46±0.70 53.33±0.79 57.53±0.74 59.44±0.72 56.12±0.69 61.81±0.64 42.21±0.70 39.00±0.69 7.1
Baseline++ 63.72±0.68 55.60±0.80 60.47±0.73 62.31±0.68 58.41±0.73 64.69±0.64 45.79±0.74 43.05±0.73 3.5
Matching Net 60.05±0.68 57.28±0.70 59.33±0.68 59.59±0.67 57.24±0.69 60.36±0.67 49.00±0.74 48.93±0.73 4.8
ProtoNet 60.05±0.71 57.35±0.74 59.94±0.70 59.98±0.69 56.89±0.68 60.57±0.66 46.23±0.74 45.83±0.73 5.4
ProtoNet (20-way) 61.21±0.72 59.89±0.75 61.73±0.71 61.41±0.71 58.58±0.69 62.84±0.66 47.02±0.74 46.77±0.72 2.1
Relation Net (CE) 60.48±0.71 58.20±0.73 60.01±0.71 60.50±0.70 57.99±0.72 61.44±0.69 48.64±0.76 48.35±0.75 3.1
DKT 61.16±0.67 58.18±0.72 60.08±0.68 60.17±0.67 57.71±0.70 61.87±0.66 48.22±0.72 47.01±0.71 3.2
SimpleShot 59.44±0.69 49.95±0.83 55.57±0.74 57.89±0.70 51.55±0.69 59.84±0.60 34.70±0.67 32.64±0.64 9.8
MAML 54.60±0.72 51.04±0.76 53.57±0.72 54.41±0.70 51.25±0.74 56.35±0.71 41.99±0.77 41.84±0.75 9.8
ProtoMAML 50.38±0.75 45.84±0.78 48.41±0.74 49.29±0.75 46.01±0.75 50.38±0.74 39.88±0.76 39.24±0.75 13.1
BMAML 56.52±0.69 53.11±0.75 55.81±0.71 56.07±0.68 53.23±0.71 56.92±0.68 46.02±0.72 46.03±0.71 7.8
BMAML (chaser) 50.49±0.73 50.65±0.71 52.71±0.68 52.92±0.69 50.68±0.70 52.29±0.72 43.59±0.71 43.72±0.70 10.2
BTAML (α, ω, γ, z) 47.97±0.72 44.28±0.74 46.29±0.73 46.85±0.74 43.60±0.73 47.05±0.72 - - 15.2
BTAML (α, γ, z) 52.66±0.76 48.82±0.78 50.88±0.77 51.54±0.75 47.79±0.76 51.97±0.75 - - 12.6
BTAML (α) 51.80±0.75 47.69±0.76 49.84±0.76 50.48±0.76 46.94±0.76 50.91±0.73 - - 13.1

28

Under review as a conference paper at ICLR 2021

Table 18: Standard (F1)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 34.73±1.71 32.37±1.78 34.47±1.74 34.64±1.71 31.59±1.62 33.90±1.57 23.13±1.61 20.38±1.51 11.5
Baseline (fine-tune) 61.77±1.36 43.18±2.16 54.10±1.73 57.82±1.48 39.19±1.31 52.13±1.05 8.87±0.58 7.27±0.29 7.8
Baseline++ 65.06±1.38 41.17±2.35 52.31±2.03 57.84±1.65 36.55±1.41 54.29±1.04 8.59±0.62 7.16±0.29 7.6
Matching Net 60.92±1.41 53.76±1.79 58.87±1.52 59.68±1.46 49.70±1.54 54.20±1.33 34.56±1.86 26.59±1.79 4.2
ProtoNet 63.76±1.35 50.68±2.11 60.13±1.54 62.09±1.41 46.94±1.33 53.47±1.10 17.26±1.39 15.25±1.26 4.1
ProtoNet (20-way) 65.15±1.34 48.37±2.23 59.82±1.64 62.68±1.45 45.26±1.36 54.17±1.07 12.10±1.01 10.74±0.87 4.1
Relation Net (CE) 64.00±1.36 55.27±1.91 62.32±1.46 63.19±1.40 51.39±1.42 55.12±1.25 30.63±1.81 28.58±1.80 2.0
DKT 61.51±1.40 55.65±1.74 59.71±1.50 60.73±1.43 53.49±1.53 56.73±1.38 42.88±1.78 40.12±1.81 2.5
SimpleShot 63.19±1.32 41.90±2.29 53.10±1.83 57.83±1.49 38.28±1.31 52.79±1.05 7.07±0.23 6.91±0.17 8.5
MAML 61.22±1.36 45.22±2.05 55.65±1.56 58.56±1.41 40.94±1.24 50.48±1.08 11.66±0.91 7.26±0.26 7.1
ProtoMAML 59.13±1.45 39.41±2.17 51.06±1.82 54.84±1.62 35.58±1.73 36.01±2.03 10.04±0.67 8.14±0.41 10.1
BMAML 56.87±1.68 26.26±2.23 35.54±2.29 40.34±1.82 21.69±1.36 47.76±1.27 6.67±0.00 6.67±0.00 12.9
BMAML (chaser) 53.26±1.66 20.50±2.00 27.48±2.15 30.17±1.45 15.93±1.10 45.20±1.25 6.67±0.00 6.67±0.00 13.8
BTAML (α, ω, γ, z) 52.30±1.43 29.27±2.06 50.06±1.50 51.09±1.43 6.67±0.00 6.67±0.00 - - 14.5
BTAML (α, γ, z) 54.52±1.39 30.19±2.11 51.80±1.46 52.79±1.39 6.67±0.00 6.67±0.00 - - 13.2
BTAML (α) 51.85±1.41 42.61±1.73 49.09±1.46 50.35±1.40 39.51±1.26 44.33±1.16 - - 12.0

Table 19: Random-Shot (F1)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 36.16±1.73 33.45±1.80 35.59±1.74 35.71±1.73 32.63±1.65 35.07±1.58 23.80±1.62 20.75±1.52 11.8
Baseline (fine-tune) 61.92±1.36 43.39±2.16 54.26±1.72 57.99±1.47 39.23±1.29 52.29±1.04 8.84±0.57 7.27±0.29 7.1
Baseline++ 65.34±1.39 40.82±2.36 52.59±2.04 58.07±1.66 36.80±1.41 54.37±1.05 8.51±0.61 7.14±0.30 7.5
Matching Net 57.51±1.53 50.70±1.86 55.55±1.63 56.41±1.56 48.84±1.70 53.99±1.49 32.62±1.85 24.83±1.77 5.0
ProtoNet 50.65±1.45 46.87±1.67 49.70±1.49 50.26±1.45 45.44±1.48 47.66±1.41 35.17±1.71 34.35±1.71 6.9
ProtoNet (20-way) 59.13±1.43 53.45±1.79 58.12±1.47 58.75±1.44 50.95±1.50 53.57±1.39 37.07±1.84 35.76±1.85 3.6
Relation Net (CE) 62.54±1.43 60.18±1.51 62.01±1.44 62.35±1.42 59.34±1.48 62.15±1.42 49.25±1.64 49.67±1.64 1.1
DKT 61.80±1.41 55.88±1.74 60.15±1.50 61.11±1.44 53.45±1.54 56.74±1.38 42.75±1.80 39.91±1.83 2.2
SimpleShot 61.44±1.34 44.37±2.18 54.13±1.71 57.82±1.46 40.59±1.31 51.59±1.08 8.56±0.53 7.86±0.41 7.1
MAML 48.61±1.52 36.44±1.97 43.85±1.73 46.17±1.57 33.49±1.32 41.91±1.21 13.46±0.97 7.20±0.26 10.8
ProtoMAML 54.12±1.41 40.52±1.98 49.38±1.62 51.70±1.47 37.19±1.37 43.34±1.38 10.60±0.74 8.72±0.51 9.1
BMAML 46.11±1.77 35.90±2.07 42.55±1.92 44.29±1.80 33.23±1.58 39.84±1.44 16.07±1.39 8.76±0.67 10.8
BMAML (chaser) 41.04±1.69 30.50±1.94 36.53±1.84 38.57±1.69 28.44±1.39 35.99±1.36 12.01±1.01 7.46±0.35 12.4
BTAML (α, ω, γ, z) 6.67±0.00 6.67±0.00 6.67±0.00 6.67±0.00 6.67±0.00 6.67±0.00 - - 16.0
BTAML (α, γ, z) 6.67±0.00 6.67±0.00 6.67±0.00 6.67±0.00 6.67±0.00 6.67±0.00 - - 15.0
BTAML (α) 52.37±1.41 43.46±1.72 50.09±1.47 51.49±1.41 40.09±1.27 45.14±1.17 - - 9.6

Table 20: Random-Shot (ROS) (F1)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 34.95±1.70 32.32±1.78 34.26±1.71 34.54±1.70 31.70±1.62 34.08±1.56 23.11±1.61 20.31±1.51 14.8
Baseline (fine-tune) 62.15±1.35 45.48±2.11 56.16±1.63 59.16±1.43 42.44±1.33 52.77±1.05 12.44±0.99 9.46±0.68 8.9
Baseline++ 64.83±1.39 55.35±1.95 62.44±1.51 63.64±1.43 51.73±1.50 56.90±1.25 29.57±1.88 20.73±1.65 4.2
Matching Net 60.35±1.44 57.85±1.54 59.65±1.47 60.05±1.45 57.28±1.51 60.21±1.44 49.27±1.65 49.51±1.64 2.9
ProtoNet 54.56±1.41 48.61±1.70 52.55±1.49 53.38±1.44 46.74±1.47 50.01±1.36 34.41±1.73 33.41±1.73 9.1
ProtoNet (20-way) 58.87±1.43 52.07±1.80 56.54±1.53 57.40±1.48 49.73±1.52 53.03±1.39 36.20±1.82 34.92±1.84 6.0
Relation Net (CE) 63.16±1.42 60.08±1.54 61.81±1.47 62.30±1.43 59.56±1.49 62.95±1.41 50.27±1.65 50.62±1.64 1.4
DKT 61.83±1.40 57.22±1.67 60.55±1.46 61.36±1.41 55.36±1.53 58.19±1.42 44.83±1.75 42.28±1.79 3.2
SimpleShot 58.93±1.38 41.58±2.09 50.55±1.72 53.33±1.52 38.84±1.35 49.96±1.11 10.36±0.79 9.40±0.68 11.9
MAML 58.35±1.38 51.10±1.74 56.34±1.46 57.32±1.40 48.80±1.44 52.56±1.30 34.05±1.72 31.26±1.72 7.5
ProtoMAML 52.10±1.81 42.91±2.03 49.85±1.80 51.54±1.77 40.36±1.74 36.75±2.04 23.18±1.55 20.46±1.46 12.5
BMAML 55.76±1.71 52.63±1.77 54.37±1.74 55.00±1.73 51.83±1.78 54.31±1.74 44.72±1.79 44.87±1.79 5.8
BMAML (chaser) 49.72±1.71 47.17±1.72 48.88±1.71 49.14±1.70 46.75±1.73 48.55±1.70 40.92±1.74 41.06±1.73 10.8
BTAML (α, ω, γ, z) 45.92±1.55 43.88±1.55 45.45±1.54 45.71±1.54 43.35±1.52 45.48±1.54 - - 14.5
BTAML (α, γ, z) 52.79±1.42 49.97±1.50 52.17±1.44 52.23±1.43 48.83±1.45 52.06±1.43 - - 10.8
BTAML (α) 51.27±1.41 48.29±1.48 50.51±1.42 50.86±1.41 47.62±1.42 50.53±1.40 - - 11.9

Table 21: Random-Shot (ROS+) (F1)

5shot
balanced

1-9shot
random

3-7shot
random

4-6shot
linear

1-9shot
linear

1-9shot
step 1minor

1-9shot
step 4minor

1-21shot
step 4minor Rank

Baseline (1-NN) 20.25±1.43 20.13±1.46 19.70±1.42 20.38±1.44 26.00±1.48 27.86±1.54 26.61±1.44 27.97±1.47 15.1
Baseline (fine-tune) 59.51±1.40 49.43±1.89 55.84±1.57 58.32±1.43 53.47±1.49 59.00±1.37 36.70±1.61 32.47±1.61 7.1
Baseline++ 61.95±1.46 51.37±1.95 58.12±1.65 60.26±1.50 55.34±1.63 61.95±1.43 40.69±1.70 36.90±1.72 4.1
Matching Net 58.50±1.46 54.58±1.67 57.50±1.52 57.84±1.47 54.93±1.54 58.18±1.47 45.52±1.69 44.99±1.69 5.1
ProtoNet 59.30±1.41 55.62±1.63 59.10±1.42 59.22±1.41 54.66±1.47 58.59±1.40 43.40±1.66 42.31±1.69 4.5
ProtoNet (20-way) 60.27±1.45 58.69±1.54 60.84±1.43 60.56±1.44 56.08±1.47 60.73±1.40 43.75±1.66 42.93±1.67 2.0
Relation Net (CE) 59.41±1.45 56.54±1.59 58.76±1.48 59.35±1.44 56.15±1.53 59.91±1.45 46.31±1.66 45.70±1.66 2.2
DKT 59.15±1.46 55.52±1.68 57.97±1.54 57.88±1.49 55.12±1.54 59.44±1.42 44.27±1.70 42.37±1.69 4.5
SimpleShot 58.03±1.39 44.91±2.06 53.63±1.62 56.39±1.43 46.98±1.48 55.49±1.26 27.67±1.57 24.72±1.52 10.2
MAML 53.90±1.40 49.73±1.55 52.64±1.44 53.60±1.40 50.10±1.47 55.21±1.40 40.22±1.53 39.78±1.52 8.4
ProtoMAML 48.51±1.58 42.94±1.71 45.99±1.62 46.99±1.62 43.11±1.63 47.51±1.63 37.76±1.56 36.63±1.57 12.9
BMAML 52.78±1.75 48.41±1.93 51.97±1.81 52.28±1.75 49.12±1.81 53.26±1.73 41.32±1.76 41.21±1.74 8.8
BMAML (chaser) 46.35±1.83 46.48±1.79 49.07±1.73 49.46±1.71 47.17±1.69 48.88±1.75 39.64±1.68 39.89±1.66 11.4
BTAML (α, ω, γ, z) 46.32±1.52 42.63±1.54 44.64±1.52 45.14±1.54 41.97±1.52 45.32±1.53 - - 15.2
BTAML (α, γ, z) 52.06±1.43 48.10±1.49 50.27±1.44 50.90±1.43 47.06±1.45 51.12±1.43 - - 11.9
BTAML (α) 51.41±1.40 47.16±1.45 49.41±1.41 50.05±1.41 46.35±1.41 50.21±1.39 - - 12.5

29

Under review as a conference paper at ICLR 2021

Ta
bl

e
22

:F
ul

lr
es

ul
ts

fo
rT

ab
le

1.

Im
ba

la
nc

ed
M

in
i-

Im
ag

eN
et

Im
ba

la
nc

ed
M

in
i-

Im
ag

eN
et
→

C
U

B
-2

00
-2

01
1

I-
D

is
tr

ib
ut

io
n

ba
la

nc
ed

lin
ea

r
ra

nd
om

st
ep

ba
la

nc
ed

lin
ea

r
ra

nd
om

st
ep

M
ax

.#
sa

m
pl

es
,D

K
m

a
x

tr
a
in

30
0

57
0

57
0

46
2

57
0

60
0

30
0

57
0

57
0

46
2

57
0

60
0

M
in

.#
sa

m
pl

es
,D

K
m

i
n

tr
a
in

30
0

30
30

30
30

12
0

30
0

30
30

30
30

12
0

#
M

in
or

ity
,D

N
m

i
n

tr
a
in

-
-

-
24

32
40

-
-

-
24

32
40

B
as

el
in

e
(1

-N
N

)
42

.6
9±

0.
66

43
.4

2±
0.

68
42

.1
5±

0.
66

39
.0

2±
0.

63
41

.4
5±

0.
65

41
.7

1±
0.

66
43

.2
1±

0.
68

43
.4

2±
0.

69
43

.3
9±

0.
69

42
.0

3±
0.

65
42

.1
9±

0.
66

42
.9

9±
0.

66

B
as

el
in

e
(fi

ne
-t

un
e)

51
.2

6±
0.

70
50

.1
3±

0.
69

54
.1

6±
0.

72
51

.5
4±

0.
71

52
.4

7±
0.

70
56

.4
8±

0.
71

53
.1

9±
0.

71
51

.9
5±

0.
72

53
.5

2±
0.

72
52

.4
7±

0.
71

52
.6

8±
0.

70
53

.7
2±

0.
71

B
as

el
in

e+
+

48
.4

4±
0.

65
47

.1
8±

0.
64

51
.4

7±
0.

67
49

.0
1±

0.
66

51
.8

8±
0.

69
50

.5
4±

0.
67

49
.3

8±
0.

69
46

.8
3±

0.
67

50
.4

8±
0.

67
48

.1
2±

0.
67

48
.4

2±
0.

67
49

.4
2±

0.
69

M
at

ch
in

g
N

et
58

.2
6±

0.
68

58
.2

4±
0.

69
58

.4
5±

0.
68

57
.0

6±
0.

69
56

.5
3±

0.
69

58
.1

8±
0.

70
50

.9
2±

0.
74

51
.3

2±
0.

73
50

.7
7±

0.
76

50
.8

2±
0.

73
50

.5
1±

0.
73

49
.9

5±
0.

74

Pr
ot

oN
et

60
.6

5±
0.

70
59

.1
7±

0.
68

60
.1

6±
0.

70
59

.3
4±

0.
70

58
.6

9±
0.

72
60

.0
7±

0.
71

52
.8

6±
0.

73
51

.8
5±

0.
72

52
.0

6±
0.

71
53

.3
2±

0.
65

52
.4

2±
0.

71
51

.3
4±

0.
71

Pr
ot

oN
et

(2
0-

w
ay

)
60

.9
1±

0.
70

60
.6

4±
0.

70
60

.3
7±

0.
70

59
.0

2±
0.

71
58

.8
3±

0.
70

60
.8

7±
0.

70
52

.8
0±

0.
72

52
.6

0±
0.

74
52

.3
1±

0.
73

51
.1

5±
0.

72
51

.3
3±

0.
72

52
.6

1±
0.

72

R
el

at
io

n
N

et
(C

E
)

62
.7

8±
0.

70
61

.3
9±

0.
69

62
.3

5±
0.

70
58

.8
0±

0.
71

57
.9

3±
0.

72
61

.3
5±

0.
69

54
.3

2±
0.

68
54

.4
1±

0.
71

52
.1

3±
0.

65
51

.3
0±

0.
65

49
.9

0±
0.

62
52

.7
6±

0.
67

D
K

T
58

.0
9±

0.
69

57
.5

9±
0.

68
57

.8
1±

0.
67

56
.9

9±
0.

67
55

.9
1±

0.
67

57
.6

4±
0.

68
54

.6
2±

0.
71

54
.1

9±
0.

71
54

.8
6±

0.
72

53
.9

5±
0.

71
54

.4
4±

0.
71

54
.0

5±
0.

72

Si
m

pl
eS

ho
t

59
.5

5±
0.

72
59

.7
8±

0.
71

58
.7

4±
0.

72
58

.8
6±

0.
72

58
.8

9±
0.

71
58

.6
0±

0.
71

53
.1

6±
0.

71
53

.4
6±

0.
71

52
.8

8±
0.

72
52

.9
0±

0.
70

52
.8

7±
0.

71
52

.5
7±

0.
72

M
A

M
L

54
.4

3±
0.

69
55

.1
4±

0.
72

54
.9

7±
0.

73
55

.3
7±

0.
72

54
.3

0±
0.

70
55

.6
5±

0.
72

53
.4

6±
0.

67
53

.2
6±

0.
70

55
.1

4±
0.

67
53

.6
5±

0.
69

53
.9

6±
0.

69
53

.1
1±

0.
70

Pr
ot

oM
A

M
L

51
.3

1±
0.

72
54

.5
7±

0.
69

45
.9

4±
0.

73
54

.3
9±

0.
71

53
.5

6±
0.

71
54

.6
0±

0.
69

48
.5

2±
0.

72
51

.2
5±

0.
69

45
.2

7±
0.

70
51

.5
5±

0.
68

51
.6

4±
0.

67
51

.2
9±

0.
68

30

	Introduction
	Related Work
	Class Imbalance
	Few-Shot Learning
	Imbalance in Few-Shot and Meta Learning

	Methodology
	Standard FSL
	Class-Imbalanced FSL
	Class-Imbalanced Meta-Dataset
	Rebalancing Techniques and Strategies

	Experiments
	Setup
	Class Imbalanced Support Set
	Class Imbalanced Meta-Dataset

	Discussion
	Conclusion
	Implementation Details
	Datasets
	Training Procedure.
	Backbone Architectures
	FSL Methods and Baselines
	Class Imbalance Techniques and Strategies

	Verification of Implementation
	Breakdown of Results
	Top-50 performing models on 1-9shot linear
	Random 1-29shot and 1-49shot tasks
	Backbone Experiments
	Precision and Recall Tables
	Imbalanced Reduced Meta-Training Dataset

	Additional Experiments
	Additional Imbalance Strategies
	BTAML
	Analysis of Samples Per Class in Meta-Training Dataset

	Full Results for Main Experiments

