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Abstract

We study the limits and capability of public-data assisted differentially pri-
vate (PA-DP) algorithms. Specifically, we focus on the problem of stochastic
convex optimization (SCO) with either labeled or unlabeled public data. For
complete/labeled public data, we show that any (ε, δ)-PA-DP has excess risk
Ω̃
(

min
{

1√
npub

, 1√
n

+
√
d

nε

})
, where d is the dimension, npub is the number of

public samples, npriv is the number of private samples, and n = npub + npriv.
These lower bounds are established via our new lower bounds for PA-DP mean
estimation, which are of a similar form. Up to constant factors, these lower bounds
show that the simple strategy of either treating all data as private or discarding the
private data, is optimal. We also study PA-DP supervised learning with unlabeled
public samples. In contrast to our previous result, we here show novel methods
for leveraging public data in private supervised learning. For generalized linear
models (GLM) with unlabeled public data, we show an efficient algorithm which,
given Õ(nprivε) unlabeled public samples, achieves the dimension independent rate
Õ
(

1√
npriv

+ 1√
nprivε

)
. We develop new lower bounds for this setting which shows

that this rate cannot be improved with more public samples, and any fewer public
samples leads to a worse rate. Finally, we provide extensions of this result to
general hypothesis classes with finite fat-shattering dimension with applications to
neural networks and non-Euclidean geometries.
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1 Introduction

The framework of differential privacy has become the primary standard for protecting individual
privacy in data analysis and machine learning. Unfortunately, this rigorous framework has also been
shown to lead to worse performance on such tasks both empirically and in theory [BST14, PVX+23].
However, it is often the case that, in addition to a collection of privacy-sensitive data points, analysts
have access to a pool of public data, for which guaranteeing privacy protections is not required. This
can happen, for example, when consumers deem their own data non-sensitive and opt-in to sell this
data to a company. This has motivated a long line of work analyzing how public data can be leveraged
in tandem with private data to provide better utility [BNS13, ABM19, BCM+20, ZWB21, BKS22,
AGM+22, NMT+23]. In machine learning. for example, two commonly proposed strategies are
public pretraining and using public data to identify gradient subspaces [ZWB21, KDRT21]. Public
pretraining, in particular, has proven effective in practice [YNB+22a, BWZK22], and prior work has
even identified a specific problem instance where public and private data used in tandem leads to better
rates than is possible using only the public or private datasets in isolation [GHN+23]. Despite this
surge of work, theory has struggled to show that public data leads to fundamental rate improvements
more generally. Recent work has even shown that, for the problem of pure PA-DP stochastic convex
optimization, a small amount of public data, npub ≤ nε/d, leads to no rate improvement, where
n = npub + npriv and npriv is the number of private samples [LLHR23].

One particularly important version of this problem is in supervised learning when the public data is
unlabeled. This setting has found importance in medical domains and deep learning more generally
[LW19, SCZ+20, PAE+17]. Notably, unlabeled data is much less time intensive to collect than
labeled data. Due to this fact, and the fact that the unlabeled public data does not contain the same
kind of information contained in the private data, the regime npub = Ω(npriv) is meaningful both in
theory and in practice. We also note this setting is a stronger (in terms of privacy) version of the
label-private setting, where only the labels of the dataset are considered private [CH11, BNS13].

Motivated by the importance of these settings and the lack of existing theory for them in stochastic
optimization, we study fundamental limitations and applications of public data in (ε, δ)-PA-DP
stochastic optimization. In the case where the public data is complete/labeled, we show that the
application of public data is fundamentally limited. We then contrast this result with new results in
the unlabeled public data setting. In this setting, we provide new results for GLMs, and extend these
results to more general hypothesis classes, with finite fat-shattering dimension, and non-Euclidean
geometries.

1.1 Our Contributions
We outline our primary contributions in the following.

Limits of Private Stochastic Convex Optimization with Public Data. First, we show a tight lower
bound for the problem of differentially-private stochastic convex optimization (DP-SCO) assisted
with complete public data, that is, the public data and private data have the same number of features
(and labels when applicable). Specifically, we show a lower bound of Ω

(
min

{
1√
npub

, 1√
n

+
√
d

nε

})
on the excess population risk for this problem. When d ≥ nε and npub ≤ n

log(1/δ) , we further

improve this lower bound to Ω
(

min
{

1√
npub

, 1√
n

+

√
d log(1/δ)

nε

})
. This lower bound is matched

by the simple upper bound strategy which either discards the private data entirely and outputs the
public mean or simply treats all data-points as private. Barring constant factors, this shows more
sophisticated attempts at leveraging public data will yield no benefit. These results also hold even for
generalized linear models. Our results are based on new results we establish for DP mean estimation
with public data, and a reduction of mean estimation to SCO. We note that previous work [LLHR23],
on this problem either focused on the pure PA-DP case when npub ≤ nε/d, or, in the approximate
PA-DP case, did not obtain the dimension dependence. Our mean estimation lower bound uses a
novel analysis of fingerprinting codes [BUV14], and our SCO reduction further builds on ideas from
[BST14, CWZ21]. We also show that, when d ≥ nε, our lower bounds for approximate PA-DP SCO
directly imply a tight lower bound for pure PA-DP.

Private Supervised Learning with Unlabeled Public Data. While the previously discussed results
show there is no hope for leveraging public data in “interesting” ways, even for GLMs, they do not
preclude settings where the public data is less informative. In particular, in the setting where the
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public data is unlabeled, it makes sense to even consider npub ≥ npriv. In this setting, we provide the
following results.

• For (Euclidean) GLMs we develop an efficient algorithm which, given Õ(nprivε) unlabeled public
data points, achieves the dimension independent rate Õ

(
1√
npriv

+ 1√
nprivε

)
. We obtain this result via

a dimensionality reduction procedure of the private feature vectors using the public data, and then
running an efficient private algorithm in the lower dimensional space. The key idea is that public
data can be used to identify a low dimensional subspace, which under the appropriate metric acts
as a cover for the higher dimensional space. We elucidate the tightness of our upper bound by
proving two new lower bounds which show that access to a greater number of unlabeled public
samples cannot improve this rate, and that any fewer public samples lead to a worse rate. While
dimension independent rates for the GLMs have previously been developed in the unconstrained
setting [SSTT21, ABG+22], in the constrained setting which we study, dependence on dimension
is known to be unavoidable even for GLMs if no public data is available [BST14]. Our result thus
allows us to bypass these limitations.

• By observing that the key requirement in our GLM result is the construction of an appropriate
cover, we extend this result to general hypothesis classes with bounded fat-shattering dimension.
In the non-private setting, it is known that finiteness of fat-shattering dimension characterizes
learnability of real-valued predictors with scale-sensitive losses [BLW94, ABDCBH97]. In the
private setting, such a result is not known, and is in fact impossible in the proper learning
setting. This follows from the fact that norm bounded linear predictors, regardless of their
(ambient) dimension d, have the same fat-shattering dimension [SST10]. However, it is known
that they are not learnable privately in high dimensions d ≥ (nε)2 [BST14]. In contrast, in the
PA-DP setting, we show that it is possible to properly learn such classes with a rate of roughly
O
(
Rnpriv(H) + infα>0

(
fatα(H)
nprivε

+ α
))

, where Rnpriv(H) denotes the Rademacher complexity of
H and fatα(H) denotes its fat-shattering dimension at scale α (see Section 2 for preliminaries).
• As applications of our result for hypothesis classes with bounded fat-shattering dimension, we

obtain guarantees for learning feed-forward neural networks and non-Euclidean GLMs. In par-
ticular, for depth M feed-forward neural networks with weights bounded as ‖Wj‖F ≤ Rj
and 1-Lipschitz positive homogeneous activation, we achieve an excess risk bound of essen-

tially Õ

(
√
M

∏M
j=1 Rj√
npriv

+

(
M(

∏M
j=1 Rj)

2

nprivε

)1/3
)

. For non-Euclidean GLMs, our guarantees are

dimension-independent which is not known to be achievable, as of yet, even in the unconstrained
setting with no public data (unlike Euclidean GLMs).

1.2 Related Work
With regards to labeled public data, the most directly related work to ours is the recent work of
[LLHR23]. This work proves a lower bound of Ω

(
min

{
1√
npub

, 1√
n

+ 1
nε

})
for approximate PA-DP

mean-estimation/SCO. We note that our results for approximate PA-DP crucially obtain a dependence
on d that is the key “price” paid for privacy in this setting. [LLHR23] also show a lower bound of
Ω
(

min
{

1√
npub

, 1√
n

+ d
nε

})
on a pure PA-DP mean estimation/SCO, but this result only holds when

d ≤ nε
npub

. As such, their result is orthogonal to our result in the pure PA-DP setting, which operates
in the regime d ≥ nε. In both cases, our proof technique is fundamentally different than theirs.3
Tangentially, [BKS22] showed a small amount of public data is useful in pure-DP mean estimation
when the range parameters on the data are unknown.

An important setting where public data is shown to be useful is PAC learning. Non-privately, it is
known that the finiteness of VC dimension characterizes learnability [VC71, BEHW89]. However,
under DP, it is impossible to PAC learn even the class of thresholds, which has VC dimension of one
[BNS13]. The works of [BNS13, BTGT18, ABM19] showed that given access to a small unlabelled
public data, it is possible to go beyond this limitation and privately learn VC classes, essentially by
reducing a hypothesis class with finite VC dimension to a finite hypothesis class

3 We note that concurrently and independently, version 2 of [LLHR23], [LLHR24], obtained a lower bound
of Ω

(
min

{
1√
npub

, 1√
n

+
√
d

nε

})
, but their lower bound is limited to symmetric procedures.
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A number of works have studied the impact of public data in applied settings as well. A common
technique is to use public data to reduce the problem dimension in some way [ZWB21, YZCL21,
PHYS24]. The work of [GHN+23] identified a specific problem instance which supports the method
of public pretraining commonly used in practice.

With regards to unlabelled public data, there are several existing works. Transfer learning is a common
approach in this setting. Besides the benefits in PAC learning, this setting also has applications in
deep learning, where (empirically) unlabeled public data has been used to obtain performance
improvements [PAE+17, PSM+18]. Unlabeled public data has also yielded impressive results used
for pre-training large language models [LTLH22, YNB+22b]. We also remark that, in practice, it
is reasonable to expect the private and public datasets to come from slightly different distributions.
Accounting for this distribution shift has also been the study of several recent works [BKS22,
BDBC+23]. However, in this work we focus on first characterizing the more fundamental problem
where the public and private datasets are drawn i.i.d. from the same distribution.

2 Preliminaries
Here, we describe the concepts and assumptions used in the rest of this paper. In this work, ‖ · ‖
always denotes the `2 norm unless stated otherwise.

Public-Data Assisted Differential Privacy. We first present the traditional notion of differential
privacy (DP). Let n, d ∈ N and X be some data domain. When no public data is present, we say that
an algorithm A satisfies (ε, δ)-differential privacy (DP) if for all datasets S and S′ differing in one
data point and all events E in the range of A, P [A(S) ∈ E ] ≤ eεP [A(S′) ∈ E ] + δ [DMNS06].

In our work, we denote the number of public samples in the dataset, S = (Spub, Spriv) ∈ Xn, as npub
and the number of private samples as npriv, such that n = npub + npriv. In keeping with previous work
[BNS13, BCM+20], we define public data assisted differentially private algorithms in the following
way 4.

Definition 1 (PA-DP). An algorithm A is (ε, δ) public-data assisted differentially private (PA-
DP) algorithm with public sample size npub and private sample size npriv if for any public dataset
Spub ∈ Xnpub , and any pair of private datasets Spriv, S

′
priv ∈ Xnpriv differing in at most one entry, it

holds for any event E that P [A(Spub, Spriv) ∈ E ] ≤ eεP[A(Spub, S
′
priv) ∈ E ] + δ. When δ = 0, we

refer to this notion as pure PA-DP, denoted as ε-PA-DP.

Stochastic Convex Optimization Let D be a distribution supported on X . Given some constraint
set W ⊆ Rd of diameter at most D, and a G Lipschitz convex loss ` : W × X → R, we are
interested in minimizing the population loss, L(w;D) = E

x∼D
[`(w;x)]. Denote the minimizer as

w∗ = minw∈W {L(w;D)}. We evaluate the quality of the approximate solution, w, via the excess
risk, L(w;D) − L(w∗;D). Specifically, we are interested in PA-DP algorithms which minimizes
this quantity when given Spub, Spriv

i.i.d.∼ D. For a datset S we also define the empirical loss
L̂(w;S) = 1

|S|
∑
x∈S `(w;x).

Supervised Learning and Generalized Linear Models (GLMs) In the supervised learning setting,
in addition to the feature space X , we define the label space Y . We here let D be a joint probability
distribution over X × Y and DX and DY denote the respective marginal distributions. LetH ⊆ RX
be a hypothesis class of real-valued predictors, and let fatα(H) denote its fat shattering dimension at
scale α. Consider the loss function ` : H×X × Y → R, such that `(h;x, y) = φy(h(x)) for some
function φy. We assume that the map φy : R→ R is G-Lipschitz for all y ∈ Y and is B-bounded.
Further, we assume that supx∈X |h(x)| ≤ R and define supx∈X ‖x‖ = ‖X‖.
GLMs are a special case of supervised learning setting where the hypothesis class is that of linear
predictors, H = W ⊆ Rd, over X ⊆ Rd, and h(x) = w>x. We refer to the public dataset of
unlabeled feature vectors as Xpub.

Covering numbers, fat-shattering and Rademacher Complexity Given X = (x1, x2, · · · , xm)
the `p distance between two hypothesis h1, h2 ∈ H with respect to the empirical measure over X , is

defined as, ‖h1 − h2‖p,X =
(

1
m

∑
x∈X |h1(x)− h2(x)|p

)1/p
. Similarly, the distance with respect

4The term semi-DP algorithm has also been used in some works.
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to the population, is given by ‖h1 − h2‖p,DX = (Ex∼DX |h1(x)− h2(x)|p)1/p. The covering
number ofH at scale α > 0 and given dataset X , denoted as Np(H, α,X) is the size of the minimal
set of hypothesis, H̃, such that for any h ∈ H there exists h̃ with ‖h − h̃‖p,X ≤ α. We define
Np(H, α,m) = supX:|X|=mNp(H, α,X), the covering number with respect to all datasets of size
m. We define fat-shattering dimension below.
Definition 2. [BLW94] LetH ⊆ RX and α > 0. We say thatH α-shatters X = {x1, x2, . . . , xm}
if supr∈Rm miny∈{−1,1}m suph∈Hmini∈[m] yi(h(xi) − ri) ≥ α. The fat-shattering dimension,
fatα(H), is the size of the largest α-shattered set.

We define Rm(H), the worst-case Rademacher complexity of H with respect to m data points,
as Rm(H) = supX:|X|=m Eσi suph∈H

1
m

∑m
i=1 σih(xi). An important example is that of norm-

bounded linear predictorsH = {w : x 7→ 〈w, x〉 : ‖w‖ ≤ D} over X = {x : ‖x‖ ≤ ‖X‖}. Herein,
fatα(H) = Θ

(
D2‖X‖2
α2

)
and Rm(H) = Θ

(
D‖X‖√

m

)
[KST08, SST10].

3 Private Stochastic Convex Optimization with Labeled Public Data

In this section, we present our lower bounds for private stochastic convex optimization with public
data. When interpreting the following results, it is helpful to note that in the nontrivial regime,
npub = Θ(n) and npub = o(n), although our results hold regardless. Further, recall that an upper

bound for this problem of O
(
Rmin

{
1√
npub

, 1√
n

+

√
d log(1/δ)

nε

})
can be obtained by simply either

applying an optimal SCO algorithm to only the public data (and discarding the private data) or
applying an optimal DP-SCO algorithm and treating the entire dataset as private [BFTGT19]. As we
will see, this strategy is essentially optimal.

3.1 Lower Bound for Stochastic Convex Optimization

We start by stating our lower bound for public-data assisted differentially private SCO.
Theorem 1. Let δ ≤ 1

16nd , ε ≤ 1, and d be larger than some universal constant. For
any (ε, δ)-PA-DP algorithm, there exists a distribution D, and a G-Lipschitz loss such that
E
[
L(A(Spub, Spriv);D)− min

w:‖w‖≤D
{L(w;D)}

]
= Ω (GD ·Ψ(npub, n, d, ε, δ)), where for some uni-

versal constant c,

Ψ(npub, n, d, ε, δ) =

min

{
1√
npub

, 1√
n

+

√
d log(1/δ)

nε

}
, d ≥ cnε, npub ≤ nε

c log(1/[
√
ndδ])

min
{

1√
npub

, 1√
n

+
√
d

nε

}
, else

The function Ψ is defined to avoid repetitive notation in the rest of this section. Barring the mild
restriction on npub, even though the

√
log (1/δ) term is only obtained when d ≥ nε, the “aggregate”

lower bound is tight for all d /∈ [ nε2

log(1/δ) , nε] since when d ≤ nε2

log(1/δ) the non-private 1√
n

lower
bound dominates. It is also pertinent to our results in Section 4 that the problem construction used to
achieve this lower bound is a convex GLM, and as a result this lower bound holds even for GLMs.

Finally, similar statements can be made about strongly convex optimization. We again provide just
one such statement here.
Theorem 2. Let δ ≤ 1

16nd , ε ≤ 1. For any (ε, δ)-PA-DP algorithm there exists a distribution D,
λ-strongly convex and G-Lipschitz loss such that

E
[
L(A(Spub, Spriv);D)− min

w:‖w‖≤D
{L(w;D)}

]
= Ω

(
G2

λ Ψ2(npub, n, ε, δ)
)

.

The crux of the proofs for both the above results lies in establishing new mean estimation lower
bounds for PA-DP mean estimation, which we give in Appendix B.1. These mean estimation lower
bound use a novel application of a construction known as fingerprinting codes. In particular, the
introduction of public data introduces significant challenges in the traditional analysis of fingerprinting
codes. As these challenges are more technical in nature, we defer their discussion to Appendix B.2.
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After establishing the mean estimation lower bounds, we can adapt the reductions first used in
[BST14] that show mean estimation lower bounds can be used to provide lower bounds for risk
minimization without public data. Full proofs for the above claims, and in particular details for the
above reductions, are found in Appendix B.3.

Lower Bound for Pure DP Case. While not the primary focus of this work, the previous lower
bound directly leads to a lower bound for pure PA-DP SCO. Since any ε-DP algorithm is (ε, δ)-DP
for any δ > 0, we can use the above theorem to obtain a non-trivial lower bound for the pure DP case
by setting δ small. Specifically, by setting δ such that log (1/δ) = nε

1202npub
, one immediately obtains

a lower bound of Ω
(

min{ 1√
npub

,
√
d√

npub·nε}
)

for d large enough. Simplifying this expression yields
the following.

Corollary 1. Let d ≥ cnε for a constant c, andA be an ε-PA-DP algorithm. There exist a distribution
D and a G-Lipschitz loss such that E

[
L(A(Spub, Spriv);D)− min

w:‖w‖≤D
{L(w;D)}

]
= Ω

(
GD√
npub

)
.

The known O
(
GDmin

{
1√
npub

, 1√
n

+ d
nε

})
upper bound for this problem shows that this bound is

tight (in the regime in which it holds). Essentially, this bound states that when d ≥ nε, the public
dataset is not useful (at least asymptotically). Previously [LLHR23, Theorem 31] established that
when d ≤ nε/npub, a tight lower bound of Ω

(
GD

(
d
nε + 1√

n

))
holds, effectively showing that in

this regime the public dataset is not useful5. We leave the remaining regime where d ∈ ( nε
npub

, nε) as
an interesting open problem for future work. Finally, we note that similar statements can be made
about strongly convex losses using Theorem 2.

4 Private Supervised Learning with Unlabeled Public Data

In this section, we consider supervised learning with real-valued predictors given labeled private
data and unlabeled public data. Our results show that, in this setting, it is possible to go beyond the
limitations established in the prior section.

4.1 Efficient PA-DP learning of Convex Generalized Linear Models

We start with learning linear predictors with convex loses a.k.a. convex generalized learning models.
We propose Algorithm 1, which uses the public unlabeled data to perform dimensionality reduction
of the private labeled feature vectors. In the following, we use span to denote the span of a set of
vectors and dim to denote the dimension of a subspace. The dataset of public unlabeled feature
vectors is denote as Xpub. Our algorithm projects the private feature vectors onto the subspace
spanning W ∩ span(Xpub) to get dim(span(Xpub) ∩W)-dimensional representation of the private
feature vectors. It then reparametrizes the loss function so that its domain is dim(span(Spub) ∩W)-
dimensional and applies a private subroutine in the lower dimensional space. The output of the
subroutine is then embedded back in Rd. Algorithms similar to Algorithm 1 have appeared in the
literature (e.g. [PHYS24]). We emphasize that our key contribution is the formal analysis of this
technique and the fact that we provide tight upper and lower bounds while simultaneously avoiding
many of the strong assumptions seen in previous work, such as large margin assumptions.

Algorithm 1 Efficient PA-DP learning of GLMs with unlabeled public data
Input: Private labeled dataset Spriv, public unlabeled dataset Xpub, privacy parameters ε, δ > 0.

1: Let U ∈ Rd×dim(W∩span(Xpub)) denote the orthogonal projection onto span(Xpub) ∩W .
2: Define S̃priv =

{
(U>xi, yi)

}npriv

i=1
and let W̃ =

{
U>w : w ∈ W

}
.

3: Apply (ε, δ)-DP subroutine, Ã, on loss function w 7→ φy(〈w, x〉) with dataset S̃priv over the
constraint set W̃ , to get w̃ ∈ Rdim(W∩span(Spub)).

Output: ŵ = Uw̃.

5This claim is based on a simplification of their theorem statement. Specifically, because npub ≤ nε/d, which

also implies d ≤ nε, their lower bound Ω
(
Rmin

{
1√
npub

, d
nε

+ 1√
n

})
simplifies.
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Our main result for convex Lipschitz losses is the following.

Theorem 3. Let ε > 0, δ > 0 and ε ≤ log (1/δ). For a G-Lipschitz, B-bounded convex loss
function, Algorithm 1 satisfies (ε, δ)-PA-DP. If the private subroutine Ã guarantees the following,
with probability at least 1− β,

L̂(Ã(S̃priv); S̃priv)− min
w∈W̃

L̂(w; S̃priv) = O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (1/β)

nprivε

))
(1)

then with npub = Õ
(

nprivε

(log(2/β)+log(1/δ))1/2

)
, with probability at least 1− β, L(ŵ;D)−L(w∗;D) is

O

(
GD ‖X‖

(√
log (4/β)
√
npriv

+
(log (2/β) + log (1/δ))

1/4

√
nprivε

)
+
B
√

log (4/β)
√
npriv

)
.

We note that DP algorithms such as projected noisy SGD [BST14] and the regularized exponential
mechanism [GLL22], both of which can be implemented efficiently, are can be used to achieve (1),
since the projected problem is at most npub dimensional.

The above result shows that in the usual regime of ε = Θ(1), there is no price of privacy, thereby
obtaining the non-private rate of O

(
1√
npriv

)
. We contrast this with the rate of O

(
1√
npriv

+
√
d

nprivε

)
,

achievable without public data. Our result is better when d ≥ nprivε, which is the interesting regime
since herein the private error dominates the non-private error. Further, our lower bound (Theorem 4
below) shows that this is the non-trivial regime (for any ε = O(1)), since otherwise, even with
unlimited public data, the optimal rate is achieved without using any of it. We also note that the above
rate is achievable without public data, but in the unconstrained setting where the output ŵ can have
very large norm and so may lie outsideW [ABG+22].

The proof of the result primarily follows from the more general result with fat-shattering hypothesis
classes (Theorem 7). We provide the key ideas as well as some details pertaining to linear predictors
in Section 4.2 after Theorem 7. The full proof of this result is deferred to Appendix C.

Lower Bounds. The above rate as well as the number of public samples used are nearly-optimal. The
first claim is due to the following result, which gives a lower bound on excess risk of DP algorithms
under full knowledge of the marginal distribution, for Lipschitz GLMs. As unlabeled public data
can only reveal information about the marginal distribution, this shows that further unlabeled public
samples cannot hope to improve the rate we give in Theorem 3.

Theorem 4. Let ε ≤ 1, δ ≤ ε and A be an (ε, δ)-DP algorithm. There exists a G-Lipschitz
convex GLM loss function, and joint distribution D such that given a dataset S comprising n
i.i.d. samples from D and full knowledge of the marginal distribution DX , we have the following:
EA,S

[
L(A(S);D)−minw:‖w‖≤D L(w;D)

]
= Ω

(
GD ‖X‖

(
1√
n

+ min
{

1√
nε
,
√
d

nε

}))
.

We note that the bound with
√
d

nprivε
can be achieved without using any public data via standard results

[BFTGT19, ABG+22]. This result is largely a corollary of [ABG+22, Theorem 6]. We provide full
details in Appendix C.3.1.

To establish optimality of public sample complexity, we give the following lower bound which shows
that Ω̃(nprivε) samples are necessary to achieve the above rate. See Appendix C.3.2 for proof.
Theorem 5. Let npriv, npub, d ∈ N, ε ≤ 1, δ < 1

16dn and d = ω(nprivε). If there exists
an (ε, δ)-PA-DP algorithm A, which, for any G-Lispschitz convex GLM, achieves excess risk

E
[
L(A(Xpub, Spriv);D)−minw:‖w‖≤D L(w;D)

]
= O

(
GD ‖X‖

(
1√
npriv

+

√
log(1/δ)
√
nprivε

))
, for

Spriv ∼ Dnpriv and Xpub ∼ D
npub
X , then npub = Ω(

nprivε
log(1/δ) ).

Optimistic rates. We now consider additional assumptions that the loss function is non-negative and
H-smooth, such as in the case of linear regression where φy(a) = (a− y)2. This is a well-studied
setting [SST10] especially since it allows for obtaining optimistic rates: those that interpolate between
a slow worst-case rate and a faster rate under (near) realizability or interpolation conditions. The
main result is the following.
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Theorem 6. Let ε > 0, δ > 0 and ε ≤ log (1/δ). For a G-Lipschitz, B-bounded non-negative H-
smooth loss function, Algorithm 1 satisfies (ε, δ)-PA-DP. If the private subroutine Ã guarantees Equa-

tion (1) with probability at least 1−β, then with npub = Õ
(

(HD‖X‖)2/3(nprivε)
2/3

G2/3(log(1/δ))1/3 +
√
Hnprivε

√
L̂(ŵ∗;Spriv)

G
√

log(1/δ))

)
,

with probability at least 1− β,

L(ŵ;D)− L̂(ŵ∗;Spriv) = Õ

((√
HD ‖X‖
√
nprivε

+

√
B

npriv

)√
L̂(ŵ∗;Spriv) +

H1/4D ‖X‖
√
GL̂(ŵ∗;Spriv)

1/4

√
nprivε

)

+ Õ

(
GD ‖X‖
nprivε

+

(√
HD2 ‖X‖2G

nprivε

)2/3

+
H ‖X‖2D2

nprivε
+

B

npriv

)

where ŵ∗ is the minimizer of L̂ w.r.t Spriv and Õ hides poly(log (1/δ) , log (1/β)) terms.

A similar result as above can be obtained with L̂(ŵ∗;Spriv) replaced by L(w∗;D) above – see
Theorem 14 for the full theorem statement. This rate, in the worst-case, is essentially the same
as that of Theorem 3, which is Õ

(
1√
npriv

+ 1√
nprivε

)
. However, optimistically, when L(w∗;D) or

L̂(ŵ∗;Spriv) is small, we get a faster rate of Õ
(

1
npriv

+ 1
(nprivε)2/3

)
. We note that this is seemingly

weaker than what is known in the unconstrained setting, where [ABG+22] obtained a worst-case rate
of Õ

(
1√
npriv

+ 1
(nprivε)2/3

)
. We show that we can recover this faster rate under an extra assumption that

the global minimizer of the risk, lies in the constraint setW – note that this is trivially true in the
unconstrained setup; see Theorem 15 for the statement.

We note that projected noisy SGD [BST14] and the regularized exponential mechanism [GLL22],
both of which can be implemented efficiently, are possible choices for the private sub-routine Ã that
realize the above theorem statements.

4.2 PA-DP Supervised learning of Fat-Shattering Classes

In this section, we consider a general supervised learning setting with fat-shattering hypothesis classes
and potentially non-convex losses, with unlabeled public data. Our proposed algorithm is similar to
that of [ABM19], which uses the pubic unlabeled data to construct a small finite, yet representative,
subset of the hypothesis class. Our construction uses a cover of the hypothesis class with respect to
the `2 distance of predictions on the public data points. We then use the exponential mechanism to
privately select a hypothesis using the empirical loss on private data as the score function.

We note that we operate under the pure DP setting (as opposed to approximate DP). Our techniques
are based on selection which do not exhibit improved guarantees under approximate DP. Further, we
note that, without public data, with non-convex losses, there is no separation of optimal rates between
pure and approximate DP [GTU23].

Algorithm 2 Supervised private learning with public unlabeled data
Input: Datasets Xpub and Spriv, privacy parameter ε > 0, scale of cover α > 0, γ > 0.

1: Construct H̃, a minimal α-cover ofH, with respect to the following metric

‖h1 − h2‖2,Xpub
=

√√√√ 1

npub

∑
x∈Xpub

(h1(x)− h2(x))
2

2: Return ĥ sampled with probability p(h) ∝ exp
(
−γL̂(h;Spriv)

)
over h ∈ H̃

Our main result for the Lispchitz setting is the following.

Theorem 7. Algorithm 2 with γ = 2 min(B,GR)
nprivε

satisfies ε-PA-DP. For any α > 0 and npub =

O
(

max
(
R2 log(2/β)

α2 ,min
{
m : log3(m)R2

m(H) ≤ α2
}))

< ∞, with probability at least 1 − β,

we have L(ĥ;D)−min
h∈H

L(h;D) is at most
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2GRnpriv(H) +O

(
B
√

log (4/β)
√
npriv

)
+ Õ

(
min (B,GR)(fatcα(H) + log (4/β))

nprivε

)
+ 2Gα,

where c is an absolute constant.

Our result shows that the model of PA-DP with unlabeled public data allows for obtaining non-
trivial rates for supervised learning with any fat-shattering class, as is the case in the non-private
setting. Further, in many standard settings, such as that of (Euclidean) GLMs, the Rademacher
complexity is Rm(H) = O

(
1√
m

)
which implies that fatα(H) = O

(
1
α2

)
(see Theorem 9). In those

cases, our guarantee simplifies to essentially yield a rate of O
(
Rnpriv(H) + 1

(nprivε)1/3 + 1√
npriv

)
– see

Corollary 4 for the exact statement for GLMs.

Proof Idea. We briefly discuss some main ideas in the proof. The key is to show that if H̃ is a cover
of H with respect to the empirical distance on public feature vectors, ‖·‖2,Xpub

, then with enough
public feature vectors, it is also a cover with respect to the population distance ‖·‖2,DX . This is
captured in the following result.

Lemma 1. Let H̃ be a τ -cover of H with respect to ‖·‖2,Xpub
. For npub =

O
(

max
(
R2 log(1/β)

α2 ,min
{
m : log3(m)R2

m(H) ≤ α2
}) )

<∞, for every h ∈ H, with probability

at least 1− β, there exists h̃ ∈ H̃ such that ‖h− h̃‖2,DX ≤ α+ τ .

This result allows us to appropriately approximate a hypothesis class with enough public unlabeled
points. This approximation roughly translates to the same additive error in the final bound while
concurrently allowing for the use of the smaller finite hypothesis class H̃ of size |H̃| = Õ(fatτ (H)).

For linear predictors with convex losses, as in Theorem 3, we show that the span(Xpub) ∩W is a
valid 0-cover w.r.t. ‖ · ‖2,Xpub . However, the cover being continuous and convex allows application
of convex optimization techniques (as opposed to selection, as above), thereby obtaining stronger
results with efficient procedures. The above procedure yields optimistic rates for non-negative and
smooth losses; see Theorem 17 for details.

4.2.1 Application: Neural Networks

In this section, we instantiate our general result to give a guarantee for learning feed-forward neural
networks in the PA-DP setting. We use the result of [GRS18] but note that other results which give
bounds on the Rademacher complexity of neural networks, such as [BFT17, Sel23] can also be used.

We consider a depth M feed-forward neural network which implements the function x 7→
WM (σ(WM−1 . . . σ(W1x)) . . .). Here, W1,W2, . . . ,WM are the weight matrices and σ is a (non-
linear) activation function. We consider 1-Lipschtiz positive-homogeneous activation such as the
ReLU function, σ(z) = max(0, z), applied coordinate-wise. Our main result is the following.

Corollary 2. Let (Rj)
M
j=1 be a sequence of scalars and M ∈ N. In the setting of Theorem 7 with

X =
{
x ∈ Rd : ‖x‖ ≤ ‖X‖

}
and H being the class of depth M feed-forward neural networks,

with 1-Lipschitz positive-homogenous activation, and weight matrices, bounded as ‖Wj‖F ≤ Rj ,

with npub = Õ
(

(‖X‖ (
∏M
j=1Rj))

2/3(nprivε)
2/3M1/3 log (2/β)

)
, with probability at least 1 − β,

L(ĥ;D)−minh∈H L(h;D) is at most

O

(
G ‖X‖

√
M
∏M
j=1Rj√

npriv
+
B
√

log (4/β)
√
npriv

+
B log (4/β)

nprivε

)
+ Õ

(BG2M ‖X‖2 (
∏M
j=1Rj)

2

nprivε

)1/3
 .

We note that the above result has a polynomial dependence on the depthM , which is a consequence of
the (non-private) Rademacher complexity of [GRS18]. It is also possible to get fully size-independent
bounds by utilizing such existing results, however they require more stringent norm bounds on
the weight matrices [Sel23]. Further, a similar result follows for non-negative smooth losses from
[SST10], but we omit this extension for brevity.
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4.2.2 Application: Non-Euclidean GLMs

In the non-Euclidean GLM setting, we consider (X, ‖·‖) as a d dimensional (where d ∈ N ∪ {∞})
Banach space, and (W, ‖·‖∗) is its dual space. The feature vectors x are bounded as X =
{x ∈ X : ‖x‖ ≤ ‖X‖} andW ⊆ {w ∈W : ∆(w) ≤ Dr} where ∆ is a r-uniformly convex func-
tion6 with respect to ‖·‖∗. A canonical example is the (`p, `q)-setup [KST08, FGV17], wherein the
functions ∆(w) = log(d)

2 ‖w‖21+(1/ log(d)), ∆(w) = 1
2(p−1) ‖w‖

2
p and ∆(w) = 2p−2

p ‖w‖
p
p are 2, 2

and p-uniformly convex with respect to ‖·‖p for p = 1, 1 < p ≤ 2 and p ≥ 2 respectively.

The GLM loss function `(w;x, y) = φy(〈w, x〉) where 〈·, ·〉 : X ×W → R is a duality pairing. In

this case, the Rademacher complexity of linear functions, is bounded as O
(
D‖X‖
m1/r

)
, where s is the

conjugate of r i.e. 1
r + 1

s = 1 (see, e.g. [FGV17]). We obtain the following result by instantiating
Theorem 7 with the Rademacher complexity and fat-shattering dimension of non-Euclidean GLMs.

Corollary 3. In the setting of Theorem 7, together with X =
{
x ∈ Rd : ‖x‖ ≤ ‖X‖

}
and H =

{x 7→ 〈w, x〉 , x ∈ X ,∆(w) ≤ Dr} . Given npub = Õ
(
(nprivε)

r/(r+1) log (2/β)
)
, with probability

at least 1− β, L(ŵ;D)−minw∈W L(w;D) is at most

Õ

(
GD ‖X‖

(
1

npriv
1/r

+

√
log (4/β)
√
npriv

+
log (2/β)

(nprivε)
1
r+1

+
log (4/β)

nprivε

)
+
B
√

log (4/β)
√
npriv

)
.

The above yields guarantees for the special case of (`p, `q)-setup with r = max {2, p}. We remind
that in the (constrained) convex Euclidean GLM setting, our dimension-independent rate in Theorem 3,
with public unlabeled data recover the rates which were known to be achievable in the unconstrained
setting. Further the above rate for p = 1 case can be used to obtain guarantees for the polyhedral

setting with ‖w‖1 ≤ D constraint, resulting in a O
(√

log(d)
npriv

+
(

log(d)
nprivε

)1/3
)

rate. We note that

[BGM21] showed a rate of Õ
(√

log(d)
n +

√
log(d)√
nε

)
for this setting, with convex losses without

public data. Importantly, for the other cases, i.e. p > 1, p 6= 2, there are no such (nearly) dimension-
independent analogs of our result without public data, as of yet.
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A Additional Preliminaries

Theorem 8. [RS12, Theorem 12.7] ForH ⊆ [−R,R]X , m ∈ N, p ≥ 1, 0 < α ≤ R, we have that

N2(H, α,m) ≤
(

2R

α

)Cfatcα(H)

.

Further, for any τ ∈ (0, 1),

log (N∞(H, α,m)) ≤ C ′fat(H, c′τα) log

(
Rm

fat(H, c′τα)α

)
logτ

(
m

fat(H, c′τα)

)
,

where c, c′, C and C ′ are absolute constants.
Theorem 9. [SST10, Lemma A.3] For any hypothesis class H, any sample size m and any α >
Rm(H), we have that,

fatα(H) ≤ 4mRm(H)2

α2
.

Theorem 10. [GRS18, Theorem 1] Let M ∈ N and (Rj)
M
j=1 be a sequence of scalars. The

Rademacher complexity of the class of depth M neural networks with 1-Lipschitz, positive-
homogeneous activation function,H, with weights ‖Wj‖F ≤ Rj is bounded as,

Rm(H) ≤
‖X‖ (

√
2 log (2)M + 1)

∏M
j=1Rj√

m
.

Here ‖ · ‖F denotes the Frobenius norm.
Lemma 2. [DSS+15, Implied by Lemmas 5 and 14] Let f : {±1}n 7→ R and define g : [−1, 1]→ R
as g(p) = E

S∼Dnp
[f(S)], where Dp is as defined in Appendix B. Then for a, b ∈ R, b > a, and

µ ∼ Unif([a, b]),

E
µ,S

[
f(S) ·

∑
x∈S

(x− µ)]

]
= E

µ

[
g′(µ)(1− µ2)

]
= 1− E

µ

[
µ2
]

+ (g(b)− b)(1− b2)
1

|b− a|
− (g(a)− a)(1− a2)

1

|b− a|
+ 2E

µ
[(g(µ)− µ)µ] .

Lemma 3. [FS17, Lemma A.1] Fix µ, ε, δ,∆ ∈ R. Let X and Y be random variables supported
on [µ − ∆, µ + ∆]. Suppose that X and Y are (ε, δ)-indistinguishable, that is for any E ⊆ R,
e−ε (P [X ∈ E ]− δ) ≤ P [Y ∈ E ] ≤ eεP [X ∈ E ] + δ. Then

|E [X]− E [Y ] | ≤ (eε − 1)E [|X − µ|] + 2δ∆.

B Missing proofs from Section 3

B.1 Lower Bounds for Mean Estimation

As stated previously, our SCO result follows primarily from new lower bound for PA-DP mean
estimation. Here, we consider the setting where D is supported on the `2 ball of radius R > 0. We
define the mean of D as µ(D). Our lower bound for PA-DP mean estimation follows much the same
form as our SCO bound.
Theorem 11. Let δ ≤ 1

16nd , ε ≤ 1. For any (ε, δ)-PA-DP algorithm, there exists a distribution D
such that E [‖A(Spub, Spriv)− µ(D)‖] = Ω (R ·Ψ(npub, n, ε, δ)).

We present the full proof momentarily and provide a more detailed discussion on the challenges
of establishing this lower bound in Appendix B.2. We highlight key ideas here. As with many
other lower bounds in differential privacy, we leverage a construct known as fingerprinting codes
[BUV14, DSS+15]. A key aspect of our analysis is showing that fingerprinting distributions can be
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used to recover the optimal non-private lower bound for mean estimation. This allows us to create a
problem which is “hard” both privately and non-privately. The analysis works by first showing that
any sufficiently accurate algorithm must strongly correlate with the sampled datapoints. Next, we
show upper bounds on how strongly the output of the algorithm correlates with the sampled dataset.
The method for upper bounding this correlation varies depending on whether a given datapoint is
considered public or private. Combining these upper and lower bounds on correlation yields the
claimed result.

To obtain the
√

log (1/δ) factor term in the lower bound, we use similar ideas to those in [SU15,
CWZ21]. However, the introduction of public data leads to complications in prior methods. As such,
we show that by analyzing the correlation of the coordinate wise clipping of the algorithms output,
we are able to get bounds that appropriately scale with the accuracy.

Proof of Theorem 11 Before proceeding, we introduce the so-called fingerprinting distribution
which will be the basis of our hard instance for mean estimation [BUV14, DSS+15]. Towards this
end, for any vector µ ∈ [−1, 1]d we define Dµ as the product distribution where, for any j ∈ [d], a
sample has its j’th coordinate as 1 with probability (1+µj)/2 and as−1 with probability (1−µj)/2.
As shorthand, we denote R√

d
Dµ as the distribution which samples a vector from Dµ and then scales

it by R√
d

. For notational convenience, for a set E , we will also use Unif(E) to denote the uniform
distribution over elements of the set.

The theorem follows from two theorems which have different restrictions on the problem parameters.
In addition to the following two theorems, Theorem 11 incorporates the classic R√

n
statistical lower

bound that holds even non-privately. The first theorem we present holds for a larger range of
parameters but does not achieve the dependence on log (1/δ).

Theorem 12. Let ε > 0, δ ≤ 1
16n and A be an (ε, δ)-PA-DP algorithm. For any setting of

min
{ √

d
nprivε

, 1√
npub

}
≤M ≤ 1, if µ ∼ Unif([−M,M ]d) and (Spub, Spriv) ∼ R√

d
Dnµ it holds that

E
A,S,µ

[‖A(Spub, Spriv)− µ(D)‖] = Ω

(
Rmin

{
1

√
npub

,

√
d

n(eε − 1)

})
.

In application to Theorem 11, we use (eε − 1) ≤ 2ε whenever ε ≤ 1. The second theorem requires
d ≥ nε but has the benefit of scaling with log (1/δ).

Theorem 13. Let δ ≤ 1
3dn , ε ≤ 1, d ≥ 1202nε, and npub ≤ nε

1202 log(1/[
√
ndδ])

, and A an (ε, δ)-PA-

DP algorithm. Then there exists M > 0 such for µ ∼ Unif([−M,M ]d) and (Spriv, Spub) ∼ R√
d
Dnµ it

holds that

E
A,S,µ

[‖A(Spub, Spriv)− µ(D)‖] = Ω

(
Rmin

{
1

√
npub

,

√
d log (1/δ)

nε

})
.

A crucial part of the analysis is leveraging the so called fingerprinting lemma, which roughly states
that any accurate algorithm given a dataset sampled from Dµ must strongly correlate with vectors
in the dataset. Particularly pertinent to our analysis is achieving such a correlation even when the
components of the mean µ are much smaller than 1. Towards this end, we leverage the robust
distribution framework of [DSS+15] to achieve the following version of the fingerprinting lemma.
Lemma 4 (Fingerprinting Lemma). Let M ∈ [0, 1] and µ be sampled uniformly from [−M,M ]d.
Let A satisfy E

S∼Dnµ
[‖A(S)− µ‖] ≤ α (for any µ ∈ [−1, 1]d). Then one has

E
A,S,µ

[
n∑
i=1

〈A(S), xi − µ〉

]
≥ 2d

3
− α
√
d

M
− 2M

√
dα.

Proof. In the following we treat A as a deterministic function and bound E
S,µ

[
∑n
i=1 〈A(S), xi − µ〉].

This is sufficient to bound E
A,S,µ

[
∑n
i=1 〈A(S), xi − µ〉] for randomizedA, since the analysis holds for
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any function (i.e. the distribution does not depend on A). Further, we start with the one dimensional
case such that µ ∈ R. Define g(µ) = E

S∼Dnµ
[A(S)]. We start by applying results developed in

[DSS+15],

E
S,µ

[
A(S)

n∑
i=1

(xi − µ)

]
(i)
= E

µ

[
g′(µ)(1− µ2)

]
(ii)

≥ 1− E
[
µ2
]

+ 2E
µ

[(g(µ)− µ)µ]− |g(−M) +M |+ |g(M)−M |
2M

≥ 2/3 + 2E
µ

[(g(µ)− µ)µ]− |g(−M) +M |+ |g(M)−M |
2M

.

Above, (i) comes from [DSS+15, Lemma 5] and (ii) comes from [DSS+15, Lemma 14], which we
have collectively restated in Lemma 2. We now have

E
S,µ

[
A(S)

n∑
i=1

(xi − µ)

]
≥ 2/3 +

|g(−M) +M |+ |g(M)−M |
2M

+ 2E
µ

[(g(µ)− µ)µ]

≥ 2/3 +
|g(−M)−M |+ |g(M)−M |

2M
− 2E

µ
[|g(µ)− µ| · |µ|]

≥ 2/3−
|ES∼D−M [A(S)] +M |+ |ES∼DM [A(S)]−M |

2M

− 2ME
µ

[∣∣∣ E
S∼Dµ

[A(S)]− µ
∣∣∣] .

Above we use the fact that |µ| ≤M and the definition of g.

We can now extend the above analysis to higher dimensions. For µ ∈ Rd, the above holds for each
µj , j ∈ [d]. For convenience define M̄ = (M, . . . ,M) ∈ Rd. Summing over d dimensions we have

E
S,µ

[〈
A(S),

n∑
i=1

(xi − µ)

〉]

≥ 2d

3
− 1

2M

∥∥∥ E
S∼D−M̄

[A(S)] + M̄
∥∥∥

1
− 1

2M

∥∥∥ E
S∼DM̄

[A(S)]− M̄
∥∥∥

1
− 2ME

µ

[∥∥∥ E
S∼Dµ

[A(S)]− µ
∥∥∥

1

]
≥ 2d

3
− 1

2M
E

S∼D−M̄

[
‖A(S) + M̄‖1

]
− 1

2M
E

S∼DM̄

[
‖A(S)− M̄‖1

]
− 2M E

S,µ
[‖A(S)− µ‖1]

≥ 2d

3
−
√
d

2M
E

S∼D−M̄

[
‖A(S) + M̄‖2

]
−
√
d

2M
E

S∼DM̄

[
‖A(S)− M̄‖2

]
− 2
√
dM E

S,µ
[‖A(S)− µ‖2]

≥ 2d

3
− α
√
d

M
− 2M

√
dα.

This proves the claim.

We now turn towards proving Theorems 12 and 13. We start with the simpler proof of Theorem 12.

Proof of Theorem 12. For our proof we will use a dataset of vectors in {±1}d, and as such the `2
bound on the data is

√
d. The final result will follow from rescaling by R√

d
.

Let S = {x1, x2, . . . xn} = (Spub, Spriv) ∼ Dnµ be the concatenation of the public and private datasets.
We also define α = E [‖A(Spub, Spriv)− µ‖] for notational convenience.

Define the following statistics,

Zi = 〈A(Spub, Spriv)− µ, xi − µ〉
Z ′i = 〈A(Spub, S∼i)− µ, xi − µ〉 .
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where S∼i is the dataset formed by replacing i-th data point of Spriv with x′i ∼ Dµ. We have,

E
A,S,µ

[ n∑
i=1

Zi

]
= E

[ npub∑
i=1

Zi

]
+ E

[ n∑
i=npub+1

Zi

]
. (2)

The lower bound proceeds by providing upper and lower bounds on the above sum. We first have

E

[〈
A(Spub, Spriv)− µ,

npub∑
i=1

(xi − µ)

〉]
≤

√√√√E[‖A(Spub, Spriv)− µ‖2]E

∥∥∥∥∥
npub∑
i=1

(xi − µ)

∥∥∥∥∥
2

≤ α
√
dn.

where the first inequality used Cauchy-Schwartz.

For the second term in Equation (2), we utilize differential privacy. Specifically, [FS17, Lemma A.1],
restated in Lemma 3, gives that

E
[ n∑
i=npub+1

Zi

]
≤

n∑
i=npub+1

(
E[Z ′i] + 2(eε − 1)

√
Var(Z ′i) + 8δd

)
≤ 4npriv(eε − 1)α+ 8nprivδd.

Above we use that Var(Z ′i) ≤ 4α2 since ‖xi − µ‖∞ ≤ 4. Plugging the above two in Equation (2)
yields,

E
[ n∑
i=1

Zi

]
≤ (4npriv(eε − 1)α+ 8nprivδd) + α

√
dnpub.

We now use the fingerprinting lemma, Lemma 4, to lower bound the correlation. In this regard, note
E
S,µ

[〈µ,
∑n
i=1(xi − µ)〉] = 0. Thus

E
[ n∑
i=1

Zi

]
= E

[〈
A(Spub, Spriv),

n∑
i=1

xi − µ

〉]
≥ 2d

3
− α
√
d

2M
− 2M

√
dα.

Plugging the obtained upper bound on the left hand side gives us,

4npriv(eε − 1)α+ 8nprivδd+ α
√
dnpub ≥

2d

3
− α
√
d

M
− 2M

√
dα

=⇒ 4npriv(eε − 1)α+ α
√
dnpub ≥

d

6
− α
√
d

M
− 2M

√
dα

=⇒ α

(
4npriv(eε − 1) +

√
dnpub +

√
d

M
+ 2M

√
d

)
≥ d

6

=⇒ α ≥ 1

24
min

{
d

npriv(eε − 1)
,

√
d

√
npub

,M
√
d,

√
d

M

}

=⇒ α ≥ 1

24
min

{
d

npriv(eε − 1)
,

√
d

√
npub

,M
√
d

}
.

Above the first implication uses the assumption that δ ≤ 1
16npriv

. The last implication uses the fact

that M
√
d ≤

√
d

M since M ≤ 1. Rescaling by a R√
d

factor yields the bound

E
A,S,µ

[‖A(Spub, Spriv)− µ‖] ≥ R

24
min

{ √
d

npriv(eε − 1)
,

1
√
npub

,M

}
.

Observe that any setting of M ≥ min
{ √

d
nprivε

, 1√
npub

}
realizes the bound claimed in the theorem

statement.
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We now turn towards achieving a dependence on δ to prove Theorem 13. To do this, we leverage
the the idea of filling a dataset with copies of each fingerprinting code seen in previous work
[SU15, CWZ21]. However, in our case the introduction of public data makes this argument more
delicate and leads to modified techniques for upper bounding the correlation statistics. See our
discussion in Section B.2 for more details on why this is necessary.

Proof of Theorem 13. Let α = E [‖A(Spub, Spriv)− µ‖], α∗ = 1
125 min

{
d
√

log(1/δ)

nε ,
√

d
npub

}
and

assume by way of contradiction that α < α∗. Let k = 1
3ε log

(
1/[
√
dnδ]

)
. Let m = n

k . We set

M = 4√
d
(α∗ +

√
d
m ). Let µ ∼ Unif([−M,M ]d), Sz = {z1, ..., zm} ∼ Dµ. Sample Spriv, Spub ∼

Unif ({z1, ..., zm}) and denote the combined dataset as S = {x1, . . . , xn} = (Spub, Spriv). Note that
as in the proof of Theorem 12, we are starting by showing a lower bound for the case where the data
is drawn from Dµ instead of R√

d
Dµ, and will rescale at the end of the proof.

To prove our lower bound, we will provide upper and lower bounds on correlation statistics w.r.t. the
intermediate dataset Sz . We will also introduce a clipping procedure which helps better control the
upper bound on correlation. In this regard, for each j ∈ [m] define Zj = 〈bA(Spub, Spriv)cM , zj − µ〉,
where bvcM denotes the operation of clipping every element of v to [−M,M ]. In the following, we
will provide upper and lower bounds on E

[∑m
j=1 Zi

]
and use this to show that α ≤ α∗ implies a

contradiction.

Lower Bound on Correlation We now want to lower bound E
[∑m

j=1 Zj

]
. Towards this end, we

can apply fingerprinting lemma, Lemma 4, to the algorithm which outputs the clipping. For α̂ > 0, if
E
A,S

[‖bA(Spub, Spriv)cM − µ‖] ≤ α̂, then this yields,

E
A,S,µ

 m∑
j=1

Zi

 ≥ 2d

3
− α̂
√
d

M
− 2M

√
dα̂.

Now observe that

E [‖bA(Spub, Spriv)cM − µ‖] ≤ E [‖A(Spub, Spriv)− µ‖]

≤ E

[∥∥∥A(Spub, Spriv)− 1

m

∑
z∈Sz

z
∥∥∥]+ E

[∥∥∥ 1

m

∑
z∈Sz

z − µ
∥∥∥]

≤ α∗ +

√
d

m

In the last step we use the assumed contradiction that α ≤ α∗. Thus it suffices to set α̂ = α∗ +
√

d
m .

Now by the setting M = 4√
d
α̂ and α̂ ≤

√
d

12 , Eqn. (3) implies

E
A,S,µ

 m∑
j=1

Zi

 ≥ 2d

3
− d

4
− 8α̂2 ≥ d

3
. (3)

Bounding the Number of Copies in the Dataset We now turn towards the more involved process
of upper bounding E

S,µ
[
∑n
i=1 Zi]. To do this however, it will be first helpful to show that no datapoint

in Sz is copied into S too many times.
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The first step is showing that no point is copied too many times into S. For j ∈ [m], let Zj =
{i ∈ [n] : xi = zj}. Observe

P [∃j ∈ [m] : |Zj | ≥ (τ + 1)k] ≤
m∑
j=1

P [|Zj | ≥ (τ + 1)k]

≤ m exp

(
− 3τ2n

4m(1− 1/n)

)
≤ m exp

(
−3τ2 log (1/δ)

8ε

)
.

The second inequality follows from Bernstein’s inequality for the sum of n Bernoulli random variables

with mean 1/m and the fact that E [|Zj |] = n
m = k. Set τ =

√
8ε log(dm)
3 log(1/δ) and note since ε ≤ 1 and

log (dm) ≤ log (dn) ≤ log (1/δ) (since δ ≤ 1
dn ), we have that τ ≤ 2. Thus, denoting E as the event

where no point in Sz is copied into S more than 3k times, we establish

P [Ec] = P [∃j ∈ [m] : |Zj | ≥ 3k] ≤ 1

d
. (4)

Upper Bound on Correlation Under our model, we assume that A must treat all data in Spriv as
private. We will in fact only need to use the privacy property for a subset of samples in Spriv to prove
the correlation upper bound. Let Ipriv ⊆ [m] denote the set of indices s.t. j ∈ Ipriv if every copy of zj
sampled into the overall dataset is in the private dataset Spriv; that is Ipriv = {j : (∀x ∈ Spub) x 6= zj}.
Let Ipub = [m] \ Ipriv. Observe that Ipriv may contain indices for points in Sz which are never
sampled into S. We will see this does not affect our analysis.

We have

E

 m∑
j=1

Zi

 = E

 ∑
j∈Ipriv

〈bA(Spub, Spriv)cM , zj − µ〉+
∑
j∈Ipub

〈bA(Spub, Spriv)cM , zj − µ〉

 .
The first term on the RHS can be bounded using the privacy property ofA. For any fixed j ∈ Ipriv, let
S′priv denote the dataset which replaces every instance of zj in Spriv with a copied fresh sample from
Dµ. By the above analysis, conditional on the event E, at most 3k such points need to be replaced
conditional on the event E. Since A(Spub, S

′
priv) is independent of zj , by the Chernoff Hoeffding

bound,

P
[〈
bA(Spub, S

′
priv)cM , zj − µ

〉
≥ τ | E

]
≤ exp

(
− τ2

8dM2

)
. (5)

Since A satisfies k-group privacy with parameters ε̂ ≤ 3kε and δ̂ = e3kεδ, we have

P [〈bA(Spub, Spriv)cM , zj − µ〉 ≥ τ | E] ≤ exp

(
ε̂− τ2

2dM2

)
+ δ̂.

Setting τ = M
√
d log (1/δ), we obtain

E [Zj | E] ≤ τ + 2dP [Zj ≥ τ | E]

≤M
√
d log (1/δ) + 2deε̂δ + δ̂

≤M
√
d log (1/δ) + 3de3kεδ ≤ 4M

√
d log (1/δ).

The last inequality comes from the setting of k = 1
3ε log

(
1√
dnδ

)
and the fact that M ≥ 1√

n
.

Repeating this argument for each j ∈ I we get

E
[ ∑
j∈Ipriv

Zj

]
≤ E

[ ∑
j∈Ipriv

Zj

∣∣∣ E]P [E] +mMdP [Ec] ≤ 5mM
√
d log (1/δ).
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The last inequality uses the bound established on each E [Zj | E], j ∈ Ipriv, above and the bound on

P [Ec] from Eqn. (4).

To bound the correlation over the remaining vectors, we have

E

 ∑
j∈Ipub

Zj

 ≤√√√√E[‖bA(Spub, Spriv)cM‖2]E
[∥∥∥ ∑

j∈Ipub

(zj − µ)
∥∥∥2]
≤ 2Md

√
npub.

Above we have used the fact that |Ipub| ≤ npub because i ∈ Ipub only if at least one copy of zi is
sampled into Spub. Combining the above we have

E

 m∑
j=1

Zi

 ≤ 5mM
√
d log (1/δ) + 5Md

√
npub.

Combining Bounds: The previously derived lower bound in Eqn. (3) establishes that
E
[∑

j∈Ipriv
Zj +

∑
j∈Ipub

Zj

]
≥ d

3 . Using the above derived upper bounds we have the follow-
ing manipulations,

M
√
d
(
m
√

log (1/δ) +
√
dnpub

)
≥ d

15

⇐⇒ (α∗ +
√
d/m)

(
m
√

log (1/δ) +
√
dnpub

)
≥ d

60

⇐⇒ mα
√

log (1/δ) + α∗
√
dnpub ≥

d

60
−
√
d log (1/δ)m− d

√
npub

m
.

The second line above uses that M = 4√
d
(α∗ +

√
d
m ). Under the condition that npub ≤ m

1202 ≡
npub ≤ 3nε

1202 log(1/[
√
ndδ])

, which is satisfied under by assumption in the theorem statement, we have

mα
√

log (1/δ) + α∗
√
dnpub ≥

d

120
−
√
d log (1/δ)m.

Now applying the assumption d ≥ 1202nε =⇒ m ≤ d
1202 log(1/δ) we obtain

mα∗
√

log (1/δ) + α∗
√
dnpub ≥

d

120

α∗ ≥ 1

120
min

{
d
√

log (1/δ)

nε
,

√
d

npub

}
.

This establishes a contradiction, and thus α ≥ α∗ = 1
125 min

{
d
√

log(1/δ)

nε ,
√

d
npub

}
. Rescaling by

R√
d

then yields the claimed result.

B.2 Discussion of Lower Bound Analysis

We here provide more details on why the particular lower bound techniques we present were
chosen. Our aim for the following discussion is to elucidate some of the subtleties of leveraging the
fingerprinting code framework when public data is present, with the hope that it will aid future work
on the characterization of PA-DP problems.

One crucial challenge in developing the mean estimation lower bounds in Appendix B.1 is ensuring
that the correlation sum, traditionally defined as E

[∑
x∈S 〈A(S), x− µ〉

]
, scales with the accuracy,

α, of the algorithm. Previous work, such as [CWZ21], achieves this by setting the underlying
distribution, D, to be a mixture distribution which, for some p = o(1), samples a 0 vector with
probability (1− p) and samples from the non-trivial distribution, Dµ, with probability p. However,

now the variance satisfies E
x∼D

[
‖x− E [x] ‖2

]
≤ 2pR2 meaning that when public data is present it
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holds that E
[
‖ 1
npub

∑
x∈Spub

x − E
x∼D

[x] ‖
]
≤ 2pR√

npub
= o

(
R√
npub

)
, and one cannot hope to achieve the

desired lower bound. Alternatively, by instead analyzing the sum E
[∑

x∈S 〈A(S)− µ, x− µ〉
]
, as

seen for example in [KU20], we are able to avoid sampling from a mixture distribution. Further, by
leveraging the flexibility of the strong distribution framework from [DSS+15], we are able to still
ensure ‖µ(D)‖ = o(1), as needed for the SCO reduction; see Section B.3. These techniques lead to
the result in Theorem 12.

Unfortunately, with regards to obtaining the
√

log (1/δ) improvement in Theorem 13, the property
E [‖A(S)− µ‖] ≤ α does little to help establish the needed tail bound; see Eqn. (5). By clipping the

components of A(S) to to the range [−O(α), O(α)], we are able to able to obtain the desired con-
centration. Unfortunately, this clipping technique in combination with the intermediate distribution,
Unif(Sz), leads to the restrictions that d ≥ nε and npub ≤ n

log(1/[ndδ]) . These restrictions occur be-
cause of the need for the “additional error” introduced by the intermediate distribution to be negligible.
To see this, observe the intermediate distribution leads to E [‖A(S)− µ‖] ≥ 1√

m
sinceA(S) depends

on onlym vectors fromDµ, and the analysis in the proof of Theorem 12 (with npriv = 0) shows us that
even non-private algorithms cannot do better on this distribution. We remark that [CWZ21] avoids
this issue, and hence the restriction on d and npub, because of the fact that one only actually needs
‖E [A(S)]− µ‖ ≤ α for the fingerprinting lemma to hold, and ‖E [A(S)]− µ‖ ≤ E [‖A(S)− µ‖].
However, after clipping it is possible that ‖E [bA(S)cM ]− µ‖ ≥ ‖E [A(S)]− µ‖.

B.3 Missing proofs from Section 3.1

Proof of Theorem 1. We use the instance in [BST14], `(w;x) = G 〈w, x〉 and W ={
x ∈ Rd : ‖x‖ ≤ 1

}
. By a standard rescaling argument, we only need to consider G = D = 1. We

will consider the re-scaled data distribution used in Theorem 12, where {z1, ..., zn}
i.i.d.∼ Dµ and the

dataset S has xj = 1√
d
zj for j ∈ n. Here µ ∼ Unif([−M,M ]d) where M will be chosen later.

First note by Lemma 5 we have that P[
∣∣‖µ‖ −√ 2

3M
∣∣ ≥ M

256 ] ≤ 1
512 so long as d is larger than some

constant. Define this event as E and E′ its complement. Thus we have

E [L(A(S);D)− L(w∗;D)] = E [L(A(S);D)− L(w∗;D)|E]P[E]

+ E [L(A(S);D)− L(w∗;D)|E′]P[E′]

≥ 1

2
E [L(A(S);D)− L(w∗;D)|E] .

Thus it suffices to lower bound the conditional excess risk.

The optimal solution under the aforementioned loss is w∗ = − µ
‖µ‖ , since the constraint set is a ball

of radius 1. We can see that

L(A(S);D)− L(w∗;D) = 〈A(S), µ〉 −
〈
− µ

‖µ‖
, µ

〉
= ‖µ‖ (1− 〈A(S), w∗〉)

= ‖µ‖
(

1− 1

2
‖A(S)‖2 − 1

2
‖w∗‖2 +

1

2
‖A(S)− w∗‖2

)
≥ 1

2
‖µ‖ ‖A(S)− w∗‖2 . (6)
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We will now lower bound ‖A(S)− w∗‖ by using the lower bound for mean estimation developed in

Theorem 11. Let the mean estimate candidate is µ̄(S) = µ̄ = −
√

2
3MA(S). Under the event E,

‖µ̄− µ‖2 =
∥∥∥−√2/3MA(S)− µ

∥∥∥2

=
∥∥∥−‖µ‖A(S)− µ+ (

√
2/3M − ‖µ‖)A(S)

∥∥∥2

≤ 2M2 ‖A(S)− w∗‖2 +
M2

50

=⇒ ‖A(S)− w∗‖2 ≥ ‖µ̄− µ‖
2

2M2
− 1

512
. (7)

The above follows from the definition of w∗ and since the algorithm’s output is considered in a ball
of radius 1, so ‖A(S)‖ ≤ 1.

Combining the above inequalities (6) and (7) then taking expectation we have,

E [L(A(S);D)− L(w∗;D)|E] ≥ E

[
1

4
‖µ‖

(
‖µ̄− µ‖2

M2
− 1

512

) ∣∣∣∣∣E
]

≥ M

1024

E
[
‖µ̄− µ‖2|E

]
2M2

− 1

512

 . (8)

To bound E
[
‖µ̄− µ‖2|E

]
, observe

E[‖µ̄− µ‖2] = E[‖µ̄− µ‖2 |E]P[E] + Eµ,S [‖µ̄− µ‖2 |E′]P[E′]

≤ E[‖µ̄− µ‖2 |E] + 4M2P[E′].

Rearranging we have

E[‖µ̄− µ‖2 |E] ≥ E[‖µ̄− µ‖2]− M2

128
. (9)

We will finish the bound by applying either Theorem 12 or Theorem 13.

Via Theorem 12: Set M = min
{ √

d
8npriv

, 1√
npub

}
. Under this setting of M , Theorem 12 implies that

the lower bound on mean estimate distance satisfies E [‖µ̄− µ‖] ≥ M
8 , and thus E[‖µ̄− µ‖2 |E] ≥

M2

128 by Eqn. (9) above. Plugging into Eqn. (8) we have

E [L(A(S);D)− L(w∗;D)] = Ω (M) = Ω

(
min

{ √
d

npriv
,

1
√
npub

})
.

Via Theorem 13: In Theorem 13, the setting of M used is

M = 4

(
1

125
min

{√
d log (1/δ)

nε
,

√
1

npub

}
+

√√√√ log
(

1/[
√
dnδ]

)
nε

)

≤ 1

30
min

{√
d log (1/δ)

nε
,

√
1

npub

}
.

The inequality holds under the conditions d ≥ 1202nε and npub ≤ n

1202 log(1/[
√
ndδ])

. Thus we have

under this setting of M that E [‖µ̄− µ‖] ≥ M
8 . Applying Eqns. (9) and (8) as in the previous case

we have (providing the above conditions on d and npub hold)

E [L(A(S);D)− L(w∗;D)] = Ω (M) = Ω

(
min

{√
d log (1/δ)

nε
,

√
1

npub

})
.
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Lemma 5. For z ∼ Unif([−1, 1]d), we have that ‖z‖ ∈
√

2d√
3
±
√

3 ln (1/γ)

2 , with probability at least
1− γ.

Proof. This follows from standard concentration of norm results. We have that,

E ‖z‖2 = dEz2
1 =

2d

3
.

As in [Ver18, proof of Theorem 3.1.1], we use the simple fact that |x− 1| > δ =⇒
∣∣x2 − 1

∣∣ >
max(δ, δ2) for any x, δ ≥ 0, to get,

P

(∣∣∣∣∣‖z‖ −
√

2d√
3

∣∣∣∣∣ >
√

2dδ√
3

)
= P

(∣∣∣∣∣
√

3 ‖z‖√
2d
− 1

∣∣∣∣∣ > δ

)

= P

(∣∣∣∣∣3 ‖z‖22d
− 1

∣∣∣∣∣ > max(δ, δ2)

)

= P

(∣∣∣∣∣1d
d∑
i=1

z2
i −

2

3

∣∣∣∣∣ > max
(
(2/3)δ, ((2/3)δ)2

))
.

We substitute δ̄ = 2δ
3 and apply Bernstein’s inequality for i.i.d sub-exponential random variables z2

i .
Since, zi ∈ [−1, 1], the sub-exponential norm ≤ 1. Applying Corollary 2.8.3 from [Ver18], we get
that,

P

(∣∣∣∣∣1d
d∑
i=1

z2
i −

2

3

∣∣∣∣∣ > max
(
δ̄, (δ̄)2

))
≤ exp

(
−2δ̄2d

)
= exp

(
−8δ2d/9

)
.

This gives us that

P

(∣∣∣∣∣‖z‖ −
√

2d√
3

∣∣∣∣∣ >
√

2dδ√
3

)
≤ exp

(
−8δ2d/9

)
.

Hence, with probability, at least 1− γ, we have that ‖z‖ ∈
√

2d√
3
±
√

3 ln (1/γ)

2 , which completes the
proof.

Proof of Theorem 2. We use the squared loss instance as in [BST14, Section 5.2]; `(w; z) =
λ
2 ‖w − z‖

2, with ‖z‖ ≤ G
2λ . The loss is G-Lipschitz and λ strongly convex on the domain of

unit ball at zero of radius G
2λ . Given a datasets S = {z1, z2, . . . , zn}, the population risk minimizer

is simply the population mean µ(D). Further, it is straightforward to verify that the excess population
risk a re-scaling of the mean estimation error

E[L(A(S))−min
w
L(w)] =

λ

2
E ‖A(S)− µ(D)‖2 .

Substituting the mean estimation lower bounds, Theorem 11, completes the proof.

C Missing Proofs from Section 4

C.1 Proof of Theorem 3

Define the orthogonal projection matrix PXpub = UU>. Note that the feature vectors in S̃priv ={
(U>xi, yi)

}npriv

i=1
are bounded. In particular

∥∥U>x∥∥2
= x>(UU>)x = x>PXpubx ≤ ‖x‖

2, since
PXpub is an orthogonal projection onto span(W ∩ Spub). Further, since w̃ ∈ W̃ , we have that there
exists ẘ ∈ W such that w̃ = U>ẘ. Finally, ŵ = Uw̃ = UU>ẘ = PXpubẘ ∈ W since the range of
PXpub ⊆ W .
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The privacy guarantee follows from the privacy guarantee of sub-routine Ã. For utility, we definew∗ ∈
arg minw∈W L(w;D) and w̃∗ ∈ arg minw∈W̃ L(w;U>D), where U>D denotes the distribution
which first samples from D then project using U>. Let ẘ∗ ∈ W such that ẘ∗ = Uw̃∗.

Note that from the GLM structure, L(w̃∗;U>D) = L(ẘ∗;D). We have,

L(ŵ;D)− L(w∗;D) = L(ŵ;D)− L̂(ŵ;Spriv) + L(ẘ∗;D)− L(w∗;D)

+ L̂(w̃∗;Spriv)− L(ẘ∗;D) + L̂(ŵ;Spriv)− L̂(ẘ∗;Spriv)

= O

(
GRnpriv(H) +

B
√

log (4/β)
√
npriv

)
+ L(ẘ∗;D)− L(w∗;D) + L̂(w̃; S̃priv)− min

w∈W̃
L̂(w; S̃priv) (10)

with probability at least 1 − β/4. In the above, we control the generalization gap via uniform
convergence and concentration for the fixed ẘ∗ with respect to Spriv.

The last term L̂(w̃; S̃priv)−minw∈W̃ L̂(w; S̃priv) is bounded by the guarantee of the private sub-routine
with probability at least 1− β/4,

L̂(Ã(S̃priv); S̃priv)− min
w∈W̃

L̂(Ã(S̃priv); S̃priv) = Õ

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))
.

Finally, for any w̄∗ such that w̄∗ ∈ UW̃ , with probability at least 1− β/2, from G-Lipschitznes, we
have

L(ẘ∗;D)− L(w∗;D) ≤ L(w̄∗;D)− L(w∗;D) ≤ G ‖w̄∗ − w∗‖2,DX ≤ Gα,
where the last inequality follows essentially from Lemma 6 and Lemma 1 for npub =

O
(

max
(
R2 log(2/β)

α2 ,min
{
m : log3(npub)R2

npub
(H) ≤ α2

}))
. To elaborate, the first step holds

since ẘ∗ = Uw̃∗ and w̃∗ is the the minimizer of risk over W̃ . Now, Lemma 1 guarantees that for any
w∗ ∈ W , there exists a w̄∗ in its α-cover with respect to ‖·‖2,Xpub

, with ‖w∗ − w̄∗‖2,DX ≤ α. To
argue why span(Xpub) is an α-cover, from Lemma 6, we have that from any α-cover W̄ , ofW w.r.t.
‖·‖2,Xpub

, we can remove elements which do not lie in span(Spub) and still have an α-cover. Hence,
the superset used in Algorithm 1, which essentially is, W̄ = PXpubW , is indeed an α-cover.

The npub we get is,

npub = O

(
max

(
R2 log (1/β)

α2
,min

{
m : log3(m)R2

m(H) ≤ α2
}))

= Õ

(
D2 ‖X‖2 max

(
log (2/β)

α2
,

1

α2

))

where in the above, we plug in the Rademacher complexity of bounded linear predictor, Rm(H) =

Θ
(
D‖X‖
m

)
. Plugging the above in Equation (10),

L(ŵ;D)− L(w∗;D)

= O

(
GD ‖X‖
√
npriv

+
GD ‖X‖

√
log (4/β)

√
npriv

+
B
√

log (4/β)
√
npriv

)

+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))
+Gα

= O

(
GD ‖X‖

√
log (4/β)

√
npriv

+GD2 ‖X‖2
(√

log (2/β) + log (1/δ)

αnprivε

)
+
B
√

log (4/β)
√
npriv

)
+Gα

= O

(
GD ‖X‖

(√
log (4/β)
√
npriv

+

(
(log (2/β) + log (1/δ))

1/4

√
nprivε

))
+
B
√

log (4/β)
√
npriv

)
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where the above follows by setting α = D‖X‖(log(1/δ)+log(2/β))1/4

√
nprivε

. This yields the claimed rate. The
resulting public sample complexity is

npub = Õ

(
D2 ‖X‖2 max

(
log (2/β)

α2
,

1

α2

))
= Õ

(
nprivε

(log (2/β) + log (1/δ))1/2

)
.

This completes the proof.

Lemma 6. Let H̃ be a α-cover of H with respect ‖·‖2,Xpub
. Then, H̄ = H̃ ∩ span(Xpub) is also an

α-cover.

Proof. Given two h1, h2 ∈ H, we have,

‖h1 − h2‖2,Xpub
=

√√√√ 1

npub

npub∑
i=1

(h1(xi)− h2(xi))2 =
1

√
npub

√
(w1 − w2)>X>pubXpub(w1 − w2)

where w1 and w2 are the vectors corresponding to linear functions h1 and h2 and Xpub denote the
matrix of public feature vectors.

Given any h ∈ H, let h̃ denote the element closest to it in the cover H̃; we have, ‖h− h̃‖2,Xpub ≤ α.
Consider the singular value decomposition, Xpub = V ΣU>, where U and V are orthogonal matrices
and Σ is a diagonal matrix. Define h̄ = PXpub(h̃) = UU>h̃. Note that U is an orthogonal projection
onto span(Xpub) and PXpub is the corresponding projection matrix. We have,∥∥h− h̄∥∥2

2,Xpub
=

1

npub
(h− h̄)>X>pubXpub(h− h̄)

=
1

npub
(h− PXpub(h̃))>UΣ2U>(h− PXpub(h̃))

=
1

npub
(h− h̃)>U(U>U)Σ2(U>U)U>(h− h̃)

=
1

npub
(h− h̃)>UΣ2U>(h− h̃)

=
1

npub
(h− h̃)>X>pubXpub(h− h̃)

≤ α2

Since by construction h̄ also lies in span(Xpub), this proves the claim.

C.2 Proof of Theorem 6

We state the complete version of this theorem and then present its proof.
Theorem 14. Let ε > 0, δ > 0 and ε ≤ log (1/δ). For a G-Lipschitz, B-bounded
non-negative H-smooth loss function, Algorithm 1 satisfies (ε, δ)-DP. If the private sub-
routine Ã guarantees Equation (1) with probability at least 1 − β, then with npub =

Õ

(
(HD‖X‖)2/3(nprivε)

2/3

G2/3(log(1/δ))1/3 +
√
Hnprivε

√
L(w∗;D)

G
√

log(1/δ))

)
, with probability at least 1−β, L(ŵ;D)−L(w∗;D)

is at most

Õ

((√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(w∗;D) +

H ‖X‖2D2

nprivε
+
B log (8/β)

npriv
+
GD ‖X‖

√
log (4/β)

nprivε

)

+ Õ

(√HD2 ‖X‖2G
√

log (1/δ)

nprivε

)2/3

+
H1/4D ‖X‖

√
G (log (1/δ))1/4 L(w∗;D)1/4
√
nprivε


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Further, with npub = Õ

(
(HD‖X‖)2/3(nprivε)

2/3

G2/3(log(1/δ))1/3 +
√
Hnprivε

√
L̂(ŵ∗;Spriv)

G
√

log(1/δ))

)
, with probability at least

1− β, for any w̄ ∈ W , L(ŵ;D)− L̂(ŵ∗;Spriv) is at most

Õ

((√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L̂(ŵ∗;Spriv) +

H ‖X‖2D2

nprivε
+
B log (8/β)

npriv
+
GD ‖X‖

√
log (4/β)

nprivε

)

+ Õ

(√HD2 ‖X‖2G
√

log (1/δ)

nprivε

)2/3

+
H1/4D ‖X‖

√
G (log (1/δ))1/4 L̂(w̄;Spriv)

1/4

√
nprivε

 .

where w∗ and ŵ∗ are population and empirical minimizers with respect to D and Spriv respectively.

Proof of Theorem 14. The privacy guarantee follows from the privacy guarantee of sub-routine
Ã. The proof of the utility guarantee proceeds similar to that of Theorem 3. We define w∗ ∈
arg minw∈W L(w;D) and w̃∗ ∈ arg minw∈W̃ L(w;U>D). Let ẘ∗ ∈ W such that ẘ∗ = Uw̃∗.
From the GLM structure, L(w̃∗;U>D) = L(ẘ∗;D). We have,

L(ŵ;D)− L(w∗;D) = L(ŵ;D)− L̂(ŵ;Spriv) + L̂(ŵ;Spriv)− L(w∗;D)

≤ L(ŵ;D)− L̂(ŵ;Spriv) + L̂(ẘ∗;Spriv)− L((ẘ∗;D)

+ L(ẘ∗;D)− L(w∗;D) + L̂(ŵ;Spriv)− L̂(ẘ∗;Spriv)

≤
∣∣∣L(ŵ;D)− L̂(ŵ;Spriv)

∣∣∣+
∣∣∣L(ẘ∗;D)− L̂(ẘ∗;Spriv)

∣∣∣
+ L(ẘ∗;D)− L(w∗;D) + L̂(w̃; S̃priv)− min

w∈W̃
L̂(w; S̃priv) (11)

The last term L̂(w̃; S̃priv) − minw∈W̃ L̂(w; S̃priv) is bounded by the guarantees of the private sub-
routine with probability at least 1− β/4,

L̂(ŵ; S̃priv)− min
w∈W̃

L̂(w; S̃priv) = Õ

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))
. (12)

To bound the term L(ẘ∗;D)− L(w∗;D) in Equation (11), we apply smoothness to get,

L(ẘ∗;D)− L(w∗;D)

≤ L(w̄∗;D)− L(w∗;D)

≤ E
[〈
φ′y(〈w∗, x〉), 〈w̄∗, x〉 − 〈w∗, x〉

〉
+
H

2
|〈w̄∗, x〉 − 〈w∗, x〉|2

]
≤ E

[∣∣φ′y(〈w∗, x〉)
∣∣ |〈w̄∗, x〉 − 〈w∗, x〉|+ H

2
|〈w̄∗, x〉 − 〈w∗, x〉|2

]
≤
√

E
∣∣φ′y(〈w∗, x〉)

∣∣2√Ex∼DX |〈w̄∗, x〉 − 〈w∗, x〉|
2

+
H

2
Ex∼DX |〈w̄∗, x〉 − 〈w∗, x〉|

2

≤ 2
√
HEx∼Dφy(〈w∗, x〉)

√
E |〈w̄∗, x〉 − 〈w∗, x〉|2 +

H

2
Ex∼DX |〈w̄∗, x〉 − 〈w∗, x〉|

2

≤ 2
√
HL(w∗;D)α+Hα2 (13)

where the above holds for any w̄∗ ∈ H such that w̄∗ ∈ UW̃ by optimality of w̃∗ in
W̃ . The second inequality holds from H-smoothness, the third and fourth from Cauchy-
Schwarz, the fifth from self-bounding property of smooth non-negative losses (Lemma 4.1
in [SST10]). The final step holds with probability 1 − β/2 from Lemma 1 with npub =

O
(

max
(
R2 log(2/β)

α2 ,min
{
m : log3(m)R2

m(H) ≤ α2
}))

together with that since W̃ is an α-cover
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ofH, together with Lemma 6 which shows that W̃ is a valid α-cover ofW . Therefore, there exists
h̄∗ ∈ H̃ with

∥∥h̄∗ − h∗∥∥
2,Spub

≤ α.

Further, applying AM-GM inequality, we get

L(ẘ∗;D) ≤ 2L(w∗;D) + 2Hα2 (14)

The first two terms in Equation (11) are bound via uniform convergence for smooth non-negative
losses, (Theorem 1 in [SST10]) and Bernstein’s inequality as follows; with probability at least 1−β/4,
we have,

∣∣∣L(ŵ;D)− L̂(ŵ;Spriv)
∣∣∣+
∣∣∣L(ẘ∗;D)− L̂(ẘ∗;Spriv)

∣∣∣
= Õ

(
√
HRnpriv(H) +

√
B log (8/β)

npriv

)(√
L̂(ŵ;Spriv) +

√
L(ẘ∗;D)

)
+ Õ

(
HR2

npriv
(H) +

B log (8/β)

npriv

)
= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)(√
L̂(ẘ∗;Spriv) +

√
L(ẘ∗;D)

)

+ Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)
+ Õ

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(ẘ∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)
+ Õ

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

= Õ

(√
HD ‖X‖
√
nprivε

+
√
Hα+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+Hα2 +

B log (8/β)

npriv

)
+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))
(15)

where the second equality follows from Equation (12), instantiating the Rademacher complexity of
linear predictors, concavity of x 7→

√
x and AM-GM inequality. The third equality follows concavity

of x 7→
√
x and Bernstein’s inequality, the fourth follows from Equation (14) and AM-GM inequality.

Plugging the above, Equation (13) and Equation (12) into Equation (11), we get that with
npub = O

(
max

(
‖X‖2D2 log(2/β)

α2 ,min
{
m : log3(npub)R2

npub
(H) ≤ α2

}))
, the following holds

with probability at least 1− β,

28



L(ŵ;D)− L(w∗;D)

= Õ

(√
HD ‖X‖
√
nprivε

+
√
Hα+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+Hα2 +

B log (8/β)

npriv

)
+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

= Õ

(√
HD ‖X‖
√
nprivε

+

√
HD ‖X‖
√
npub

+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
HD2 ‖X‖2

npub
+
B log (8/β)

npriv

)
+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))
(16)

= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)
+O

(
GD ‖X‖

√
log (4/β)

nprivε

)

+O

(√HD2 ‖X‖2G
√

log (1/δ)

nprivε

)2/3

+
H1/4D ‖X‖

√
G (log (1/δ))

1/4
L(w∗;D)1/4

√
nprivε



The public sample complexity is,

npub = Õ

(
(HD ‖X‖)2/3(nprivε)

2/3

G2/3(log (1/δ))1/3
+

√
Hnprivε

√
L(w∗;D)

G
√

log (1/δ))

)

29



This completes the first part of the theorem. For thee second part, we start from Equation (16),

L(ŵ;D) ≤ L(w∗;D) + Õ

(√
HD ‖X‖
√
nprivε

+

√
HD ‖X‖
√
npub

+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
HD2 ‖X‖2

npub
+
B log (8/β)

npriv

)

+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

≤ L(ŵ∗;D) + Õ

(√
HD ‖X‖
√
nprivε

+

√
HD ‖X‖
√
npub

+

√
B log (8/β)

npriv

)√
L(ŵ∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
HD2 ‖X‖2

npub
+
B log (8/β)

npriv

)

+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

≤ L̂(ŵ∗;Spriv) + Õ

(√
HD ‖X‖
√
nprivε

+

√
HD ‖X‖
√
npub

+

√
B log (8/β)

npriv

)√
L̂(ŵ∗;Spriv)

+ Õ

(
H ‖X‖2D2

nprivε
+
HD2 ‖X‖2

npub
+
B log (8/β)

npriv

)

+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

≤ L̂(ŵ∗;Spriv) + Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L̂(ŵ∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)
+O

(
GD ‖X‖

√
log (4/β)

nprivε

)

+O

(√HD2 ‖X‖2G
√

log (1/δ)

nprivε

)2/3

+
H1/4D ‖X‖

√
G (log (1/δ))

1/4
L(ŵ;D)1/4

√
nprivε


where the second inequality holds form optimality of w∗, the third from uniform convergence,
Theorem 1 in [SST10] and AM-GM inequality, and the last by plugging in the following public
sample complexity.

npub = Õ

 (HD ‖X‖)2/3(nprivε)
2/3

G2/3(log (1/δ))1/3
+

√
Hnprivε

√
L̂(ŵ∗;Spriv)

G
√

log (1/δ))


This completes the proof.

Theorem 15. In the setting of Theorem 14 with the additional assumption that the global minimizer

of risk L, w∗ lies inW , we get that with npub = Õ
(

(HD‖X‖)2/3(nprivε)
2/3

G2/3(log(1/δ))1/3

)
, with probability at least
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1− β,

L(ŵ;D)− L(w∗;D)

= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(w∗;D) + Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)

+O

(
GD ‖X‖

√
log (4/β)

nprivε

)
+O

(√HD2 ‖X‖2G
√

log (1/δ)

nprivε

)2/3


Further,

L(ŵ;D)− L̂(ŵ∗;Spriv)

= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L̂(ŵ∗;Spriv) + Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)

+O

(
GD ‖X‖

√
log (4/β)

nprivε

)
+O

(√HD2 ‖X‖2G
√

log (1/δ)

nprivε

)2/3
 .

where w∗ and ŵ∗ are population and empirical minimizers with respect to D and Spriv respectively.

Proof. The proof is almost identical to that of Theorem 15. We repeat the steps pointing out the
differences and how the expressions change. We continue till Equation (12). Next, we apply
smoothness which results in the key difference between the analyses,

L(ẘ∗;D)− L(w∗;D)

≤ L(w̄∗;D)− L(w∗;D)

≤ E
[〈
φ′y(〈w∗, x〉), 〈w̄∗, x〉 − 〈w∗, x〉

〉
+
H

2
|〈w̄∗, x〉 − 〈w∗, x〉|2

]
≤
〈
E
[
φ′y(〈w∗, x〉)x

]
, w̄∗ − w∗

〉
+
H

2
E
[
|〈w̄∗, x〉 − 〈w∗, x〉|2

]
≤ 〈∇L(w∗;D), w̄∗ − w∗〉+Hα2

= Hα2

where last equality uses the fact that ∇L(w∗;D) = 0 since w∗ is the unconstrained minimizer.
Continuing, we get,

∣∣∣L(ŵ;D)− L̂(ŵ;Spriv)
∣∣∣+
∣∣∣L(ẘ∗;D)− L̂(ẘ∗;Spriv)

∣∣∣
= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)
+O

(
GD ‖X‖

(√
npub log (1/δ) +Hα2 +

√
log (4/β)

nprivε

))
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This yields,

L(ŵ;D)− L(w∗;D)

= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+Hα2 +

B log (8/β)

npriv

)
+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(w∗;D)

+ Õ

(
H ‖X‖2D2

nprivε
+
HD2 ‖X‖2

npub
+
B log (8/β)

npriv

)
+O

(
GD ‖X‖

(√
npub log (1/δ) +

√
log (4/β)

nprivε

))

= Õ

(√
HD ‖X‖
√
nprivε

+

√
B log (8/β)

npriv

)√
L(w∗;D) + Õ

(
H ‖X‖2D2

nprivε
+
B log (8/β)

npriv

)

+O

(
GD ‖X‖

√
log (4/β)

nprivε

)
+O

(√HD2 ‖X‖2G
√

log (1/δ)

nprivε

)2/3


The public sample complexity is,

npub = Õ

(
(HD ‖X‖)2/3(nprivε)

2/3

G2/3(log (1/δ))1/3

)
.

The second part follows similarly.

C.3 Lower bounds

C.3.1 Proof of Theorem 4

To establish the GD‖X‖√
n

term in the lower bound, we consider a one-dimenisonal problem where
the loss φy(ŷ) = −Gyŷ and marginal distribution Dx as the point distribution on ‖X‖ such that the
overall loss is E

x,y
[`(w, (x, y))] = E

y
[y · w‖X‖G]. We further setW = [−D,D] and consider Dy to

be the distribution which as 1 with probability P [y = 1] = (1 + µ)/2 and P [y = 1] = (1 − µ)/2
for some µ ∈ [−1, 1]. Note the minimizer w∗ = D µ

|µ| achieves population risk −µGD‖X‖. Classic
results in information theory establish if µ is sampled uniformly from {± 1√

6n
}, no algorithm can

estimate the sign of µ with probability better than 1/2 (see [Duc23, Section 8.3]). Thus it must be
that for any algorithm EA,S [L(A(S);D)−minw∈Rd L(w;D)] = Ω

(
GD‖X‖√

n

)
.

The GD ‖X‖min
{

1√
nε
,
√
d

nε

}
term in the lower bound is essentially a corollary of [ABG+22,

Theorem 6]. We provide further remarks here. The loss function used is,

`(w; (x, y)) = φy(〈w, x〉) = |y − 〈w, x〉| .

Define d′ := min(d, nε) and p := min
(

1, d
′

nε

)
. The (known) marginal distribution DX is described

as: with probability 1−p, x = ~0, otherwise, x ∼ Unif
(
‖X‖ {ej}d

′

j=1

)
where ej’s are canonical basis

vectors. The (unknown) conditional distribution of the response y is as follows. Sample a “fingerprint-
ing code”, z′ ∈ {0, 1}d

′
with mean µ′ ∈ [0, 1]d

′
where each co-ordinate µ′j ∼ Beta(0.0625, 0.0625)

i.i.d. Embed z′ in d dimensions as z and let µ be the corresponding mean vector. Finally, define
y = D〈z,x〉√

d′
. The proof in [ABG+22, Theorem 6] then proceeds by lower bounding the loss by

bounding the ability of any differential private algorithm to estimate the fingerprinting code z.
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Since the rank of E
x∼DX

[
xx>

]
= d′, the result [ABG+22, Theorem 6] then yields a lower bound on

the unconstrained excess risk,

EA,S
[
L(A(S);D)− min

w∈Rd
L(w;D)

]
= Ω

(
GD ‖X‖min

{
1√
nε
,

√
d

nε

})
,

but also guarantees that the global minimizer has norm at most D. Thus, we achieve the same lower
bound for EA,S [L(A(S);D)−minw∈W L(w;D)] by settingW to be the ball of radius D.

C.3.2 Proof of Theorem 5

The proof uses the lower bound instance in the DP-SCO lower bound with public data, Theorem 1.
We consider the case where Dy is the point distribution on 1. Then for any y ∈ Y , Y = {1}, the loss
function is then `(w; (x, y)) = y 〈w, x〉 = 〈w, x〉, as in Theorem 1. Hence, a labeled and unlabeled
sample have the same information. We also setW to be the ball of radius D.

Assume by contradiction there exists an (ε, δ)-PA-DP algorithm, A, which achieves

rate O

(
GD‖X‖( 1√

npriv
+

√
log(1/δ)
√
nprivε

)

)
with o(nprivε/ log (1/δ)) public samples. Since

npub = o(nprivε/ log (1/δ)) and d = ω(nε), Theorem 1 gives a lower bound on
E [A(Xpub, Spriv;D)−minw∈W {L(w;D)}] of

Ω

(
GD‖X‖min

{
1

√
npub

,

√
d log (1/δ)

nprivε

})
= ω

(
GD‖X‖

√
log (1/δ)
√
nprivε

)
.

Since ε ≤ 1, this is a contradiction.

D Missing proofs for Section 4.2

D.1 Proof of Theorem 7

Proof. The privacy proof follows from the guarantee of exponential mechanism [MT07]. In par-
ticular, the sensitivity of the score function is at most 2

npriv
min (B,GR) where the first follows

from the loss bound of B and the second from the Lipschitzness and bound on predictors. Let
h∗ ∈ arg minh∈H L(h;D) and h̃∗ ∈ arg minh∈H̃ L(h;D). From standard analysis based on uni-
form convergence, we have

L(ĥ;D)− L(h∗;D) = L(ĥ;D)− L̂(ĥ;Spriv) + L̂(ĥ;Spriv)− L(h∗;D)

≤ sup
h∈H

(
L(h;D)− L̂(h;Spriv)

)
+ L(h̃∗;D)− L(h∗;D)

+ L̂(h̃∗;Spriv)− L(h̃∗;D) + L̂(ĥ;Spriv)− L̂(h̃∗;Spriv) (17)

≤ 2 sup
h∈H

∣∣∣L(h;D)− L̂(h;Spriv)
∣∣∣+ L(h̃∗;D)− L(h∗;D)

+ L̂(ĥ;Spriv)−min
h∈H̃

L̂(h;Spriv) (18)

≤ 2GRnpriv(H) +O

(
B
√

log (4/β)
√
npriv

)

+O

min (B,GR)(log
(
|H̃|
)

+ log (4/β))

nprivε

+ L(h̃∗;D)− L(h∗;D)

(19)

where the above holds with probability at least 1− β/2 and follows from guarantee of exponential
mechanism [MT07] and uniform convergence ([SSBD14], see Theorem 16). We further have that
log
(
|H̃|
)

= Õ(fatcα(H)) from Lemma 7.
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For the L(h̃∗;D)− L(h∗;D) term, we have

L(h̃∗;D)− L(h∗;D) ≤ L(h̄∗;D)− L(h∗;D)

≤ GE
∣∣h̄∗(x)− h∗(x)

∣∣
≤ G

√
E
∣∣h̄∗(x)− h∗(x)

∣∣2
≤ 2Gα

where the first step holds for any h̄∗ ∈ H̃ by optimaility of h̃∗ over H̃, the sec-
ond holds from the G-Lipschitzness of the loss function, the third from Jensen’s in-
equality. The final step holds with probability 1 − β/2 from Lemma 1 with npub =

O
(

max
(
R2 log(2/β)

α2 ,min
{
m : log3(m)R2

m(H) ≤ α2
}))

together with the fact that since H̃ is

an α-cover ofH, hence there exists h̄∗ ∈ H̃ with
∥∥h̄∗ − h∗∥∥

2,Xpub
≤ α.

Plugging the above in Equation (19), we get with probability at least 1− β,

L(ĥ;D)− L(h∗;D) ≤ 2GRnpriv(H) +O

(
B
√

log (4/β)
√
npriv

)

+O

(
min (B,GR)(fatcα(H) + log (4/β))

nprivε

)
+ 2Gα,

which finishes the proof.

Theorem 16. [SSBD14] Let H ⊆ [−R,R]X . For any G-Lipschitz, B-bounded loss function, any
probability distribution D over X ×Y , given m i.i.d. samples from S, with probability at least 1− β,
the following holds for all h ∈ H,∣∣∣L(h;D)− L̂(h;S)

∣∣∣ ≤ 2GRm(H) +O

(
B

√
log (4/β)

m

)

Proof. This is a classical result in learning theory which follows directly Theorem 26.5 in [SSBD14]
together with the contraction lemma (Lemma 26.9 in [SSBD14]) for Lipschitz losses.

Lemma 7. Let H̃ be an α-cover ofH with respect to ‖·‖2,Xpub
. The size of H̃ is bounded as,

log
(∣∣∣H̃∣∣∣) ≤ fatcα(H) log

(
2R

α

)
where c is an absolute constant.

Proof. This follows directly from Theorem 8,

log
(∣∣∣H̃∣∣∣) = N2 (H, α, Spub) ≤ N2 (H, α, npub) ≤ fatcα(H) log

(
2R

α

)
.

Proof of Lemma 1 For h ∈ H, let h̃ ∈ arg minh̄∈H̃ ‖h̄ − h‖2,Xpub . Since H̃ is an τ -cover, this
gives us that ‖h− h̃‖2,Xpub ≤ τ . We have,

‖h− h̃‖22,DX = E
∣∣∣h(x)− h̃(x)

∣∣∣2
= E

∣∣∣h(x)− h̃(x)
∣∣∣2 − 1

npub

∑
x∈Spub

∣∣∣h(x)− h̃(x)
∣∣∣2 +

1

npub

∑
x∈Spub

∣∣∣h(x)− h̃(x)
∣∣∣2

≤ sup
h̄∈H

E
∣∣h(x)− h̄(x)

∣∣2 − 1

npub

∑
x∈Spub

∣∣h(x)− h̄(x)
∣∣2+ τ2.
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The first term above can be seen as uniform deviation between the empirical and population risk,
of another prediction problem, with squared loss, in the the realizable setting (with the responses
generated by h). The squared loss is 1

2 -smooth and non-negative, so we can apply result of Theorem
1 in [SST10] instantiated in the realizable setting, which gives us that with probability at least 1− β,

‖h− h̃‖22.DX = O

(
log3(npub)R2

npub
(H) +

R2 log (1/β)

npub

)
+ τ2.

Choosing npub such that npub = O
(

max
(
R2 log(1/β)

α2 ,min
{
m : log3(m)R2

m(H) ≤ α2
}))

, we get
the claimed result.

D.2 Optimistic rates with smooth non-negative losses

Algorithm 2 achieves optimistic rates on risk depending on realizability/interpolation conditions, that
is, whenever L(h∗;D) or L̂(ĥ;Spriv) is small.

Theorem 17. Algorithm 2 with γ = 2B
nprivε

satisfies ε-PA-DP. For npub =

O
(

max
(
R2 log(2/β)

α2 ,min
{
m : log3(m)R2

m(H) ≤ α2
}))

< ∞ and any α > 0, with prob-
ability at least 1− β, we have

L(ĥ;D)− L(h∗;D) = Õ

(
√
HRnpriv(H) +

√
Hα+

√
B log (8/δ)

npriv

)√
L(h∗;D)

+ Õ

(
HR2

npriv
(H) +Hα2 +

B log (8/β)

npriv
+
B(fatcα(H) + log (4/β))

nprivε

)

L(ĥ;D)− L̂(ĥ∗;Spriv) ≤ Õ

(
√
HRnpriv(H) +

√
Hα+

√
B log (8/δ)

npriv

)√
L̂(ĥ∗;Spriv)

+ Õ

(
HR2

npriv
(H) +Hα2 +

B log (8/β)

npriv
+
B(fatcα(H) + log (4/β))

nprivε

)
where h∗ and ĥ∗ are population and empirical minimizers with respect to D and Spriv respectively,
and c is an absolute constant.

Proof of Theorem 17. The privacy proof is the same as that of Theorem 7. For utility, let h∗ ∈
arg minh∈H L(h;D) and h̃∗ ∈ arg minh∈H̃ L(h;D).

We start with the proof of the first part of the theorem. We have,

L(ĥ;D)− L(h∗;D) = L(ĥ;D)− L̂(ĥ;Spriv) + L̂(ĥ;Spriv)− L(h∗;D)

≤ L(ĥ;D)− L̂(ĥ;Spriv) + L̂(h̃∗;Spriv)− L(h̃∗;D)

+ L(h̃∗;D)− L(h∗;D) + L̂(ĥ;Spriv)− L̂(h̃∗;Spriv)

≤
∣∣∣L(ĥ;D)− L̂(ĥ;Spriv)

∣∣∣+
∣∣∣L(h̃∗;D)− L̂(h̃∗;Spriv)

∣∣∣
+ L(h̃∗;D)− L(h∗;D) + L̂(ĥ;Spriv)− L̂(h̃∗;Spriv) (20)

From the guarantee of exponential mechanism together with log
(∣∣∣H̃∣∣∣) = Õ(fatcα(H)) from

Lemma 7, we have that with probability at least 1− β/4,

L̂(ĥ;Spriv)− L̂(h̃∗;Spriv) ≤ L̂(ĥ;Spriv)−min
h∈H̃

L̂(h;Spriv) = O

B(log
(∣∣∣H̃∣∣∣)+ log (4/β))

nprivε


= Õ

(
B(fatcα(H) + log (4/β))

nprivε

)
(21)
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For the L(h̃∗;D)− L(h∗;D) term in Equation (20), we apply smoothness to get,

L(h̃∗;D)− L(h∗;D) ≤ L(h̄∗;D)− L(h∗;D)

≤ E
[〈
φ′y(h∗(x)), h̄∗(x)− h∗(x)

〉
+
H

2

∣∣h̄∗(x)− h∗(x)
∣∣2]

≤ E
[∣∣φ′y(h∗(x))

∣∣ ∣∣h̄∗(x)− h∗(x)
∣∣+

H

2

∣∣h̄∗(x)− h∗(x)
∣∣2]

≤
√
E
∣∣φ′y(h∗(x))

∣∣2√Ex∼DX
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where the above holds for any h̄∗ ∈ H̃. The second inequality holds from H-smoothness, the
third and fourth from Cauchy-Schwarz, the fifth from self-bounding property of smooth non-
negative losses [SST10]. The final step holds with probability 1 − β/2 from Lemma 1 with
npub = O

(
max

(
R2 log(2/β)

α2 ,min
{
m : log3(m)R2

m(H) ≤ α2
}))

together with the fact that since

H̃ is an α-cover ofH, so there exists h̄∗ ∈ H̃ with
∥∥h̄∗ − h∗∥∥

2,Xpub
≤ α.

An application of AM-GM inequality further yields,

L(h̃∗;D) ≤ 2L(h∗;D) + 2Hα2 (23)

The first two terms in Equation (20) are bound using uniform convergence for smooth non-negative
losses, Theorem 1 in [SST10] and Bernstein’s inequality as follows; with probability at least 1− β/4,
we have, ∣∣∣L(ĥ;D)− L̂(ĥ;Spriv)

∣∣∣+
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(
HRnpriv(H)2 +

B log (8/β)

npriv

)
+ Õ
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)
where the second equality follows from Equation (21), concavity of x 7→

√
x and AM-GM inequality.

The third equality follows concavity of x 7→
√
x and Bernstein’s inequality, the fourth follows from

Equation (23) and AM-GM inequality.
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Plugging the above, Equation (22) and Equation (21) into Equation (20) yields the following with
probability at least 1− β,

L(ĥ;D)− L(h∗;D)

= Õ
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√
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√
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√
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+
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)
(25)

This completes the first part of the theorem. For the second part, we proceed from Equation (25)
onwards
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≤ L(ĥ∗;D) + Õ
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(
HR2

npriv
(H) +Hα2 +

B log (8/β)

npriv
+
B(fatcα(H) + log (4/β))

nprivε

)
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where the second inequality follows form optimality of h∗, the third from uniform convergence,
Theorem 1 in [SST10] and AM-GM inequality. This completes the proof.

D.3 Proof of Corollary 2

We use the result from [GRS18], restated as Theorem 10. Further, note that range bound on the
hypothesis class is simply R ≤ ‖X‖

∏d
j=1Rj . Instantiating our general result Theorem 7 with

the above together with the relation between fat-shattering dimension and Rademacher complexity
(Theorem 9) yields the following excess risk bound,
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= O
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where in the above, we set α =

(
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.
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The number of public samples then is

npub = O

(
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‖X‖2 (

M∏
j=1

Rj)
2 max

(
log (2/β)

α2
,
M

α2

)
= Õ
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 .

D.4 Proof of Corollary 3

Note that R ≤ D ‖X‖. Further, we have [KST08, FGV17],

Rm(H) = O

(
D ‖X‖
m1/r

)
.

Moreover, we have from Theorem 9, for any α > Rm(H),

fatα(H) ≤ 4mR2
m(H)

α2
.

Choose m = npub and α = (log (npub))
3/2

Rnpub(H), to get that fatα(H) = Õ (npub). Plugging this
in Theorem 7, we get,

L(ŵ;D)− min
w∈W

L(w;D) = O

(
GD ‖X‖
npriv

1/r
+
GD ‖X‖

√
log (4/β)

√
npriv

+
B
√

log (4/β)
√
npriv

)

+ Õ
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where in the last step, we plug in npub = O
(
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)
, yielding α =

O
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. The number of public samples simplifies as,
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which is satisfied from our choice since r ≥ 2.

D.5 Additional Results

Corollary 4. In the setting of Theorem 7 together with X =
{
x ∈ Rd : ‖x‖ ≤ ‖X‖

}
and H = {x 7→ 〈w, x〉 , x ∈ X , ‖w‖ ≤ D}. With α =

(
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, with probability at least 1− β,
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Proof. In this setting, we have that R ≤ D ‖X‖. Further, it is known [KST08],
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Plugging this in Theorem 7, we get,
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where in the last step, we plug in α =
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(
(D ‖X‖)2/3(nprivε)

2/3 log (2/β)
)
.

39



NeurIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims made are given in Sections 3 and 4 proofs are provided in the Appendix
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The specific assumptions made are detailed in the preliminaries and theorem
statements.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Statements are proved or cite a relevant reference. Many of these proofs can
be found in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: There is no associated code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: There are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The theoretical nature of the results means there are minimal ethical concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The theoretical nature of the work means that any societal impact would be
very indirect.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such assets are used as a part of this research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No such assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No such assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

45


	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Private Stochastic Convex Optimization with Labeled Public Data 
	Lower Bound for Stochastic Convex Optimization

	Private Supervised Learning with Unlabeled Public Data
	Efficient PA-DP learning of Convex Generalized Linear Models
	 PA-DP Supervised learning of Fat-Shattering Classes
	Application: Neural Networks
	Application: Non-Euclidean GLMs


	Additional Preliminaries
	Missing proofs from Section 3
	Lower Bounds for Mean Estimation
	Discussion of Lower Bound Analysis
	Missing proofs from Section 3.1

	Missing Proofs from Section 4
	Proof of thm:efficient-glm-lipschitz
	Proof of thm:dp-public-data-glm-smooth-glm
	Lower bounds
	Proof of Theorem 4
	Proof of thm:lb-public-samples


	Missing proofs for sec:fat-shattering
	Proof of thm:dp-fat-with-public-data
	Optimistic rates with smooth non-negative losses
	Proof of cor:dp-public-data-nn
	Proof of cor:non-euclidean
	Additional Results


