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ABSTRACT

In vision-language models such as the Contrastive Language-Image Pre-Training
model (CLIP), prompt learning can efficiently and rapidly adapt to specific tasks
in few-shot learning. Previous methods for prompt learning often rely on a sin-
gle prompt. However, a single prompt may not accurately distinguish between
different categories, especially when a category has multiple features and con-
textual connections in a few-shot learning environment. While the performance
of few-shot learning can improve through meta-learning or image augmentation
strategies, these approaches may increase computational cost and affect accuracy.
To address these issues, we propose a new method called Multi-Vision Multi-
Prompt (MVMP), designed for CLIP in a few-shot learning environment. Instead
of increasing the number of model parameters, MVMP employs multiple prompts
at different stages of the training process and averages the predictions. Addi-
tionally, we present a mixed self-augmentation framework and text distillation
to further enhance the model’s performance. Extensive experimental validation
demonstrates that our approach significantly outperforms the state-of-the-art in
the few-shot learning classification tasks, improving accuracy by 4.6% and 2%.

1 INTRODUCTION

Vision-language models like the Contrastive Language-Image Pre-Training model (CLIP) (Radford
et al., 2021) have demonstrated remarkable adaptation capabilities across various classification tasks,
especially for few-shot learning (Sung et al., 2018). By utilizing an adversarial loss to align image-
text pairs better, these models have demonstrated their versatility for specific downstream tasks.
However, the large number of parameters in these models poses a challenge for quick and efficient
adaptation to specific tasks (Zhou et al., 2022b). Therefore, ongoing research aims to maintain their
strong adaptive capacity without increasing complexity and also enhance adaptive efficiency.

One common solution is the introduction of prompts for adaptation. Many existing methods uti-
lize learnable prompts to efficiently adapt to few-shot learning tasks (Zhou et al., 2022a; Khat-
tak et al., 2023; Zhou et al., 2022b). However, these methods often rely on a single prompt,

Figure 1: An example of a dog image exam-
ined through various lenses using multiple
prompts, each with different perspectives.

which may not be sufficient to distinguish between the
various categories in the dataset effectively, thus impact-
ing the accuracy of the model (Chen et al., 2023). In
response to this problem, PLOT (Chen et al., 2023), as
a pioneering method, uses multiple prompts through the
application of optimal transport (Peyré & Cuturi, 2019).
This method has resulted in significant improvements
across several datasets compared with a single prompt,
such as the ImageNet dataset (Deng et al., 2009), with a
3% enhancement in performance. However, incorporat-
ing optimal transport in PLOT increases the optimization
complexity, posing a higher computational burden on CLIP.

Additionally, although there are certain advanced optimization tools for few-shot learning, such as
meta-learning (Ni et al., 2021; Sun et al., 2019) and image augmentation (Osahor & Nasrabadi,
2022; Ni et al., 2021), these strategies may not always be applicable to large-scale vision-language
models. Because these approaches typically introduce additional parameters or employ methods like
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Figure 2: Left: Heatmap of the prompt’s attention to the same image over different periods. Red
represents more attention and blue represents less attention. Right: t-SNE plots of image embed-
dings of before and after image augmentation on EuroSAT, OxfordPets and DTD datasets. The
distribution is denser after image augmentation than before.

label smoothing, thereby substantially increasing the model’s complexity and potentially degrading
performance (Seo et al., 2021). Consequently, achieving the optimal balance between accuracy and
efficiency in large vision-language models for few-shot learning tasks presents a challenge.

To overcome these limitations, we introduce Multi-Vision Multi-Prompt (MVMP) method for few-
shot learning tasks without additional parameters. MVMP uses multi-prompt to make predictions
from multiple perspectives at different training stage. It also increases image-text diversity by mixing
self-augmentation and text distillation. Using these three techniques can comprehensively strengthen
the model’s learning capabilities and achieve more accurate and efficient visual-text alignment.

Specifically, a) Multi-prompt. In Figure 2, during the early stages of training, prompts are more
generalized, while in the later stages, prompts become more focused on specific details. To lever-
age the unique perspective of different stages of text prompts, we maintain multiple prompts at
each training stage and perform information fusion through an average weighting method to achieve
comprehensive improvement in model performance. b) Mixed self-augmentation. Considering the
limited availability of image data in a few-shot learning environment, we propose the mixed self-
augmentation framework. This framework entails replacing region pixels with pixels from another
image region to create a new virtual image, enhancing image diversity and maintaining computa-
tional efficiency. In Figure 2, mixed self-augmentation optimizes class distributions in few-shot
learning tasks. c) Text distillation. After enhancing the images, to address the problem of image-text
mismatch caused by a single prompt, we utilize text distillation to acquire multiple text features from
CLIP text encoder with fixed prompts (Khattak et al., 2023) which effectively expands and enhances
the semantic representation of the text, further augmenting the alignment capabilities.

In this paper, we focus on adapting few-shot learning tasks. We compare MVMP with 10 state-of-
the-art prompt learning and few-shot learning image augmentation baseline methods on 11 CLIP-
based few-shot learning datasets. The experiment results demonstrate that our method improves
overall accuracy by 2% to 4.6% while maintaining good generalization performance. In summary,
our multi-vision multi-prompt method has the following main contributions:

• To further utilize the potential of each text prompt, we use a prompt memory bank to store prompts
at different stages and leverage information fusion through average weight prediction.

• To increase the vision diversity in few-shot learning environment, we generate new virtual samples
by using mixed self-augmentation, and stabilize the model through consistency loss.

• To align image-text pairs, we distill the prompt by obtaining multiple textual features through
CLIP text encoder to include textual diversity and improve the robustness of the prompt.

2 RELATED WORKS

For a more detailed discussion of related works, please refer to Appendix A.1.
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Figure 3: Left: Radar chart showcasing MVMP is superior performance in 1-shot image categoriza-
tion across 11 diverse datasets compared with multiple prompt method. Right: Average results of
base-to-new classification on 11 datasets. Base and New accuracies for MVMP are the highest on
average and for most datasets, with more specific data detailed in the Appendix A.5

2.1 PROMPT LEARNING IN VISION-LANGUAGE MODELS

The typical pre-trained vision-language models learn in a self-supervised manner via text and image
encoders and contrast loss (Radford et al., 2021; Jia et al., 2021). However, fine-tuning these models
becomes challenging due to the large number of parameters. Recent studies have shown that the
adaptation to certain tasks can be efficiently improved by adding prompts to the text encoder.

Prompt learning, first used in the field of NLP (Radford et al., 2019), has proven to be an efficient
way of adapting large models to specific downstream tasks. Unlike fine-tuning, it uses text prompts
rather than re-training model parameters (Devlin et al., 2019; Petroni et al., 2019). Recent studies
such as Coop (Zhou et al., 2022b) and CoCoOP (Zhou et al., 2022a) use learnable prompts on
CLIP with high accuracy to specific tasks. MaPLe (Khattak et al., 2022) and PromptSRC (Khattak
et al., 2023) approaches make similar attempts by using high-level prompt and CLIP knowledge
distillation. However, each of these methods uses a single prompt as a textual prompt, which has
limitations for multi-category tasks. Learning multiple prompts in PLOT (Chen et al., 2023) by
optimal transport, however, increases the optimization complexity and computational burden.

2.2 FEW-SHOT LEARNING IN VISION-LANGUAGE MODEL

In order to improve the learning capacity of few-shot learning, few-shot learning is usually ad-
dressed through meta-learning and data augmentation (Liu et al., 2021; Ravi & Larochelle, 2017).
Meta-learning algorithms such as MAML (Finn et al., 2017), Reptile (Nichol et al., 2018) update
parameters via gradient descent. But these methods increase computational cost in large vision-
language model. Data augmentation like CutOut (Devries & Taylor, 2017), CutMix (Yun et al.,
2019), SelfMix (Seo et al., 2021) and Mixup (Zhang et al., 2018) can result in problems such as
information loss and complications with label smoothing (Ni et al., 2021). Therefore, we use a new
mixed self-augmentation method to reduce the complexity and increase the image diversity.

3 METHODOLOGY

In contrast to the fine-tuning approach, prompt learning only trains prompt as the only learnable pa-
rameter (Zhou et al., 2022b; Khattak et al., 2023). The framework of MVMP is shown in Figure 4.
Unlike previous approaches that use single prompt, our approach employs multi-stage prompts and
image augmentation. Firstly, we obtain new virtual samples using mixed self-augmentation, replac-
ing the random region with another image region. Secondly, consistency loss is used after image
augmentation to stabilize the model’s robustness. Then, the text feature of the prompt is influenced
by the consistency loss of the textual distillation. Finally, text prompts are sequentially saved to the
prompt memory during the training phase, and high-level prompts are assigned Gaussian weights
based on performance. The final prediction integrates multi-stage prompt-weighted predictions.
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Figure 4: Overview of our multi-vision multi-prompt method (MVMP). MVMP generates new vi-
sual samples through mixed self-augmentation and performs the consistency loss with the original
image. Then, it enhances the text samples using text distillation with consistency loss. Additionally,
it stores the first layer prompt in the memory bank during each epoch and applies Gaussian weights
to the high-layer prompts. Finally, integrate the prompts from different stages for average prediction.

3.1 REVIEW OF CLIP

CLIP consists of two encoders, and one is an image encoder which is based on ResNet (He et al.,
2015) or ViT (Dosovitskiy et al., 2021). The other is a text encoder, which is based on Trans-
former (Vaswani et al., 2017). CLIP pre-trains the contrast loss between image and text to get a
correspondence between image and text which improved performance on various vision tasks.

In the pre-training phase of the CLIP framework, CLIP utilizes a large set of image-text pairs to learn
cross-modal feature representations, denoted as {(i1, t1), (i2, t2), . . . , (iN , tN )}. For downstream
image classification tasks, text prompts such as ”a photo of a,” are pre-concatenated to form the text
input token sequence. Let the image encoder and text encoder be represented by f(θf ) and g(θg),
respectively. The text token sequence T is formulated as a concatenation of various elements: the
prefix, the prompt, the [CLS] token, and the suffix. Specifically, if the length of the prompt is l, then
the text token sequence T can be represented as: T = {tprefix, t1, t2, . . . , tl,CLS, tsuffix}. Here, tl
is prompt sequence while tprefix and tsuffix are the prefix and suffix tokens respectively. The [CLS]
token serves as each class label. The text feature from the text encoder is g(T , θg). Similarly, the
image input is divided into n patches in transformer embedding, which is I = {i1, i2, . . . , in}. And
image feature is represented as f(I, θf ). The inference process for input image x with class k is :

p(y = k|x) = exp (sim (f(I, θf ), g(T , θg)) /τ)∑N
k′=1 exp (sim (f(I, θf ), g(Tk′ , θg)) /τ)

(1)

where, sim(·, ·) represents the similarity function between the image and text feature vectors.

Prompt Learning for CLIP. At this stage, CLIP prompt research refers to embedding prompts in the
image or text encoder. The structure of the baseline independent vision-language prompt (Rasheed
et al., 2023) used in this paper is a multilayer prompt embedding. To learn deeper prompts, we use
a deep structure to learn prompts at each transformer block. Specifically, The text encoder utilizes
learnable prompt set Pt, which contians each layer text prompt Pt = [pt1,pt2, . . . ,ptn] for n layers.
The text encoder input is thus represented as Tp = {tprefix,Pt,CLS, tsuffix}. Similarly, the image
encoder features a learnable prompt Pv , represented as Pv = [pv1,pv2, . . . ,pvn] for n layers. The
input image is represented as Ip = {Pv, i1, i2, . . . , in}. Consequently, the image feature and text
feature are computed as f(Ip, θf ) and g(Tp, θg). When the model is applied to a downstream target
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dataset D, the text and image encoders of CLIP are frozen, and only the embedded text and image
prompts Pt and Pv are trained. The optimization of these prompts is carried out by minimizing the
cross-entropy loss function for image data x and class token y:

Lce = −
∑

(Ip,Tp)∈D

log

(
exp(sim(f(Ip, θf ), g(Tp, θg))/τ)∑

T ′
p∈D exp(sim(f(Ip, θf ), g(T ′

p, θg))/τ)

)

= −
∑

(x,y)∈D

log

(
exp(sim(f(x, θf ,Pv), g(y, θg,Pt))/τ)∑

y′∈Tp
exp(sim(f(x, θf ,Pv), g(y′, θg,Pt))/τ)

) (2)

3.2 MULTIPLE PROMPTS

Although a multilayered prompt structure is employed to gradually learn different features from the
abstract to the concrete level, each stage of training utilizes prompts with distinct capabilities. As
illustrated in Figure 2, prompts in the early stages aim to capture more generalized features, whereas
prompts in later stages increasingly focus on capturing detailed features. Relying solely on late-
stage detail prompts limits the model’s generalization ability in more diverse situations. An intuitive
solution to this issue is combining all prompts from training stages with different perspectives.

Prompt Memory Bank. To use the specific capabilities of each stage, we separately store the
prompts associated with each stage. After completing each training epoch, we update our prompt
memory bank M . This memory bank M contains all prompts generated from the start of the training
until the current epoch. To update M for a prompt pe generated in epoch e:

Me+1 = Me ∪ {pe · I(e)}, where I(e) =

{
1 if ϵe > β

0 otherwise
(3)

where, ϵe represents the evaluation parameter, and β is a threshold that determines which prompts
should be included in M . e denotes the total number of training epochs. This updating strategy
ensures that the model’s understanding is continuously captured throughout the training process.

Gaussian Weights for High-layer Prompts. High-layer prompts tend to be more abstract and
detail-oriented (Khattak et al., 2023). While there are advantages to retaining all layers of prompts,
this also increases the memory load. Therefore, we choose to store only the text prompt from the
first layer in the memory bank. During training, Gaussian weights were assigned to all other high-
layer prompts, excluding the first layer, to enable efficient weighted combinations. This approach
allows us to fully exploit each prompt layer without adding extra memory burden. Specifically, the
representation for the weighted aggregation of the high-layer prompts in H during the e-th epoch is:

P (e)
w =

∑
i∈H

w
(e)
i Pi (4)

where, P (e)
w is the weighted prompts at the e-th epoch, Pi represents the prompt at the i-th layer,

w
(e)
i is the corresponding Gaussian weight at the e-th epoch, and H contains all high-layer prompts.

With the assistance of the prompt memory bank and Gaussian weights, we are able to overcome
some of the fundamental limitations of prompt learning and obtain a wealth of meaningful prompt
information. The prompt memory bank can accommodate and effectively utilize a diverse array
of useful prompts, enhancing the model’s flexibility and adaptability during the learning process.
The Gaussian weighting mechanism for high-layer prompts enables more precise utilization of their
predictive power from multiple layers, resulting in comprehensive and accurate predictions.

3.3 VISION AND TEXT AUGMENTATION

Mixed Self-Augmentation. To address the issue of limited image information available for the few-
shot learning task, we propose a novel framework called mixed self-augmentation. This framework
is specifically designed to quickly acquire diverse and rich image features. To accomplish this, we
generate new mixed virtual samples Imixed by randomly selecting a region from one input sample
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I1 and replacing its pixels with the corresponding region from another sample I2 (Seo et al., 2021).
Specifically, given input images I1 and I2 with dimensions W × H , a source sub-area P1 is ran-
domly selected from I1 with dimensions rw × rh, and its upper-left corner coordinates (ra1, rb1)
are drawn from a uniform distribution as follows:

(ra1, rb1) ∼ U ([0,W − rw]× [0, H − rh]) , where U(x; a, b) =

{
1

b−a for a ≤ x < b,

0 otherwise.
(5)

Similarly, a target subregion P2 is randomly selected from I2 with upper-left corner coordinates
(ra2, rb2) satisfying:

(ra2, rb2) ∼ U ([0,W − rw]× [0, H − rh]) (6)

A pixel substitution operation is performed by replacing P1 with P2, thus generating a new virtual
sample Imixed satisfying:

Imixed[ra1 : ra1 + rw, rb1 : rb1 + rh] = I2[ra2 : ra2 + rw, rb2 : rb2 + rh] (7)

This method replaces region images with different values by culling them, effectively scrambling the
data. This strategy helps prevent the network from over-fitting to the existing samples and ultimately
improves its generalization performance.

Consistency Loss. To guarantee the model’s stability, we introduce a consistency loss applied to
both the original and mixed images. Specifically, the original image is represented as x, and the
mixed image is denoted by x′. The cross-entropy losses calculated for these images are H(x) and
H(x′), respectively. The consistency loss is defined as:

Lvision = (H(x)−H(x′))
2 (8)

Text Distillation. After increasing image diversity, an important challenge that restricts the learning
capability of the prompt is the presence of only one text feature per category, resulting in a diversity
mismatch between the image and text modalities. To address this disparity, we propose a method of
text feature distillation by leveraging multiple fixed prompts.

This method aims to enhance textual diversity by using CLIP text encoders to distill textual features
from a variety of fixed prompts and use them as a guide to learnable prompts. We define the loss
function Ltext for this distillation process as follows:

Ltext =
1

N

N∑
i=1

(g(yi, θg,Pfixed)− g(yi, θg,Pt))
2 (9)

where Pfixed and Pt are the fixed prompts and the learnable prompt, respectively. In this method, we
utilize fixed prompt to enhance text features through distillation, absorbing characteristics from vari-
ous contexts, thus overcoming the constraint of relying solely on a single text feature. This approach
not only enhances the model’s learning efficiency but also augments its overall performance.

Overall Optimization. In our model, the overall optimization method is:

L = λ1Lvision + λ2Ltext + λ3Lce (10)

where, λ is weight coefficient. By enhancing the diversity of images and texts, the integration of
the three loss functions has enhanced the model’s performance on individual tasks and improved its
robustness and adaptability across various data types. For a more comprehensive overview of the
algorithm, please refer to the training and testing processes pseudo-code provided in Appendix A.4.

4 EXPERIMENTS

To evaluate our approach, we conduct extensive experiments including a comparison with CLIP’s
prompt learning state-of-the-art approach and few-shot learning state-of-the-art approach in the few-
shot learning task, cross-dataset studies and ablation studies.
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Figure 5: Comparison of accuracy in few-shot environment for shot 1, 2, 4 across 5 datasets. MVMP
has a great improvement in training with fewer samples, i.e. shot=1.

4.1 EXPERIMENT SETTINGS

Benchmark Settings. We perform two types of benchmark experiments. First, we perform few-
shot learning experiments comparing with CLIP’s prompt learning methods and traditional few-shot
learning data augmentation methods. Second, we also perform cross-dataset benchmark. Addtion-
ally, we perform ablation experiments, comparing the number of prompts and MVMP settings.

Datasets. First, following the experimental design of the CLIP model in the evaluation of few-shot
learning, we evaluate the performance of 11 different visual categorization datasets including Im-
ageNet (Deng et al., 2009), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013),
Caltech101 (Fei-Fei et al., 2007), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGV-
CAircraft (Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al.,
2014), SUN397 (Xiao et al., 2010) and UCF101 (Soomro et al., 2012), which cover a wide range of
datasets from large-scale image classification (e.g., ImageNet) to more specialized and fine-grained
tasks (e.g., pet, car, flower, and food categorization), as well as texture, land-cover, scene, and action
recognition. For a more detailed description of the dataset, please refer to Appendix A.6.

Baselines. We totally compare with 10 state-of-the-art baselines. For models based on CLIP prompt
learning, we perform comparisons with state-of-the-art methods, which include CLIP (Radford et al.,
2021), CoOp (Zhou et al., 2022b) and CoCoOP (Zhou et al., 2022a) for the first introduction of
prompt learning, PLOT (Chen et al., 2023) for multi-prompt learning, as well as Maple (Khattak
et al., 2022) and PromptSRC (Khattak et al., 2023)for multilayer structures. In terms of tradi-
tional few-shot learning data augmentation, we compare with CutOut (Devries & Taylor, 2017),
CutMix (Yun et al., 2019), SelfMix (Seo et al., 2021) and Mixup (Zhang et al., 2018).

Implementation Details. For experiments on few-shot learning, we use a similar setup to that few-
shot learning in CLIP. Specifically, use 1, 2, 4, 8 and 16 shots as training set and evaluate with
the original test set. For cross-dataset benchmark, we perform 16 shots training on ImageNet and
evaluate it on a full test set of the other 10 different datasets. For ablation experiments, we use 1
shot for training and test on 11 datasets to get average results. In our experiments, VIT-B/16 is used
as the image encoder for CLIP and all results are based on the average of 3 times. We use 5 prompts
from memory bank for prediction. For more detailed information please refer to Appendix A.6.

4.2 FEW-SHOT EXPERIMENT RESULTS

We first experimentally evaluate CLIP prompt learning and data augmentation methods on 11 spe-
cific few-shot learning datasets dedicated to CLIP evaluation. The results of these evaluations are
reported in Table 1 and Table 2. It is evident from the tables that our proposed method, MVMP,
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Table 1: Accuracy of classification for CLIP prompt learning methods on 11 datasets in 1-shot
adaptation task. The bold number indicates the best result.

Method Aircraft Caltech DTD EuroSAT Cars Flowers Food SUN397 Pets UCF ImgNet Average

CLIP 19.6 79.9 34.6 49.2 35.7 69.7 44.0 41.6 44.1 53.7 32.1 45.8
CoOp 21.4 92.6 49.0 53.4 67.4 77.5 84.3 66.8 90.4 71.2 66.3 67.3

CoCoOp 12.7 93.8 48.5 55.3 67.2 72.1 85.3 68.3 91.3 70.3 67.4 66.6
PLOT 27.7 93.1 54.0 64.4 68.1 80.0 78.7 66.0 91.1 73.4 66.4 69.4

MaPLe 26.1 92.9 51.4 74.1 68.3 83.3 79.9 64.8 89.1 71.8 62.7 69.5
PromptSRC 27.5 93.2 56.7 73.1 69.4 85.1 84.9 69.0 91.5 73.6 67.7 71.9

MVMP(Ours) 31.0 94.0 58.8 78.9 71.0 84.5 85.5 69.8 92.6 75.7 69.1 73.8

∆ +3.5 +1.0 2.8 +6.1 +1.6 -0.4 0.7 +0.4 +0.9 +2.1 +1.1 +1.9

Table 2: Accuracy of classification for few-shot learning data augmentation methods on 11
datasets in 1-shot adaptation task. The bold number indicates the best result.

Method Aircraft Caltech DTD EuroSAT Cars Flowers Food SUN397 Pets UCF ImgNet Average

CLIP 19.6 79.9 34.6 49.2 35.7 69.7 44.0 41.6 44.1 53.7 32.1 45.8

+CutMix 24.7 92.7 47.8 51.7 59.0 84.3 81.4 62.3 86.2 70.9 61.5 65.7

+SelfMix 27.1 93.4 51.9 66.7 52.8 73.7 83.7 66.4 90.1 69.0 65.5 67.3

+Mixup 26.7 93.5 49.1 73.1 67.7 75.1 82.0 66.0 90.0 70.0 66.1 69.0

+CutOut 23.5 92.6 51.4 77.9 68.3 75.6 82.5 65.0 89.1 71.3 62.7 69.1

MVMP(Ours) 31.0 94.0 58.8 78.9 71.0 84.5 85.5 69.8 92.6 75.7 69.1 73.8

∆ +7.5 +1.4 +7.4 +1.0 +2.7 +8.9 +3.0 +4.8 +3.5 +4.4 +5.9 +4.6

outperforms other approaches on almost all of the datasets in the challenging task of extreme 1-shot
learning. Compared to advanced data augmentation methods for few-shot learning, we observe a
4.6% improvement. Against PromptSRC, which represents the current state-of-the-art in prompt
learning, MVMP achieves a 2% increase in accuracy. Specifically, MVMP demonstrates superior
performance on 10/11 tested datasets. This approach excels higher when dealing with datasets that
exhibit a high level of diversity and complexity such as ImageNet and DTD. MVMP consistently de-
livers excellent results across various datasets and complexities through a straightforward approach
involving multiple images and prompts. This demonstrates its wide applicability and robustness.

In Figure 5, we choose five datasets with more than 10% variation in accuracy for comparison. When
the number of training samples is minimal, the performance of MVMP demonstrates a noticeable
improvement. This improvement can be attributed to greater diversity, enabling the model to capture
various visual features and semantic information more effectively. Therefore, leveraging diversity as
a strategy has proven effective in scenarios where the number of samples is scarce. For more detailed
experiment results on few-shot learning (including 2, 4, 8, 16 shots), please refer to Appendix A.3.

4.3 CROSS-DATASET EXPERIMENT RESULTS

In Table 3, we show the performance comparison of cross-dataset. Using the same settings as the
previous method, we utilize 16 shots of ImageNet as the source dataset for training and test on
10 other datasets. The results show that MVMP performs with highest accuracy on the source
dataset, outperforming all prompt learning methods. Meanwhile, it maintains good generalization
performance on 7/10 datasets, while the performance on the remaining 3 is comparable to the top
methods. This demonstrates that MVMP exhibits reliable generalization performance. Additionally,
we compare the results of base-to-new experiment for 11 datasets, as detailed in the Appendix A.5.

4.4 ABLATION EXPERIMENT RESULTS AND COMPLEXITY COMPARISON

In this section, we conduct ablation experiments for different components. As shown in Figure 6,
Firstly, compared to using a single prompt, the use of multiple prompts led to a 4% improve-
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Table 3: Cross-dataset benchmark evaluation. The bold number indicates the best result.

Source Target

Imagenet Aircraft Caltech DTD EuroSAT Cars Flowers Food SUN397 Pets UCF101 Average

CoOp 71.5 18.5 93.7 42.0 46.4 64.5 68.7 85.3 64.2 89.1 66.6 63.9
CoCoOp 71.0 22.9 94.4 45.7 45.4 65.3 71.1 86.1 67.4 90.6 68.2 65.7
MaPLe 70.7 24.7 93.3 46.2 48.0 65.3 71.6 86.2 67.0 90.5 68.4 66.1

PromptSRC 71.3 23.9 93.6 46.9 45.5 65.7 70.2 86.2 67.1 90.3 68.8 65.8
MVMP 72.7 23.5 93.5 47.2 47.7 65.8 71.3 86.3 67.6 90.6 69.2 66.3

Figure 6: Left: MVMP ablation experiments on 1-shot 11 datasets for different settings. Right:
Accuracy in 11 datasets for 1, 2, 4 shots task with different number of prompts

ment in accuracy. Furthermore, incorporating multiple visions contributes to an additional 0.5%
enhancement. This improvement is mainly due to the enhancement of only the image part, result-
ing in a mismatch between image and text. After increasing text diversity, the accuracy increases
by 2%. Secondly, we also experiment with the number of prompts stored in the prompt mem-
ory bank. Among the options of 1, 2, 5, 10, and 20 prompts, we find that the accuracy is high-
est when using 5 prompts, while using a single prompt is the least effective. This suggests that
it is challenging for a single prompt to account for both the generalization and the task details.

Table 4: Comparison of training time
and accuracy on the DTD dataset.

Method Training (s) Acc. (%)

CoCoOp 137 49.5
PLOT 280 54.7

MVMP 189 58.1

In contrast, using multiple prompts from different periods
allows for a more comprehensive capture of the complex-
ity of the task. Details of the prompt length ablation ex-
periment is in the Appendix A.2. Additionally, we com-
pare the training times of CoCoOp, PLOT, and MVMP
by training and testing them on the DTD dataset in a 1-
shot setting. As shown in Table 4, MVMP is 32.5% faster
in training compared to the PLOT. Additionally, it boasts
a performance advantage, with up to a 17.4% increase in
accuracy over the meta-learning approach, CoCoOp.

5 CONCLUSION AND FURTHER STUDY

This study presents a strategy called Multi-Vision Multi-Prompt (MVMP) to optimize prompt stor-
age at different stages, aiming for a more comprehensive and diverse selection. By increasing image
and text diversity, MVMP enhances prompt learning and improves the model’s robustness without
introducing additional parameters. Our method demonstrates significant enhancements in CLIP’s
prompt learning and advanced image augmentation methods. We observe notable performance im-
provements through various few-shot learning tasks across multiple datasets and it maintains good
generalization. This validates the effectiveness of the multi-vision, multi-prompt strategy and high-
lights the superiority of using multiple prompts over a single one. While MVMP has shown signif-
icant advantages and usefulness across various domains, it is essential to investigate its efficiency
and generalization ability thoroughly. In our future research, we will focus on improving the ef-
ficiency of MVMP’s inference process to strike a better balance between accuracy and efficiency.
Additionally, there is still room for further optimizing MVMP regarding its generalization ability.
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A APPENDIX

The following is supplemental material that includes a more detailed description of the related work,
additional implementation details, a description of the dataset, a description of the algorithm, full
experimental results for few-shot Learning, a comparison for prompt length, results for base-to-new
experiments and compression of complexity. The table of contents is as follows:

A.1 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

A.2 ABLATION EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.3 FEW-SHOT LEARNING EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.4 ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.5 BASE-TO-NEW EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.6 ADDITIONAL IMPLEMENTATION DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.1 RELATED WORKS

A.1.1 VISION LANGUAGE PRE-TRAINED MODEL

The Vision-Language Pre-trained (VLP) models aim to establish cross-modal connections through
extensive pre-training, incorporating both visual and textual modalities. Typical Vision-Language
Pre-trained models consist of text and image encoders, utilizing self-supervised learning through
contrast loss (Radford et al., 2021; Jia et al., 2021; Gao et al., 2021). While Vision-Language
Pre-trained models such as CLIP have strong linguistic parsing capabilities and can be adapted to
a wide range of specific downstream tasks (Ding et al., 2022a; Gu et al., 2022; Li et al., 2022a;
Rasheed et al., 2022), it is problematic to maintain their generalizability when applied to these tasks.
Recent research has explored more effective ways to adapt VLP to downstream tasks, namely by
incorporating prompts into text encoder (Wang et al., 2023). This approach preserves the original
capabilities of models and demonstrates their potential advantages for specific tasks.

A.1.2 PROMPT LEARNING

Prompt learning was initially developed by the natural language processing (NLP) field as a means
to effectively tailor large-scale models for downstream tasks (Radford et al., 2019; Liu et al., 2023;
Ding et al., 2022b). Unlike fine-tuning methods, prompt learning does not involve re-training the
model parameters but instead uses text prompts to guide large models to specific tasks. In the case
of a pre-trained language model, the prompt is typically presented in the form of a completion or
masked sentence, such as ”It was [MASK]” The model is trained to predict the appropriate word for
the masked position (Devlin et al., 2019; Petroni et al., 2019; Luo et al., 2021). Most early studies
manually set prompts, a time-consuming and challenging task for finding the appropriate prompt.
In contrast, recent research focuses on enabling the model to learn more suitable prompts indepen-
dently (Zhang et al., 2020; 2022). The CoOp (Zhou et al., 2022b)and CoCoOP (Zhou et al., 2022a)
two approaches first use a learnable prompt based on the CLIP modeling. The former uses learnable
prompts to enhance the CLIP model’s adaptation to specific tasks while preserving its generalization
ability. The latter adds image biases to the prompts for further improving the CLIP model’s general-
ization performance. On the other hand, the PLOT method (Chen et al., 2023), attempts to divide the
image into multiple region prompts and learns these prompts using the optimal transport strategy.
Maple method (Khattak et al., 2022) adds prompts in deeper layers of the model to ensure that these
prompts are also useful in high-level abstract feature representations. These approaches explore how
the prompt enhances CLIP from various dimensions. However, they frequently have the limitation
of using a single prompt to represent the entire dataset, even though different categories may require
different prompts. In this regard, the idiosyncrasies between different categories are disregarded.
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A.1.3 FEW-SHOW LEARNING IN VISION-LANGUAGE MODELS

Large Vision-Language Models can adapt quickly in few-shot learning application scenarios due to
large-scale pre-training. Few-shot learning is usually achieved by training with only a tiny number
(typically no more than 5) of samples for each classification, thus achieving the goal of accurately
classifying a more significant number of samples (Li et al., 2022b; Cubuk et al., 2018; Vinyals et al.,
2016; Chen et al., 2021; Fang et al., 2023; Sreenivas & Biswas, 2023). Traditionally, this type of
problem has been solved in two main ways: meta-learning and data augmentation.

For meta-learning (Lee et al., 2023), there are algorithms such as MAML (Finn et al., 2017), Rep-
tile (Nichol et al., 2018), etc., which update all the parameters in the network by gradient descent
during multiple model fine-tuning stages. However, in large vision language models, applying meta-
learning (e.g., CoCoOp (Zhou et al., 2022a) usually requires the introduction of additional param-
eters. This not only increases the computational burden but also makes parameter updating more
complicated. Therefore, to reduce the computational cost and the complexity of parameter manage-
ment, we prefer to use data augmentation methods to improve the model’s performance in few-shot
environments. Data augmentation method includes CutOut (Devries & Taylor, 2017) randomly cuts
the area image as a new image, CutMix (Yun et al., 2019) mixes the cut area into another image,
SelfMix (Seo et al., 2021) does region replacement on the same image and Mixup (Zhang et al.,
2018) mixes different images on top of each other to form a new image. However, these methods
can result in problems such as information loss and complications with label smoothing (Ni et al.,
2021).

A.2 ABLATION EXPERIMENT

In this section, we conduct ablation experiment on prompt length for 1 shot on 11 datasets, exploring
prompt lengths of 1, 2, 4, 8, and 16. Figure 7 demonstrates the average results achieved on Imagenet
as well as 11 other datasets. The findings indicate that the highest accuracy rate is attained when
the length of the prompt word consists of 4 words. If there are either too few or too many prompt
words, the accuracy rate diminishes. This phenomenon can be attributed to the fact that an excessive
number of prompt words distracts the model, while an insufficient number of prompt words fails to
provide adequate information to the model.

Figure 7: Ablation experiment for prompt length of 1, 2, 4, 8, 16 on ImageNet dataset and 11
datasets. When prompt length is 4, the accuracy achieves the highest.

A.3 FEW-SHOT LEARNING EXPERIMENT

In this section, we present detailed results of few-shot learning experiments for shots 2, 4, 8, and
16 across 11 datasets. Table 5 shows the performance of 10 baselines in few-show learning of
shots 2, 4, 8, 16. Out of all the state-of-the-art methods, MVMP consistently outperforms them in
every experiment. Specifically, MVMP demonstrates remarkable performance improvements when
applied to complex and challenging datasets such as ImageNet, DTD, and EuroSAT. Notably, the
performance improvement achieved by MVMP is even more significant when the number of training
samples is limited to shot=2 compared to shot=4. Overall, MVMP achieves the highest average
accuracy across all shot experiments and exhibits improvements on nearly all datasets.
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Table 5: Few-shot learning experiment of shot 2, 4, 8, 16 for 11 datasets. The bold number indicates
the best result.MVMP achieves the highest accuracy in almost every dataset in every SHOT experi-
ment, and the highest average accuracy as well.

Method Craft Calte. DTD Euro. Cars Flo. Food SUN Pets UCF ImgNet Average

2
SH

O
T

S

CLIP 26.4 89.0 40.8 62.0 50.3 85.1 61.5 53.7 58.4 65.8 44.9 58.0
CoOp 26.2 93.1 53.6 65.2 70.5 87.3 84.4 66.5 89.8 73.4 67.1 70.6

CoCoOp 15.1 94.8 52.2 46.7 68.4 75.8 86.2 69.0 92.6 73.5 69.8 67.6
PLOT 30.1 94.0 56.0 76.5 72.2 30.1 82.5 68.0 91.3 72.6 68.3 67.4
MaPLe 30.9 94.0 55.5 78.3 71.6 88.9 81.5 67.1 90.9 74.6 65.1 72.6

PromptSRC 30.3 94.5 59.2 79.4 73.4 90.7 85.7 71.6 92.5 77.0 69.1 74.9
CutMix 25.0 92.8 53.2 63.8 68.9 89.4 79.6 66.2 84.2 73.1 68.3 69.5
SelfMix 28.3 93.8 51.1 65.6 67.2 82.5 82.8 68.8 89.3 73.2 68.3 70.1
Mixup 30.5 94.2 52.5 80.0 71.1 85.8 80.9 67.8 90.2 74.8 67.4 72.3
CutOut 30.0 94.6 53.6 80.3 70.6 84.9 82.5 68.5 90.2 73.8 68.9 72.5

MVMP(Ours) 32.8 94.8 59.4 82.7 74.6 90.8 85.8 72.0 92.7 78.6 70.0 75.8

4
SH

O
T

S

CLIP 32.3 92.1 55.7 77.1 63.4 92.0 73.2 63.0 71.2 73.3 54.9 68.0
CoOp 30.8 94.4 58.7 70.8 74.5 92.2 84.5 70.0 92.6 77.1 68.7 74.0

CoCoOp 24.8 95.0 55.0 65.6 69.4 78.4 86.9 70.2 92.8 74.8 70.4 71.2
PLOT 25.3 95.0 62.4 83.2 75.2 92.3 83.0 71.7 92.0 79.2 63.9 74.8
MaPLe 34.9 94.4 61.0 84.5 75.3 92.7 81.8 70.7 91.9 78.5 67.7 75.8

PromptSRC 37.5 95.3 64.5 86.3 77.1 93.4 86.2 74.0 93.4 81.6 71.1 78.2
CutMix 34.1 94.8 61.6 82.6 74.3 92.0 81.2 70.5 88.8 76.7 69.9 75.1
SelfMix 34.7 95.2 57.1 75.9 69.8 89.5 83.8 71.6 91.8 76.4 69.9 74.2
Mixup 35.1 95.0 57.2 84.3 74.2 82.4 82.8 71.2 92.2 78.7 68.6 74.7
CutOut 34.2 94.8 58.8 85.6 73.6 90.0 82.8 71.1 92.2 78.0 70.0 75.6

MVMP(Ours) 38.2 95.6 66.9 86.2 77.1 93.5 86.2 74.0 93.6 80.9 71.3 78.5

8
SH

O
T

S

CLIP 39.4 93.4 63.5 84.4 73.7 96.1 44.0 69.1 78.4 79.3 62.2 71.2
CoOp 39.0 94.4 64.8 78.1 79.3 95.0 84.3 71.5 91.3 80.2 70.6 77.1

CoCoOp 26.6 95.0 58.9 68.2 70.4 84.3 85.3 70.8 93.5 77.1 70.6 72.8
PLOT 41.0 95.0 62.4 83.2 80.6 95.4 83.9 73.3 92.9 82.0 70.4 78.2
MaPLe 42.0 95.2 66.5 87.7 79.5 95.8 79.9 73.2 92.6 81.4 70.3 78.6

PromptSRC 42.7 95.7 68.3 88.8 81.0 96.3 84.8 75.7 93.5 83.6 72.3 80.2
CutMix 42.2 95.7 65.5 87.0 78.9 94.8 81.4 72.8 91.4 81.6 71.6 78.4
SelfMix 31.5 95.5 64.4 76.8 70.8 91.9 83.6 72.8 93.0 79.5 71.4 75.6
Mixup 38.8 95.5 63.6 89.1 78.0 94.0 82.0 73.1 93.0 81.9 71.3 78.2
CutOut 37.2 95.3 63.9 88.4 75.7 93.6 82.5 73.3 91.7 81.2 71.4 77.7

MVMP(Ours) 42.0 95.8 68.9 89.2 79.2 95.8 85.5 75.2 93.8 84.7 72.4 80.2

16
SH

O
T

S

CLIP 45.4 95.4 70.0 87.2 80.4 97.4 82.9 73.3 85.3 82.1 67.3 78.8
CoOp 43.4 95.6 69.9 84.9 83.1 97.1 84.2 74.7 91.9 82.2 71.9 79.9

CoCoOp 31.2 95.2 63.0 73.3 71.6 87.8 87.3 72.2 93.3 78.1 70.8 74.9
PLOT 46.7 95.8 71.0 91.8 83.0 97.0 86.0 76.0 93.2 83.9 71.3 81.4
MaPLe 48.4 96.0 71.3 92.3 83.6 97.0 85.3 75.5 92.8 85.0 71.3 81.7

PromptSRC 48.4 96.1 72.5 92.4 83.8 97.4 87.5 77.2 93.7 86.5 72.2 82.5
CutMix 48.7 96.5 70.3 92.7 82.0 97.0 85.0 76.0 91.6 84.0 72.0 81.4
SelfMix 41.5 96.3 69.1 80.4 73.7 95.2 86.5 74.6 93.1 81.2 72.0 78.5
Mixup 46.7 96.4 69.0 91.4 80.9 95.8 86.0 75.6 93.4 83.7 72.7 81.1
CutOut 44.5 96.4 67.0 92.1 79.5 96.0 86.2 75.5 93.2 82.5 72.6 80.5

MVMP(Ours) 47.9 96.1 72.8 92.9 82.7 97.5 87.7 77.0 93.9 85.8 73.0 82.5
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A.4 ALGORITHM

In this section, we present the algorithm process. In Algorithm 1 and Algorithm 2, we show pseudo-
code for the training and inference process of multi-vision multi-prompt for few-shot learning frame-
work algorithm.

Algorithm 1: Training process of Multi-vision Multi-prompt for Few-shot Learning
Input: few-shot data D = {x,y}, class label y, pre-trained CLIP model image encoder
f(x, θf ,Pv), text encoder g(y, θg,Pt), initial prompt P = (Pv,Pt), high-layer prompt Ph,
fixed prompts Pfixed, mixed area patch I , Gaussian weight wi, weight parameters λ1, λ2, λ3,
initial memory bank M , total epoch E.

Output: memory bank M , weighted high-layer prompt Ph

for all (xi,yi) ∈ D do
Randomly select an area I1 from xi, replaced the area I2 in xj to generate new mixed

sample xmixed
Obtain original image and text feature fp, gp with fp ← f(xi, θf ,Pv),
gp ← g(yi, θg,Pt)
Obtain mixed image feature fmixed with fmixed ← f(xmixed, θf ,Pv)
Obtain text feature diversity gfixed with text encoder by gfixed ← 1

Dg(yi, θg,Pfixed)
for e ∈ E do

Calculate the self-augmentation loss Lvision = MSE(Lce(fmixed),Lce(fp))
Calculate the text loss Ltext = L1 loss(gp, gfixed)
Calculate the cross-entropy CLIP loss Lce = −

∑
i yi log(sim(fp, gp)i)

Total loss function L = λ1Lvision + λ2Ltext + λ3Lce
Save prompt in Memory bank Me+1 ←Me ∪ {Pt · I(e)}
Ensemble high-layer prompt with Gaussian weight Ph ← wi · Ph

end
end

Algorithm 2: Inference process of Multi-vision Multi-prompt for Few-shot Learning
Input: Testing image data D = {x}, class label y, weighted high-layer prompt Ph, fixed

prompts Pfixed, memory bank M .
Output: prediction of each image.
for all (xi) ∈ D do

Sample P equally spaced prompts from M with spacing k
Let P = {M [i],M [i+ k], . . . ,M [i+ (m− 1)k]}
Obtain text feature diversity gfixed with {Pfixed,Ph}
Obtain image feature f
for each p ∈ P do

Obtain text feature gp with {p,Ph}
Calculate the prediction distribution lp ← argmax(f · gp)

end
Calculate the fixed prediction distribution lfixed ← argmax(f · gfixed)
Obtain the averaged prediction distribution for each image i,
l← 1

m+1

(∑
p∈P lpi

+ lfixedi

)
end

A.5 BASE-TO-NEW EXPERIMENT

In this section, we experiment with the generalization of multiple prompt methods in the base-to-new
framework. In this experiment, we divide the 11 datasets into two parts based on CoCoOp (Zhou
et al., 2022a) settings: base and new. Each part contains half of the classes. We trained a 16-shot
model using only the base group and tested it on both the base and new groups. The aim is to evaluate
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the generalization performance of the multi-prompt approach. The specific experimental results
are presented in Table 6. CLIP itself has demonstrated superior generalization performance, while
PLOT has shown progress for both the base and new groups. Additionally, MVMP has provided
significant efficiency gains for both the base and new groups on most of the datasets, indicating that
MVMP can maintain higher generalization performance in multi-prompt scenarios.

Table 6: Comparison of CLIP, PLOT and MVMP in the base-to-new generalization setting. The
results justify the strong generalization of MVMP.

(a) Average

Base Unseen Avg

CLIP 69.4 74.2 71.8
PLOT 82.8 73.9 78.3

MVMP 84.1 74.8 79.5

(b) Caltech101

Base Unseen Avg

CLIP 96.8 93.9 95.4
PLOT 98.7 93.3 96.0

MVMP 98.7 93.8 96.3

(c) UCF101

Base Unseen Avg

CLIP 70.5 77.5 74.0
PLOT 85.7 78.8 82.3

MVMP 87.1 79.3 83.2

(d) ImageNet

Base Unseen Avg

CLIP 72.5 68.1 70.3
PLOT 76.1 68.1 72.1

MVMP 76.1 68.5 72.3

(e) OxfordPets

Base Unseen Avg

CLIP 91.3 97.0 94.2
PLOT 94.7 94.5 94.6

MVMP 95.8 96.3 96.1

(f) DTD

Base Unseen Avg

CLIP 53.2 60.1 56.7
PLOT 80.8 58.6 69.7

MVMP 83.1 61.0 72.1

(g) EuroSAT

Base Unseen Avg

CLIP 56.5 63.9 60.2
PLOT 91.9 64.1 78.0

MVMP 95.4 65.0 80.2

(h) Food101

Base Unseen Avg

CLIP 90.1 91.3 90.7
PLOT 90.8 91.3 91.1

MVMP 90.5 91.3 90.9

(i) StanfordCars

Base Unseen Avg

CLIP 63.4 74.8 69.1
PLOT 75.0 73.5 74.3

MVMP 77.3 75.5 76.4

(j) FGVCAircraft

Base Unseen Avg

CLIP 27.3 36.3 31.8
PLOT 41.5 36.2 38.9

MVMP 41.7 37.4 39.6

(k) SUN397

Base Unseen Avg

CLIP 69.3 75.4 72.4
PLOT 81.0 77.0 79.0

MVMP 82.3 78.8 80.6

(l) Flowers102

Base Unseen Avg

CLIP 72.2 77.9 75.1
PLOT 93.5 74.5 84.0

MVMP 97.5 76.5 87.0

Table 7: Detailed descriptions of the 11 experimental datasets, including the total number of training
samples, the total number of test samples, and detailed content descriptions.

Dataset Classes Test Size Type

ImageNet (Deng et al., 2009) 1,000 50,500 Various objects, animals, scenes, etc.
OxfordPets (Parkhi et al., 2012) 37 3,669 Domestic pets, mainly cats and dogs

StanfordCars (Krause et al., 2013) 196 8,041 Automobiles, including different makes and models
Caltech101 (Fei-Fei et al., 2007) 101 2,465 Objects and scenes, including faces, watches, and animals

DTD (Cimpoi et al., 2014) 47 1,692 Textural patterns like striped, dotted, etc.
EuroSAT (Helber et al., 2019) 10 8,100 Satellite images of land cover like forests, roads, and fields

FGVCAircraft (Maji et al., 2013) 100 3,334 Various types of aircraft, including jets, propellers, etc.
Flowers102 (Nilsback & Zisserman, 2008) 102 2,463 Specific species of flowers like daisies, roses, etc.

Food101 (Bossard et al., 2014) 101 30,300 Different kinds of food dishes, including desserts and main courses
SUN397 (Xiao et al., 2010) 397 19,850 Various natural and man-made scenes, including forests, cities, and rooms

UCF101 (Soomro et al., 2012) 101 3,783 Videos of human actions, including sports, playing instruments, etc.

A.6 ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide a detailed description of the datasets and experiments. Table 7 shows
the detailed description of datasets. We use the same prompt settings as CoOp (Zhou et al., 2022b),
embedding the prompt at the “end” position of the text. Each benchmark is trained for 50 epochs
with a batch size of 16. Initial text prompts are randomly generated with a length of 4 characters.

17



Under review as a conference paper at ICLR 2024

We sample from 50 prompts using 5 prompts for prediction. We use prompts with V = T = 4V L
in the first four transformer layers. Each of these prompts is randomly generated following a normal
distribution. We use Gaussian weights with a standard deviation and mean both set to 30. We use a
learning rate of 0.002 and set weights of the loss function, where λ1 = 2, λ2 = 15, λ3= 5. For the
memory bank parameters, we use training accuracy as ϵe and the threshold β = 50. Additionally, we
utilize 10 pre-defined manual prompts for distilling frozen CLIP text features (Radford et al., 2021).
These texts are the seven with the highest training ImageNet accuracy in CLIP prompt and three
randomly selected ones. The specific texts are as follows:

"itap of a {}."
"a bad photo of the {}."
"a origami {}."
"a photo of the large {}."
"a {} in a video game."

"art of the {}."
"a photo of the small {}."
"a photo of a {}."
"a bad photo of a {}."
"a photo of many {}."
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