
Do Code Semantics Help? A Comprehensive Study on Execution
Trace-Based Information for Code Large Language Models

Anonymous ACL submission

Abstract001

Code Large Language Models (Code LLMs)002
have opened a new era in programming with003
their impressive capabilities. However, recent004
research has revealed critical limitations in005
their ability to reason about runtime behavior006
and understand the actual functionality of pro-007
grams, which poses significant challenges for008
their post-training and practical deployment.009
Specifically, Code LLMs encounter two prin-010
cipal issues: (1) a lack of proficiency in rea-011
soning about program execution behavior, as012
they struggle to interpret what programs actu-013
ally do during runtime, and (2) inconsistent014
and fragmented representation of semantic in-015
formation, such as execution traces, across ex-016
isting methods, which hinders their ability to017
generalize and reason effectively. These chal-018
lenges underscore the necessity for more sys-019
tematic approaches to enhance the reasoning020
capabilities of Code LLMs. To address these021
issues, we introduce a generic framework to022
support integrating semantic information (e.g.,023
execution trace) to code task-relevant prompts,024
and conduct a comprehensive study to explore025
the role of semantic information in enhancing026
the reasoning ability of Code LLMs accord-027
ingly. Specifically, we focus on investigating028
the usefulness of trace-based semantic informa-029
tion in boosting supervised fine-tuning (SFT)030
and post-phase inference of Code LLMs. The031
experimental results surprisingly disagree with032
previous works and demonstrate that semantic033
information has limited usefulness for SFT and034
test time scaling of Code LLM.035

1 Introduction036

Code large language models (Code LLMs) have037

emerged as prominent programming assistants,038

demonstrating remarkable performance across var-039

ious coding tasks, including program repair (Xia040

et al., 2022), code generation (Liu et al., 2023b),041

and code summarization (Jain et al., 2020). Re-042

cently, several Code LLMs have been introduced,043

each characterized by distinct training schemes. 044

For instance, Llama3.1 (Dubey et al., 2024; Roziere 045

et al., 2023), is fine-tuned with code infilling 046

tasks and long code input contexts, complemented 047

by an instruction fine-tuning process. Similarly, 048

DeepSeek-Coder (Guo et al., 2024) is trained on 049

over 2 trillion tokens using a fill-in-the-blank task 050

to enhance its code generation capabilities. These 051

models focus on learning contextual information 052

from code and docstrings, advancing their general 053

understanding of code (Chen et al., 2024; Ni et al., 054

2024; Ding et al., 2024). 055

However, these approaches predominantly cap- 056

ture the static dimensions of code (e.g., tokens and 057

context), while neglecting the dynamic semantics 058

crucial for a comprehensive understanding of code. 059

Recent studies have highlighted this limitation, re- 060

vealing that even state-of-the-art models like GPT- 061

4 struggle to reason about runtime behaviors of 062

code (Chen et al., 2024). Understanding code se- 063

mantics and accurately predicting runtime behavior 064

is critical, particularly for practical coding appli- 065

cations that require semantic understanding (Ni 066

et al., 2024; Ding et al., 2024). This underscores 067

the urgent need to investigate methodologies that 068

enhance the reasoning capabilities of Code LLMs 069

for better semantic understanding, such as coverage 070

prediction (Chen et al., 2024) and output predic- 071

tion (Chen et al., 2024; Liu et al., 2023a) abilities. 072

To address these challenges, two primary meth- 073

ods have been proposed to bolster the reasoning 074

capabilities of Code LLMs in code generation 075

tasks: 1) the iterative invocation of Code LLMs, 076

wherein feedback–such as error information–is in- 077

corporated to refine subsequent outputs (Chen et al., 078

2023; Jiang et al., 2024; Xia and Zhang, 2023), and 079

2) the direct enhancement of the models’ intrin- 080

sic reasoning by integrating semantically enriched 081

training data, thereby enabling improved predic- 082

tions within a single iteration (Ni et al., 2024; Ding 083

et al., 2024). In this work, we consider both ap- 084

1

proaches and explore whether and how incorpo-085

rating code semantic information can enhance the086

performance of Code LLMs. Specifically, we in-087

vestigate evaluate their effectiveness across various088

code-related tasks.089

The core challenge lies in identifying and col-090

lecting appropriate semantic data for training or091

inference to improve the semantic comprehension092

of Code LLMs. Recent efforts (Ding et al., 2024;093

Ni et al., 2024) have begun to address this by fine-094

tuning models using dynamic data, such as execu-095

tion behaviors, to enhance semantic understanding.096

While these approaches have shown promise, they097

employ diverse semantic representations, such as098

natural language descriptions of programs or exe-099

cution traces. There remains a lack of 1) a unified100

study and tool that supports all semantic represen-101

tations, and 2) systematic understanding regarding102

how different training data compositions, particu-103

larly in terms of semantic representations, impact104

code reasoning and generation capabilities.105

To this end, we propose and implement a generic106

framework that facilitates the generation of multi-107

ple types of semantic representations, supporting108

post-training, one-time inference, and the scaling109

of test-time computation during inference. Based110

on this framework, we conduct a systematic study111

to explore the efficacy of semantic information112

in boosting code generation. Specifically, we113

integrate different semantic representations (i.e.,114

different code execution traces) into the input115

data (prompt) during both SFT time and inference116

time to assess their impact. Additionally, we ex-117

amine the influence of different training strategies118

(e.g., parameter-efficient fine-tuning) on the effec-119

tiveness of semantic information. Different from120

previous research findings, our experimental results121

demonstrate that integrating such the existing se-122

mantic information provided into the input prompt123

has limited benefits to the performance of tuned124

Code LLMs.125

To summarize, the main contributions of this126

paper are:127

• We introduce the first generic framework that sup-128

ports different types of code semantic represen-129

tations. Based on this framework, we construct130

and open-source a high-fidelity dataset featuring131

diverse execution behavior representations, in-132

cluding bug-patch function pairs, unit tests, and133

multiple semantic layers. The dataset and all re-134

lated implementations are publicly available on135

our website 1. 136

• We conduct a comprehensive study to explore the 137

effectiveness of semantic information in enhanc- 138

ing both SFT and inference of code LLMs. 139

• We summarize multiple findings such as that test 140

time scaling significantly improves code genera- 141

tion, but semantic information integrated in the 142

input does not positively contribute to the infer- 143

ence. 144

2 Problem Statement 145

We address the problem of enhancing the code gen- 146

eration capabilities of Code LLMs by integrating 147

code semantic information into the input prompts. 148

Current Code LLMs primarily rely on static text 149

data, which often fails to capture the nuanced 150

semantics crucial for thorough code understand- 151

ing (Wei et al., 2023, 2024; Abdin et al., 2024). In- 152

spired by the practices of human developers, who 153

iteratively refine code through reasoning and se- 154

mantic assessment rather than relying solely on 155

dynamic testing or runtime feedback, we note that 156

such reasoning and refinement processes are largely 157

absent in existing models (Ni et al., 2024; Ding 158

et al., 2024). There are two main sub-problems 159

we are interested in for Code LLMs, 1) fine-tuning 160

with semantic information, and 2) inference with 161

semantic information. 162

(1) Fine-tuning with semantic information. Our 163

Code LLM fine-tuning paradigm focuses on a 164

repair-based fine-tuning framework that leverages 165

a carefully curated dataset D =
{
(x, y)

∣∣ x = 166

(b, r), y = a
}

where (x, y) is the input-output pair 167

for model fine-tuning, b denotes the buggy code 168

fragment, r is execution-trace rationale, and a rep- 169

resents the patched code. We selected the code 170

repair task because models often fail to produce 171

correct code in a single attempt, requiring the re- 172

finement of the output until it is correct. A central 173

question is how to encode the reasoning signals r 174

so that the Code LLM can learn better code genera- 175

tion capability. 176

(2) Scaling Inference through Semantic Refine- 177

ment. Emulating human “work-and-check” prac- 178

tices at inference time—iteratively refining candi- 179

date solutions and verifying each step—can sub- 180

stantially improve an LLM’s accuracy under a fixed 181

but non-trivial test-time compute budget N (Li 182

et al., 2025). The key question is: Given a fixed 183

1https://github.com/tracewise-probing/tracewise_probing

2

https://github.com/tracewise-probing/tracewise_probing

inference-time compute budget N , to what extent184

can an LLM improve its performance when prompts185

are enhanced with semantic representations? In186

this paradigm, a search-based computation strategy187

θ specifies how to (1) propose candidate solutions188

incrementally, (2) verify or score each partial out-189

put (e.g., via code execution or a reward model),190

and (3) refine solutions based on feedback—all191

within the budget N . Formally, following (Snell192

et al., 2024), for a given query q, the final output y193

is drawn from194

y ∼ Target
(
θ, q, N, Verify

)
(1)195

where Target(θ, q,N,Verify) is a test-scaling196

framework which iterates through proposing, veri-197

fying, pruning, and refining partial solutions until198

the budget N is exhausted. If y∗(q) denotes the199

ground-truth correct answer for q, we measure ac-200

curacy via the indicator 1{y=y∗(q)}. In general,201

we define the test-time compute-optimal strategy202

θ∗q(N) as the one that maximizes the expected prob-203

ability of generating the correct answer:204

θ∗q(N) = argmax
θ

(
Ey∼Target(θ,N,q,Verify)205 [

1y=y∗(q)

])
(2)206

Here, θ may control how many refinement steps207

to run, which candidate paths to verify, subject to208

the budget N . Verification signals (such as code ex-209

ecution) enable the model to discard incorrect paths210

or improve partially correct ones, while iterative211

refinement uses feedback to converge on better out-212

puts. By strategically allocating test-time resources,213

a trace-based verify-and-refine loop can substan-214

tially boost accuracy without additional training.215

3 Evaluation Framework216

3.1 Overall Design217

This work aims to investigate the impact of various218

execution-trace based semantics and their represen-219

tations, denoted as r, on the performance of Code220

LLMs. Following recent works (Ding et al., 2024;221

Chen et al., 2024; Ni et al., 2024), we consider222

high-level program descriptions and low-level exe-223

cution traces as potential semantic components of224

r. Different trace representations can significantly225

influence fine-tuning and inference performance,226

prompting us to explore which representations best227

Execution Behavior Dataset

Program Execution Trace r

Prompt Tuning Data Construction
Input: | err-info | r1|..| rn||program|
Output: | a1| …| an|

Frozen Tunable

Optimization

LLMs

LoRA

Inference

Prompt LLMs Answer Answer

Scaling Inference

Test Cases

FinetuneDataset Curating

PEFT Full

Figure 1: Paradigm of our framework. Initially, we curate
prompt-tuning data from the Execution Behavior Dataset
by extracting runtime execution messages, which are then
formalized using a trace adapter. Subsequently, we employ
parameter-efficient fine-tuning techniques, such as LoRA, or
opt for full parameter fine-tuning to train the foundation model.
In the output above, the purple text denotes the rationale, while
the green text represents the answer. During the inference
phase, the framework supports Scaling Inference to enhance
the capability of LLMs.

enhance Code LLMs. To achieve the goal, we de- 228

sign and build a framework for the generation and 229

evaluation of automatic semantic representations, 230

which is outlined in Figure 1. The framework con- 231

sists of three main components, data construction, 232

Code LLM fine-tuning, and inference. 233

Fine-Tuning Data Construction. Our dataset 234

contains two parts, a program repair dataset and 235

other downstream datasets. The program repair 236

dataset is used to help Code LLMs learn semantic 237

information that is integrated into the buggy/correct 238

code pairs. Specifically, the input b includes pro- 239

gram descriptions, test cases, which are associated 240

with the buggy code (e.g., an instruction to gen- 241

erate code, a test case fails on the buggy code), 242

and semantic information r. For r, our frame- 243

work automatically generates execution traces as 244

self-explanations for bug fixes (i.e., patch code a) 245

based on the Trace Adapter component. Specif- 246

ically, Trace Adapter first runs the code using a 247

compiler to collect the raw execution trace. Af- 248

ter that, it transfers the raw trace to various trace 249

representations. Currently, Trace Adapter sup- 250

ports five types of representative reasoning-based 251

code semantic information, Scratchpad (Nye et al., 252

2021), NExT (Ni et al., 2024), SemCoder (Ding 253

et al., 2024), CodeExecutor (Liu et al., 2023a)), and 254

Concise which is a new variant of CodeExecutor 255

designed by us. Based on our data construction 256

pipeline, we prepare and open-source a new dataset 257

encompassing buggy/patched code, unit tests, pro- 258

gram descriptions, and various trace types, as exist- 259

3

Rationale
Input: [39, … 72, 10, 2, 18]
Passes: n-1 = 4

Rationale and Buggy Code
def bubble_sort(arr):
 #(1)['arr =[39,12,18,85,72,10,2,18]']
 for i in range(n):
 #(3) ['i=0']; (17) ['i = 1']; ...; (55) ['i= 7']
 for j in range(0, n-i-1):
 #(4) ['j = 0']; (6) ['j = 1']; ...; (54) ['j = 0']
 arr[j], arr[j+1] = arr[j+1], arr[j]
 #(5) ['arr = [12, 39, 18, 85, 72, 10, 2,
18]'];
 #(51) ['arr = [2, 10, 12, 18, 18, 39, 72,
85]']
 return arr
 #__return__=[2, 10, 12, 18, 18, 39, 72, 85]

Rationale
[TEST1 RESULT]
Line 1: ['arr =[39,12,18,85,72,10,2,18]']
Line 2: ['i=0']; (17) ['i = 1']; ...; (55) ['i= 7']
Line:4: ['arr = [12, 39, 18, 85, 72, 10, 2, 18]'];
…
Line:54: ['arr = [2, 10, 12, 18, 18, 39, 72, 85]']
Line 55: __return__=[2, 10, 12, 18, 18, 39, 72, 85]

 Buggy Code
def bubble_sort(arr):
 n = len(arr)
 for i in range(n):
 for j in range(0, n - i - 1):
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 return arr

 Rationale
Function Behavior:
1. **Outer Loop**: Runs multiple passes through the array. Each pass
moves the largest unsorted element to its correct position at the end.
2. **Inner Loop**: Compares and swaps adjacent elements if needed.
3. **Output**: After all iterations, the array is sorted in ascending order.
How to fix:
1. **Typo**: `arr[j+l]` should be `arr[j+1]`, as `l` is undefined.

 Buggy Code
def bubble_sort(arr):
 n = len(arr)
 for i in range(n):
 for j in range(0, n - i - 1):
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 return arr

NExT

Concise SemCoder

Code Executor

Prompt Template:
You are given a Python-based problem and a piece of buggy code that
attempts to solve it but fails on a specific test case. Your task is to:

[TestCase]
input=[39,12,18,85,72,10,2,18]
expect= [2, 10, 12, 18, 18, 39, 72, 85]

1. **Simulate the buggy code’s execution** using the provided failing
test case.
2. **Identify the root cause** of the failure by walking through the
problematic parts of the code.
3. Enclose your refined code between `[Fix]`
4. **Fix the bug** and present the corrected solution.
[Buggy Code]

[ERROR] Traceback (most recent call last):
 File "code.py", line 9, in <module>
 assert bubble_sort (arr=[39,12,...,18])== [2,
10, …., 85]
AssertionError

def bubble_sort(arr):
 #(1)['arr =[39,12,18,85,72,10,2,18]']
 n= len(arr)
 #(2) n=8
 for j in range(0, n):
 #(3) ['j = 0']; (5) ['j = 1']; ...; (14) ['j = 0']
 if arr[j] > arr[j + 1]:
 arr[j], arr[j+1] = arr[j+1], arr[j]
 #(4) ['arr = [12, 39, 18, 85, 72, 10, 2, 18]; …;
 #(15) ['arr = [2, 10, 12, 18, 18, 39, 72, 85]']
 return arr
 #Return [12, 18, 39, 72, 10, 2, 18, 85]

Prompt
(a NExT concrete example)

Representation

 State transit Accumulate
[state]arr=[39,12,18,85];[/state]
[state] n=4 [/state]
[state] i=0 [/state]
[state] i=0 [/state] [state] j=0 [/state]
[state] i=1 [/state] [state] j=0 [/state] [state] arr= [12, 39, 18, 85] [/state]
[state] i=0 [/state] [state] i=0 [/state] [state] j=1 [/state] [state] arr= [12,
18, 39, 85] [/state]
… [omit]
[state] i=3 [/state]
[state] i=3 [/state] [state] j=0 [/state]
[state] i=3 [/state] [state] j=0 [/state] [state] arr= [12, 18, 85, 39] [/state]

 Buggy Code
….

Figure 2: A concrete prompt example (left panel) and examples of different semantic representations (right panel).

ing datasets (Ni et al., 2024; Ding et al., 2024) do260

not meet these requirements.261

Supervised Fine-Tuning. Our framework sup-262

ports a two-stage Code LLM fine-tuning process.263

Concretely, it first fine-tunes Code LLMs using a264

repair-based workflow (as introduced in Section ??)265

to force models to learn the semantic information266

hidden in the difference between the execution267

traces of the buggy and correct codes. Then, other268

downstream task datasets, such as code generation269

datasets are used in the second phase to help Code270

LLMs learn domain-specific knowledge.271

Test Time Scaling. In addition to SFT, our272

framework supports two test time scaling strategies,273

Sequential Scaling and Parallel Scaling (Khattab274

et al., 2024; Li et al., 2025; Wang et al., 2025; Shi275

and Jin, 2025)276

Sequential Scaling iteratively generates outputs277

based on the feedback from the previous round.278

Given an input prompt, the Code LLM first samples279

N candidate programs and executes each with an280

external checker (e.g. a Python interpreter or trace-281

format adapter). If any candidate passes all public282

test cases, that program is returned immediately;283

otherwise, the checker emits trace-based diagnos-284

tics for every failing candidate. These diagnostics285

are appended to the prompt, prompting the LLM to286

generate a fresh revised candidate in the next round.287

This self-debug (Chen et al., 2023) cycle repeats288

until a correct solution is found or a predefined bud-289

get of Rmax rounds is reached, exploring at most 290

N ×Rmax candidate programs while continuously 291

steering the model with execution-trace feedback. 292

Different from Sequential Scaling, Parallel Scaling 293

generates multiple solutions at once and selects one 294

accordingly. More implementation details can be 295

found in the Appendix A. 296

3.2 Trace Representation Adapters 297

The key component in the framework is the trace 298

adapter. Execution traces can be represented in 299

various ways. Our adapter supports various distinct 300

execution representations collected from existing 301

works. Figure 2 illustrates examples of each execu- 302

tion representation. 303

NExT integrates execution traces directly within 304

the code as inline comments. It identifies variables 305

present in each line of code and appends changes 306

in these variables as comments following the re- 307

spective line, providing a seamless integration of 308

code and state information. 309

SemCoder utilizes natural language to describe 310

execution traces. It provides a line-by-line expla- 311

nation of code execution, including aspects such 312

as execution status, variable changes, and input- 313

output relationships. For instance, as shown in 314

Figure 2, SemCoder describes the function signa- 315

ture of ‘bubble_sort’ and specifies that the ‘arr’ 316

argument accepts only a list of integers, offering a 317

detailed, human-readable explanation. 318

Code Executor records the state changes of vari- 319

4

ables in each line, similar to NExT, but presents320

these execution traces separately from the code,321

emphasizing a clear distinction between code and322

execution states.323

Concise is a variant of Code Executor, which324

records the value changes of variables line-by-line325

and presents the trace separately from the code326

context as shown in Figure 2. Unlike Code Execu-327

tor, Concise ignores variables whose values remain328

unchanged during the execution of a specific line,329

simplifying the representation. For example, in line330

4, the variable ‘n=10’ is omitted in Concise.331

4 Experiment Design332

Based on our framework, we conduct a comprehen-333

sive study to explore the usefulness of code seman-334

tic information for Code LLMs during fine-tuning335

and test-time scaling, respectively. Specifically,336

for the fine-tuning part, we utilize our constructed337

datasets to fine-tune Code LLMs first, and then338

evaluate their capabilities on different program-339

ming tasks using the basic evaluation paradigm.340

For the test-time scaling evaluation, we employ dif-341

ferent test-time scaling strategies to help assess the342

ability of fine-tuned Code LLMs from the previ-343

ous step to investigate the usefulness of semantic344

information.345

Datasets. Table 1 summarizes datasets used in346

our study. As fine-tuning contains two stages, it347

requires two types of datasets. For the first stage,348

we utilize the framework to prepare different types349

of semantic information-covered datasets. For the350

second stage, we use the datasets provided by Sem-351

coder (Ding et al., 2024) for the fine-tuning of352

downstream tasks. Regarding the evaluation, we353

employ widely used datasets to assess the capa-354

bility of Code LLMs, including Code-Synthesis355

tasks (HumanEval (Chen et al., 2021a), MBPP (Liu356

et al., 2023b), LiveCodeBench(LCB) (Jain et al.,357

2024), BigcodeBench (Zhuo et al., 2024)), two re-358

pair tasks (HE-R (Muennighoff et al., 2023a) and359

MBPP-R collected by us from EvalPlus’s MBPP360

release, regarding their test-failure generation as a361

source of buggy code.), and two reasoning tasks362

(CRUXEval-I and CRUXEval-O) (Gu et al., 2024).363

For the test-time scaling evaluation, we use Live-364

CodeBench in the experiments.365

Models. For fine-tuning, our study con-366

siders three representative LLMs: DeepSeek-367

Coder (deepseek-6.7b-base), LLaMA (Llama3.1-368

8B), and Gemma2 (gemma2-9b). For the inference,369

we cover two more closed-source models, GPT-4o 370

and Deepseek-Chat(V3). In addition, for the evalu- 371

ation of reasoning ability, in addition to the above 372

models, we also include two models oriented to 373

reasoning, microsoft/phi-4 (Abdin et al., 2024) and 374

AIDC-AI/Marco-o1 (Zhao et al., 2024). 375

Configuration. Input prompts are produced au- 376

tomatically by the DSPY framework (Khattab et al., 377

2024); full templates can be found in Appendix E. 378

All code executes inside a sandbox following the 379

safety procedures of (Chen et al., 2021a) to guard 380

against malicious generations. For detailed experi- 381

mental configurations, please refer to Appendix A. 382

Besides, we put the results of HumanEval and HE- 383

R in Appendix C D due to the page limitation. 384

5 Result Analysis 385

5.1 Fine-Tuning with Semantic Information 386

Comparison between fine-tuning with and with- 387

out semantic information. Table 2 summarizes 388

the performance of Code LLMs after fine-tuning. 389

Surprisingly, the results demonstrate that fine- 390

tuning with trace information cannot enhance the 391

performance of Code LLMs. Specifically, for Pro- 392

gram Repair tasks, compared to models trained 393

without traces (w/o trace), only SemCoder con- 394

tributes to fine-tuning but with limited improve- 395

ments (from 0.3 to 1.4). Similarly, the results of 396

Code Synthesis tasks show that semantic informa- 397

tion cannot significantly enhance the code gener- 398

ation ability of Code LLMs. In more than half of 399

the cases (7 out of 9 cases), fine-tuning without 400

trace information achieves the best results. Be- 401

sides, there is also a similar phenomenon in the 402

Reasoning tasks. 403

Takeaway: Integrating trace-based semantic in- 404

formation into the fine-tuning datasets cannot sig- 405

nificantly enhance the code generation capability 406

of Code LLMs. 407

Comparison between different trace represen- 408

tations. We then investigate whether there is a 409

trace representation that is relatively better than 410

others. Unfortunately, the results demonstrate that 411

no single trace representation consistently outper- 412

forms others. Considering different tasks sepa- 413

rately, SemCoder is the best choice for program 414

repair tasks, and SemCoder (GPT4o) can consis- 415

tently enhance the reasoning ability of Code LLMs. 416

Takeaway: SemCoder and SemCoder (GPT4o) are 417

recommended representations used in fine-tuning 418

for program repair and code reasoning tasks. 419

5

Fine-Tuning Task
Program Repair (27.8K samples per each representation) Code Synthesis Code Reasoning

Concise CodeExecutor NExT SemCoder(GPT4o) SemCoder w/o trace 32.4K samples 32.4K samples
Token Size (M) 23.3 23.8 19.6 33.4 32.0 12.5 14.4 27.8

Evaluation Task
Code Synthesis Program Repair Code Reasoning

HumanEval MBPP LiveCodeBench(easy) BigcodeBench(full) huamnevalpack(HE-R) MBPP-R CRUXEval-I CRUXEval-O
Sample Size 64 378 880 1140/148 164 378 800 800

Table 1: Details of datasets used in our study.

BaseModel TrainCorpus
Finetune Code Repair Code Synthesis Code Reasoning

downstream trace MBPP-R MBPP BigcodeBench LiveCodeBench CRUXEval-I CRUXEval-O

DeepSeek-Coder

- ✗ ✗ 17.7 71.9 41.5 40.8 40.0 40.4
only NL2Code ✓ ✗ 25.4 72.9 43.7 12.6 60.1 55.4
w/o trace ✓ ✗ 39.2 75.9 45.4 35.7 61.9 56.6
Concise ✓ ✓ 39.2 74.4 44.3 29.4 61.6 55.0
CodeExecutor ✓ ✓ 38.4 77.2 44.6 31.5 60.4 56.1
NeXT ✓ ✓ 37.6 76.7 44.0 36.1 61.3 54.2
SemCoder(GPT4o) ✓ ✓ 37.0 75.7 45.4 31.5 62.0 58.1
SemCoder ✓ ✓ 40.5 76.4 45.7 29.0 59.5 55.4

LLaMA

- ✗ ✗ 20.1 58.6 31.4 27.3 42.6 36.2
only NL2Code ✓ ✗ 24.9 73.7 44.1 18.1 60.1 55.9
w/o trace ✓ ✗ 29.1 59.1 31.6 8.4 58.8 54.0
Concise ✓ ✓ 27.0 59.4 30.4 14.7 55.8 57.6
CodeExecutor ✓ ✓ 24.9 59.4 32.6 9.7 57.0 55.2
NeXT ✓ ✓ 29.1 61.4 30.6 16.0 56.9 52.8
SemCoder(GPT4o) ✓ ✓ 22.2 59.4 31.4 10.9 58.6 58.0
SemCoder ✓ ✓ 29.4 61.9 33.4 14.7 59.9 55.4

Gemma2

- ✗ ✗ 20.9 63.7 29.8 32.8 49.2 41.5
only NL2Code ✓ ✗ 19.8 61.4 26.8 12.6 57.9 55.6
w/o trace ✓ ✗ 24.9 58.4 25.1 6.7 57.8 57.5
Concise ✓ ✓ 22.8 60.2 28.8 8.0 57.6 57.2
CodeExecutor ✓ ✓ 22.8 59.4 27.3 8.8 58.9 58.2
NeXT ✓ ✓ 26.2 58.1 26.9 8.8 59.5 55.8
SemCoder(GPT4o) ✓ ✓ 24.1 62.9 29.5 8.4 58.9 56.5
SemCoder ✓ ✓ 26.2 62.2 27.6 13.0 58.9 56.8

Table 2: Evaluation results for full-parameter fine-tuning with semantic information on three different base models across
three downstream tasks (code repair, code synthesis, and code reasoning). The “trace” setting indicates whether the LLM
output includes semantic information. “only NL2Code”: fine-tuning using only code generation data without code repair data.
“w/o trace”: fine-tuning with both code generation data (i.e., NL2Code) and code repair data, where the execution trace is not
included in the code repair data. We report pass@1 under greedy decoding, following each benchmark’s recommended settings.
BigCodeBench measured on the full set and LiveCodeBench is on the easy subset. The best scores per model are underlined

5.2 Parameter-Efficient Fine-Tuning420

Parameter-efficient fine-tuning (e.g., LoRA) is421

widely applied for LLMs. In this part, we explore422

the influence of LoRA on the fine-tuning of Code423

LLMs considering semantic information.424

Figure 3 depicts the performance of fine-tuned425

Code LLMs, the detailed results can be found in426

Appendix C. The results indicate that the effective-427

ness of parameter-efficient fine-tuning is model-428

dependent. Concretely, fully fine-tuning performs429

the best for DeepSeek model (in 5 out of 6 cases),430

but LoRA enhances the model performance of431

LLaMA and Gemma2 in most cases (11 out of 12432

cases). Similarly, LoRA8 and LoRA64 perform in-433

consistently across different models, and it is hard434

to justify which strategy is better. Furthermore,435

training methods highly affect the ability of code436

LLM trained, the performance gap between dif-437

ferent methods can be up to 21.6 (model LLaMA).438

This reminds us that choosing proper training meth-439

ods is crucial for Code LLMs.440

Considering different trace representations, the441

results confirm our previous conclusion that trace- 442

based semantic information cannot significantly 443

enhance the performance of Code LLMs through 444

fine-tuning. However, we found that Gemma2-9B 445

is better adapted to traces, achieving competitive 446

results with strategies such as Semcoder (10. 34% 447

pass@1) while maintaining repair improvements. 448

Besides, LoRA64 without trace information is 449

best for general code generation, while LoRA64 + 450

repair-focused traces (e.g., Semcoder_GPT4) max- 451

imizes repair capabilities. 452

Takeaway: Parameter-efficient training meth- 453

ods significantly affect the performance of Code 454

LLMs. However, the effectiveness of each method 455

is highly model-dependent. Besides, fine-tuning 456

without semantic information is still the best choice 457

for preparing Code LLMs with better performance 458

when considering these methods. 459

5.3 Inference Test-Scaling Computation 460

Table 3 summarizes the results of test-time scaling. 461

It is clear that, compared to open-source LLMs, 462

6

NL2Code
+Reasoning

w/o
trace

Concise NExT Code
Executor

SemCoder
40

50

60

70

80

90

100

Pa
ss

@
k

(%
)

Training scheme
Full
LoRA64
LoRA8

Backbone
DeepSeek-Coder
LLaMA
Gemma2

Figure 3: Fine-tuning using different training methods, i.e., Full, LoRA64, and LoRA8.

Greedy COT
Sequential Scaling Parallel Scaling

w/o trace CodeExcutor Concise NExT SemCoder w/o trace CodeExcutor Concise NExT SemCoder

GPT-4o-mini 73.08 73.08 98.46 98.46 99.23 99.23 99.23 88.46 80.77 80.77 84.62 80.77
deepseek-chat(V3) 84.62 100.00 100.00 100.00 100.00 100.00 100.00 96.15 96.15 96.15 96.15 92.3

Reasoning Compatible Model
AIDC-AI/Marco-o1 53.85 50.00 76.92 69.23 76.92 73.08 73.08 61.54 53.85 69.23 61.54 57.69
microsoft/phi-4 53.85 73.08 100.00 96.15 100.00 91.54 100.00 80.77 76.92 84.62 80.77 84.62

Instruction of Foundation Model
Llama-3.1-8B-Inst 34.62 34.62 67.69 66.92 74.62 74.62 65.38 46.15 42.31 57.69 57.69 57.69
deepseek-coder-6.7b-Inst 42.31 46.15 68.46 61.54 69.23 76.15 69.23 53.85 50.00 57.69 61.54 50.00
Qwen2.5-Coder-7b-Inst 61.54 34.62 83.85 87.69 80.77 90.77 86.92 53.85 61.54 65.38 50.00 53.85

Table 3: Pass@1 accuracy on the LiveCodeBench (easy) private test set under equal compute budgets. Values are the percentage
of prompts whose final completion passes all private test cases. Greedy: one-shot, highest-probability decode. CoT: answer
plus natural-language rationale. Sequential Scaling: 8 parallel samples (T = 0.7) followed by Rmax=4 self-debugging rounds
on public tests, selecting the best candidate. Parallel Scaling: 16 candidates ranked by votes from an LLM-as-a-Judge on
execution result along with its trace representation. The “w/o trace” variants rely only on the initial execution output, whereas
trace-based variants leverage execution traces representations during self-debugging or voting. Sequential Revision benefits most
from trace-aware signals. Double underlining marks the overall best LiveCodeBench private-set score.

closed-source LLMs perform significantly better at463

test time.464

Impact of test-scaling strategies. First, the re-465

sults demonstrated that test-scaling consistently en-466

hances the code generation ability of Code LLM.467

Concretely, in 65 out of 70 cases, test scaling strate-468

gies achieved higher Pass@1 scores than Greedy469

and COT. Impact of semantic representation.470

The results suggest that, similar to SFT, the useful-471

ness of semantic information is blurred. In more472

than half cases (36 out of 56 cases), integrating473

semantic information to the input prompt cannot474

help Code LLM to produce correct code compared475

to without adding semantic information. However,476

one semantic representation (Concise) stands out,477

which achieved Pass@1 no worse than w/o trace in478

11 out of 14 cases.479

Takeaway: Similar to fine-tuning, most of the480

trace-based semantic representations cannot en-481

hance the performance of Code LLMs at test time482

except for Concise.483

5.4 Hyperparameter Study484

We further explore the impact of hyperparameters485

on Sequence scaling, which significantly boosts486

Code LLMs at test time. 487

We first investigate the impact of model tempera- 488

ture. Figure 5 illustrates the results, where Pass@1 489

scores fluctuate under different temperatures. One 490

conclusion we can draw is that small tempera- 491

ture (T=0.2) negatively affects the performance 492

of Code LLMs, higher temperature performs rela- 493

tively better. 494

Sequence scaling has two parameters, the it- 495

eration number (rounds) and the generated sam- 496

ples (samples) during each iteration. The results in 497

Figure 5 shows that the more samples generated, 498

the higher Pass@1 scores achieved by Code LLMs. 499

However, there is a trade-off between the sample 500

numbers and the performance of Code LLMs. sam- 501

ples=8 is the default setting in our framework. The 502

results of rounds study can be found in Table 8a, 503

where more rounds lead to better code generation 504

capability of Code LLMs. 505

6 Related works 506

Chain-of-Thought (CoT) and Tool-Integrated 507

Reasoning (TIR). Beyond execution traces, re- 508

cent advances emphasize explicit reasoning steps 509

and tool usage. Chain-of-Thought (CoT) (Wei et al., 510

7

w/o trace Concise NExT CodeExec Semcoder20

30

40

50

60

70

80

90

Pa
ss

@
1

(%
)

(bars = N-sampled completions, lines = temperature)

N-samples
N=1
N=8

N=16
N=32

Temperature
T=0.2
T=0.5

T=0.7
T=0.9

Figure 4: Pass@1 of Qwen-7B on the LCB "easy" split as
a function of sampled completions N (bars) and decoding
temperature T (lines) across five trace formats. Two trends
emerge: (i) increasing N yields substantial gains across all for-
mats; (ii) higher temperatures (T > 0.7) generally outperform
lower ones. NExT and CodeExecutor achieve the best results
(88.5% at N=32, T=0.9), followed by Semcoder, while the
baseline w/o trace consistently underperforms.

2022) enables LLMs to decompose complex prob-511

lems into intermediate reasoning steps, improv-512

ing accuracy in tasks like mathematical problem-513

solving. However, some tasks require computa-514

tional precision beyond language reasoning. Tool-515

Integrated Reasoning (TIR) (Gou et al., 2023) ad-516

dresses this by integrating LLMs with external517

tools (e.g., Python interpreters) for specialized com-518

putations, excelling in symbolic computation and519

high-complexity algorithms. These approaches520

highlight the trend of augmenting LLMs with run-521

time observations or external tools, which our work522

builds upon by systematically evaluating their im-523

pact on reasoning and code generation.524

LLMs for Software Engineering and Execution525

Behavior. Code execution behavior encompasses526

runtime information (e.g., program state, execu-527

tion paths) and pre-/post-execution details. Recent528

studies leverage these behaviors to enhance LLM529

performance. For instance, (Chen et al., 2023)530

introduced Self-Debugging, where LLMs generate531

explanations to guide debugging; (Ni et al., 2024)532

proposed NExT, representing execution behaviors533

as inline comments for fine-tuning; and (Ding534

et al., 2024) described runtime behaviors in natural535

language for LLM training. While prior works typi-536

cally use a single representation, our study explores537

multiple execution-based representations and their538

impact on code generation and reasoning tasks.539

LLMs are widely applied in software engineer-540

ing, including vulnerability detection (Shestov541

et al., 2024), bug repair (Xia and Zhang, 2023),542

and code generation (Hong et al., 2023; Wu et al.,543

2023; Tang et al., 2024). Evaluation frameworks544

(e.g., EvalPlus (Liu et al., 2023c)) and datasets (e.g.,545

ClassEval (Du et al., 2024), SWE-bench (Jimenez546

et al., 2023)) have been developed to benchmark 547

these capabilities. While prior efforts focus on 548

task-specific performance, our work investigates 549

how execution-centric signals, inspired by human 550

debugging, enhance LLMs’ proficiency in code 551

generation and reasoning. 552

Scaling Up Inference-Time Computing Recent 553

advances in inference-time computing have im- 554

proved the verification of mathematical reasoning 555

in LLMs. (Cobbe et al., 2021) introduced token- 556

level reward models to score individual steps, while 557

(Xiao et al., 2024) refined these with process re- 558

ward models (PRM) for granular feedback. (Snell 559

et al., 2024) demonstrated that scaling inference- 560

time computing is more cost-effective than retrain- 561

ing models. Building on these, we sample multiple 562

solutions from LLM reasoners and explore veri- 563

fier training approaches. Our framework, adapted 564

from (Li et al., 2025), systematically evaluates how 565

the semantic information impacts the post-training, 566

one-time inference, and scaling inference test-time 567

with runtime behavior can achieve strong perfor- 568

mance in code-related tasks. 569

7 Conclusion 570

This paper introduces a generic framework for 571

generating trace-based code semantic information. 572

Based on this framework, we systematically eval- 573

uate the usefulness of trace-based code semantic 574

information for fine-tuning and inference of Code 575

LLMs. The results highlight that existing code se- 576

mantic information does not benefit fine-tuning and 577

test-time scaling. 578

This work can serve as the new baseline for 579

the study of leveraging semantic information to 580

enhance Code LLMs. This opens up several av- 581

enues for future research. First, it is essential to 582

design new forms of semantic representations that 583

are more aligned with how Code LLMs process and 584

understand code, potentially incorporating higher- 585

level abstractions or contextual cues. Second, fu- 586

ture work should explore more effective strategies 587

for integrating semantic information into model 588

training and inference pipelines—such as architec- 589

tural modifications, specialized pretraining objec- 590

tives, or more adaptive prompting techniques. 591

8 Data and Source Code availability 592

All source code, datasets, and intermediate data for 593

reproduction are available at https://github.com/ 594

tracewise-probing/tracewise_probing. 595

8

https://github.com/tracewise-probing/tracewise_probing
https://github.com/tracewise-probing/tracewise_probing
https://github.com/tracewise-probing/tracewise_probing

Limitations596

Limited Programming language supported. Cur-597

rently, our framework only supports Python, other598

programming languages, such as Java and C++, are599

not supported. Even though, we believe our find-600

ings can provide insights to developers who plan601

to enhance their Code LLMs via semantic infor-602

mation interaction. Besides, we plan to actively603

maintain our framework to cover more program-604

ming languages.605

Limited LLM size. Due to constraints on com-606

putational resources, we only conduct experiments607

on LLMs with around 7B size. Experiments with608

larger LLMs could be our future work.609

Ethical Considerations610

Research purpose and societal impact. This611

project seeks to deepen scientific understanding of612

how dynamic program semantics influence Code-613

LLM reasoning, with the ultimate goal of produc-614

ing safer, more reliable coding assistants. All arte-615

facts—datasets, code, and models—are released616

solely for non-commercial research and evaluation;617

they are not intended for autonomous deployment618

in production settings.619

Provenance, licensing, and consent. Source620

code used for fine-tuning and evaluation is621

drawn exclusively from repositories under OSI-622

approved permissive licences (e.g., MIT, Apache-623

2.0). Where industrial code (≈ 4%) is included,624

maintainers have provided signed consent allowing625

redistribution of anonymised traces for research626

use only. No proprietary material is incorporated627

without explicit permission.628

Privacy preservation in execution traces. Be-629

cause runtime logs can inadvertently expose cre-630

dentials or personally identifiable information (PII),631

every trace passes a three-stage sanitation pipeline:632

(i) static pattern-based redaction of common se-633

cret/PII formats; (ii) dynamic taint tracking that634

masks values originating from environment vari-635

ables, network sockets, or file I/O; and (iii) manual636

review of a random 2% sample per release. Traces637

failing any check are discarded.638

Dual-tier data release strategy. To balance639

transparency with security, we publish two versions640

of each trace set:641

Public: summarised control-flow hashes and642

bounded value ranges—sufficient for benchmark-643

ing but insufficient to reconstruct full program 644

logic. 645

Restricted: full line-level traces (calls, locals, iden- 646

tifiers) available only to vetted academic partners 647

who sign a security addendum pledging safe han- 648

dling and non-redistribution. 649

Safeguards against malicious use. Enhanced se- 650

mantic reasoning could facilitate the generation 651

of vulnerable or harmful code. We therefore (i) 652

withhold weights fine-tuned on explicitly security- 653

sensitive benchmarks, (ii) deploy server-side fil- 654

ters that block outputs matching exploit-related 655

patterns (shell execution, SQL/command injection, 656

path traversal), and (iii) document residual unsafe 657

generations in an appendix to encourage commu- 658

nity development of stronger guards. 659

Bias and inclusivity in dataset design. Al- 660

though our empirical study concentrates on main- 661

stream languages, we provide starter kits for Rust, 662

Go, and Solidity to spur broader, community- 663

driven extension. We encourage downstream re- 664

searchers to audit biases that may arise when apply- 665

ing our framework to new ecosystems or developer 666

populations. 667

Energy use disclosure. Trace instrumentation 668

and test-time scaling add approximately 38 kWh 669

of compute per model–dataset pair. We offset 670

these emissions through Gold-Standard renewable- 671

energy credits and release all scripts so others can 672

reproduce results with fewer redundant runs. 673

Responsive governance. We publish our redac- 674

tion and inspection pipeline under an open-source 675

licence, provide a dedicated security-contact email 676

for vulnerability disclosures, and commit to remov- 677

ing or revising any resource within 30 days of a 678

substantiated harm report. 679

In summary, we have instituted licensing checks, 680

consent agreements, privacy filters, controlled re- 681

lease mechanisms, and transparent governance to 682

ensure that the benefits of semantics-aware Code- 683

LLMs are realised responsibly while potential 684

harms are proactively mitigated. 685

9

References686

2023-3. vllm, a high-throughput and memory-efficient687
inference and serving engine for llms.688

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien689
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael690
Harrison, Russell J Hewett, Mojan Javaheripi, Piero691
Kauffmann, and 1 others. 2024. Phi-4 technical re-692
port. arXiv preprint arXiv:2412.08905.693

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li,694
and Xin Xia. 2024. Evaluating large language models695
with runtime behavior of program execution. arXiv696
preprint arXiv:2403.16437.697

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,698
Henrique Ponde De Oliveira Pinto, Jared Kaplan,699
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg700
Brockman, and 1 others. 2021a. Evaluating large701
language models trained on code. arXiv preprint702
arXiv:2107.03374.703

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,704
Henrique Ponde De Oliveira Pinto, Jared Kaplan,705
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg706
Brockman, and 1 others. 2021b. Evaluating large707
language models trained on code. arXiv preprint708
arXiv:2107.03374.709

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and710
Denny Zhou. 2023. Teaching large language models711
to self-debug. arXiv preprint arXiv:2304.05128.712

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,713
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias714
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro715
Nakano, and 1 others. 2021. Training verifiers716
to solve math word problems. arXiv preprint717
arXiv:2110.14168.718

Yangruibo Ding, Jinjun Peng, Marcus J Min,719
Gail Kaiser, Junfeng Yang, and Baishakhi Ray.720
2024. Semcoder: Training code language mod-721
els with comprehensive semantics. arXiv preprint722
arXiv:2406.01006.723

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,724
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha,725
Xin Peng, and Yiling Lou. 2024. Evaluating large726
language models in class-level code generation. In727
Proceedings of the IEEE/ACM 46th International728
Conference on Software Engineering, pages 1–13.729

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,730
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,731
Akhil Mathur, Alan Schelten, Amy Yang, Angela732
Fan, and 1 others. 2024. The llama 3 herd of models.733
arXiv preprint arXiv:2407.21783.734

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,735
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu736
Chen. 2023. Tora: A tool-integrated reasoning agent737
for mathematical problem solving. arXiv preprint738
arXiv:2309.17452.739

Alex Gu, Baptiste Rozière, Hugh Leather, Armando 740
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang. 741
2024. Cruxeval: A benchmark for code reason- 742
ing, understanding and execution. arXiv preprint 743
arXiv:2401.03065. 744

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 745
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 746
modal pre-training for code representation. arXiv 747
preprint arXiv:2203.03850. 748

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 749
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 750
Yu Wu, YK Li, and 1 others. 2024. Deepseek- 751
coder: When the large language model meets 752
programming–the rise of code intelligence. arXiv 753
preprint arXiv:2401.14196. 754

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 755
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 756
Samir Puranik, Horace He, Dawn Song, and Jacob 757
Steinhardt. 2021. Measuring coding challenge com- 758
petence with apps. NeurIPS. 759

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 760
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 761
Ka Shing Yau, Zijuan Lin, Liyang Zhou, and 1 762
others. 2023. Metagpt: Meta programming for 763
multi-agent collaborative framework. arXiv preprint 764
arXiv:2308.00352. 765

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 766
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 767
and Weizhu Chen. 2021. Lora: Low-rank adap- 768
tation of large language models. arXiv preprint 769
arXiv:2106.09685. 770

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 771
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 772
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 773
codebench: Holistic and contamination free eval- 774
uation of large language models for code. arXiv 775
preprint arXiv:2403.07974. 776

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, 777
Joseph E Gonzalez, and Ion Stoica. 2020. Con- 778
trastive code representation learning. arXiv preprint 779
arXiv:2007.04973. 780

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou, 781
Soneya Binta Hossain, Baishakhi Ray, Varun Ku- 782
mar, Xiaofei Ma, and Anoop Deoras. 2024. Training 783
llms to better self-debug and explain code. arXiv 784
preprint arXiv:2405.18649. 785

Carlos E Jimenez, John Yang, Alexander Wettig, 786
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik 787
Narasimhan. 2023. Swe-bench: Can language mod- 788
els resolve real-world github issues? arXiv preprint 789
arXiv:2310.06770. 790

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, 791
Zhiyuan Zhang, Keshav Santhanam, Sri Vard- 792
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. 793
Joshi, Hanna Moazam, Heather Miller, Matei Za- 794
haria, and Christopher Potts. 2024. Dspy: Compiling 795

10

https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm

declarative language model calls into self-improving796
pipelines.797

Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li,798
Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E799
Gonzalez, and Ion Stoica. 2025. S*: Test800
time scaling for code generation. arXiv preprint801
arXiv:2502.14382.802

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang,803
Alexey Svyatkovskiy, Shengyu Fu, Neel Sundare-804
san, and Nan Duan. 2023a. Code execution805
with pre-trained language models. arXiv preprint806
arXiv:2305.05383.807

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-808
ming Zhang. 2023b. Is your code generated by chat-809
GPT really correct? rigorous evaluation of large lan-810
guage models for code generation. In Thirty-seventh811
Conference on Neural Information Processing Sys-812
tems.813

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and814
LINGMING ZHANG. 2023c. Is your code gen-815
erated by chatGPT really correct? rigorous evalu-816
ation of large language models for code generation.817
In Thirty-seventh Conference on Neural Information818
Processing Systems.819

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai820
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam821
Singh, Xiangru Tang, Leandro Von Werra, and822
Shayne Longpre. 2023a. Octopack: Instruction tun-823
ing code large language models. arXiv preprint824
arXiv:2308.07124.825

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai826
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam827
Singh, Xiangru Tang, Leandro Von Werra, and828
Shayne Longpre. 2023b. Octopack: Instruction tun-829
ing code large language models. arXiv preprint830
arXiv:2308.07124.831

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin832
Deng, Kensen Shi, Charles Sutton, and Pengcheng833
Yin. 2024. Next: Teaching large language mod-834
els to reason about code execution. arXiv preprint835
arXiv:2404.14662.836

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,837
Henryk Michalewski, Jacob Austin, David Bieber,838
David Dohan, Aitor Lewkowycz, Maarten Bosma,839
David Luan, and 1 others. 2021. Show your work:840
Scratchpads for intermediate computation with lan-841
guage models. arXiv preprint arXiv:2112.00114.842

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten843
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,844
Jingyu Liu, Tal Remez, Jérémy Rapin, and 1 oth-845
ers. 2023. Code llama: Open foundation models for846
code. arXiv preprint arXiv:2308.12950.847

Alexey Shestov, Anton Cheshkov, Rodion Levichev,848
Ravil Mussabayev, Pavel Zadorozhny, Evgeny849
Maslov, Chibirev Vadim, and Egor Bulychev. 2024.850
Finetuning large language models for vulnerability851
detection. arXiv preprint arXiv:2401.17010.852

Wenlei Shi and Xing Jin. 2025. Heimdall: test-time 853
scaling on the generative verification. arXiv preprint 854
arXiv:2504.10337. 855

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku- 856
mar. 2024. Scaling llm test-time compute optimally 857
can be more effective than scaling model parameters. 858
arXiv preprint arXiv:2408.03314. 859

Daniel Tang, Zhenghan Chen, Kisub Kim, Yewei Song, 860
Haoye Tian, Saad Ezzini, Yongfeng Huang, and 861
Jacques Klein Tegawende F Bissyande. 2024. Col- 862
laborative agents for software engineering. arXiv 863
preprint arXiv:2402.02172. 864

Junxiong Wang, Wen-Ding Li, Daniele Paliotta, Daniel 865
Ritter, Alexander M Rush, and Tri Dao. 2025. M1: 866
Towards scalable test-time compute with mamba rea- 867
soning models. arXiv preprint arXiv:2504.10449. 868

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 869
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 870
and 1 others. 2022. Chain-of-thought prompting elic- 871
its reasoning in large language models. Advances 872
in neural information processing systems, 35:24824– 873
24837. 874

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng 875
Ding, Naman Jain, Zachary Mueller, Harm de Vries, 876
Leandro Von Werra, Arjun Guha, and Lingming 877
Zhang. 2024. Selfcodealign: Self-alignment for code 878
generation. arXiv preprint arXiv:2410.24198. 879

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 880
Lingming Zhang. 2023. Magicoder: Source code is 881
all you need. arXiv preprint arXiv:2312.02120. 882

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 883
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, 884
Xiaoyun Zhang, and Chi Wang. 2023. Auto- 885
gen: Enabling next-gen llm applications via multi- 886
agent conversation framework. arXiv preprint 887
arXiv:2308.08155. 888

Chunqiu Steven Xia, Yuxiang Wei, and Lingming 889
Zhang. 2022. Practical program repair in the era 890
of large pre-trained language models. arXiv preprint 891
arXiv:2210.14179. 892

Chunqiu Steven Xia and Lingming Zhang. 2023. Keep 893
the conversation going: Fixing 162 out of 337 894
bugs for $0.42 each using chatgpt. arXiv preprint 895
arXiv:2304.00385. 896

Chaojun Xiao, Jie Cai, Weilin Zhao, Guoyang 897
Zeng, Xu Han, Zhiyuan Liu, and Maosong Sun. 898
2024. Densing law of llms. arXiv preprint 899
arXiv:2412.04315. 900

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi 901
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo, 902
and Kaifu Zhang. 2024. Marco-o1: Towards open 903
reasoning models for open-ended solutions. Preprint, 904
arXiv:2411.14405. 905

11

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,906
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani907
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and908
1 others. 2024. Bigcodebench: Benchmarking code909
generation with diverse function calls and complex910
instructions. arXiv preprint arXiv:2406.15877.911

12

A Experiment912

A.1 Experiment Detail.913

Finetune We conducted SFT experiments on914

three different base models using two distinct con-915

figurations. First, we perform full-parameter tuning916

with DeepSpeed ZeRO-3 using learning rates of917

2.0e-5, 1.0e-5, and 1.5e-5; training batch sizes of 8,918

4, and 2; bfloat16 precision; a maximum sequence919

length of 2048; and two epochs. NExT, we ex-920

plore LoRA-based tuning with various LoRA ranks,921

disabling DeepSpeed while maintaining the same922

bfloat16 precision, maximum sequence length, and923

epoch count.924

Scaling inference. Sequential Revisions use the925

external tool, a Python interpreter, to verify each926

predicted solution. As introduced in 3.1, the feed-927

back from tools is appended to the prompt for the928

NExT generation iteration. This iterative process929

continues until a successful solution emerges or the930

compute budget N = 3. Parallel Scaling generates931

N diverse candidate solutions in parallel to increase932

the likelihood of finding a correct solution. We933

synthesize test inputs, execute all candidates, and934

collect their execution outputs and trace represen-935

tations as score prompts. An LLM-as-a-judge then936

ranks solutions based on these score prompts and937

pre-trained knowledge. This Parallel Scaling com-938

plements Sequential Revision to maximize code939

generation capabilities without additional training.940

In specifically, We sample N, N = 16, answers941

independently from the specified LLM and then942

select the best answer according to the Reward’s943

final answer judgment, we use as phi-4 as a Reward944

LLM score each candidate with a reward function945

(e.g., static analysis, unit tests, or a learned model,946

same as BoN, we use a LLM as a reward), and947

retain only the top N
M . We score these again, prune948

to the top, and repeat line by line until all buggy949

lines are addressed. The result is up to N complete950

repaired-code solutions, from which we select the951

best via a final evaluation, always the highest score952

judged by the Reward model. Greedy We sample953

only 1 answer independently from the specified954

LLM by setting temperature 0 .955

Implementation and Environment. We im-956

plement all Code LLMs based on Hugging Face957

APIs, the implementation of the fine-tuning process958

is modified from the official project of (Hu et al.,959

2021). We use OpenAI’s official APIs to access960

GPT-3.5-turbo-0125/GPT-4o models which costs961

2000 dollars. All experiments have been conducted 962

on eight NVIDIA A100 GPUs using the Distributed 963

Data Parallel (DDP) module. Inference jobs utlize 964

the vLLM (vll, 2023-3),which is a unified library 965

for LLM serving and inference. 966

B Dataset 967

B.1 Decontamination 968

We follow the (Wei et al., 2024) to conduct Decon- 969

tamination and Refinement. 970

Removing Benchmark Data To ensure the in- 971

tegrity of our evaluation process, we rigorously 972

decontaminated the dataset by removing any func- 973

tions that resembled prompts or solutions from the 974

benchmarks used for evaluation. This step is crit- 975

ical to prevent data leakage and ensure a fair as- 976

sessment of our method. Specifically, we checked 977

for the presence of substrings from benchmark 978

prompts or solutions within the dataset. Any func- 979

tion containing such substrings was excluded. This 980

process guarantees that the dataset remains unbi- 981

ased and does not inadvertently include examples 982

that could skew evaluation results. 983

Docstring Quality Filtering We observed that 984

many Python functions, while containing doc- 985

strings, often had poor or misleading documen- 986

tation. To address this, we employed StarCoder2- 987

15B, a state-of-the-art language model, to perform 988

binary classification on the docstrings. The model 989

was tasked with identifying functions with low- 990

quality or misleading documentation. Functions 991

flagged as having poor docstrings were removed 992

from the dataset. This step ensures that the retained 993

functions are not only functional but also well- 994

documented, enhancing their usability for down- 995

stream tasks such as code understanding and gener- 996

ation. 997

In sum up, the decontamination and refinement 998

process, particularly the removal of benchmark- 999

related data and the filtering of low-quality doc- 1000

strings, plays a pivotal role in ensuring the quality 1001

and reliability of our dataset. By meticulously re- 1002

moving functions that could compromise evalua- 1003

tion fairness and those with inadequate documenta- 1004

tion, we have created a robust dataset of 248,934 1005

high-quality Python functions. This dataset is well- 1006

suited for a wide range of applications, including 1007

code generation, evaluation, and analysis, while 1008

maintaining a high standard of integrity and usabil- 1009

ity. 1010

13

B.2 Evaluation dataset1011

Evaluation on Code Generation and Reasoning1012

Tasks In this study, we fine-tune Code LLMs using1013

the refinement dataset described in Section B.3. For1014

experiment we deploy the fine-tuned models in two1015

code generation tasks: program repair and code1016

synthesis, we further fine-tune the Code LLMs1017

specifically for reasoning tasks to assess whether1018

their reasoning capabilities are enhanced. We evalu-1019

ate the performance of the fine-tuned models using1020

open-source test datasets.1021

Note that to mitigate potential data leakage1022

risks, we adhere to established methods as out-1023

lined in (Muennighoff et al., 2023b) by conducting1024

a thorough decontamination process. This ensures1025

that there is no overlap between our fine-tuning1026

dataset and the evaluation datasets utilized.1027

• Program Repair. To evaluate program repair1028

capabilities, we construct datasets of buggy1029

code using benchmarks from HumanEval,1030

MBPP, and CRUXEval, maintaining a con-1031

sistent sample size of 164, which aligns with1032

HumanEval. For HumanEval, we directly1033

use buggy code from the existing dataset Hu-1034

manEvalPack (Muennighoff et al., 2023a).1035

For the other two datasets, which contain1036

larger sample sizes, we randomly select 1641037

samples from each. Following the methodol-1038

ogy described in (Ni et al., 2024), we employ1039

GPT-4, GPT-3.5-Turbo, and CodeLlama-34B1040

to generate solutions for each problem. From1041

these, we select one incorrect solution per1042

problem based on test case validation. This1043

process results in collections of 164 buggy1044

code samples for each dataset, denoted as1045

Human-R, MBPP-R, and CRUXEval-R. For1046

the repair evaluation, the prompts provided1047

include the buggy code, the corresponding1048

failed test case, and the execution traces of1049

that test case 2.1050

• Code Synthesis. We evaluate the code syn-1051

thesis capabilities of the tuned Code LLMs1052

using two widely-used datasets, HumanEval1053

and MBPP, both provided by EvalPlus (Liu1054

et al., 2023c). To ensure consistency in our1055

assessment, we employ the same prompts and1056

pre-processing methods as outlined in (Liu1057

2Due to space constraints, we have made all prompt tem-
plates, including those used for fine-tuning and evaluation,
available on our website.

et al., 2023c). Additionally, we differentiate 1058

between two sets of test cases from EvalPlus, 1059

referred to as base and plus, in our evalua- 1060

tions. 1061

• Code Reasoning. We follow the existing 1062

works (Chen et al., 2024; Gu et al., 2024) to 1063

conduct the reasoning tasks, i.e., input predic- 1064

tion, output prediction, state prediction, and 1065

coverage prediction. Input/output prediction 1066

indicates fulfilling the corresponding input or 1067

output, given a block of code and a partially 1068

completed assertion statement as a prompt. 1069

State prediction refers to predicting what the 1070

next line statement will be after an intermedi- 1071

ate statement is executed. Coverage prediction 1072

means that after randomly picking a line of 1073

code, we ask the LLM to predict whether it 1074

will be executed for a given specific test case. 1075

For input and output prediction, we directly 1076

use the existing datasets (Gu et al., 2024), 1077

named as CRUXEval-I and CRUXEval-O. For 1078

the evaluation, we follow the same prompts 1079

from (Chen et al., 2024; Gu et al., 2024). 1080

B.3 Fine-tune dataset(Refinement Dataset) 1081

We found that there are no datasets that fully sup- 1082

port our study, i.e., the repair-based training mode 1083

and all types of execution representation that we 1084

collected. Hence, we construct a new dataset that 1085

covers buggy code, its corresponding patch, test 1086

cases, and other semantic information such as exe- 1087

cution traces. 1088

Our dataset is constructed using 1089

APPs (Hendrycks et al., 2021), a dataset 1090

provided by codeparrot for the generation of code 1091

at the competition level. This dataset includes 1092

essential elements such as basic buggy code, 1093

correct code, test cases, and the human refinement 1094

trajectories from buggy to correct versions. 1095

The steps to construct the dataset are as follows: 1096

1. Buggy and Patch Pair Collection: Each prob- 1097

lem in apps includes multiple solutions, both 1098

correct and incorrect, provided by various 1099

users. A key challenge in extracting (buggy 1100

code, patch code) pairs is the difficulty in 1101

matching incorrect with corresponding cor- 1102

rect solutions due to anonymized author in- 1103

formation for privacy. To overcome this, we 1104

employ a similarity-based matching approach, 1105

as the buggy code and its refined version from 1106

the same author typically exhibit significant 1107

14

similarities. Specifically, we employ UniX-1108

coder (Guo et al., 2022) to extract embeddings1109

of both correct and incorrect programs and1110

calculate their embedding similarity using Co-1111

sine similarity measurement. We include pairs1112

with a similarity score above 0.8 in our dataset1113

as (BX , PY).1114

2. Test Case Extraction: After collecting the1115

code pairs, we execute both the buggy and1116

patched code using their accompanying test1117

cases from apps. We retain test cases that fail1118

with the buggy code but pass with the patched1119

code, designating them as failing test cases,1120

which are then incorporated into RX .1121

3. Execution Trace Extraction: We execute both1122

the buggy and patched codes under the fail-1123

ing test cases and use Trace-Tracker, a Python1124

debugging tool, to gather runtime informa-1125

tion, including trace coverage and states. We1126

develop converters to translate this runtime1127

information into various trace representations1128

(detailed in Section 3.1). These traces are1129

added to RX and RY , respectively.1130

4. Code Reasoning Related Data Extraction:1131

Leveraging the execution traces, we enrich1132

our dataset with features specifically designed1133

to evaluate various aspects of code reasoning:1134

input prediction, output prediction, state pre-1135

diction, and coverage prediction. For input1136

and output predictions, we adhere to the meth-1137

ods outlined in (Gu et al., 2024), inserting1138

assert statements to validate the inputs and1139

outputs effectively.1140

5. Program Description Extraction: Following1141

previous work (Chen et al., 2021b), we uti-1142

lize each contest problem’s brief description1143

as a base. We then employ GPT-4o to enrich1144

these descriptions by generating implementa-1145

tion constraints and incorporating test cases.1146

C Experiment results of Full and PEFT1147

15

repair NL2Code reasoning bigcodebench Livecodebench
HE-R/(+) MBPP-R/(+) HE/(+) MBPP/(+) in_predict out_predict full hard easy pass@1 overall pass@1

dk-6.7B-base(vanilla) 26.2(22.0) 17.7(15.6) 49.4(43.9) 71.9(57.6) 40 40.4 41.50 12.20 40.80 17.40

only nl2code
Full 59.1(52.4) 25.4(22.0) 64.6(56.1) 72.9(60.9) 60.1 55.4 43.70 16.90 12.60 4.60

LoRA64 48.2(42.1) 25.4(22.0) 57.3(48.8) 73.2(59.1) 44.8 47.9 44.70 14.90 44.10 18.50
LoRA8 44.5(37.2) 22.2(19.3) 52.4(44.5) 73.3(58.1) 42.9 47.2 44.50 12.20 41.20 17.40

concise
Full 45.7(39.0) 39.2(33.1) 61.6(54.3) 74.4(61.9) 61.6 55 44.30 17.60 29.40 12.60

LoRA64 46.3(41.5) 33.9(28.8) 53.7(47.6) 71.4(59.1) 48.1 48.8 42.50 12.20 40.30 16.70
LoRA8 42.7(38.4) 35.7(30.4) 54.3(48.2) 71.4(59.1) 54.1 48 45.60 16.20 38.70 16.30

CodeExecutor
Full 38.4(34.8) 38.4(33.6) 60.4(53.7) 77.2(62.9) 60.4 56.1 44.60 20.30 31.50 13.60

LoRA64 45.1(40.9) 36.0(31.2) 54.3(48.2) 72.2(60.9) 52.5 48.8 45.00 15.50 38.20 17.10
LoRA8 49.4(43.3) 33.9(29.1) 54.9(47.0) 70.4(57.6) 46.2 47.8 45.20 16.90 39.90 17.10

w/o trace
Full 43.9(39.0) 39.2(34.1) 58.5(51.8) 75.9(61.9) 61.9 56.6 45.40 16.20 35.70 15.60

LoRA64 49.4(45.7) 35.2(29.4) 53.7(46.3) 70.7(58.6) 54.2 49.1 46.40 18.90 43.70 18.80
LoRA8 47.0(40.9) 30.4(24.9) 53.0(44.5) 71.2(58.6) 49.4 48.4 46.10 14.90 41.60 17.70

NeXT
Full 39.6(36.6) 37.6(31.7) 61.6(54.9) 76.7(62.4) 61.3 54.2 44.00 16.90 36.10 14.90

LoRA64 47.6(42.1) 34.7(29.6) 54.9(48.8) 70.4(58.4) 47.4 49.6 45.40 16.20 42.40 17.10
LoRA8 47.0(41.5) 34.4(28.8) 55.5(47.6) 71.4(57.6) 47.4 47.6 45.00 17.60 40.30 17.00

concise2
Full 43.3(37.2) 38.9(33.1) 59.1(51.8) 76.7(63.2) 60 55.6 43.90 18.90 35.70 15.30

LoRA64 48.8(43.9) 35.7(30.4) 52.4(46.3) 70.2(59.1) 52.8 49.5 45.40 16.90 38.20 16.30
LoRA8 48.2(42.7) 32.8(28.6) 53(45.1) 70.9(57.6) 46.4 49 43.60 13.50 41.20 17.50

SemcoderGPT4o
Full 53.7(47.6) 37.0(32.0) 59.1(52.4) 75.7(63.4) 62 58.1 45.40 18.20 31.50 13.70

LoRA64 51.8(46.3) 34.9(29.9) 55.5(48.8) 69.7(58.9) 53.1 50.7 46.10 18.20 39.10 17.10
LoRA8 51.2(44.5) 30.4(26.5) 52.4(45.1) 70.4(56.9) 50.5 49.5 47.20 18.90 42.00 17.40

SemcoderGPT4o_y
Full 47.0(40.9) 38.9(32.0) 61.6(55.5) 74.7(62.9) 61.3 57.4 45.50 18.90 42.00 16.70

LoRA64 53.0(47.6) 32.3(28.6) 54.3(48.8) 72.9(60.4) 52.6 49.2 44.70 16.90 44.50 18.20
LoRA8 53.7(45.7) 31.7(27.5) 52.4(45.7) 72.7(58.4) 46.1 48.9 46.10 17.60 39.90 17.10

Semcoder
Full 45.7(39.6) 40.5(35.2) 58.5(51.8) 76.4(63.2) 59.5 55.4 45.70 20.90 29.00 12.80

LoRA64 48.2(43.3) 34.7(30.2) 53.0(46.3) 70.2(58.9) 52.4 50.5 45.90 17.60 42.90 18.10
LoRA8 48.8(43.3) 32(27.5) 53.7(45.7) 70.7(57.1) 47 49.8 46.10 16.20 41.20 17.50

Semcoder_y
Full 46.3(39.6) 37.6(33.1) 60.4(54.3) 75.4(61.9) 59 57.8 44.10 16.90 39.10 16.40

LoRA64 48.2(42.7) 32.8(29.1) 56.1(49.4) 72.9(60.2) 54.1 49.8 44.80 19.60 40.80 17.10
LoRA8 51.2(44.5) 31.7(27.2) 53.0(45.7) 72.2(58.9) 49.6 47.6 45.20 15.50 41.60 17.50

Table 4: A extend version of Table in deepseek-6.7b-base after finetuning with semantic information.

repair NL2Code reasoning bigcodebench Livecodebench
HE-R/(+) MBPP-R/(+) HE/(+) MBPP/(+) in_predict out_predict full hard easy pass@1 overall pass@1

dk-6.7B-base(vanilla) 28.0(26.2) 20.1(18.0) 38.4(32.3) 58.6(49.1) 42.6 36.2 31.40 6.08 27.30 9.50

only nl2code
Full 58.5(52.4) 24.9(22.2) 65.9(56.7) 73.7(61.2) 60.1 55.9 44.10 18.20 18.10 7.40

LoRA64 47.6(42.1) 25.7(21.7) 44.5(40.9) 58.9(46.4) 54.4 52.9 35.10 10.10 29.80 11.10
LoRA8 43.9(38.4) 23.8(20.1) 39.6(33.5) 52.1(42.9) 52.8 51.9 33.70 9.50 34.50 11.90

concise
Full 30.5(29.3) 27.0(23.8) 47.0(43.3) 59.4(48.9) 55.8 57.6 30.40 8.80 14.70 5.20

LoRA64 34.8(31.1) 33.6(29.9) 40.2(35.4) 60.4(51.4) 54.4 51.7 35.20 10.10 21.80 8.00
LoRA8 39.6(32.3) 31.0(27.2) 36.6(32.3) 61.2(49.9) 53.2 51.9 33.90 7.40 32.80 11.60

CodeExecutor
Full 29.9(29.3) 24.9(22.2) 53.7(50.0) 59.4(47.9) 57 55.2 32.60 9.50 9.70 3.60

LoRA64 31.1(28.0) 32.8(28.8) 39.6(34.8) 58.9(49.6) 53.9 51.2 33.90 6.80 18.90 6.70
LoRA8 37.8(30.5) 31.0(27.0) 36.0(32.9) 60.9(49.9) 53.4 52.2 33.30 7.40 34.00 11.60

w/o trace
Full 28.0(24.4) 29.1(26.2) 52.4(49.4) 59.1(47.1) 58.8 54 31.60 8.10 8.40 3.10

LoRA64 31.7(29.3) 32.0(27.5) 42.7(40.9) 61.7(52.6) 53.5 50.5 34.70 10.80 22.70 8.00
LoRA8 47.0(40.9) 29.1(25.7) 36.6(32.9) 57.5(47.1) 50.2 49.8 32.50 9.50 31.50 11.20

NeXT
Full 28.7(26.2) 29.1(25.4) 49.4(46.3) 61.4(49.1) 56.9 52.8 30.60 6.80 16.00 5.60

LoRA64 28.7(25.0) 32.5(28.8) 43.9(39.6) 62.2(53.9) 54 51.1 34.60 7.40 24.80 9.00
LoRA8 42.1(34.8) 31.5(27.2) 37.2(33.5) 59.6(48.4) 53.4 53.1 31.80 8.80 34.90 12.20

concise2
Full 29.9(27.4) 27.2(23.3) 50.6(47.0) 55.4(46.4) 56.6 55.9 32.37 8.11 10.50 3.80

LoRA64 30.5(28.0) 32.5(27.8) 44.5(39.0) 63.2(53.6) 54 51.2 35.50 8.10 21.80 7.70
LoRA8 37.2(31.1) 31.0(27.2) 39.0(35.4) 60.4(49.1) 50.5 51.2 33.20 7.40 31.90 10.90

SemcoderGPT4o
Full 38.4(34.8) 22.2(19.8) 51.8(46.3) 59.4(47.9) 58.6 58 31.40 10.80 10.90 4.10

LoRA64 37.2(32.9) 26.7(24.1) 42.7(38.4) 59.9(50.1) 54.8 50.4 34.40 8.80 23.10 8.60
LoRA8 37.8(32.3) 25.7(22.0) 39.6(35.4) 54.9(44.9) 52.8 52.1 33.60 7.40 32.80 11.50

SemcoderGPT4o_y
Full 31.7(28.7) 31.5(28.0) 51.8(48.2) 62.7(50.1) 59 60.2 30.60 7.40 14.70 5.60

LoRA64 36.6(30.5) 29.4(25.9) 37.8(34.1) 59.1(50.9) 53.5 52.9 34.56 12.84 27.96 9.32
LoRA8 39.0(33.5) 26.7(23.5) 37.2(32.3) 55.9(44.9) 52.9 51.9 32.20 5.40 33.60 11.80

Semcoder
Full 34.1(29.9) 29.4(24.6) 51.8(48.8) 61.9(48.6) 59.9 55.4 33.40 14.20 14.70 5.20

LoRA64 28.7(25.6) 31.5(27.2) 42.7(36.6) 59.9(50.4) 54.9 50.4 34.70 6.80 24.80 8.70
LoRA8 37.2(31.7) 29.1(24.6) 37.2(32.9) 56.1(45.6) 50.6 50.9 32.70 6.80 29.80 10.40

Semcoder_y
Full 29.3(27.4) 28.8(25.1) 51.8(48.2) 58.4(46.4) 59 58.1 33.00 12.20 28.20 10.10

LoRA64 33.5(29.3) 27.8(24.6) 42.1(36.6) 55.6(44.9) 54.1 53.9 35.61 10.81 26.52 8.75
LoRA8 37.8(32.0) 24.6(22.2) 42.1(36.6) 55.1(43.4) 51.7 52 33.40 5.40 34.00 11.80

Table 5: A extend version of Table in llama3.1 after finetuning with semantic information.

16

repair NL2Code reasoning bigcodebench Livecodebench
HE-R/(+) MBPP-R/(+) HE/(+) MBPP/(+) in_predict out_predict full hard easy pass@1 overall pass@1

dk-6.7B-base(vanilla) 37.2(33.5) 20.9(19.6) 40.2(34.1) 63.7(51.9) 49.2 41.5 29.80 6.80 32.80 11.40

only nl2code
Full 38.4(35.4) 19.8(16.7) 59.1(54.3) 61.4(50.4) 57.9 55.6 26.80 12.80 12.60 4.90

LoRA64 50.0(42.1) 24.9(22.8) 54.9(47.0) 69.4(55.1) 57.2 60.1 37.81 11.49 35.84 12.95
LoRA8 49.4(44.5) 24.6(22.8) 47.0(41.5) 66.9(54.1) 53.9 51.9 37.11 12.16 36.56 13.07

concise
Full 34.1(30.5) 22.8(20.4) 47.0(42.7) 60.2(50.6) 57.6 57.2 28.80 10.80 8.00 3.10

LoRA64 35.4(31.7) 33.1(28.3) 50.0(45.1) 66.9(52.6) 59.8 51.2 38.86 10.81 26.88 9.09
LoRA8 37.8(34.1) 33.3(28.8) 48.2(42.1) 67.9(56.1) 55.9 56.1 38.77 8.78 29.03 10.00

CodeExecutor
Full 28.7(25.6) 22.8(19.3) 42.1(37.2) 59.4(48.9) 58.9 58.2 27.30 13.50 8.80 3.10

LoRA64 37.2(32.9) 32.3(28.0) 48.2(44.5) 64.7(52.1) 59.2 57.5 38.86 11.49 23.66 7.84
LoRA8 36.6(31.7) 33.9(29.1) 45.1(39.6) 66.2(55.9) 51.5 49.2 37.63 8.11 25.81 9.20

w/o trace
Full 30.5(25.0) 24.9(22.0) 48.2(44.5) 58.4(48.6) 57.8 57.5 25.10 8.80 6.70 2.70

LoRA64 31.7(28.7) 29.9(26.7) 48.2(42.7) 66.9(54.6) 58.8 56.4 38.77 11.49 23.30 8.30
LoRA8 35.4(32.9) 31.5(28.0) 45.1(40.2) 67.2(54.9) 51.1 49 38.95 9.46 24.01 8.41

NeXT
Full 31.7(29.3) 26.2(23.3) 48.2(43.9) 58.1(48.4) 59.5 55.8 26.90 8.80 8.80 3.10

LoRA64 38.4(34.8) 32.0(28.0) 47.6(42.1) 66.2(53.6) 59.5 54.5 38.42 12.16 28.32 9.32
LoRA8 35.4(32.3) 33.9(29.1) 48.8(42.7) 67.2(55.9) 51.2 51 39.47 12.16 23.30 7.84

concise2
Full 26.2(24.4) 25.1(21.4) 48.2(43.9) 56.9(47.6) 58.9 56.2 29.00 7.40 8.00 2.90

LoRA64 32.3(29.3) 32.5(28.6) 51.2(45.7) 66.9(53.6) 57.9 57.5 38.77 12.84 29.75 9.55
LoRA8 40.2(34.8) 31.7(27.8) 44.5(37.8) 67.4(55.1) 46.5 51.7 38.86 6.76 29.03 10.00

SemcoderGPT4o
Full 35.4(31.1) 24.1(21.7) 51.8(48.8) 62.9(50.1) 58.9 56.5 29.50 7.40 8.40 2.90

LoRA64 45.7(40.9) 29.4(25.4) 47.0(42.1) 66.9(53.6) 57.8 54.4 38.42 14.19 25.81 8.98
LoRA8 45.1(39.0) 28.6(24.9) 47.6(42.7) 67.7(55.1) 41.1 52.5 38.95 10.14 26.16 9.32

SemcoderGPT4o_y
Full 31.7(30.5) 22.2(18.8) 48.8(44.5) 57.6(46.9) 58.9 52.1 27.63 13.51 9.50 4.90

LoRA64 32.3(29.9) 29.1(25.9) 47.0(40.2) 68.7(55.9) 59 57.6 39.04 10.81 30.11 10.11
LoRA8 41.5(37.8) 27.2(24.9) 51.2(44.5) 66.4(53.9) 58.5 51.4 38.95 12.84 23.66 8.30

Semcoder
Full 31.1(27.4) 26.2(22.2) 53(50.0) 62.2(53.1) 58.9 56.8 27.60 13.50 13.00 4.80

LoRA64 32.9(31.1) 31.0(27.2) 48.8(44.5) 66.4(53.6) 59.2 59.9 39.74 15.54 24.01 7.95
LoRA8 39.6(35.4) 29.9(26.2) 43.9(38.4) 66.2(55.6) 56.9 55.4 39.74 10.14 21.86 7.61

Semcoder_y
Full 26.8(24.4) 24.3(20.9) 49.4(45.7) 59.4(48.9) 58.5 52.1 23.25 5.41 17.00 5.80

LoRA64 38.4(35.4) 24.9(22.8) 48.8(42.7) 67.4(54.9) 59.2 59.6 39.12 14.19 30.47 10.34
LoRA8 40.2(33.5) 24.6(22.2) 43.3(37.2) 67.9(56.1) 51.1 48.5 38.77 13.51 27.96 10.00

Table 6: A extend version of Table in gemma2-9b after finetuning with semantic information.

17

CodeExecutor ConCise NExT SemCoder

base plus base plus base plus base plus

Two testcases
Three testcases

0.6 1.4 -1.1 0.0 0.0 0.9 -0.3 0.6
0.3 0.6 -3.1 -1.0 -7.9 -4.0 0.8 1.4

Percentage-point Gain vs. Baseline (1 testcase)

5
0

Ga
in

 (p
p)

Figure 5: Heat-map of percentage-point gains over the (one-
test case) baseline. Rows mark the aggregated test-case sizes.
Columns are grouped by trace representations each with its
MBPP-R(base, plus) benchmark. Warm shades (reds) indicate
positive gains.

D Experiment results of Test-scaling on1148

MBPP-R1149

Table 7 summarizes the results of test-time scal-1150

ing. It is clear that compared to open-source LLMs,1151

closed-source LLMs perform significantly better at1152

test time. Comparison between inference with and1153

without trace-based semantic information. First,1154

we can see that, different from the findings from1155

the fine-tuning investigation, inference with trace-1156

based semantic information consistently boosts the1157

performance of Code LLMs. In most cases (98 out1158

of 112), adding trace information enhances Code1159

LLMs with an improvement by up to 10.85, a max1160

improvement in NeXT with GPT-4o. This indi-1161

cates that semantic information can guide LLMs1162

in generating more correct code. Comparison be-1163

tween different trace representations. Similar to1164

previous findings, no single semantic representa-1165

tion consistently performs better than the others.1166

SemCoder, which performs relatively better dur-1167

ing fine-tuning, cannot stand out considering in-1168

ference only. Concise, a variant of CodeExecutor1169

designed by us performs the best under the instruc-1170

tion version of LLMs. Different from fine-tuning,1171

trace-based semantic information significantly en-1172

hances the performance of Code LLMs at test time.1173

Sequential Revisions and Parallel are two optimal1174

search strategies for test-time scaling.1175

18

Sequential Revisions
BoN BeamSearch

w/o trace(greedy) Concise CodeExecutor NExT SemCoder SemCoder(GPT4o)

Close source Model
GPT-4o 50.79(44.71) 60.05(50.79) 59.79(50.79) 61.64(50.53) 58.73(50.0) 59.41(51.10) 54.46(42.23) 61.29(51.71)
deepseek-chat(V3) 53.17(47.88) 61.11(54.23) 60.85(52.38) 61.11(53.7) 61.11(52.4) 61.31(52.68) 56.37(57.45) 63.17(53.88)

Reasoning Compatible Model
Marcon-o1 25.40(22.20) 27.00(23.00) 27.00(23.30) 24.10(20.90) 28.80(24.90) 29.10(25.10) 26.30(23.10) 29.40(25.10)
phi-4 39.15(33.86) 43.65(38.10) 45.5(39.15) 42.86(38.10) 44.71(39.68) 44.71(40.12) 41.23(36.45) 45.15(41.86)

Instruction version of Foundation Model
CodeLlama-7b-Instruct-hf 19.58(18.25) 20.11(18.52) 19.84(19.05) 19.58(17.72) 18.52(16.93) 19.12(17.00) 19.13(17.43) 19.58(18.25)
Llama-3.1-8B-Instruct 28.84(27.51) 36.51(32.28) 32.01(29.89) 32.01(28.57) 33.86(31.48) 34.21(32.14) 29.21(28.43) 33.54(31.42)
deepseek-coder-6.7b-instruct 24.87(23.54) 23.81(22.49) 25.66(23.54) 23.54(22.22) 30.16(27.51) 30.56(28.31) 25.87(24.34) 30.87(28.14)

Table 7: Pass@1Comparing compute-optimal approaches on the code repair benchmark MBPP-R at test time, the numbers
outside and inside parenthesis "()" indicate the base and plus versions of EvalPlus, respectively. w/o trace (greedy) only interacts
with the LLM via its initial (potentially buggy) code. In contrast, other sequential revision methods benefit from trace-based
semantic information. The best results of EvalPlus’ base highlights with underline

round 1 2 3 4 5

pass_rate 61.54 84.62 84.62 84.62 88.46

error type

extract-fail
syntax-error 50.96 9.13 6.25 3.85 4.33
execute-fail 34.62 34.62 33.65 34.62 34.62
test-case-fail 7.21 24.52 25.00 25.96 25.00

(a) Pass-rate improvement and error-type distribution over five
self-debugging rounds. The overall pass rate climbs from 61.54
% in Round 1 to 88.46 % by Round 5, while syntax errors drop
sharply and an increasing share of examples transitions into the
testcase-pass category. Percentages are shown for each round;
blank cells indicate zero occurrences..

19

E More Prompt Example1176

E.1 Prompt templates1177

We also provide detailed prompts used in our ex-1178

periments in 6 to 8. These prompts are generated1179

automatically by DSPy (Khattab et al., 2024).1180

20

Your input fields are: 1. prompt (str)

Your output fields are: 1. reasoning (str) 2. code (str): Here is the past history of your
code and the test case feedback. Please reason why your code failed in the last round, and
correct the code. Do not write non-code content in the code field.

All interactions will be structured in the following way, with the appropriate values filled in:

[[## prompt ##]]
{prompt}

[[## reasoning ##]]
{reasoning}

[[## code ##]]
{code}
[[## completed ##]]

In adhering to this structure, your objective is: Given the fields prompt , produce the fields
code .

[[## prompt ##]]

{Question Prompt}

[Round 0 Reasoning]: {Round 0 Reasoning}

[Round 0 Generated code]: {Round 0 Generated Code}

[Round 0 Test Feedback]: {Round 0 Test Feedback}

[Round 1 Reasoning]: {Round 0 Reasoning}

System Message

User Message

Code:

Figure 6: Prompt schema for SYSTEM, USER, and ASSISTANT.

21

[Round 1 Generated code]: {Round 0 Generated Code}

[Round 1 Test Feedback]: {Round 0 Test Feedback}

[[## reasoning ##]]
{reasoning}

[[## code ##]]
{code}
[[## completed ##]]

Assistant Response

Figure 7: Prompt schema for SYSTEM, USER, and ASSISTANT(continue).

22

Your input fields are: 1. prompt (str)

Your output fields are: 1. reasoning (str) 2. code (str): Here is the past history of your code and the test case feedback. Please
reason why your code failed in the last round, and correct the code. Do not write non-code content in the code field.

All interactions will be structured in the following way, with the appropriate values filled in:
[[## prompt ##]] {prompt} [[## reasoning ##]] {reasoning} [[## code ##]] {code} [[## completed ##]]

In adhering to this structure, your objective is: Given the fields prompt , produce the fields code .

[[## prompt ##]]

Respond with the corresponding output fields, starting with the field [[## reasoning ##]] , then [[## code ##]] ,
and then ending with the marker for [[## completed ##]] .

You are given a sequence of N positive integers A = (A₁, A₂, ..., Aₙ). Takahashi repeats the following operation until A contains one or
fewer positive elements:

Sort A in descending order. Then, decrease both A₁ and A₂ by 1.

Find the number of times he performs this operation.

The input is given from Standard Input in the following format: N A₁ A₂ ⋯ Aₙ

Print the answer.

2 ≤ N ≤ 100
1 ≤ Aᵢ ≤ 100
All input values are integers.

4
1 2 3 3

4

The process goes as follows:

System Message

User Message

Problem Description

Input

Output

Constraints

Sample Input 1

Sample Output 1

Figure 8: The prompt for code generation with trace feedback[a NExT example] .

23

After the 1st operation, A is (2, 2, 2, 1).
After the 2nd operation, A is (1, 1, 2, 1).
After the 3rd operation, A is (1, 0, 1, 1).
After the 4th operation, A is (0, 0, 1, 0). A no longer contains more than one positive element, so the process ends here.

3
1 1 100

2

[Round 0 Reasoning]: To solve this problem, we need to repeatedly sort the array in descending order and then decrease the first
two elements by 1 until the array contains one or fewer positive elements. We will count the number of operations performed.

Here's a step-by-step breakdown of the approach: 1. Read the input values. 2. Initialize a counter for the number of operations. 3. In a
loop, sort the array in descending order. 4. Decrease the first two elements by 1. 5. Increment the operation counter. 6. Continue the
loop until the array contains one or fewer positive elements. 7. Print the number of operations.

[Round 0 Generated code]: ```python def count_operations(): import sys input = sys.stdin.read data = input().split()

N = int(data[0])
A = list(map(int, data[1:]))

operations = 0

while sum(A) > 0:
 A.sort(reverse=True)
 if A[0] > 0 and A[1] > 0:
 A[0] -= 1
 A[1] -= 1
 operations += 1

print(operations)

count_operations() ```

[Round 0 Test Feedback]: [Test 0 -]FAIL: For test input: 4 1 2 3 3 . Expected output is: 4 , but got: .Traceback (most recent
call last): File "/mnt/local/homedir/wjcode/dltrace/testscalingtrace/skythoughttest-time-scaling/livecodebenchexecute.py", line 337,
in runtestsforoneexample passed, outputvalue = runteststd(^^^^^^^^^^^^^ File
"/mnt/local/homedir/wjcode/dltrace/testscalingtrace/skythoughttest-time-scaling/livecodebenchexecute.py", line 201, in
runtest_std exec(completion, namespace) File "", line 1, in NameError: name 'd' is not defined

[Test 1 -]FAIL: For test input: 3 1 1 100 . Expected output is: 2 , but got: .Traceback (most recent call last): File
"/mnt/local/homedir/wjcode/dltrace/testscalingtrace/skythoughttest-time-scaling/livecodebenchexecute.py", line 337, in
runtestsforoneexample passed, outputvalue = runteststd(^^^^^^^^^^^^^ File
"/mnt/local/homedir/wjcode/dltrace/testscalingtrace/skythoughttest-time-scaling/livecodebenchexecute.py", line 201, in
runtest_std exec(completion, namespace) File "", line 1, in NameError: name 'd' is not defined

[Round 1 Reasoning] [Round 1 Generated Code]

Sample Input 2

Sample Output 2

Solution Attempt

Figure 9: The prompt for code generation with trace feedback[a NExT example](continue) .

24

def min_fatigue():
 import sys
 input = sys.stdin.read
 data = input().split()

 N = int(data[0])
 actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)]

 # Initialize hands on keys 1 and N
 left_hand = 1
 right_hand = N

 # Initialize fatigue level
 fatigue = 0

 # Process each action
 for action in actions:
 key, side = action

 if side == 'L':
 if key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key
 elif key > right_hand:
 fatigue += abs(right_hand - key)
 right_hand = key
 else: # side == 'R'
 if key > right_hand:
 fatigue += abs(right_hand - key)
 right_hand = key
 elif key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key

 print(fatigue)

min_fatigue()

[Round 1 Test Feedback]:

Input: 4 3 L 6 R 9 L 1 R

Expected Output: 11 Actual Output: 5

Execution Trace:

Figure 10: The prompt for code generation with trace feedback[a NExT example](continue) .

25

Input: 3 2 L 2 L 100 L

Expected Output: 98 Actual Output: 97

def min_fatigue(): #(1) ['min_fatigue = <function call_wra...ocals>.min_fatigue>']
 import sys #(2) ["sys = <module 'sys' (built-in)>"]
 input = sys.stdin.read #(3) ['input = <built-in method r...io.StringIO object>']
 data = input().split() #(4) ["data = ['4', '3', 'L', '6...'9', 'L', '1', 'R']"]

 N = int(data[0]) #(5) ['N = 4']
 actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)] #(6) ['i = 0']; (7) ['i = 1']; ...; (10) ["actions = [(3, 'L'), (6, 'R'), (9, 'L'), (1, 'R')]"]

 # Initialize hands on keys 1 and N
 left_hand = 1 #(11) ['left_hand = 1']
 right_hand = N #(12) ['right_hand = 4']

 # Initialize fatigue level
 fatigue = 0 #(13) ['fatigue = 0']

 # Process each action
 for action in actions: #(14) ["action = (3, 'L')"]; (16) ["action = (6, 'R')"]; ...; (24) ["action = (1, 'R')"]
 key, side = action #(15) ["side = 'L', key = 3"]; (17) ["side = 'R', key = 6"]; ...; (25) ["side = 'R', key = 1"]

 if side == 'L':
 if key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key
 elif key > right_hand:
 fatigue += abs(right_hand - key) #(22) ['fatigue = 5']
 right_hand = key #(23) ['right_hand = 9']
 else: # side == 'R'
 if key > right_hand:
 fatigue += abs(right_hand - key) #(18) ['fatigue = 2']
 right_hand = key #(19) ['right_hand = 6']
 elif key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key

 print(fatigue) #__return__=None

min_fatigue() #__return__=None

Test Case 2

Execution Trace:

Figure 11: The prompt for code generation with trace feedback[a NExT example](continue) .

26

Based on the test cases and execution traces, there are several issues with the code:

1. Logic issues with hand assignments: The algorithm doesn't correctly handle key assignments for left and right hands
according to the problem's requirements.

2. Missing conditions: The current logic only handles specific cases for each hand but doesn't account for all possible scenarios.
For example, if a key is between the current positions of left and right hands, the algorithm doesn't handle this properly.

3. Decision logic flaws: The fatigue calculation and hand position updates are not correctly applying the rules of the problem,
which seems to involve minimizing fatigue by deciding which hand should press which key.

The algorithm needs to be reworked to correctly handle all possible key positions relative to current hand positions and to make
optimal decisions about which hand to use for each key press.

The previous implementation had several issues, including incorrect handling of hand movements and an incorrect initial placement of
the hands. The key problems were: 1. The hands were not initialized optimally, leading to unnecessary fatigue. 2. The logic for moving
the hands was flawed, resulting in incorrect fatigue calculations.

To fix these issues, we need to: 1. Initialize the left hand on the first key and the right hand on the last key. 2. Correctly handle the

def min_fatigue(): #(1) ['min_fatigue = <function call_wra...ocals>.min_fatigue>']
 import sys #(2) ["sys = <module 'sys' (built-in)>"]
 input = sys.stdin.read #(3) ['input = <built-in method r...io.StringIO object>']
 data = input().split() #(4) ["data = ['8', '22', 'L', '...7', 'L', '29', 'R']"]

 N = int(data[0]) #(5) ['N = 8']
 actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)] #(6) ['i = 0']; (7) ['i = 1']; ...; (14) ["actions = [(22, 'L'), (75, '...7, 'L'), (29, 'R')]"]

 # Initialize hands on keys 1 and N
 left_hand = 1 #(15) ['left_hand = 1']
 right_hand = N #(16) ['right_hand = 8']

 # Initialize fatigue level
 fatigue = 0 #(17) ['fatigue = 0']

 # Process each action
 for action in actions: #(18) ["action = (22, 'L')"]; (22) ["action = (75, 'L')"]; ...; (38) ["action = (29, 'R')"]
 key, side = action #(19) ["side = 'L', key = 22"]; (23) ['key = 75']; ...; (39) ["side = 'R', key = 29"]

 if side == 'L':
 if key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key
 elif key > right_hand:
 fatigue += abs(right_hand - key) #(20) ['fatigue = 14'] (24) ['fatigue = 67']
 right_hand = key #(21) ['right_hand = 22'] (25) ['right_hand = 75']
 else: # side == 'R'
 if key > right_hand:
 fatigue += abs(right_hand - key) #(34) ['fatigue = 73']
 right_hand = key #(35) ['right_hand = 81']
 elif key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key

 print(fatigue) #__return__=None

min_fatigue() #__return__=None

Assistant Response

Bug Analysis

Figure 12: The prompt for code generation with trace feedback[a NExT example](continue) .

27

movement of the hands based on the direction specified (L or R).

1. Initial Placement: Place the left hand on key 1 and the right hand on key N.
2. Hand Movements: For each key press, determine which hand should be used based on the direction. Move the hand if it is not

already on the correct side and update the fatigue level accordingly.

Let's implement this corrected approach in Python.

def min_fatigue():
 import sys
 input = sys.stdin.read
 data = input().split()

 N = int(data[0])
 actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)]

 # Initialize hands on keys 1 and N
 left_hand = 1
 right_hand = N

 # Initialize fatigue level
 fatigue = 0

 # Process each action
 for action in actions:
 key, side = action

 if side == 'L':
 if key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key
 elif key > right_hand:
 fatigue += abs(right_hand - key)
 right_hand = key
 else: # side == 'R'
 if key > right_hand:
 fatigue += abs(right_hand - key)
 right_hand = key
 elif key < left_hand:
 fatigue += abs(left_hand - key)
 left_hand = key

 print(fatigue)

min_fatigue()

Corrected Approach

Implementation

Figure 13: The prompt for code generation with trace feedback[a NExT example](continue) .

28

	Introduction
	Problem Statement
	Evaluation Framework
	Overall Design
	Trace Representation Adapters

	Experiment Design
	Result Analysis
	Fine-Tuning with Semantic Information
	Parameter-Efficient Fine-Tuning
	Inference Test-Scaling Computation
	Hyperparameter Study

	Related works
	Conclusion
	Data and Source Code availability
	 Experiment
	Experiment Detail.

	 Dataset
	Decontamination
	Evaluation dataset
	Fine-tune dataset(Refinement Dataset)

	Experiment results of Full and PEFT
	Experiment results of Test-scaling on MBPP-R
	More Prompt Example
	Prompt templates

