Do Code Semantics Help? A Comprehensive Study on Execution
Trace-Based Information for Code Large Language Models

Anonymous ACL submission

Abstract

Code Large Language Models (Code LLMs)
have opened a new era in programming with
their impressive capabilities. However, recent
research has revealed critical limitations in
their ability to reason about runtime behavior
and understand the actual functionality of pro-
grams, which poses significant challenges for
their post-training and practical deployment.
Specifically, Code LLMs encounter two prin-
cipal issues: (1) a lack of proficiency in rea-
soning about program execution behavior, as
they struggle to interpret what programs actu-
ally do during runtime, and (2) inconsistent
and fragmented representation of semantic in-
formation, such as execution traces, across ex-
isting methods, which hinders their ability to
generalize and reason effectively. These chal-
lenges underscore the necessity for more sys-
tematic approaches to enhance the reasoning
capabilities of Code LLMs. To address these
issues, we introduce a generic framework to
support integrating semantic information (e.g.,
execution trace) to code task-relevant prompts,
and conduct a comprehensive study to explore
the role of semantic information in enhancing
the reasoning ability of Code LLMs accord-
ingly. Specifically, we focus on investigating
the usefulness of trace-based semantic informa-
tion in boosting supervised fine-tuning (SFT)
and post-phase inference of Code LLMs. The
experimental results surprisingly disagree with
previous works and demonstrate that semantic
information has limited usefulness for SFT and
test time scaling of Code LLM.

1 Introduction

Code large language models (Code LLMs) have
emerged as prominent programming assistants,
demonstrating remarkable performance across var-
ious coding tasks, including program repair (Xia
et al., 2022), code generation (Liu et al., 2023b),
and code summarization (Jain et al., 2020). Re-
cently, several Code LLMs have been introduced,

each characterized by distinct training schemes.
For instance, Llama3.1 (Dubey et al., 2024; Roziere
et al.,, 2023), is fine-tuned with code infilling
tasks and long code input contexts, complemented
by an instruction fine-tuning process. Similarly,
DeepSeek-Coder (Guo et al., 2024) is trained on
over 2 trillion tokens using a fill-in-the-blank task
to enhance its code generation capabilities. These
models focus on learning contextual information
from code and docstrings, advancing their general
understanding of code (Chen et al., 2024; Ni et al.,
2024; Ding et al., 2024).

However, these approaches predominantly cap-
ture the static dimensions of code (e.g., tokens and
context), while neglecting the dynamic semantics
crucial for a comprehensive understanding of code.
Recent studies have highlighted this limitation, re-
vealing that even state-of-the-art models like GPT-
4 struggle to reason about runtime behaviors of
code (Chen et al., 2024). Understanding code se-
mantics and accurately predicting runtime behavior
is critical, particularly for practical coding appli-
cations that require semantic understanding (Ni
et al., 2024; Ding et al., 2024). This underscores
the urgent need to investigate methodologies that
enhance the reasoning capabilities of Code LL.Ms
for better semantic understanding, such as coverage
prediction (Chen et al., 2024) and output predic-
tion (Chen et al., 2024; Liu et al., 2023a) abilities.

To address these challenges, two primary meth-
ods have been proposed to bolster the reasoning
capabilities of Code LLMs in code generation
tasks: 1) the iterative invocation of Code LLMs,
wherein feedback—such as error information—is in-
corporated to refine subsequent outputs (Chen et al.,
2023; Jiang et al., 2024; Xia and Zhang, 2023), and
2) the direct enhancement of the models’ intrin-
sic reasoning by integrating semantically enriched
training data, thereby enabling improved predic-
tions within a single iteration (Ni et al., 2024; Ding
et al., 2024). In this work, we consider both ap-

proaches and explore whether and how incorpo-
rating code semantic information can enhance the
performance of Code LLMs. Specifically, we in-
vestigate evaluate their effectiveness across various
code-related tasks.

The core challenge lies in identifying and col-
lecting appropriate semantic data for training or
inference to improve the semantic comprehension
of Code LLMs. Recent efforts (Ding et al., 2024;
Ni et al., 2024) have begun to address this by fine-
tuning models using dynamic data, such as execu-
tion behaviors, to enhance semantic understanding.
While these approaches have shown promise, they
employ diverse semantic representations, such as
natural language descriptions of programs or exe-
cution traces. There remains a lack of 1) a unified
study and tool that supports all semantic represen-
tations, and 2) systematic understanding regarding
how different training data compositions, particu-
larly in terms of semantic representations, impact
code reasoning and generation capabilities.

To this end, we propose and implement a generic
framework that facilitates the generation of multi-
ple types of semantic representations, supporting
post-training, one-time inference, and the scaling
of test-time computation during inference. Based
on this framework, we conduct a systematic study
to explore the efficacy of semantic information
in boosting code generation. Specifically, we
integrate different semantic representations (i.e.,
different code execution traces) into the input
data (prompt) during both SFT time and inference
time to assess their impact. Additionally, we ex-
amine the influence of different training strategies
(e.g., parameter-efficient fine-tuning) on the effec-
tiveness of semantic information. Different from
previous research findings, our experimental results
demonstrate that integrating such the existing se-
mantic information provided into the input prompt
has limited benefits to the performance of tuned
Code LLMs.

To summarize, the main contributions of this
paper are:

* We introduce the first generic framework that sup-
ports different types of code semantic represen-
tations. Based on this framework, we construct
and open-source a high-fidelity dataset featuring
diverse execution behavior representations, in-
cluding bug-patch function pairs, unit tests, and
multiple semantic layers. The dataset and all re-
lated implementations are publicly available on

our website 1.

* We conduct a comprehensive study to explore the
effectiveness of semantic information in enhanc-
ing both SFT and inference of code LLMs.

* We summarize multiple findings such as that test
time scaling significantly improves code genera-
tion, but semantic information integrated in the
input does not positively contribute to the infer-
ence.

2 Problem Statement

We address the problem of enhancing the code gen-
eration capabilities of Code LLMs by integrating
code semantic information into the input prompts.
Current Code LLMs primarily rely on static text
data, which often fails to capture the nuanced
semantics crucial for thorough code understand-
ing (Wei et al., 2023, 2024; Abdin et al., 2024). In-
spired by the practices of human developers, who
iteratively refine code through reasoning and se-
mantic assessment rather than relying solely on
dynamic testing or runtime feedback, we note that
such reasoning and refinement processes are largely
absent in existing models (Ni et al., 2024; Ding
et al., 2024). There are two main sub-problems
we are interested in for Code LLMs, 1) fine-tuning
with semantic information, and 2) inference with
semantic information.

(1) Fine-tuning with semantic information. Our
Code LLM fine-tuning paradigm focuses on a
repair-based fine-tuning framework that leverages
a carefully curated dataset D = { (z,y) ’ x =
(b,r), y = a} where (x, y) is the input-output pair
for model fine-tuning, b denotes the buggy code
fragment, r is execution-trace rationale, and a rep-
resents the patched code. We selected the code
repair task because models often fail to produce
correct code in a single attempt, requiring the re-
finement of the output until it is correct. A central
question is how to encode the reasoning signals 7
so that the Code LLM can learn better code genera-
tion capability.

(2) Scaling Inference through Semantic Refine-
ment. Emulating human “work-and-check” prac-
tices at inference time—iteratively refining candi-
date solutions and verifying each step—can sub-
stantially improve an LLM’s accuracy under a fixed
but non-trivial test-time compute budget N (Li
et al., 2025). The key question is: Given a fixed

"https://github.com/tracewise- probing/tracewise_probing

https://github.com/tracewise-probing/tracewise_probing

inference-time compute budget N, to what extent
can an LLM improve its performance when prompts
are enhanced with semantic representations? In
this paradigm, a search-based computation strategy
0 specifies how to (1) propose candidate solutions
incrementally, (2) verify or score each partial out-
put (e.g., via code execution or a reward model),
and (3) refine solutions based on feedback—all
within the budget N. Formally, following (Snell
et al., 2024), for a given query ¢, the final output y
is drawn from

y ~ Target(6, q, N, Verify) (1)

where Target(6, ¢, N, Verify) is a test-scaling
framework which iterates through proposing, veri-
fying, pruning, and refining partial solutions until
the budget N is exhausted. If y*(q) denotes the
ground-truth correct answer for ¢, we measure ac-
curacy via the indicator]l{y:y*(q)}. In general,
we define the test-time compute-optimal strategy
07 (IV) as the one that maximizes the expected prob-
ability of generating the correct answer:

0,(N) = arg gﬂax (EyNTarget(O,N,q,Verify)
[ﬂy:y*(q)D 2

Here, 6 may control how many refinement steps
to run, which candidate paths to verify, subject to
the budget V. Verification signals (such as code ex-
ecution) enable the model to discard incorrect paths
or improve partially correct ones, while iterative
refinement uses feedback to converge on better out-
puts. By strategically allocating test-time resources,
a trace-based verify-and-refine loop can substan-
tially boost accuracy without additional training.

3 Evaluation Framework

3.1 Opverall Design

This work aims to investigate the impact of various
execution-trace based semantics and their represen-
tations, denoted as r, on the performance of Code
LLMs. Following recent works (Ding et al., 2024;
Chen et al., 2024; Ni et al., 2024), we consider
high-level program descriptions and low-level exe-
cution traces as potential semantic components of
r. Different trace representations can significantly
influence fine-tuning and inference performance,
prompting us to explore which representations best

Finetune
?}K Frozen OTunable

[Program][Test Cases] [Execution Trace r] Optimization
l PEFT Full

—) LLMs
Prompt Tuning Data Construction * O

Dataset Curating

Execution Behavior Dataset

]

Input: | err-info | r|..| r, [|program|
Output: |a,|...|a,| LorRA ()
Inference T
Prompt LLMs Answer Answer

Y
Scaling Inference

Figure 1: Paradigm of our framework. Initially, we curate
prompt-tuning data from the Execution Behavior Dataset
by extracting runtime execution messages, which are then
formalized using a trace adapter. Subsequently, we employ
parameter-efficient fine-tuning techniques, such as LoRA, or
opt for full parameter fine-tuning to train the foundation model.
In the output above, the purple text denotes the rationale, while
the green text represents the answer. During the inference
phase, the framework supports Scaling Inference to enhance
the capability of LLMs.

enhance Code LLMs. To achieve the goal, we de-
sign and build a framework for the generation and
evaluation of automatic semantic representations,
which is outlined in Figure 1. The framework con-
sists of three main components, data construction,
Code LLM fine-tuning, and inference.

Fine-Tuning Data Construction. Our dataset
contains two parts, a program repair dataset and
other downstream datasets. The program repair
dataset is used to help Code LLMs learn semantic
information that is integrated into the buggy/correct
code pairs. Specifically, the input b includes pro-
gram descriptions, test cases, which are associated
with the buggy code (e.g., an instruction to gen-
erate code, a test case fails on the buggy code),
and semantic information r. For r, our frame-
work automatically generates execution traces as
self-explanations for bug fixes (i.e., patch code a)
based on the Trace Adapter component. Specif-
ically, Trace Adapter first runs the code using a
compiler to collect the raw execution trace. Af-
ter that, it transfers the raw trace to various trace
representations. Currently, Trace Adapter sup-
ports five types of representative reasoning-based
code semantic information, Scratchpad (Nye et al.,
2021), NExT (Ni et al., 2024), SemCoder (Ding
etal., 2024), CodeExecutor (Liu et al., 2023a)), and
Concise which is a new variant of CodeExecutor
designed by us. Based on our data construction
pipeline, we prepare and open-source a new dataset
encompassing buggy/patched code, unit tests, pro-
gram descriptions, and various trace types, as exist-

Prompt Template:
You are given a Python-based problem and a piece of buggy code that
attempts to solve it but fails on a specific test case. Your task is to:
1. **Simulate the buggy code’s execution** using the provided failing
test case.
2. **Identify the root cause** of the failure by walking through the
problematic parts of the code.
3. Enclose your refined code between "[Fix]*
4. **Fix the bug** and present the corrected solution.
[Buggy Code]
def bubble_sort(arr):
139,12
n=len(arr)
for j in range(0, n): Represen'ra*rion
if arr[j] >’arr[j +1]: '
arr(j], arr{j+1] = arr{j+1], arr[j]
X L h
= [2 2,1
return arr

[TestCase]
input=[39,12,18,85,72,10,2,18]
expect=[2, 10, 12, 18, 18, 39, 72,

[ERROR] Traceback (most recent call last):
File "code.py", line 9, in <module>
assert bubble_sort (arr=[39,12,...,18])== [2,
10,, 85
AssertionError

Prompt
(a NEXT concrete example)

Rationale and Buggy Code
def bubble_sort(arr):
1

foriin rangé(n):

for j in range(0, n-i-1):

[)
arr[j], arr[jﬂl = arrj+1], arr[j])

return arr

NEXT

Rationale

[TEST1 RESULT]

Line 1: [‘arr =[39,12,18,85,72,10,2,18]]
Line 2: [i=07; (17) [i = 17; ...; (85) [i= 7]
Line:4: [arr = [12, 39, 18, 85, 72, 10, 2, 18]T;

Line:54: ['arr = [2, 10, 12, 18, 18, 39, 72, 85]]
Line 55: __return__=[2, 10, 12, 18, 18, 39, 72, 85]

Buggy Code
def bubble_sort(arr):

n = len(arr)

for i in range(n):

forjinrange(0,n-i-1):
if arr{j] > arrfj + 1]:
arrfj], arrfj + 1] = arrj + 1], arr[j]
return arr

Concise

Rationale
Input: [39, ... 72, 10, 2, 18]
Passes: n-1=4

State transit Accumulate

[state]arr=[39,12,18,85];[/state]

[state] n=4 [/state]

[state] i=0 [/state]

[state] i=0 [/state] [state] j=0 [/state]

[state] i=1 [/state] [state] j=0 [/state] [state] arr=[12, 39, 18, 85] [/state]
[state] i=0 [/state] [state] i=0 [/state] [state] j=1 [/state] [state] arr= [12,
18, 39, 85] [/state]

... [omit]

[state] i=3 [/state]

[state] i=3 [/state] [state] j=0 [/state]

[state] i=3 [/state] [state] j=0 [/state] [state] arr=[12, 18, 85, 39] [/state]

Buggy Code

Code Executor

Rationale

Function Behavior:

1. **Outer Loop**: Runs multiple passes through the array. Each pass
moves the largest unsorted element to its correct position at the end.
2. **Inner Loop**: Compares and swaps adjacent elements if needed.
3. **Output**: After all iterations, the array is sorted in ascending order.
How to fix:

1. **Typo**: "arr{j+|] should be “arr[j+1]', as "I’ is undefined.

Buggy Code
def bubble_sort(arr):

n = len(arr)

for i in range(n):

forjinrange(0,n-i-1):
if arrfj] > arrfj + 1]:
arr[j], arrj + 1] = arr(j + 1], arr{j]
return arr

SemCoder

Figure 2: A concrete prompt example (left panel) and examples of different semantic representations (right panel).

ing datasets (Ni et al., 2024; Ding et al., 2024) do
not meet these requirements.

Supervised Fine-Tuning. Our framework sup-
ports a two-stage Code LLM fine-tuning process.
Concretely, it first fine-tunes Code LLMs using a
repair-based workflow (as introduced in Section ??
to force models to learn the semantic information
hidden in the difference between the execution
traces of the buggy and correct codes. Then, other
downstream task datasets, such as code generation
datasets are used in the second phase to help Code
LLMs learn domain-specific knowledge.

Test Time Scaling. In addition to SFT, our
framework supports two test time scaling strategies,
Sequential Scaling and Parallel Scaling (Khattab
et al., 2024; Li et al., 2025; Wang et al., 2025; Shi
and Jin, 2025)

Sequential Scaling iteratively generates outputs
based on the feedback from the previous round.
Given an input prompt, the Code LLM first samples
N candidate programs and executes each with an
external checker (e.g. a Python interpreter or trace-
format adapter). If any candidate passes all public
test cases, that program is returned immediately;
otherwise, the checker emits trace-based diagnos-
tics for every failing candidate. These diagnostics
are appended to the prompt, prompting the LLM to
generate a fresh revised candidate in the next round.
This self-debug (Chen et al., 2023) cycle repeats
until a correct solution is found or a predefined bud-

get of Ry ax rounds is reached, exploring at most
N X Rpyax candidate programs while continuously
steering the model with execution-trace feedback.
Different from Sequential Scaling, Parallel Scaling
generates multiple solutions at once and selects one
accordingly. More implementation details can be
found in the Appendix A.

3.2 Trace Representation Adapters

The key component in the framework is the trace
adapter. Execution traces can be represented in
various ways. Our adapter supports various distinct
execution representations collected from existing
works. Figure 2 illustrates examples of each execu-
tion representation.

NEXT integrates execution traces directly within
the code as inline comments. It identifies variables
present in each line of code and appends changes
in these variables as comments following the re-
spective line, providing a seamless integration of
code and state information.

SemCoder utilizes natural language to describe
execution traces. It provides a line-by-line expla-
nation of code execution, including aspects such
as execution status, variable changes, and input-
output relationships. For instance, as shown in
Figure 2, SemCoder describes the function signa-
ture of ‘bubble_sort’ and specifies that the ‘arr’
argument accepts only a list of integers, offering a
detailed, human-readable explanation.

Code Executor records the state changes of vari-

ables in each line, similar to NEXT, but presents
these execution traces separately from the code,
emphasizing a clear distinction between code and
execution states.

Concise is a variant of Code Executor, which
records the value changes of variables line-by-line
and presents the trace separately from the code
context as shown in Figure 2. Unlike Code Execu-
tor, Concise ignores variables whose values remain
unchanged during the execution of a specific line,
simplifying the representation. For example, in line
4, the variable ‘n=10’ is omitted in Concise.

4 Experiment Design

Based on our framework, we conduct a comprehen-
sive study to explore the usefulness of code seman-
tic information for Code LLMs during fine-tuning
and test-time scaling, respectively. Specifically,
for the fine-tuning part, we utilize our constructed
datasets to fine-tune Code LLMs first, and then
evaluate their capabilities on different program-
ming tasks using the basic evaluation paradigm.
For the test-time scaling evaluation, we employ dif-
ferent test-time scaling strategies to help assess the
ability of fine-tuned Code LLMs from the previ-
ous step to investigate the usefulness of semantic
information.

Datasets. Table 1 summarizes datasets used in
our study. As fine-tuning contains two stages, it
requires two types of datasets. For the first stage,
we utilize the framework to prepare different types
of semantic information-covered datasets. For the
second stage, we use the datasets provided by Sem-
coder (Ding et al., 2024) for the fine-tuning of
downstream tasks. Regarding the evaluation, we
employ widely used datasets to assess the capa-
bility of Code LLMs, including Code-Synthesis
tasks (HumanEval (Chen et al., 2021a), MBPP (Liu
et al., 2023b), LiveCodeBench(LCB) (Jain et al.,
2024), BigcodeBench (Zhuo et al., 2024)), two re-
pair tasks (HE-R (Muennighoff et al., 2023a) and
MBPP-R collected by us from EvalPlus’s MBPP
release, regarding their test-failure generation as a
source of buggy code.), and two reasoning tasks
(CRUXEval-I and CRUXEval-O) (Gu et al., 2024).
For the test-time scaling evaluation, we use Live-
CodeBench in the experiments.

Models. For fine-tuning, our study con-
siders three representative LLMs: DeepSeek-
Coder (deepseek-6.7b-base), LLaMA (Llama3.1-
8B), and Gemma2 (gemma?2-9b). For the inference,

we cover two more closed-source models, GPT-40
and Deepseek-Chat(V3). In addition, for the evalu-
ation of reasoning ability, in addition to the above
models, we also include two models oriented to
reasoning, microsoft/phi-4 (Abdin et al., 2024) and
AIDC-Al/Marco-ol (Zhao et al., 2024).

Configuration. Input prompts are produced au-
tomatically by the DSPY framework (Khattab et al.,
2024); full templates can be found in Appendix E.
All code executes inside a sandbox following the
safety procedures of (Chen et al., 2021a) to guard
against malicious generations. For detailed experi-
mental configurations, please refer to Appendix A.
Besides, we put the results of HumanEval and HE-
R in Appendix C D due to the page limitation.

5 Result Analysis

5.1 Fine-Tuning with Semantic Information

Comparison between fine-tuning with and with-
out semantic information. Table 2 summarizes
the performance of Code LLMs after fine-tuning.
Surprisingly, the results demonstrate that fine-
tuning with trace information cannot enhance the
performance of Code LLMs. Specifically, for Pro-
gram Repair tasks, compared to models trained
without traces (w/o trace), only SemCoder con-
tributes to fine-tuning but with limited improve-
ments (from 0.3 to 1.4). Similarly, the results of
Code Synthesis tasks show that semantic informa-
tion cannot significantly enhance the code gener-
ation ability of Code LLMs. In more than half of
the cases (7 out of 9 cases), fine-tuning without
trace information achieves the best results. Be-
sides, there is also a similar phenomenon in the
Reasoning tasks.

Takeaway: Integrating trace-based semantic in-
formation into the fine-tuning datasets cannot sig-
nificantly enhance the code generation capability
of Code LLMs.

Comparison between different trace represen-
tations. We then investigate whether there is a
trace representation that is relatively better than
others. Unfortunately, the results demonstrate that
no single trace representation consistently outper-
forms others. Considering different tasks sepa-
rately, SemCoder is the best choice for program
repair tasks, and SemCoder (GPT40) can consis-
tently enhance the reasoning ability of Code LLMs.
Takeaway: SemCoder and SemCoder (GPT40) are
recommended representations used in fine-tuning
for program repair and code reasoning tasks.

Task Program Repair (27.8K samples per each representation) Code Synthesis | Code Reasoning
Fine-Tuning Concise CodeExecutor NEXT SemCoder(GPT40) SemCoder w/o trace | 32.4K samples 32.4K samples
Token Size (M) 233 23.8 19.6 334 32.0 12.5 14.4 27.8
Task Code Synthesis Program Repair Code Reasoning
Evaluation HumanEval MBPP LiveCodeBench(easy) BigcodeBench(full) | huamnevalpack(HE-R) MBPP-R CRUXEval-I CRUXEval-O
Sample Size 64 378 880 1140/148 164 378 800 800

Table 1: Details of datasets used in our study.

BaseModel TrainCorpus Finetune Code Repair Code Synthesis Code Reasoning
) ‘) downstream trace | MBPP-R | MBPP BigcodeBench LiveCodeBench | CRUXEval- CRUXEval-O

- X X 17.7 71.9 41.5 40.8 40.0 404

only NL2Code X 254 72.9 437 12.6 60.1 554

w/o trace X 39.2 75.9 454 357 61.9 56.6

Concise 39.2 74.4 443 294 61.6 55.0
DeepSeek-Coder | CodeExecutor 38.4 71.2 44.6 31.5 60.4 56.1
NeXT 37.6 76.7 44.0 36.1 61.3 54.2
SemCoder(GPT40) 37.0 75.7 45.4 315 62.0 58.1

SemCoder 40.5 76.4 457 29.0 59.5 55.4

- X X 20.1 58.6 314 273 42.6 36.2

only NL2Code X 24.9 737 44.1 18.1 60.1 55.9

w/o trace X 29.1 59.1 31.6 8.4 58.8 54.0

Concise 27.0 59.4 304 14.7 55.8 57.6

LLaMA CodeExecutor 249 59.4 326 9.7 57.0 552
NeXT 29.1 61.4 30.6 16.0 56.9 52.8
SemCoder(GPT40) 222 59.4 314 10.9 58.6 58.0

SemCoder 294 61.9 334 14.7 59.9 55.4

- X X 20.9 63.7 29.8 32.8 49.2 41.5

only NL2Code X 19.8 61.4 26.8 12.6 579 55.6

w/o trace X 24.9 584 25.1 6.7 57.8 57.5

Concise 228 60.2 28.8 8.0 57.6 57.2

Gemma?2 CodeExecutor 22.8 59.4 27.3 8.8 58.9 582
NeXT 26.2 58.1 26.9 8.8 59.5 55.8
SemCoder(GPT40) 24.1 62.9 29.5 84 589 56.5

SemCoder 26.2 62.2 27.6 13.0 58.9 56.8

Table 2: Evaluation results for full-parameter fine-tuning with

semantic information on three different base models across

three downstream tasks (code repair, code synthesis, and code reasoning). The “trace” setting indicates whether the LLM
output includes semantic information. “only NL2Code”: fine-tuning using only code generation data without code repair data.
“w/o trace”: fine-tuning with both code generation data (i.e., NL2Code) and code repair data, where the execution trace is not
included in the code repair data. We report pass@1 under greedy decoding, following each benchmark’s recommended settings.
BigCodeBench measured on the full set and LiveCodeBench is on the easy subset. The best scores per model are underlined

5.2 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (e.g., LoRA) is
widely applied for LLMs. In this part, we explore
the influence of LoRA on the fine-tuning of Code
LLMs considering semantic information.

Figure 3 depicts the performance of fine-tuned
Code LLMs, the detailed results can be found in
Appendix C. The results indicate that the effective-
ness of parameter-efficient fine-tuning is model-
dependent. Concretely, fully fine-tuning performs
the best for DeepSeek model (in 5 out of 6 cases),
but LoRA enhances the model performance of
LLaMA and Gemma2 in most cases (11 out of 12
cases). Similarly, LORA8 and LoRA64 perform in-
consistently across different models, and it is hard
to justify which strategy is better. Furthermore,
training methods highly affect the ability of code
LLM trained, the performance gap between dif-
ferent methods can be up to 21.6 (model LLaMA).
This reminds us that choosing proper training meth-
ods is crucial for Code LLMs.

Considering different trace representations, the

results confirm our previous conclusion that trace-
based semantic information cannot significantly
enhance the performance of Code LLMs through
fine-tuning. However, we found that Gemma2-9B
is better adapted to traces, achieving competitive
results with strategies such as Semcoder (10. 34%
pass@ 1) while maintaining repair improvements.
Besides, LoRA64 without trace information is
best for general code generation, while LoRA64 +
repair-focused traces (e.g., Semcoder_GPT4) max-
imizes repair capabilities.

Takeaway: Parameter-efficient training meth-
ods significantly affect the performance of Code
LLMs. However, the effectiveness of each method
is highly model-dependent. Besides, fine-tuning
without semantic information is still the best choice
for preparing Code LLMs with better performance
when considering these methods.

5.3 Inference Test-Scaling Computation

Table 3 summarizes the results of test-time scaling.
It is clear that, compared to open-source LLMs,

90

Training scheme
O Full
[LoRAG4
80 - I LoRA8

704

Pass@k (%)

60 1

504

Backbone
[DeepSeek-Coder
A LLaMA
K2 Gemma2

40 T T
NL2Code w/o
+Reasoning trace

f
Concise

T T
NEXT Code
Executor

f
SemCoder

Figure 3: Fine-tuning using different training methods, i.e., Full, LORA64, and LoRAS.

‘Grccdy COoT ‘

Sequential Scaling

Parallel Scaling

w/o trace CodeExcutor Concise NEXT SemCoder ‘ w/o trace CodeExcutor Concise NEXT SemCoder

GPT-40-mini 73.08 73.08 98.46 98.46 99.23 99.23 99.23 88.46 80.77 80.77 84.62 80.77
deepseek-chat(V3) 84.62 100.00 | 100.00 100.00 100.00 100.00 100.00 96.15 96.15 96.15 96.15 92.3
Reasoning Compatible Model

AIDC-Al/Marco-ol 53.85 50.00 76.92 69.23 76.92 73.08 73.08 61.54 53.85 69.23 6154 57.69
microsoft/phi-4 53.85 73.08 100.00 96.15 100.00 91.54 100.00 80.77 76.92 84.62 80.77 84.62
Instruction of Foundation Model

Llama-3.1-8B-Inst 3462 34.62 67.69 66.92 74.62 74.62 65.38 46.15 42.31 57.69 57.69 57.69
deepseek-coder-6.7b-Inst 4231 46.15 68.46 61.54 69.23 76.15 69.23 53.85 50.00 57.69 61.54 50.00
Qwen2.5-Coder-7b-Inst 61.54 34.62 83.85 87.69 80.77 90.77 86.92 53.85 61.54 65.38 50.00 53.85

Table 3: Pass@1 accuracy on the LiveCodeBench (easy) private test set under equal compute budgets. Values are the percentage
of prompts whose final completion passes all private test cases. Greedy: one-shot, highest-probability decode. CoT: answer
plus natural-language rationale. Sequential Scaling: 8 parallel samples (T = 0.7) followed by R.q.=4 self-debugging rounds
on public tests, selecting the best candidate. Parallel Scaling: 16 candidates ranked by votes from an LLM-as-a-Judge on
execution result along with its trace representation. The “w/o trace” variants rely only on the initial execution output, whereas
trace-based variants leverage execution traces representations during self-debugging or voting. Sequential Revision benefits most
from trace-aware signals. Double underlining marks the overall best LiveCodeBench private-set score.

closed-source LLMs perform significantly better at
test time.

Impact of test-scaling strategies. First, the re-
sults demonstrated that test-scaling consistently en-
hances the code generation ability of Code LLM.
Concretely, in 65 out of 70 cases, test scaling strate-
gies achieved higher Pass@1 scores than Greedy
and COT. Impact of semantic representation.
The results suggest that, similar to SFT, the useful-
ness of semantic information is blurred. In more
than half cases (36 out of 56 cases), integrating
semantic information to the input prompt cannot
help Code LLM to produce correct code compared
to without adding semantic information. However,
one semantic representation (Concise) stands out,
which achieved Pass@1 no worse than w/o trace in
11 out of 14 cases.

Takeaway: Similar to fine-tuning, most of the
trace-based semantic representations cannot en-
hance the performance of Code LLMs at test time
except for Concise.

5.4 Hyperparameter Study

We further explore the impact of hyperparameters
on Sequence scaling, which significantly boosts

Code LLMs at test time.

We first investigate the impact of model tempera-
ture. Figure 5 illustrates the results, where Pass@ 1
scores fluctuate under different temperatures. One
conclusion we can draw is that small tempera-
ture (T=0.2) negatively affects the performance
of Code LLMs, higher temperature performs rela-
tively better.

Sequence scaling has two parameters, the it-
eration number (rounds) and the generated sam-
ples (samples) during each iteration. The results in
Figure 5 shows that the more samples generated,
the higher Pass@1 scores achieved by Code LLMs.
However, there is a trade-off between the sample
numbers and the performance of Code LLMs. sam-
ples=8 is the default setting in our framework. The
results of rounds study can be found in Table 8a,
where more rounds lead to better code generation
capability of Code LLMs.

6 Related works

Chain-of-Thought (CoT) and Tool-Integrated
Reasoning (TIR). Beyond execution traces, re-
cent advances emphasize explicit reasoning steps
and tool usage. Chain-of-Thought (CoT) (Wei et al.,

% N-samples Temperature
N=1 [N=l6 —e- T=02 —— T=07

—=
[==] T=05 -e- T=09
-

N=8 [N=32 -

80 G \ A
* T I
= !

70 'S

Pass@1 (%

‘
wlo trace Concise NEXT CodeExec Semcoder

(bars = N-sampled completions, lines = temperature)

Figure 4: Pass@l of Qwen-7B on the LCB "easy" split as
a function of sampled completions N (bars) and decoding
temperature T (lines) across five trace formats. Two trends
emerge: (i) increasing N yields substantial gains across all for-
mats; (ii) higher temperatures (T > 0.7) generally outperform
lower ones. NEXT and CodeExecutor achieve the best results
(88.5% at N=32, T=0.9), followed by Semcoder, while the
baseline w/o trace consistently underperforms.

2022) enables LLMs to decompose complex prob-
lems into intermediate reasoning steps, improv-
ing accuracy in tasks like mathematical problem-
solving. However, some tasks require computa-
tional precision beyond language reasoning. Tool-
Integrated Reasoning (TIR) (Gou et al., 2023) ad-
dresses this by integrating LLMs with external
tools (e.g., Python interpreters) for specialized com-
putations, excelling in symbolic computation and
high-complexity algorithms. These approaches
highlight the trend of augmenting LL.Ms with run-
time observations or external tools, which our work
builds upon by systematically evaluating their im-
pact on reasoning and code generation.

LLMs for Software Engineering and Execution
Behavior. Code execution behavior encompasses
runtime information (e.g., program state, execu-
tion paths) and pre-/post-execution details. Recent
studies leverage these behaviors to enhance LLM
performance. For instance, (Chen et al., 2023)
introduced Self-Debugging, where LLMs generate
explanations to guide debugging; (Ni et al., 2024)
proposed NEXT, representing execution behaviors
as inline comments for fine-tuning; and (Ding
et al., 2024) described runtime behaviors in natural
language for LLM training. While prior works typi-
cally use a single representation, our study explores
multiple execution-based representations and their
impact on code generation and reasoning tasks.
LLMs are widely applied in software engineer-
ing, including vulnerability detection (Shestov
et al., 2024), bug repair (Xia and Zhang, 2023),
and code generation (Hong et al., 2023; Wu et al.,
2023; Tang et al., 2024). Evaluation frameworks
(e.g., EvalPlus (Liu et al., 2023c¢)) and datasets (e.g.,
ClassEval (Du et al., 2024), SWE-bench (Jimenez

et al., 2023)) have been developed to benchmark
these capabilities. While prior efforts focus on
task-specific performance, our work investigates
how execution-centric signals, inspired by human
debugging, enhance LLMs’ proficiency in code
generation and reasoning.

Scaling Up Inference-Time Computing Recent
advances in inference-time computing have im-
proved the verification of mathematical reasoning
in LLMs. (Cobbe et al., 2021) introduced token-
level reward models to score individual steps, while
(Xiao et al., 2024) refined these with process re-
ward models (PRM) for granular feedback. (Snell
et al., 2024) demonstrated that scaling inference-
time computing is more cost-effective than retrain-
ing models. Building on these, we sample multiple
solutions from LLM reasoners and explore veri-
fier training approaches. Our framework, adapted
from (Li et al., 2025), systematically evaluates how
the semantic information impacts the post-training,
one-time inference, and scaling inference test-time
with runtime behavior can achieve strong perfor-
mance in code-related tasks.

7 Conclusion

This paper introduces a generic framework for
generating trace-based code semantic information.
Based on this framework, we systematically eval-
uate the usefulness of trace-based code semantic
information for fine-tuning and inference of Code
LLMs. The results highlight that existing code se-
mantic information does not benefit fine-tuning and
test-time scaling.

This work can serve as the new baseline for
the study of leveraging semantic information to
enhance Code LLMs. This opens up several av-
enues for future research. First, it is essential to
design new forms of semantic representations that
are more aligned with how Code LLMs process and
understand code, potentially incorporating higher-
level abstractions or contextual cues. Second, fu-
ture work should explore more effective strategies
for integrating semantic information into model
training and inference pipelines—such as architec-
tural modifications, specialized pretraining objec-
tives, or more adaptive prompting techniques.

8 Data and Source Code availability

All source code, datasets, and intermediate data for
reproduction are available at https://github.com/
tracewise-probing/tracewise_probing.

https://github.com/tracewise-probing/tracewise_probing
https://github.com/tracewise-probing/tracewise_probing
https://github.com/tracewise-probing/tracewise_probing

Limitations

Limited Programming language supported. Cur-
rently, our framework only supports Python, other
programming languages, such as Java and C++, are
not supported. Even though, we believe our find-
ings can provide insights to developers who plan
to enhance their Code LLMs via semantic infor-
mation interaction. Besides, we plan to actively
maintain our framework to cover more program-
ming languages.

Limited LLM size. Due to constraints on com-
putational resources, we only conduct experiments
on LLLMs with around 7B size. Experiments with
larger LLMs could be our future work.

Ethical Considerations

Research purpose and societal impact. This
project seeks to deepen scientific understanding of
how dynamic program semantics influence Code-
LLM reasoning, with the ultimate goal of produc-
ing safer, more reliable coding assistants. All arte-
facts—datasets, code, and models—are released
solely for non-commercial research and evaluation;
they are not intended for autonomous deployment
in production settings.

Provenance, licensing, and consent. Source
code used for fine-tuning and evaluation is
drawn exclusively from repositories under OSI-
approved permissive licences (e.g., MIT, Apache-
2.0). Where industrial code (=~ 4%) is included,
maintainers have provided signed consent allowing
redistribution of anonymised traces for research
use only. No proprietary material is incorporated
without explicit permission.

Privacy preservation in execution traces. Be-
cause runtime logs can inadvertently expose cre-
dentials or personally identifiable information (PII),
every trace passes a three-stage sanitation pipeline:
(1) static pattern-based redaction of common se-
cret/PII formats; (ii) dynamic taint tracking that
masks values originating from environment vari-
ables, network sockets, or file I/0; and (iii) manual
review of a random 2% sample per release. Traces
failing any check are discarded.

Dual-tier data release strategy. To balance
transparency with security, we publish two versions
of each trace set:

Public: summarised control-flow hashes and
bounded value ranges—sufficient for benchmark-

ing but insufficient to reconstruct full program
logic.

Restricted: full line-level traces (calls, locals, iden-
tifiers) available only to vetted academic partners
who sign a security addendum pledging safe han-
dling and non-redistribution.

Safeguards against malicious use. Enhanced se-
mantic reasoning could facilitate the generation
of vulnerable or harmful code. We therefore (i)
withhold weights fine-tuned on explicitly security-
sensitive benchmarks, (ii) deploy server-side fil-
ters that block outputs matching exploit-related
patterns (shell execution, SQL/command injection,
path traversal), and (iii) document residual unsafe
generations in an appendix to encourage commu-
nity development of stronger guards.

Bias and inclusivity in dataset design. Al-
though our empirical study concentrates on main-
stream languages, we provide starter kits for Rust,
Go, and Solidity to spur broader, community-
driven extension. We encourage downstream re-
searchers to audit biases that may arise when apply-
ing our framework to new ecosystems or developer
populations.

Energy use disclosure. Trace instrumentation
and test-time scaling add approximately 38 kWh
of compute per model-dataset pair. We offset
these emissions through Gold-Standard renewable-
energy credits and release all scripts so others can
reproduce results with fewer redundant runs.

Responsive governance. We publish our redac-
tion and inspection pipeline under an open-source
licence, provide a dedicated security-contact email
for vulnerability disclosures, and commit to remov-
ing or revising any resource within 30 days of a
substantiated harm report.

In summary, we have instituted licensing checks,
consent agreements, privacy filters, controlled re-
lease mechanisms, and transparent governance to
ensure that the benefits of semantics-aware Code-
LLMs are realised responsibly while potential
harms are proactively mitigated.

References

2023-3. vllm, a high-throughput and memory-efficient
inference and serving engine for llms.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell] Hewett, Mojan Javaheripi, Piero
Kauffmann, and 1 others. 2024. Phi-4 technical re-
port. arXiv preprint arXiv:2412.08905.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li,
and Xin Xia. 2024. Evaluating large language models
with runtime behavior of program execution. arXiv
preprint arXiv:2403.16437.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021a. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021b. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Yangruibo Ding, Jinjun Peng, Marcus J Min,
Gail Kaiser, Junfeng Yang, and Baishakhi Ray.
2024. Semcoder: Training code language mod-
els with comprehensive semantics. arXiv preprint
arXiv:2406.01006.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha,
Xin Peng, and Yiling Lou. 2024. Evaluating large
language models in class-level code generation. In
Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1-13.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

10

Alex Gu, Baptiste Roziere, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.
2024. Cruxeval: A benchmark for code reason-
ing, understanding and execution. arXiv preprint
arXiv:2401.03065.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, and 1 others. 2024. Deepseek-
coder: When the large language model meets
programming—the rise of code intelligence. arXiv
preprint arXiv:2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, and 1
others. 2023. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint
arXiv:2308.00352.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph E Gonzalez, and Ion Stoica. 2020. Con-
trastive code representation learning. arXiv preprint
arXiv:2007.04973.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou,
Soneya Binta Hossain, Baishakhi Ray, Varun Ku-
mar, Xiaofei Ma, and Anoop Deoras. 2024. Training
llms to better self-debug and explain code. arXiv
preprint arXiv:2405.18649.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. Dspy: Compiling

https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm

declarative language model calls into self-improving
pipelines.

Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li,
Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E
Gonzalez, and Ion Stoica. 2025. S*: Test
time scaling for code generation. arXiv preprint
arXiv:2502.14382.

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang,
Alexey Svyatkovskiy, Shengyu Fu, Neel Sundare-
san, and Nan Duan. 2023a. Code execution
with pre-trained language models. arXiv preprint
arXiv:2305.05383.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023b. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
LINGMING ZHANG. 2023c. Is your code gen-
erated by chatGPT really correct? rigorous evalu-
ation of large language models for code generation.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro Von Werra, and
Shayne Longpre. 2023a. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro Von Werra, and
Shayne Longpre. 2023b. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin
Deng, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2024. Next: Teaching large language mod-
els to reason about code execution. arXiv preprint
arXiv:2404.14662.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Auri,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, and 1 others. 2021. Show your work:
Scratchpads for intermediate computation with lan-
guage models. arXiv preprint arXiv:2112.00114.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, and 1 oth-
ers. 2023. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950.

Alexey Shestov, Anton Cheshkov, Rodion Levichev,
Ravil Mussabayev, Pavel Zadorozhny, Evgeny
Maslov, Chibirev Vadim, and Egor Bulychev. 2024.
Finetuning large language models for vulnerability
detection. arXiv preprint arXiv:2401.17010.

11

Wenlei Shi and Xing Jin. 2025. Heimdall: test-time
scaling on the generative verification. arXiv preprint
arXiv:2504.10337.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Daniel Tang, Zhenghan Chen, Kisub Kim, Yewei Song,
Haoye Tian, Saad Ezzini, Yongfeng Huang, and
Jacques Klein Tegawende F Bissyande. 2024. Col-
laborative agents for software engineering. arXiv
preprint arXiv:2402.02172.

Junxiong Wang, Wen-Ding Li, Daniele Paliotta, Daniel
Ritter, Alexander M Rush, and Tri Dao. 2025. M1:
Towards scalable test-time compute with mamba rea-
soning models. arXiv preprint arXiv:2504.10449.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng
Ding, Naman Jain, Zachary Mueller, Harm de Vries,
Leandro Von Werra, Arjun Guha, and Lingming
Zhang. 2024. Selfcodealign: Self-alignment for code
generation. arXiv preprint arXiv:2410.24198.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2022. Practical program repair in the era
of large pre-trained language models. arXiv preprint
arXiv:2210.14179.

Chungiu Steven Xia and Lingming Zhang. 2023. Keep
the conversation going: Fixing 162 out of 337
bugs for $0.42 each using chatgpt. arXiv preprint
arXiv:2304.00385.

Chaojun Xiao, Jie Cai, Weilin Zhao, Guoyang
Zeng, Xu Han, Zhiyuan Liu, and Maosong Sun.
2024. Densing law of llms. arXiv preprint
arXiv:2412.04315.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. 2024. Marco-ol: Towards open
reasoning models for open-ended solutions. Preprint,
arXiv:2411.14405.

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and
1 others. 2024. Bigcodebench: Benchmarking code
generation with diverse function calls and complex
instructions. arXiv preprint arXiv:2406.15877.

12

A Experiment

A.1 Experiment Detail.

Finetune We conducted SFT experiments on
three different base models using two distinct con-
figurations. First, we perform full-parameter tuning
with DeepSpeed ZeRO-3 using learning rates of
2.0e-5, 1.0e-5, and 1.5e-5; training batch sizes of 8,
4, and 2; bfloat16 precision; a maximum sequence
length of 2048; and two epochs. NEXT, we ex-
plore LoRA-based tuning with various LoRA ranks,
disabling DeepSpeed while maintaining the same
bfloat16 precision, maximum sequence length, and
epoch count.

Scaling inference. Sequential Revisions use the
external tool, a Python interpreter, to verify each
predicted solution. As introduced in 3.1, the feed-
back from tools is appended to the prompt for the
NEXT generation iteration. This iterative process
continues until a successful solution emerges or the
compute budget N = 3. Parallel Scaling generates
N diverse candidate solutions in parallel to increase
the likelihood of finding a correct solution. We
synthesize test inputs, execute all candidates, and
collect their execution outputs and trace represen-
tations as score prompts. An LLM-as-a-judge then
ranks solutions based on these score prompts and
pre-trained knowledge. This Parallel Scaling com-
plements Sequential Revision to maximize code
generation capabilities without additional training.
In specifically, We sample N, N = 16, answers
independently from the specified LLM and then
select the best answer according to the Reward’s
final answer judgment, we use as phi-4 as a Reward
LLM score each candidate with a reward function
(e.g., static analysis, unit tests, or a learned model,
same as BoN, we use a LLM as a reward), and
retain only the top % We score these again, prune
to the top, and repeat line by line until all buggy
lines are addressed. The result is up to /N complete
repaired-code solutions, from which we select the
best via a final evaluation, always the highest score
judged by the Reward model. Greedy We sample
only 1 answer independently from the specified
LLM by setting temperature O .

Implementation and Environment. We im-
plement all Code LLMs based on Hugging Face
APIs, the implementation of the fine-tuning process
is modified from the official project of (Hu et al.,
2021). We use OpenAl’s official APIs to access
GPT-3.5-turbo-0125/GPT-40 models which costs

13

2000 dollars. All experiments have been conducted
on eight NVIDIA A100 GPUs using the Distributed
Data Parallel (DDP) module. Inference jobs utlize
the vLLM (vll, 2023-3),which is a unified library
for LLM serving and inference.

B Dataset

B.1 Decontamination

We follow the (Wei et al., 2024) to conduct Decon-
tamination and Refinement.

Removing Benchmark Data To ensure the in-
tegrity of our evaluation process, we rigorously
decontaminated the dataset by removing any func-
tions that resembled prompts or solutions from the
benchmarks used for evaluation. This step is crit-
ical to prevent data leakage and ensure a fair as-
sessment of our method. Specifically, we checked
for the presence of substrings from benchmark
prompts or solutions within the dataset. Any func-
tion containing such substrings was excluded. This
process guarantees that the dataset remains unbi-
ased and does not inadvertently include examples
that could skew evaluation results.

Docstring Quality Filtering We observed that
many Python functions, while containing doc-
strings, often had poor or misleading documen-
tation. To address this, we employed StarCoder2-
15B, a state-of-the-art language model, to perform
binary classification on the docstrings. The model
was tasked with identifying functions with low-
quality or misleading documentation. Functions
flagged as having poor docstrings were removed
from the dataset. This step ensures that the retained
functions are not only functional but also well-
documented, enhancing their usability for down-
stream tasks such as code understanding and gener-
ation.

In sum up, the decontamination and refinement
process, particularly the removal of benchmark-
related data and the filtering of low-quality doc-
strings, plays a pivotal role in ensuring the quality
and reliability of our dataset. By meticulously re-
moving functions that could compromise evalua-
tion fairness and those with inadequate documenta-
tion, we have created a robust dataset of 248,934
high-quality Python functions. This dataset is well-
suited for a wide range of applications, including
code generation, evaluation, and analysis, while
maintaining a high standard of integrity and usabil-

ity.

B.2 Evaluation dataset

Evaluation on Code Generation and Reasoning
Tasks In this study, we fine-tune Code LLMs using
the refinement dataset described in Section B.3. For
experiment we deploy the fine-tuned models in two
code generation tasks: program repair and code
synthesis, we further fine-tune the Code LLMs
specifically for reasoning tasks to assess whether
their reasoning capabilities are enhanced. We evalu-
ate the performance of the fine-tuned models using
open-source test datasets.

Note that to mitigate potential data leakage
risks, we adhere to established methods as out-
lined in (Muennighoff et al., 2023b) by conducting
a thorough decontamination process. This ensures
that there is no overlap between our fine-tuning
dataset and the evaluation datasets utilized.

* Program Repair. To evaluate program repair
capabilities, we construct datasets of buggy
code using benchmarks from HumanEval,
MBPP, and CRUXEval, maintaining a con-
sistent sample size of 164, which aligns with
HumanEval. For HumanEval, we directly
use buggy code from the existing dataset Hu-
manEvalPack (Muennighoff et al., 2023a).
For the other two datasets, which contain
larger sample sizes, we randomly select 164
samples from each. Following the methodol-
ogy described in (Ni et al., 2024), we employ
GPT-4, GPT-3.5-Turbo, and CodelLlama-34B
to generate solutions for each problem. From
these, we select one incorrect solution per
problem based on test case validation. This
process results in collections of 164 buggy
code samples for each dataset, denoted as
Human-R, MBPP-R, and CRUXEval-R. For
the repair evaluation, the prompts provided
include the buggy code, the corresponding
failed test case, and the execution traces of
that test case 2.

Code Synthesis. We evaluate the code syn-
thesis capabilities of the tuned Code LLMs
using two widely-used datasets, HumanEval
and MBPP, both provided by EvalPlus (Liu
et al., 2023c). To ensure consistency in our
assessment, we employ the same prompts and
pre-processing methods as outlined in (Liu

Due to space constraints, we have made all prompt tem-
plates, including those used for fine-tuning and evaluation,
available on our website.

14

et al., 2023c). Additionally, we differentiate
between two sets of test cases from EvalPlus,
referred to as base and plus, in our evalua-
tions.

Code Reasoning. We follow the existing
works (Chen et al., 2024; Gu et al., 2024) to
conduct the reasoning tasks, i.e., input predic-
tion, output prediction, state prediction, and
coverage prediction. Input/output prediction
indicates fulfilling the corresponding input or
output, given a block of code and a partially
completed assertion statement as a prompt.
State prediction refers to predicting what the
next line statement will be after an intermedi-
ate statement is executed. Coverage prediction
means that after randomly picking a line of
code, we ask the LLM to predict whether it
will be executed for a given specific test case.
For input and output prediction, we directly
use the existing datasets (Gu et al., 2024),
named as CRUXEval-I and CRUXEval-O. For
the evaluation, we follow the same prompts
from (Chen et al., 2024; Gu et al., 2024).

B.3 Fine-tune dataset(Refinement Dataset)

We found that there are no datasets that fully sup-
port our study, i.e., the repair-based training mode
and all types of execution representation that we
collected. Hence, we construct a new dataset that
covers buggy code, its corresponding patch, test
cases, and other semantic information such as exe-
cution traces.

Our dataset is constructed using
APPs (Hendrycks et al., 2021), a dataset
provided by codeparrot for the generation of code
at the competition level. This dataset includes
essential elements such as basic buggy code,
correct code, test cases, and the human refinement
trajectories from buggy to correct versions.

The steps to construct the dataset are as follows:

1. Buggy and Patch Pair Collection: Each prob-
lem in apps includes multiple solutions, both
correct and incorrect, provided by various
users. A key challenge in extracting (buggy
code, patch code) pairs is the difficulty in
matching incorrect with corresponding cor-
rect solutions due to anonymized author in-
formation for privacy. To overcome this, we
employ a similarity-based matching approach,
as the buggy code and its refined version from
the same author typically exhibit significant

similarities. Specifically, we employ UniX-
coder (Guo et al., 2022) to extract embeddings
of both correct and incorrect programs and
calculate their embedding similarity using Co-
sine similarity measurement. We include pairs
with a similarity score above 0.8 in our dataset
as (B X Py).

. Test Case Extraction: After collecting the
code pairs, we execute both the buggy and
patched code using their accompanying test
cases from apps. We retain test cases that fail
with the buggy code but pass with the patched
code, designating them as failing test cases,
which are then incorporated into Rx.

. Execution Trace Extraction: We execute both
the buggy and patched codes under the fail-
ing test cases and use Trace-Tracker, a Python
debugging tool, to gather runtime informa-
tion, including trace coverage and states. We
develop converters to translate this runtime
information into various trace representations
(detailed in Section 3.1). These traces are
added to Rx and Ry, respectively.

. Code Reasoning Related Data Extraction:
Leveraging the execution traces, we enrich
our dataset with features specifically designed
to evaluate various aspects of code reasoning:
input prediction, output prediction, state pre-
diction, and coverage prediction. For input
and output predictions, we adhere to the meth-
ods outlined in (Gu et al., 2024), inserting
assert statements to validate the inputs and
outputs effectively.

. Program Description Extraction: Following
previous work (Chen et al., 2021b), we uti-
lize each contest problem’s brief description
as a base. We then employ GPT-40 to enrich
these descriptions by generating implementa-
tion constraints and incorporating test cases.

Experiment results of Full and PEFT

15

repair NL2Code reasoning bigcodebench Livecodebench
HE-R/(+) MBPP-R/(+) HE/(+) MBPP/(+) | in_predict out_predict full hard | easy pass@1 overall pass@]1

dk-6.7B-base(vanilla) | 26.2(22.0) 17.7(15.6) | 49.4(43.9) 71.9(57.6) | 40 40.4 | 4150 1220 | 40.80 17.40
Full 59.1(52.4) 25.4(22.0) 64.6(56.1) 72.9(60.9) 60.1 554 43.70 16.90 12.60 4.60

only nl2code LoRA64 | 48.2(42.1) 25.4(22.0) 57.3(48.8) 73.2(59.1) 44.8 47.9 4470 14.90 44.10 18.50
LoRAS8 | 44.5(37.2) 22.2(19.3) 52.4(44.5) 73.3(58.1) 42.9 47.2 4450 12.20 41.20 17.40

Full 45.7(39.0) 39.2(33.1) 61.6(54.3) 74.4(61.9) 61.6 55 4430 17.60 29.40 12.60

concise LoRA64 | 46.3(41.5) 33.9(28.8) 53.7(47.6) 71.4(59.1) 48.1 48.8 4250 12.20 40.30 16.70
LoRAS8 | 42.7(38.4) 35.7(30.4) 54.3(48.2) 71.4(59.1) 54.1 48 45.60 16.20 38.70 16.30

Full 38.4(34.8) 38.4(33.6) 60.4(53.7) 77.2(62.9) 60.4 56.1 44.60 20.30 31.50 13.60

CodeExecutor LoRA64 | 45.1(40.9) 36.0(31.2) 54.3(48.2) 72.2(60.9) 52.5 48.8 45.00 1550 38.20 17.10
LoRAS8 | 49.4(43.3) 33.9(29.1) 54.9(47.0) 70.4(57.6) 46.2 47.8 4520 16.90 39.90 17.10

Full 43.9(39.0) 39.2(34.1) 58.5(51.8) 75.9(61.9) 61.9 56.6 4540 16.20 35.70 15.60

w/o trace LoRA64 | 49.4(45.7) 35.2(29.4) 53.7(46.3) 70.7(58.6) 542 49.1 46.40 18.90 43.70 18.80
LoRA8 | 47.0(40.9) 30.4(24.9) 53.0(44.5) 71.2(58.6) 49.4 48.4 46.10 14.90 41.60 17.70

Full 39.6(36.6) 37.6(31.7) 61.6(54.9) 76.7(62.4) 61.3 54.2 44.00 16.90 36.10 14.90

NeXT LoRA64 | 47.6(42.1) 34.7(29.6) 54.9(48.8) 70.4(58.4) 474 49.6 4540 16.20 42.40 17.10
LoRA8 | 47.041.5) 34.4(28.8) 55.5(47.6) 71.4(57.6) 474 47.6 45.00 17.60 40.30 17.00

Full 43.3(37.2) 38.9(33.1) 59.1(51.8) 76.7(63.2) 60 55.6 43.90 18.90 35.70 15.30

concise2 LoRA64 | 48.8(43.9) 35.7(30.4) 52.4(46.3) 70.2(59.1) 52.8 49.5 4540 16.90 38.20 16.30
LoRAS8 | 48.2(42.7) 32.8(28.6) 53(45.1) 70.9(57.6) 46.4 49 43.60 13.50 41.20 17.50

Full 53.7(47.6) 37.0(32.0) 59.1(52.4) 75.7(63.4) 62 58.1 4540 18.20 31.50 13.70

SemcoderGPT40 LoRA64 | 51.8(46.3) 34.9(29.9) 55.5(48.8) 69.7(58.9) 53.1 50.7 46.10 18.20 39.10 17.10
LoRA8 | 51.2(44.5) 30.4(26.5) 52.4(45.1) 70.4(56.9) 50.5 49.5 4720 18.90 42.00 17.40

Full 47.0(40.9) 38.9(32.0) 61.6(55.5) 74.7(62.9) 61.3 574 45.50 18.90 42.00 16.70

SemcoderGPT4o_y ~ LoRA64 | 53.0(47.6) 32.3(28.6) 54.3(48.8) 72.9(60.4) 52.6 49.2 4470 16.90 44.50 18.20
LoRA8 | 53.7(45.7) 31.7(27.5) 52.4(45.7) 72.7(58.4) 46.1 48.9 46.10 17.60 39.90 17.10

Full 45.7(39.6) 40.5(35.2) 58.5(51.8) 76.4(63.2) 595 554 4570 20.90 29.00 12.80

Semcoder LoRAG4 | 48.2(43.3) 34.7(30.2) 53.0(46.3) 70.2(58.9) 524 50.5 4590 17.60 42.90 18.10
LoRAS8 | 48.8(43.3) 32(27.5) 53.7(45.7) 70.7(57.1) 47 49.8 46.10 16.20 41.20 17.50

Full 46.3(39.6) 37.6(33.1) 60.4(54.3) 75.4(61.9) 59 57.8 4410 16.90 39.10 16.40

Semcoder_y LoRAG4 | 48.2(42.7) 32.8(29.1) 56.1(49.4) 72.9(60.2) 54.1 49.8 44.80 19.60 40.80 17.10
LoRA8 | 51.2(44.5) 31.7(27.2) 53.0(45.7) 72.2(58.9) 49.6 47.6 4520 15.50 41.60 17.50

Table 4: A extend version of Table in deepseek-6.7b-base after finetuning with semantic information.

repair NL2Code reasoning bigcodebench Livecodebench

HE-R/(+) MBPP-R/(+) HE/(+) MBPP/(+) | in_predict out_predict full hard | easy pass@1 overall pass@]1
dk-6.7B-base(vanilla) ‘ 28.0(26.2) 20.1(18.0) ‘ 38.4(32.3) 58.6(49.1) ‘ 42.6 36.2 ‘ 3140 6.08 ‘ 27.30 9.50
Full 58.5(52.4) 24.9(222) | 659(56.7) 73.7(61.2) 60.1 559 44.10 1820 18.10 7.40
only nl2code LoRAG64 | 47.6(42.1) 25.7(21.7) | 44.5(40.9) 58.9(46.4) 54.4 529 35.10 10.10 29.80 11.10
LoRA8 | 43.9(38.4) 23.8(20.1) 39.6(33.5) 52.1(42.9) 52.8 519 3370 9.50 34.50 11.90
Full 30.5(29.3) 27.0(23.8) 47.0(43.3) 59.4(48.9) 55.8 57.6 3040 8.80 14.70 5.20
concise LoRA64 | 34.8(31.1) 33.6(29.9) 40.2(354) 60.4(51.4) 544 51.7 3520 10.10 21.80 8.00
LoRA8 | 39.6(32.3) 31.0(27.2) 36.6(32.3) 61.2(49.9) 532 51.9 3390 740 32.80 11.60
Full 29.9(29.3) 24.9(22.2) 53.7(50.0) 59.4(47.9) 57 55.2 32.60 9.50 9.70 3.60
CodeExecutor LoRA64 | 31.1(28.0) 32.8(28.8) 39.6(34.8) 58.9(49.6) 53.9 51.2 3390 6.80 18.90 6.70
LoRA8 | 37.8(30.5) 31.0(27.0) 36.0(32.9) 60.9(49.9) 534 522 3330 7.40 34.00 11.60
Full 28.024.4) 29.1(26.2) 52.4(49.4) 59.1(47.1) 58.8 54 31.60 8.10 8.40 3.10
wl/o trace LoRAG64 | 31.7(29.3) 32.0(27.5) | 42.7(40.9) 61.7(52.6) 53.5 50.5 3470 10.80 2270 8.00
LoRA8 | 47.0(40.9) 29.1(25.7) 36.6(32.9) 57.5(47.1) 50.2 49.8 3250 9.50 31.50 11.20
Full 28.7(26.2) 29.1(25.4) 49.4(46.3) 61.4(49.1) 56.9 52.8 30.60 6.80 16.00 5.60
NeXT LoRA64 | 28.7(25.0) 32.5(28.8) 43.9(39.6) 62.2(53.9) 54 51.1 34.60 7.40 24.80 9.00
LoRAS8 | 42.1(34.8) 31.5(27.2) 37.2(33.5) 59.6(48.4) 53.4 53.1 31.80 8.80 34.90 12.20
Full 29.9(27.4) 27.2(23.3) 50.6(47.0) 55.4(46.4) 56.6 55.9 3237 8.11 10.50 3.80
concise2 LoRA64 | 30.5(28.0) 32.5(27.8) 44.5(39.0) 63.2(53.6) 54 51.2 3550 8.10 21.80 7.70
LoRA8 | 37.2(31.1) 31.0(27.2) 39.0(35.4) 60.4(49.1) 50.5 51.2 3320 7.40 31.90 10.90
Full 38.4(34.8) 22.2(19.8) 51.8(46.3) 59.4(47.9) 58.6 58 31.40 10.80 10.90 4.10
SemcoderGPT4o0 LoRA64 | 37.2(329) 26.7(24.1) | 42.7(38.4) 59.9(50.1) 54.8 50.4 3440 8.80 23.10 8.60
LoRA8 | 37.8(32.3) 25.7(22.0) 39.6(35.4) 54.9(44.9) 52.8 52.1 33.60 7.40 32.80 11.50
Full 31.7(28.7) 31.5(28.0) 51.8(48.2) 62.7(50.1) 59 60.2 30.60 7.40 14.70 5.60
SemcoderGPT4o_y LoRA64 | 36.6(30.5) 29.4(25.9) 37.8(34.1) 59.1(50.9) 53.5 52.9 3456 12.84 27.96 9.32
LoRA8 | 39.0(33.5) 26.7(23.5) 37.2(32.3) 55.9(44.9) 529 51.9 3220 540 33.60 11.80
Full 34.1(29.9) 29.4(24.6) | 51.8(48.8) 61.9(48.6) 59.9 55.4 3340 1420 14.70 5.20
Semcoder LoRA64 | 28.7(25.6) 31.5(27.2) 42.7(36.6) 59.9(50.4) 54.9 50.4 3470 6.80 24.80 8.70
LoRA8 | 37.2(31.7) 29.1(24.6) 37.2(32.9) 56.1(45.6) 50.6 50.9 3270 6.80 29.80 10.40
Full 29.3(27.4) 28.8(25.1) 51.8(48.2) 58.4(46.4) 59 58.1 33.00 12.20 28.20 10.10
Semcoder_y LoRA64 | 33.5(29.3) 27.8(24.6) | 42.1(36.6) 55.6(44.9) 54.1 539 3561 1081 26.52 8.75
LoRA8 | 37.8(32.0) 24.6(22.2) | 42.1(36.6) 55.1(43.4) 51.7 52 3340 540 34.00 11.80

Table 5: A extend version of Table in llama3.1 after finetuning with semantic information.

16

repair NL2Code reasoning bigcodebench Livecodebench
HE-R/(+) MBPP-R/(+) HE/(+) MBPP/(+) | in_predict out_predict full hard | easy pass@l overall pass@1

dk-6.7B-base(vanilla) | 372(335) 20.9(19.6) | 402(34.1) 63.7(51.9) | 492 415 2980 680 | 3280 11.40
Full | 384(354) 19.8(167) | 59.1(54.3) 61.4(50.4) 57.9 55.6 2680 12.80 12.60 4.90

only nl2code LoRA64 | 50.0(42.1) 24.9(22.8) | 54.9(47.0) 69.4(55.1) 572 60.1 3781 1149 35.84 12.95
LoRAS | 49.4(445) 24.6(22.8) | 47.0(41.5) 66.9(54.1) 539 519 3711 1216 36.56 13.07

Full | 34.130.5) 22.8(20.4) | 47.042.7) 60.2(50.6) 57.6 572 28.80 10.80 8.00 3.10

concise LoRA64 | 354(31.7) 33.1(28.3) | 50.045.1) 66.9(52.6) 59.8 512 38.86 10.81 26.88 9.09
LoRA8 | 37.8(34.1) 33.3(28.8) | 48.2(42.1) 67.9(56.1) 55.9 56.1 3877 878 29.03 10.00

Full | 28.7(25.6) 22.8(193) | 42.1(372) 59.4(48.9) 58.9 582 2730 13.50 8.80 3.10

CodeExecutor LoRA64 | 372(329) 323(28.0) | 48.2(44.5 64.7(52.1) 59.2 575 38.86 11.49 23.66 7.84
LoRA8 | 36.6(31.7) 33.9(29.1) | 45.1(39.6) 66.2(55.9) 515 492 3763 8.11 25.81 9.20

Full | 305(25.0) 24.9(22.0) | 48.2(44.5 58.4(48.6) 57.8 575 2510 8.80 6.70 270

wlo trace LoRA64 | 31.7(28.7) 29.9(26.7) | 48.2(427) 66.9(54.6) 58.8 56.4 3877 1149 2330 8.30
LoRAS | 354(329) 31.5(28.0) | 45.1(402) 67.2(54.9) 51.1 49 3895 946 24.01 841

Full | 31.729.3) 26.2(23.3) | 48.2(43.9) 58.1(48.4) 59.5 55.8 2690 8.80 8.80 3.10

NeXT LoRA64 | 38.4(34.8) 32.0(28.0) | 47.6(42.1) 66.2(53.6) 59.5 545 3842 1216 28.32 9.32
LoRA8 | 354(323) 33.9(29.1) | 48.8(42.7) 67.2(55.9) 512 51 3947 1216 2330 7.84

Full | 262(244) 25.1(21.4) | 482(439) 56.9(47.6) 589 56.2 29.00 7.40 8.00 2.90

concise2 LoRAG4 | 32.3(29.3) 32.5(28.6) | 51.2(457) 66.9(53.6) 57.9 575 3877 12.84 29.75 9.55
LoRA8 | 402(34.8) 31.7(27.8) | 44.5(37.8) 67.4(55.1) 46.5 517 3886 6.76 29.03 10.00

Full | 354(31.1) 24.1Q21.7) | 51.8(48.8) 62.9(50.1) 58.9 56.5 2950 7.40 8.40 2.90

SemcoderGPT40 LoRA64 | 45.7(40.9) 29.4(254) | 47.042.1) 66.9(53.6) 57.8 54.4 3842 14.19 25.81 8.8
LoRAS | 45.1(39.0) 28.6(24.9) | 47.6(42.7) 67.7(55.1) 411 525 3895 10.14 26.16 9.32

Full | 31.7(30.5) 22.2(18.8) | 48.8(44.5) 57.6(46.9) 58.9 52.1 2763 1351 9.50 4.90

SemcoderGPT4o_y ~ LoRA64 | 32.3(29.9) 29.1(25.9) | 47.0(40.2) 68.7(55.9) 59 57.6 39.04 1081 30.11 10.11
LoRA8 | 41.5(37.8) 27.2(24.9) | 51.2(44.5) 66.4(53.9) 585 514 3895 12.84 23.66 8.30

Full | 31.1Q274) 262(222) | 53(50.0) 62.2(53.1) 589 56.8 27.60 13.50 13.00 4.80

Semcoder LoRAG4 | 32931.1) 31.027.2) | 48.8(44.5) 66.4(53.6) 592 59.9 3974 1554 24.01 7.95
LoRA8 | 39.6(35.4) 29.9(26.2) | 43.9(38.4) 66.2(55.6) 56.9 554 3974 10.14 21.86 7.61

Full | 26.8(244) 24.3(20.9) | 49.4(457) 59.4(48.9) 58.5 52.1 2325 541 17.00 5.80

Semcoder._y LoRA64 | 38.4(35.4) 24.9(22.8) | 48.8(427) 67.4(54.9) 592 59.6 39.12 1419 3047 10.34
LoRAS | 402(335) 24.6(22.2) | 43.3(372) 67.9(56.1) 51.1 485 3877 1351 27.96 10.00

Table 6: A extend version of Table in gemma2-9b after finetuning with semantic information.

17

Percentage-point Gain vs. Baseline (1 testcase)
CodeExecutor ConCise NEXT SemCoder
Two testcases 11 [03 D o

Three testcases -1.0 -7.9 -5
base plus base plus base plus base plus

Figure 5: Heat-map of percentage-point gains over the (one-
test case) baseline. Rows mark the aggregated test-case sizes.
Columns are grouped by trace representations each with its
MBPP-R(base, plus) benchmark. Warm shades (reds) indicate
positive gains.

D Experiment results of Test-scaling on
MBPP-R

Table 7 summarizes the results of test-time scal-
ing. It is clear that compared to open-source LLMs,
closed-source LLMs perform significantly better at
test time. Comparison between inference with and
without trace-based semantic information. First,
we can see that, different from the findings from
the fine-tuning investigation, inference with trace-
based semantic information consistently boosts the
performance of Code LLMs. In most cases (98 out
of 112), adding trace information enhances Code
LLMs with an improvement by up to 10.85, a max
improvement in NeXT with GPT-40. This indi-
cates that semantic information can guide LLMs
in generating more correct code. Comparison be-
tween different trace representations. Similar to
previous findings, no single semantic representa-
tion consistently performs better than the others.
SemCoder, which performs relatively better dur-
ing fine-tuning, cannot stand out considering in-
ference only. Concise, a variant of CodeExecutor
designed by us performs the best under the instruc-
tion version of LLMs. Different from fine-tuning,
trace-based semantic information significantly en-
hances the performance of Code LLMs at test time.
Sequential Revisions and Parallel are two optimal
search strategies for test-time scaling.

Gain (pp)

18

Sequential Revisions

w/o trace(greedy) Concise CodeExecutor NEXT SemCoder SemCoder(GPT40) BoN ‘ BeamSearch
Close source Model
GPT-40 50.79(44.71) 60.05(50.79) | 59.79(50.79) | 61.64(50.53) | 58.73(50.0) 59.41(51.10) 54.46(42.23) | 61.29(51.71)
deepseck-chat(V3) 53.17(47.88) 61.11(54.23) | 60.85(52.38) | 61.11(53.7) | 61.11(52.4) 61.31(52.68) 56.37(57.45) | 63.17(53.88)

Reasoning Compatible Model

Marcon-ol 25.40(22.20) 27.00(23.00) | 27.00(23.30) | 24.10(20.90) | 28.80(24.90) 29.10(25.10) 26.30(23.10) | 29.40(25.10)
phi-4 39.15(33.86) 43.65(38.10) | 45.5(39.15) | 42.86(38.10) | 44.71(39.68) 44.71(40.12) 41.23(36.45) | 45.15(41.86)
Instruction version of Foundation Model

CodeLlama-7b-Instruct-hf 19.58(18.25) 20.11(18.52) | 19.84(19.05) | 19.58(17.72) | 18.52(16.93) 19.12(17.00) 19.13(17.43) | 19.58(18.25)
Llama-3.1-8B-Instruct 28.84(27.51) 36.51(32.28) | 32.01(29.89) | 32.01(28.57) | 33.86(31.48) 34.21(32.14) 29.21(28.43) | 33.54(31.42)
deepseek-coder-6.7b-instruct 24.87(23.54) 23.81(22.49) | 25.66(23.54) | 23.54(22.22) | 30.16(27.51) 30.56(28.31) 25.87(24.34) | 30.87(28.14)

Table 7: Pass@1Comparing compute-optimal approaches on the code repair benchmark MBPP-R at test time, the numbers
outside and inside parenthesis "()" indicate the base and plus versions of EvalPlus, respectively. w/o trace (greedy) only interacts
with the LLM via its initial (potentially buggy) code. In contrast, other sequential revision methods benefit from trace-based
semantic information. The best results of EvalPlus’ base highlights with underline

round 1 2 3 4 5
pass_rate 61.54 84.62 84.62 84.62 88.46

extract-fail

syntax-error 50.96 9.13 6.25 385 433
error type execute-fail ~ 34.62 34.62 33.65 34.62 34.62

test-case-fail ~ 7.21 24.52 25.00 25.96 25.00

(a) Pass-rate improvement and error-type distribution over five
self-debugging rounds. The overall pass rate climbs from 61.54
% in Round 1 to 88.46 % by Round 5, while syntax errors drop
sharply and an increasing share of examples transitions into the
testcase-pass category. Percentages are shown for each round;
blank cells indicate zero occurrences..

19

E More Prompt Example
E.1 Prompt templates

We also provide detailed prompts used in our ex-
periments in 6 to 8. These prompts are generated
automatically by DSPy (Khattab et al., 2024).

20

System Message

Your input fields are: 1. prompt (str)

Your output fields are: 1. reasoning (str)2. code (str): Here is the past history of your
code and the test case feedback. Please reason why your code failed in the last round, and
correct the code. Do not write non-code content in the code field.

All interactions will be structured in the following way, with the appropriate values filled in:

[[## prompt ## 1]
{prompt}

[[## reasoning ##]]
{reasoning}

[[## code ##]]
{code}
[[## completed ##]]

In adhering to this structure, your objective is: Given the fields prompt , produce the fields

code .

User Message

[[## prompt ## 1]

{Question Prompt}

Code:

[Round 0 Reasoning]: {Round 0 Reasoning}

[Round 0 Generated code]: {Round 0 Generated Code}
[Round 0 Test Feedback]: {Round 0 Test Feedback}

[Round 1 Reasoning]: {Round 0 Reasoning}

Figure 6: Prompt schema for SYSTEM, USER, and ASSISTANT.

21

[Round 1 Generated code]: {Round 0 Generated Code}

[Round 1 Test Feedback]: {Round 0 Test Feedback}

Assistant Response

[[## reasoning ## 1]
{reasoning}

[[## code ## 1]
{code}
[[## completed ## 1]

Figure 7: Prompt schema for SYSTEM, USER, and ASSISTANT(continue).

22

System Message

Your input fields are: 1. prompt (str)

Your output fields are: 1. reasoning (str) 2. code (str): Here is the past history of your code and the test case feedback. Please
reason why your code failed in the last round, and correct the code. Do not write non-code content in the code field.

All interactions will be structured in the following way, with the appropriate values filled in:
[[## prompt ## 1] {prompt} [[## reasoning ##]] {reasoning} [[## code ##]] {code} [[## completed ##]]

In adhering to this structure, your objective is: Given the fields prompt , produce the fields code .
User Message

[[## prompt ##]]

Respond with the corresponding output fields, starting with the field [[## reasoning ## 1] ,then [[## code ## 1] ,
and then ending with the marker for [[## completed ##] .

Problem Description

You are given a sequence of N positive integers A= (A, A

,» ---» An). Takahashi repeats the following operation until A contains one or
fewer positive elements:

« Sort Ain descending order. Then, decrease both A and A, by 1.

Find the number of times he performs this operation.

Input

The input is given from Standard Input in the following format: N A1 Az = A,
Output

Print the answer.

Constraints

« 2=N=<100
« 1<A <100
« Allinput values are integers.

Sample Input 1

1233

Sample Output 1

The process goes as follows:

Figure 8: The prompt for code generation with trace feedback[a NEXT example] .

23

« After the 1st operation, Ais (2, 2, 2, 1).
« After the 2nd operation, Ais (1, 1, 2, 1).
« After the 3rd operation, Ais (1,0, 1, 1).
« After the 4th operation, Ais (0, 0, 1, 0). A no longer contains more than one positive element, so the process ends here.

Sample Input 2

11 100

Sample Output 2

Solution Attempt

[Round 0 Reasoning]: To solve this problem, we need to repeatedly sort the array in descending order and then decrease the first
two elements by 1 until the array contains one or fewer positive elements. We will count the number of operations performed.

Here's a step-by-step breakdown of the approach: 1. Read the input values. 2. Initialize a counter for the number of operations. 3. In a
loop, sort the array in descending order. 4. Decrease the first two elements by 1. 5. Increment the operation counter. 6. Continue the
loop until the array contains one or fewer positive elements. 7. Print the number of operations.

[Round 0 Generated code]: “*"python def count_operations(): import sys input = sys.stdin.read data = input().split()

N = int(data[0])
A = list(map(int, data[l:]))

operations = 0
while sum(A) > 0:
A.sort(reverse=True)
if A[0] > 0 and A[1] > 0:
A[0] -= 1
A[l] -= 1
operations += 1

print(operations)

count_operations() "

[Round 0 Test Feedback]: [Test O - JFAIL: For testinput: 4 1 2 3 3 . Expected outputis: 4 , butgot: .Traceback (most recent

call last): File "/mnt/local/homedir/wjcode/dltrace/testscalingtrace/skythougt ti aling/li debench py", line 337,
,'n I or /e] o] | = runte fstd(AMAAAAAAAAAAA File
"/mnt/local/h dir/wjcode/dl li /skythoughttest-time-scaling/livecodebenchexecute.py”, line 201, in

runtest_std exec(completion, namespace) File ", line 1, in NameError: name 'd' is not defined

[Test 1 - JFAIL: For testinput: 3 1 1 100 . Expected outputis: 2 , but got: .Traceback (most recent call last): File

"/mnt/local/homedir/wjcode/dltrace/testscalingtrace/skythougt il ling/liv deb h te.py", line 337, in
r fi or e I P], "_ tval =TrL 4: AAAAAAAAAANAAN F“e
t/local/h dir/wjcode/dltr lii /skythoughttest-time-scaling/livecodebenchexecute.py”, line 201, in

runtest_std exec(completion, namespace) File "", line 1, in NameError: name 'd' is not defined

[Round 1 Reasoning] [Round 1 Generated Code]

Figure 9: The prompt for code generation with trace feedback[a NExT example](continue) .

24

def min_fatigue():
import sys
input = sys.stdin.read
data = input().split()

N = int(data[0])
actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)]

Initialize hands on keys 1 and N
left_hand =1
right_hand = N

Initialize fatigue level
fatiqgue = 0

Process each action
for action in actions:
key, side = action

if side == 'L':
if key < left_hand:
fatigue += abs(left_hand - key)
left_hand = key
elif key > right_hand:
fatigue += abs(right_hand - key)
right_hand = key
else: # side == 'R’
if key > right_hand:
fatigue += abs(right_hand - key)
right_hand = key
elif key < left hand:
fatigue += abs(left_hand - key)
left_hand = key

print(fatigue)
min_fatigue()
[Round 1 Test Feedback]:
Input: 4 3 L6R 9L 1R
Expected Output: 11 Actual Output: 5

Execution Trace:

Figure 10: The prompt for code generation with trace feedback[a NExT example](continue) .

25

def min_fatigue(): #(1) ['min_fatigue = <function call_wra...ocals>.min_fatigue>']
import sys #(2) ["sys = <module 'sys' (built-in)>"]

input = sys.stdin.read #(3) ['input = <built-in method r io.StringIO object>']
data = input().split() #(4) ["data = ['4', '3', 'L', '6...'9', 'L', '1', 'R']"]

N = int(data[0]) #(5) ['N = 4']
actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)] #(6) ['1 =0']; (7) ['1i=1"];

Initialize hands on keys 1 and N
left_hand = 1 #(11) ['left_hand = 1']
right_hand = N #(12) ['right_hand = 4']

Initialize fatigue level
fatigue = 0 #(13) ['fatigue = 0']

Process each action
1; (16) ["action = (6, 'R')"1;
3"1; (17) ["side = 'R', key = 6"]; ..

«..; (24) ["action =

for action in actions: #(14) ["action = (3, 'L')"
key, side = action #(15) ["side = 'L', key = .; (25) ["side
if side == 'L':
if key < left_hand:
fatigue += abs(left_hand - key)
left_hand = key
elif key > right_hand:
fatigue += abs(right_hand - key) #(22) ['fatigue = 5']
right_hand = key #(23) ['right_hand = 9']
else: # side == 'R’
if key > right_hand:
fatigue += abs(right_hand - key) #(18) ['fatigue = 2']
right_hand = key #(19) ['right_hand = 6']
elif key < left hand:
fatigue += abs(left_hand - key)
left_hand = key

print(fatigue) #__return__=None

min_fatigue() #__return__=None
Test Case 2

Input: 3 2 L 2L 100 L

Expected Output: 98 Actual Output: 97

Execution Trace:

Figure 11: The prompt for code generation with trace feedback[a NExT example](continue) .

26

def min_fatigue(): #(1) ['min_fatigue = <function call_wra...ocals>.min_fatigue>']
import sys #(2) ["sys = <module 'sys' (built-in)>"]
input = sys.stdin.read #(3) ['input = <built-in method r...io.StringIO object>']
data = input().split() #(4) ["data = ['8', '22', 'L', '...7', 'L', '29', 'R']"]

N = int(data[0]) #(5) ['N = 8']
actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)] #(6) ['1 =0']1; (7) ['1i=1"]; ...;

Initialize hands on keys 1 and N
left_hand = 1 #(15) ['left_hand = 1']
right_hand = N #(16) ['right_hand = 8']

Initialize fatigue level
fatigue = 0 #(17) ['fatigue = 0']

Process each action

for action in actions: #(18) ["action = (22, 'L')"]; (22) ["action = (75, 'L')"]1; ...; (38) ["action
key, side = action #(19) ["side = 'L', key = 22"]1; (23) ['key = 75'1; ...; (39) ["side = 'R', key
if side == 'L':

if key < left_hand:
fatigue += abs(left_hand - key)
left_hand = key
elif key > right_hand:
fatigue += abs(right_hand - key) #(20) ['fatigue = 14'] (24) ['fatigue = 67']
right_hand = key #(21) ['right_hand = 22'] (25) ['right_hand = 75']
else: # side == 'R’
if key > right_hand:
fatigue += abs(right_hand - key) #(34) ['fatigue = 73']
right_hand = key #(35) ['right_hand = 81']
elif key < left hand:
fatigue += abs(left_hand - key)
left_hand = key

print(fatigue) #__return__=None

min_fatigue() #__return__=None
Assistant Response

Bug Analysis
Based on the test cases and execution traces, there are several issues with the code:

1. Logic issues with hand assignments: The algorithm doesn't correctly handle key assignments for left and right hands
according to the problem's requirements.

2. Missing conditions: The current logic only handles specific cases for each hand but doesn't account for all possible scenarios.
For example, if a key is between the current positions of left and right hands, the algorithm doesn't handle this properly.

3. Decision logic flaws: The fatigue calculation and hand position updates are not correctly applying the rules of the problem,
which seems to involve minimizing fatigue by deciding which hand should press which key.

The algorithm needs to be reworked to correctly handle all possible key positions relative to current hand positions and to make
optimal decisions about which hand to use for each key press.

The previous implementation had several issues, including incorrect handling of hand movements and an incorrect initial placement of
the hands. The key problems were: 1. The hands were not initialized optimally, leading to unnecessary fatigue. 2. The logic for moving
the hands was flawed, resulting in incorrect fatigue calculations.

To fix these issues, we need to: 1. Initialize the left hand on the first key and the right hand on the last key. 2. Correctly handle the

Figure 12: The prompt for code generation with trace feedback[a NExT example](continue) .

27

movement of the hands based on the direction specified (L or R).

Corrected Approach

1. Initial Placement: Place the left hand on key 1 and the right hand on key N.
2. Hand Movements: For each key press, determine which hand should be used based on the direction. Move the hand if it is not
already on the correct side and update the fatigue level accordingly.

Implementation

Let's implement this corrected approach in Python.

def min_fatigue():
import sys
input = sys.stdin.read
data = input().split()

N = int(data[0])
actions = [(int(data[i*2 + 1]), data[i*2 + 2]) for i in range(N)]

Initialize hands on keys 1 and N
left_hand =1
right_hand = N

Initialize fatigue level
fatiqgue = 0

Process each action
for action in actions:
key, side = action

if side == 'L':
if key < left_hand:
fatigue += abs(left_hand - key)
left _hand = key
elif key > right_hand:
fatigue += abs(right_hand - key)
right_hand = key
else: # side == 'R’
if key > right_hand:
fatigue += abs(right_hand - key)
right_hand = key
elif key < left hand:
fatigue += abs(left_hand - key)
left_hand = key

print(fatigue)

min_fatigue()

Figure 13: The prompt for code generation with trace feedback[a NExT example](continue) .

28

	Introduction
	Problem Statement
	Evaluation Framework
	Overall Design
	Trace Representation Adapters

	Experiment Design
	Result Analysis
	Fine-Tuning with Semantic Information
	Parameter-Efficient Fine-Tuning
	Inference Test-Scaling Computation
	Hyperparameter Study

	Related works
	Conclusion
	Data and Source Code availability
	 Experiment
	Experiment Detail.

	 Dataset
	Decontamination
	Evaluation dataset
	Fine-tune dataset(Refinement Dataset)

	Experiment results of Full and PEFT
	Experiment results of Test-scaling on MBPP-R
	More Prompt Example
	Prompt templates

