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ABSTRACT

Face recognition systems are increasingly deployed in different applications. In
these systems, a feature vector (also called facial embeddings or templates) is
typically extracted from each face image and is stored in the system’s database
during the enrollment stage, which is later used for comparison during the recog-
nition stage. In this paper, we focus on the template inversion attack against face
recognition systems and propose a new method to reconstruct face images from fa-
cial templates. Within a generative adversarial network (GAN)-based framework,
we learn a mapping from facial templates to the intermediate latent space of a
pre-trained face generation network, from which we can generate high-resolution
realistic reconstructed face images. We show that our proposed method can be
applied in whitebox and blackbox attacks against face recognition systems. Fur-
thermore, we evaluate the transferability of our attack when the adversary uses
the reconstructed face image to impersonate the underlying subject in an attack
against another face recognition system. Considering the adversary’s knowledge
and the target face recognition system, we define five different attacks and evalu-
ate the vulnerability of state-of-the-art face recognition systems. Our experiments
show that our proposed method achieves high success attack rates in whitebox and
blackbox scenarios. Furthermore, the reconstructed face images are transferable
and can be used to enter target face recognition systems with a different feature
extractor model.
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Figure 1: Sample face images from the FFHQ dataset and their corresponding reconstructed images
using our template inversion method from ArcFace templates. The values below each image show
the cosine similarity between the corresponding templates of original and reconstructed face images.

1 INTRODUCTION

Face recognition (FR) systems tend toward ubiquity, and their applications, which range from cell
phone unlock to national identity system, border control, etc., are growing rapidly. Typically, in such
systems, a feature vector (called embedding or template) is extracted from each face image using a
deep neural network, and is stored in the system’s database during the enrollment stage. During the
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Figure 2: Block diagram of our proposed template inversion attack

recognition stage, either verification or identification, the extracted feature vector is compared with
the ones in the system’s database to measure the similarity of identities. Among potential attacks
against FR systems (Galbally et al., 2014; Marcel et al., 2014; Biggio et al., 2015; Hadid et al., 2015;
Mai et al., 2018), the template inversion (TI) attack significantly jeopardizes the users’ privacy. In
a TI attack, the adversary gains access to templates stored in the FR system’s database and aims
to reconstruct the underlying face image. Then, the adversary not only achieves privacy-sensitive
information (such as gender, ethnicity, etc.) of enrolled users, but also can use reconstructed face
images to impersonate.

In this paper, we focus on the TI attack against FR systems and propose a novel method to recon-
struct face images from facial templates (Fig. 1 shows sample reconstructed face images using our
proposed method). Within a generative adversarial network (GAN)-based framework, we learn a
mapping from face templates to the intermediate latent space of StyleGAN3 (Karras et al., 2021),
as a pre-trained face generation network. Then, using the synthesis part of StyleGAN3, we can
generate high-resolution realistic face image. Our proposed method can be applied for whitebox and
blackbox attacks against FR systems. In the whitebox scenario, the adversary knows the internal
functioning of the feature extraction model and its parameters. However, in the blackbox scenario,
the adversary does not know the internal functioning of the feature extraction model and can only
use it to extract features from any arbitrary image. Instead, we assume that the adversary has a
whitebox of another FR model, which can be used for training the face reconstruction network. We
also evaluate the transferability of our attack by considering the case where the adversary uses the
reconstructed face image to impersonate the underlying subject in an attack against another FR sys-
tem (which has a different feature extraction model). Considering the adversary’s knowledge and the
target FR system, we define five different attacks, and evaluate the vulnerability of state-of-the-art
(SOTA) FR systems. Fig. 2 illustrates the general black diagram of our proposed template inversion
attack.

To elaborate on the contributions of our paper, we list them hereunder:

• We propose a novel method to generate high-resolution realistic face images from facial
templates. Within a GAN-based framework, we learn the mapping from facial templates to
the latent space of a pre-trained face generation network.

• We propose our method for whitebox and blackbox scenarios. While our method is based
on the whitebox knowledge of the FR model, we extend our attack blackbox scenario, using
another FR model that the adversary has access to.

• We define five different attacks against FR systems (based on the adversary’s knowledge
and the target system), and evaluate the vulnerability of SOTA FR models.

The remainder of the paper is organized as follows: Section 2 introduces the problem formulation
and our proposed face reconstruction method. Section 3 covers the related works in the literature
and compares them with our proposed method. Section 4 presents our experiential results. Finally,
the paper is concluded in Section 5.

2 PROBLEM DEFINITION AND PROPOSED METHOD

In this paper, we consider a TI attack against a FR system based on the following threat model:
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• Adversary’s goal: The adversary aims to reconstruct a face image from a template, and use
the reconstructed face image to enter the same or a different face recognition system, which
we call the target FR system.

• Adversary’s knowledge: The adversary knows a face template of a user enrolled in the FR
system’s database. The adversary also has either whitebox or blackbox knowledge of the
feature extractor model in the same FR system.

• Adversary’s capability: The adversary can present the reconstructed face image to the tar-
get FR system (e.g., using a printed photograph). However, for simplicity, we consider that
adversary can inject the reconstructed face image as a query to the target FR system.

• Adversary’s strategy: The adversary can train a face reconstruction model to invert facial
templates and reconstruct underlying face images. Then, the adversary can use the recon-
structed face images to inject as a query to the target FR system, to enter that system.

Let F (.) denotes a facial feature extraction model, which gets the face image I ∈ I and extracts
facial template x = F (I) ∈ X . According to the threat model, the adversary has access to the target
facial template xdatabase = Fdatabase(I) and aims to generate a reconstructed face image Î . Then, the
adversary can use the reconstructed face image Î to impersonate the corresponding subject and
attack a target FR system with Ftarget(.), which might be different from Fdatabase(.).

To train a face reconstruction model, we can use a dataset of face images {Ii}Ni=1 with N face images
(no label is required), and generate a training dataset {(xi, Ii)}Ni=1, where xi = Fdatabase(Ii). Then,
a face reconstruction model G(.) can be trained to reconstruct face image Î = G(x) given each
facial template x ∈ X . To train such a face reconstruction model, we consider a multi-term face
reconstruction loss function as follows:

Lrec = Lpixel + LID, (1)

where Lpixel and LID indicate pixel loss and ID loss, respectively, and are defined as:

Lpixel = Ex∼X [‖I −G(x)‖22], (2)

LID = Ex∼X [‖Floss(I)− Floss(G(x))‖22]. (3)

The pixel loss is used to minimize the pixel-level reconstruction error of the generated face image.
The ID loss is also used to minimize the distance between facial templates extracted by Floss(.) from
original and reconstructed face images. In Eq. 3, Floss(.) denotes a feature extraction model that the
adversary is assumed to have complete knowledge of its parameters and internal functioning. Based
on the adversary’s knowledge of Fdatabase(.) (i.e., whitebox or blackbox scenarios), Floss(.) might be
the same or different from Fdatabase(.).
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Figure 3: Block diagram of our face reconstruction network.

For the face reconstruction model,
we consider StyleGAN3 (Karras
et al., 2021), as a pre-trained face
generation network. The Style-
GAN3 model is trained on a dataset
of face images using a GAN-based
framework that can generate high-
resolution and realistic face im-
ages. The structure of StyleGAN3
is composed of two networks, map-
ping and synthesis networks. The
mapping network MStyleGAN(.) gets
a random noise z ∈ Z and gen-
erates an intermediate latent code
w = MStyleGAN(z) ∈ W . Then,
the latent code w is given to the
synthesis network SStyleGAN(.) to
generate a face image. In our train-
ing process, we fix the synthetic
network SStyleGAN(.) and train a new mapping Mrec(.) to generate ŵ corresponding to the given fa-
cial template x ∈ X . Then, the generated latent code ŵ is given to the synthesis network SStyleGAN(.)
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to generate the reconstructed face image Î = SStyleGAN(ŵ). We can train our new mapping Mrec(.)
using our reconstruction loss function as in Eq. 1. However, to obtain a realistic face image from the
generated ŵ through the pre-trained synthetic network SStyleGAN(.), the generated ŵ needs to be in
the distributionW; otherwise, the output may not look like a real human face. Hence, to generate ŵ
vectors such that they have the same distribution as StyhleGAN’s intermediate latent, w ∈ W , we
use a GAN-based framework to learn the distributionW . To this end, we use the Wasserstein GAN
(WGAN) Arjovsky et al. (2017) algorithm to train a critic network C(.) which critics the generated
ŵ vectors compared to the real StyleGAN’s w ∈ W vectors, and simultaneously we optimize our
mapping network to generate ŵ vectors with the same distribution asW . Hence, we can consider
our mapping network Mrec(.) as a conditional generator in our WGAN framework, which generates
ŵ = Mrec([n,x]) given a facial template x ∈ X and a random noise vector n ∈ N . Then, we can
train our mapping network and critic network using the following loss functions:

LWGAN
C = Ew∼W [C(w)]− Eŵ∼Mrec([n,x])[C(ŵ)] (4)

LWGAN
Mrec

= Eŵ∼Mrec([n,x])[C(ŵ)] (5)

In a nutshell, we train a new mapping network Mrec(.) using our reconstruction loss function in
Eq. 1, and also optimize Mrec(.) within our WGAN framework using Eq. 5. Simultaneously, we also
train the critic network C(.) within our WGAN using Eq. 4 to learn the distribution of StyleGAN’s
intermediate latent space W and help our mapping network Mrec(.) to generate vectors with the
same distribution asW . Fig. 3 depicts the block diagram of the proposed method. We should note
that our mapping network Mrec(.) has 2 fully connected layers with Leaky ReLU activation function.

In our problem formulation, we consider three different feature extraction models, including
Fdatabase(.), Floss(.), and Ftarget(.). Hence, based on the adversary’s knowledge and the target system,
we can consider five different attacks:

• Attack 1: The adversary has whitebox knowledge of the system from which the template
is leaked and want to attack the same system (i.e., Fdatabase = Floss = Ftarget).

• Attack 2: The adversary has whitebox knowledge of the feature extractor of the sys-
tem from which the template is leaked, but aims to attack to a different FR system (i.e.,
Fdatabase = Floss 6= Ftarget).

• Attack 3: The adversary wants to attack the same system from which the template is
leaked, but has only blackbox access to the feature extractor of the system. Instead, we
assume that the adversary has the whitebox knowledge of another FR model to use for
training (i.e., Fdatabase = Ftarget 6= Floss).

• Attack 4: The adversary aims to attack a different FR system than the one from which
the template is leaked. In addition, the adversary has whitebox knowledge of the feature
extractor of the target system (i.e., Fdatabase 6= Floss = Ftarget).

• Attack 5: The adversary aims to attack a different FR system from which the template
is leaked and has only blackbox knowledge of both the target system and the one from
which the template is leaked. However, the adversary instead has the whitebox knowledge
of another FR model to use for training (i.e., Fdatabase 6= Floss 6= Ftarget).

In the attack 1 and attack 2, the adversary has the whitebox knowledge of the system from which the
template is leaked (i.e., Fdatabase(.)) and uses the same model as Floss(.) for training the reconstruction
network. However, in attacks 3-5, the adversary has the blackbox knowledge of the system from
which the template is leaked, and therefore uses another FR model as Floss(.). Comparing the
knowledge of the adversary in these attacks, we expect that attack 1 be the easiest attack for the
adversary and attack 5 be the most difficult one.

3 RELATED WORKS

Table 1 compares our proposed method with related works in the literature. Generally, the methods
for TI attack against FR systems, can be categorized based on different aspects, including the reso-
lution of generated face images (high/low resolution), the type of attack (whitebox/blackbox attack),
and the basis of the method (optimization/learning-based).
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Table 1: Comparison with related works.

Reference Resolution White/Black-box Basis Available code

Zhmoginov & Sandler (2016) low whitebox 1) optimization
72) learning

Cole et al. (2017) low both∗ learning 7
Mai et al. (2018) low blackbox learning 3
Duong et al. (2020) low both∗∗ learning 7
Truong et al. (2022) low both∗∗ learning 7
Dong et al. (2021) high blackbox learning 3
Vendrow & Vendrow (2021) high blackbox optimization 3
Dong et al. (2022) high blackbox optimization 7
Ours high both∗∗∗ learning 3

∗The method is based on the whitebox attack, and is extended to blackbox by removing a loss term that required the FR model.
∗∗The method is based on the whitebox attack, and the blackbox attack is performed by knowledge distillation of the FR model.
∗∗∗The method is based on the whitebox attack, and is extended to blackbox using a different FR model.

Zhmoginov & Sandler (2016) proposed an optimization-based method and a learning-based method
to generate low-resolution face images in the whitebox attack against FR systems. In their
optimization-based attack, they used a gradient-descent-based approach to find an image that min-
imizes the distance of the face template as well as some regularization terms to generate a smooth
image, including the total variation and Laplacian pyramid gradient normalization (Burt & Adelson,
1987) of the reconstructed face image. In their learning-based attack, they trained a convolutional
neural network (CNN) with the same loss terms to generate face images from given facial templates.

Cole et al. (2017) proposed a learning-based attack to generate low-resolution images using a multi-
layer perceptron (MLP) to estimate landmark coordinates and a CNN to generate face textures, and
then reconstructed face images using a differentiable warping based on estimated landmarks and
face texture. They trained their networks in an end-to-end fashion, and minimized the errors for
landmark estimation and texture generation as well as the distance of face template as their loss
function. To extend their method from the whitebox attack to the blackbox attack, they proposed not
to minimize the distance of face templates in their loss function.

Mai et al. (2018) proposed a learning-based attack to generate low-resolution images in the blackbox
attack against FR systems. They proposed new convolutional blocks, called neighborly deconvolu-
tion blocks A/B (shortly, NbBlock-A and NbBlock-B), and used these blocks to reconstruct face
images. They trained their proposed networks using two loss functions, including pixel loss (i.e.,
`2 norm of reconstruction pixel error) and perceptual loss (i.e., `2 norm of distance for intermediate
features of VGG-19 (Simonyan & Zisserman, 2014) given original and reconstructed face images).

Duong et al. (2020) and Truong et al. (2022) used a same bijection learning framework and trained
a GAN with a generator with structure of PO-GAN (Karras et al., 2017) and TransGAN (Jiang
et al., 2021), respectively. While their method is based on the whitebox attack, they proposed to use
knowledge distillation to extend to the blackbox attack. To this end, they trained a student network
that mimics the target FR model. However, they did not provide any details (nor source code) about
student network training, such as the structure of the student network, etc.

Dong et al. (2021) used a pre-trained StyleGAN to generate high-resolution face images in the black-
box attack against FR systems. They generated synthetic face images using pre-trained StyleGAN
and extracted their embedding. Then, they trained a fully connected network using mean squared
error to map extracted embeddings to the corresponding noise in the input of StyleGAN. Instead
of a learning-based approach, Vendrow & Vendrow (2021) used a grid search optimization using
the simulated annealing (Van Laarhoven & Aarts, 1987) approach to find the noise in the input of
StyleGAN, which generates an image that has the same embedding. As their iterative method has
a large computation cost, they evaluated their method on 20 images only. Along the same lines,
Dong et al. (2022) also tried to solve a similar optimization to (Vendrow & Vendrow, 2021) with a
different approach. They used the genetic algorithm to find the noise in the input of StyleGAN that
can generate an image with the same embedding.

Compared to most works in the literature that generate low-resolution face images, our proposed
method generates high-resolution realistic face images. While low-resolution reconstructed images
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can be used for evaluating the vulnerability of FR systems under some assumptions, high-resolution
images can lead to different types of presentation attacks against FR systems. We also propose
our method for both whitebox and blackbox scenarios and evaluate the transferability of our attack.
Similar to (Cole et al., 2017; Duong et al., 2020; Truong et al., 2022), our method is based on the
whitebox knowledge of FR model, however our approach for extending our method to the blackbox
attack using another FR model is novel. Last but not least, we define five different attacks against
FR systems and evaluate the vulnerability of SOTA FR models to our attacks.

4 EXPERIMENTS

In this section, we present our experiments and discuss our results. First, in Section 4.1 we describe
our experimental setup. Then, we present our experimental results in Section 4.2 and discuss our
findings.

4.1 EXPERIMENTAL SETUP

Table 2: Recognition performance of face recognition
models used in our experiments in terms of true match
rate (TMR) at the thresholds correspond to false match
rates (FMRs) of 10−2 and 10−3 evaluated on the MO-
BIO and LFW datasets. The values are in percentage.

model MOBIO LFW
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

ArcFace 100.00 99.98 97.60 96.40
ElasticFace 100.00 100.00 96.87 94.70
HRNet 98.98 98.23 89.30 78.43
AttentionNet 99.71 97.73 84.27 72.77
Swin 99.75 98.98 91.70 87.83

To evaluate the performance of our
method, we consider two SOTA FR mod-
els, including ArcFace (Deng et al., 2019),
ElasticFace (Boutros et al., 2022), as
the models from which templates are
leaked (i.e., Fdatabase). For transferabil-
ity evaluation, we also use three different
FR models with SOTA backbones from
FaceX-Zoo (Wang et al., 2021), includ-
ing HRNet (Wang et al., 2020), Attention-
Net (Wang et al., 2017), and Swin (Liu
et al., 2021), for the target FR system (i.e.,
Ftarget). The recognition performance of
these models are reported in Table 2. All
these models are trained on MS-Celeb1M dataset (Guo et al., 2016). We assume that the adversary
does not have access to the FR training dataset, and therefore we use another dataset for training our
face reconstruction models. To this end, we use the Flickr-Faces-HQ (FFHQ) dataset (Karras et al.,
2019), which consists of 70,000 high-resolution (i.e., 1024 × 1024) face images (without identity
labels) crawled from the internet. We use 90% random portion of this dataset for training, and the
remaining 10% for validation.

To evaluate different attacks against FR systems, we consider two other face image datasets
with identity labels, including the MOBIO (McCool et al., 2013) and Labeled Faces in the
Wild (LFW) (Huang et al., 2007) datasets. The MOBIO dataset consists of bi-modal (face and
voice) data captured using mobile devices from 150 people in 12 sessions (6-11 samples in each
session). The LFW dataset includes 13,233 face images of 5,749 people collected from the internet,
where 1,680 people have two or more images.

For each of the attacks described in Section 2, we build one or two separate FR systems with one
or two SOTA FR models based on the attack type. If the target system is the same as the system
from which the template is leaked, we have only one FR system. Otherwise, if the target system is
different the system from which the template is leaked, we have two FR systems with two different
feature extractors. In each case, we use one of our evaluation datasets (i.e., MOBIO and LFW)
to build both FR systems (so that the subject with the leaked template be enrolled in the target
system too). In each evaluation, we assume that the target FR system is configured at the threshold
corresponding to a false match rate (FMR) of 10−3, and we evaluate the adversary’s success attack
rate (SAR) in entering that system.

We should note that the templates extracted by the aforementioned FR models have 512 dimensions.
The input noise z ∈ Z to the mapping network of StyleGAN’s pre-trained network is from the
standard normal distribution and has 512 dimensions. The input noise n ∈ N to our mapping
network Mrec(.) is with dimension of 8 and also from the standard normal distribution. We also use
Adam (Kingma & Ba, 2015) optimizer to train our mapping network.
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Table 3: Evaluation of attacks with whitebox knowledge of the system from which the template is
leaked (i.e., Floss = Fdatabase) against SOTA FR models in terms of adversary’s success attack rate
(SAR) using our proposed method on the MOBIO and LFW datasets. The values are in percentage
and correspond to the threshold where the target system has FMR = 10−3. Cells are color coded ac-
cording the type of attack as defined in Section 2 for attack 1 ( light gray ) and attack 2 ( dark gray ).

Fdatabase
MOBIO LFW

ArcFace ElasticFace HRNet AttentionNet Swin ArcFace ElasticFace HRNet AttentionNet Swin
ArcFace 92.38 81.90 71.43 70.48 74.29 86.82 74.20 36.57 36.40 58.86
ElasticFace 78.10 87.62 64.29 64.76 69.05 78.25 82.52 41.80 40.25 61.09

Table 4: Evaluation of attacks (with blackbox knowledge of the system from which the template
is leaked i.e., Fdatabase) against SOTA FR models in terms of adversary’s success attack rate (SAR)
using different methods on the MOBIO and LFW datasets. The values are in percentage and corre-
spond to the threshold where the target system has FMR = 10−3. M1: NbNetB-M (Mai et al., 2018),
M2: NbNetB-P (Mai et al., 2018), M3: (Dong et al., 2021), and M4: (Vendrow & Vendrow, 2021).
Cells are color coded according the type of attack as defined in Section 2 for attack 3 ( lightest gray ),

attack 4 ( middle dark gray ), and attack 5 ( darkest gray ).

Fdatabase Floss Ftarget
MOBIO LFW

M1 M2 M3 M4 Ours M1 M2 M3 M4 Ours

ArcFace ElasticFace

ArcFace 1.90 15.24 2.38 28.10 81.90 10.68 40.25 12.91 58.88 77.16
ElasticFace 1.43 11.43 4.29 15.24 73.81 8.36 34.39 6.35 29.10 68.06

HRNet 0.95 6.19 2.86 10.00 57.14 1.30 7.78 1.75 9.20 28.45
AttentionNet 0 6.67 3.33 4.29 54.29 1.33 7.17 2.29 9.17 28.87

Swin 1.43 13.33 3.81 10.95 67.14 4.27 23.85 5.97 21.75 48.28

ElasticFace ArcFace

ArcFace 2.38 18.57 2.86 16.19 87.14 15.33 48.67 11.81 37.45 83.20
ElasticFace 3.81 43.81 4.76 43.33 89.05 21.44 58.16 11.59 52.88 83.43

HRNet 0.48 20.00 1.43 10.48 73.81 3.46 18.36 2.74 11.82 49.02
AttentionNet 1.90 18.10 3.33 9.05 71.90 2.89 16.31 2.91 10.95 46.63

Swin 0.95 26.19 2.86 15.24 75.24 9.22 38.79 8.26 24.62 66.89

4.2 ANALYZE

In this section, we consider SOTA FR models and evaluate the performance of our face reconstruc-
tion method in five different attacks described in Section 2. We also explore the effect of our WGAN
traning as well as effect of loss terms as our ablation study.

Whitebox knowledge of Fdatabase For attacks 1-2, the adversary is assumed to have whitebox
knowledge of the system from which the template is leaked (i.e., Fdatabase) and use the same feature
extraction model for training (i.e., Floss), thus in such cases Floss = Fdatabase. We considered ArcFace
and ElasticFace models and reconstructed face images from the templates extracted by these models
in attacks against different FR systems. Table 3 reports the vulnerability of different target systems
to our attacks1 1-2 in terms of adversary’s SAR at the system’s FMR of 10−3. Similar results for
the system’s FMR of 10−2 are reported in Table 6 of Appendix. According to these tables, our
method achieves considerable SAR against ArcFace and ElasticFace target systems in attack 1. In
attack 2, we observe that there is a degradation in SAR with respect to attack 1. However, the
reconstructed face images can still be used to enter another target system. Meanwhile, the FR model
with a higher recognition accuracy is generally more vulnerable to attack 2. For instance, when
ArcFace is considered as Fdatabase, we observe that ElasticFace and Swin have the highest SAR as
target systems, while there is the same order for their recognition performance in Table 2.

Blackbox knowledge of Fdatabase For attacks 3-5, the adversary is assumed to have blackbox
knowledge of the system from which the template is leaked (i.e., Fdatabase) and use another feature
extraction model for training (i.e., Floss), therefore in such cases Floss 6= Fdatabase. Table 4 compares

1We should highlight that since there is no whitebox method in the literature with available source code (as
mentioned in Table 1), we could not compare our proposed method with other whitebox methods.
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the performance of our method with blackbox methods2 in the literature (Mai et al., 2018; Dong
et al., 2021; Vendrow & Vendrow, 2021) for attacks 3-5 in terms of adversary’s SAR at system’s
FMR of 10−3. Similar results for the system’s FMR of 10−2 are available in Table 7 of Appendix.
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Figure 4: Sample face images from the LFW
dataset (first raw) and their corresponding re-
constructed images using our template inversion
method from ArcFace templates in different at-
tacks, attacks 1-2 (second raw) and attacks 3-5
(second raw, using ElasticFace for Floss). The
values below each image show the cosine simi-
larity between the corresponding ArcFace tem-
plates of original and reconstructed face images.
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Figure 5: Sample failure cases images from
the LFW dataset and their corresponding re-
constructed images using our template inversion
method from ArcFace templates in the attack 3
(using ElasticFace for Floss). The values below
each image show the cosine similarity between
the corresponding templates of original and re-
constructed face images.

As these tables show, our proposed method
achieves the highest SAR compared to (Mai
et al., 2018; Dong et al., 2021; Vendrow &
Vendrow, 2021) against FR systems on the MO-
BIO and LFW datasets. In particular, in attack 5
which is the hardest attack, where Fdatabase, Floss,
and Ftarget are different, the results show that the
target FR system is still vulnerable to our attack.
The results of our method for attack 5 also show
transferability of our attack to different FR sys-
tems. Similar to attack 2, we can also observe
that in attack 5, the FR model with a higher
recognition accuracy is generally more vulner-
able to our attack. Fig. 4 also shows sample
face images from the LFW dataset and the re-
constructed images using our proposed method
from ArcFace templates in different attacks. We
should highlight that as show in Fig. 4, the re-
constructed face images in attack 1 and attack 2
are the same, but they are used to enter different
target FR system. The same holds for the recon-
structed face images in attacks 3-5.

Ablation Study To evaluate the effect of
WGAN in training our mapping network and
the effect of each term in our loss function (i.e.,
Eq. 1), we consider the ArcFace model in the
whitebox scenario and train different face re-
construction networks with different loss func-
tions. Then, we attack a system with the ArcFace
model as a feature extractor (i.e., attack 1) and
compare the SARs as reported in Table 5. Ac-
cording to these results, the proposed adversarial
training has a significant effect on our face recon-
struction method. In other words, the WGAN
framework helps our mapping network to learn
the distribution of StyleGAN’s intermediate la-
tent space to generate face-like images. When
we use the WGAN training and based on the
results in Table 5, the ID loss has a high im-
pact on the performance of the template inver-
sion model. While the pixel loss by itself does
not achieve a good performance, it improves the
performance of ID loss in our reconstruction loss
function in Eq. 1. This table confirms that the
proposed WGAN training and our reconstruction
loss function lead to a more successful attack.

Limitations Despite the significant perfor-
mance of our method in terms of success attack
rate in all types of attacks reported in Table 3 and
Table 4, the reconstructed face images fail to enter the system in some cases. Fig. 5 illustrates sam-

2The other blackbox methods in the literature do not have available source code and we could not reproduce
their results.
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Table 5: Evaluating the effect of each loss term in our loss function in attack 1 against ArcFace
in terms of SAR in the system with FMRs of 10−2 and 10−3 evaluated on the MOBIO and LFW
datasets. The values are in percentage.

WGAN training Reconstruction MOBIO LFW
(Eqs. 4 and 5) Loss Function FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

3

Lrec = Lpixel + LID 100.00 92.38 93.64 86.82
Lrec = LID 98.10 82.38 90.56 80.74
Lrec = Lpixel 0 0 0.65 0.07

7

Lrec = Lpixel + LID 0 0 0.32 0.02
Lrec = LID 0 0 0.14 0.02
Lrec = Lpixel 0 0 0.44 0.09

ple failure cases in the attack 3 against ArcFace (using ElasticFace for Floss) on the LFW dataset.
From the failure cases, we can conclude that there is a bias in the face reconstruction for specific
demographies, like elderly or dark skin people. Indeed, such kind of bias in the reconstructed face
images is caused by inherent biases in datasets used to train FR model, the StyleGAN model, and
our mapping network in our face reconstruction model3.

5 CONCLUSION

In this paper, we proposed a new method to reconstruct high-resolution realistic face images from
facial templates in a FR system. We used a pre-trained StyleGAN3 network and learned a mapping
from facial templates to intermediate latent space of StyleGAN within a GAN-based framework. We
proposed our method for whitebox and blackbox scenarios. In the whitebox scenario, the adversary
can use the feature extraction model for training the face reconstruction network; however, in the
blackbox scenario, we assume that the adversary has access to another feature extraction model. In
addition, we consider the threat model where the adversary might impersonate in the same or another
(i.e., transferable attack) FR system. Based on the adversary’s knowledge of the feature extraction
model and the target FR system, we defined five different attacks and evaluated the vulnerability
of SOTA FR systems to our proposed method. Our experiments showed that the reconstructed
face images by our proposed method not only can achieve a high SAR in whitebox and blackbox
scenarios, but also are transferable and can be used to enter target FR systems with a different FR
model.

ETHICS STATEMENT

Motivations The proposed face reconstruction method is presented with the motivation of show-
ing vulnerability of face recognition systems to template inversion attacks. We hope this work
encourages researcher of the community to investigate the next generation of safe and robust face
recognition systems and to develop new algorithms to protect existing systems.

Considerations While the proposed method might pose a social threat against unprotected sys-
tems, we do not condone using our work with the intent of attacking a real face recognition system
or other malicious purposes. The authors also acknowledge a potential lack of diversity in the re-
constructed face images, stemming from inherent biases of datasets used in our experiments.

Mitigation of such attacks This paper demonstrates an important privacy and security threat to
the state-of-the-art unprotected face recognition systems. Along the same lines, data protection
frameworks, such as the European Union General Data Protection Regulation (EU-GDPR) (Euro-
pean Council, 2016), put legal obligations to protect biometric data as sensitive information. To this
end and to prevent such attacks to face recognition systems, several biometric template protection
algorithms are proposed in the literature (Nandakumar & Jain, 2015; Sandhya & Prasad, 2017; Kaur
et al., 2022; Kumar et al., 2020).

3The biases for different demographies in verification task for ArcFace model are studied in (de Fre-
itas Pereira & Marcel, 2021). Similarly, biases in StyleGAN generated images and also the FFHQ dataset
(i.e., our training dataset) are investigated in (Karakas et al., 2022; Tan et al., 2020; Balakrishnan et al., 2020).
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REPRODUCIBILITY STATEMENT

In our experiments, we use PyTorch package and trained our models on a system equipped with an
NVIDIA GeForce RTXTM 3090. We use the pre-trained model of StyleGAN34 to generate 1024 ×
1024 high-resolution images. The source code of our experiments is publicly available to help
reproduce our results5.
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A APPENDIX

Table 6: Evaluation of attacks with whitebox knowledge of the system from which the template is
leaked (i.e., Floss = Fdatabase) against SOTA FR models in terms of adversary’s success attack rate
(SAR) using our proposed method on the MOBIO and LFW datasets. The values are in percentage
and correspond to the threshold where the target system has FMR= 10−2. Cells are color coded ac-
cording the type of attack as defined in Section 2 for attack 1 ( light gray ) and attack 2 ( dark gray ).

Fdatabase
MOBIO LFW

ArcFace ElasticFace HRNet AttentionNet Swin ArcFace ElasticFace HRNet AttentionNet Swin
ArcFace 100.00 93.81 80.00 81.90 85.24 93.64 90.89 68.08 62.75 76.24
ElasticFace 90.95 93.33 78.57 83.81 84.29 87.88 92.80 71.82 64.24 75.70

Table 7: Evaluation of attacks (with blackbox knowledge of the system from which the template
is leaked i.e., Fdatabase) against SOTA FR models in terms of adversary’s success attack rate (SAR)
using different methods on the MOBIO and LFW datasets. The values are in percentage and cor-
respond to the threshold where the target system has FMR= 10−2. M1: NbNetB-M (Mai et al.,
2018), M2: NbNetB-P (Mai et al., 2018), M3: (Dong et al., 2021), and M4: (Vendrow & Vendrow,
2021). Cells are color coded according the type of attack as defined in Section 2 for attack 3
( lightest gray ), attack 4 ( middle dark gray ), and attack 5 ( darkest gray ).

Fdatabase Floss Ftarget
MOBIO LFW

M1 M2 M3 M4 Ours M1 M2 M3 M4 Ours

ArcFace ElasticFace

ArcFace 26.67 49.05 20.48 67.14 89.52 26.66 61.66 28.31 76.98 87.85
ElasticFace 11.90 49.52 16.19 34.29 86.67 32.42 66.61 23.05 57.84 87.43

HRNet 10.48 24.76 10.00 26.19 79.05 18.69 43.21 17.37 33.55 60.93
AttentionNet 11.43 38.10 18.10 24.29 80.48 10.84 31.88 13.31 26.73 53.86

Swin 10.48 45.24 10.95 29.52 82.86 14.79 45.80 16.98 38.03 67.80

ElasticFace ArcFace

ArcFace 17.14 49.05 20.95 47.14 95.24 33.08 67.89 26.35 57.48 91.23
ElasticFace 30.00 70.95 25.7 75.24 94.76 52.99 81.74 33.53 79.62 93.34

HRNet 8.10 47.14 15.24 31.43 83.81 29.27 60.34 23.22 39.06 76.68
AttentionNet 12.86 47.14 23.43 40.95 87.14 18.53 46.36 17.78 31.53 69.45

Swin 10.00 54.76 13.81 37.14 89.05 24.50 60.19 21.40 41.13 80.15
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