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ABSTRACT

Probabilistic time series imputation has been widely applied in real-world scenar-
ios due to its ability to estimate uncertainty of imputation results. Meanwhile,
denoising diffusion probabilistic models (DDPMs) have achieved great success in
probabilistic time series imputation tasks with its power to model complex dis-
tributions. However, current DDPM-based probabilistic time series imputation
methodologies are confronted with two types of challenges: 1) The backbone
modules of the denoising parts are not capable of achieving sequence modeling
with low time complexity. 2) The architecture of denoising modules can not han-
dle the inter-variable and bidirectional dependencies in the time series imputation
problem effectively. To address the first challenge, we integrate the computational
efficient state space model, namely Mamba, as the backbone denosing module
for DDPMs. To tackle the second challenge, we carefully devise several SSM-
based blocks for bidirectional modeling and inter-variable relation understanding.
Experimental results demonstrate that our approach can achieve state-of-the-art
time series imputation results on multiple datasets, different missing scenarios
and missing ratios.

1 INTRODUCTION

The analysis of time series can model the intrinsic patterns within time-series data, thus providing
robust support for decision-making in various fields, such as meteorology McGovern et al. (2011);
Karevan & Suykens (2020), financial analysis Xiang et al. (2022); Owusu et al. (2023); Bai et al.
(2020), healthcare Morid et al. (2023); Poyraz & Marttinen (2023) and power systems Tzelepi et al.
(2023); Zhou et al. (2021). To enhance the reliability of analytical outcomes, it is critical to en-
sure the integrity of time series. However, due to various reasons such as device failures, human
errors, and privacy protection, time series data can easily be incomplete with missing observations
at different timestamps.

Time series imputation methods aim to estimate the values of missing points based on the observed
points in incomplete time series, thereby restoring the integrity of the time series while preserv-
ing its original statistical properties. According to the ability to provide uncertainty of estimations,
time series imputation methods can be categorized into the following two perspectives: 1) Deter-
ministic Cao et al. (2018); Cini et al. (2022); Du et al. (2023), and 2) Probabilistic Chen et al.
(2023b); Kim et al. (2023); Luo et al. (2018) imputation methods. Probabilistic time series im-
putation is particularly important in dealing with complex and uncertain data environments, as it
provides a quantification of uncertainty for the imputations. The key to probabilistic imputation lies
in modeling the posterior distribution. Existing probabilistic time series imputation methods include
Gaussian Process and Variational Autoencoder-based methods Fortuin et al. (2020), Normalization
Flow-based methods Rasul et al. (2021), and Diffusion-based methods Tashiro et al. (2021). Among
these, the Diffusion-based method has emerged as the optimal choice for probabilistic time series
due to their accuracy in posterior modeling and adaptability to different scenarios and various types
of time series data.

When selecting a denoising backbone in the diffusion model, the following two key factors need to
be considered: 1) Model compatibility, and 2) Time complexity. Model compatibility involves
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two key aspects: 1) the backbone of the model should be capable of handling input data effectively.
2) the backbone of the model should align with the model’s intended objective (i.e., in diffusion
models, the backbone must be capable of modeling noise in the diffusion process). Specifically,
the missing observations in time series have correlations with their neighbors on both sides, so it
is crucial to design a model by considering information from neighbors of both sides. Moreover,
it is also essential to accurately capture the properties of time series, such as global dependencies
and channel correlations. Three mainstream denoising backbones are widely used in diffusion mod-
els for time series imputation: 1) Convoluational Neural Networks (CNNs)-, 2) Transformer- and
3) State-Space Model (SSM)-based backbones. Given a time series with a length of L, the CNNs-
based backbone can capture partial information from the neighbors within the receptive fields and
has O(L) time complexity. The transformer-based backbone can model temporal dependencies
across the entire time series but is with quadratic time complexity O(L2). The SSM backbone has
a linear time complexity, O(L), but it falls short in capturing the information from one side of the
neighbor. Moreover, all these backbones fail to capture the channel dependencies in time series. The
comparison results of existing backbones and our method in terms of various dependencies and time
complexity are presented in Table.1.

Table 1: Comparison of our method and existing methods in modeling dependencies and time com-
plexity. The results show that our method achieves the most comprehensive data modeling with the
lowest time complexity.

Backbone Model Global Dependency Time Complexity Channel Dependency Inter-sequence Dependency
CNN Local O(L) Independent Unidirectional
Transformer Global O(L2) Independent Unidirectional
SSM Partial O(L) Independent Unidirectional
DiffImp (Ours) Global O(L) Dependent Bidirectional

In this paper, we propose an efficient diffusion-based framework for probabilistic time series imputa-
tion to address the drawbacks in existing backbones of time series imputation, we name it DiffImp.
To ensure linear complexity, we choose the SSM-based model as the backbone of our framework,
which is Mamba Dao & Gu (2024) to be more specific. Though there has been SSM-based diffusion
backbones, there remains a question whether the Mamba block is an effective backbone for time
series imputation problem and how to design modules suitable for time series imputation problems
based on Mamba blocks. To enable Mamba to capture information from both sides of the missing
values, we then propose a Bidirectional Attention Mamba block (BAM) that is more applicable to
time series imputation task. To incorporate bidirectional dependencies, we design a learnable weight
module inside the BAM block. This module learns the weights of all points within the sequence,
facilitating the modeling of dependencies at different distances.

Next, we propose a Channel Mamba Block (CMB) to capture the dependencies among different
channels in a time series. Specifically, we treat the variables across different channels in the time
series as a sequence of variables and employ the Mamba model alongside the channel dimension, so
inter-dependencies among channels can be modeled.

Our contributions are summarized as follows:

• We propose DiffImp, an efficient diffusion-based model for the time series imputation task.
It integrates mamba-based blocks as diffusion backbones and equips the model with the
capability of probabilistic time series imputation with linear time and space complexity.

• We propose Channel Mamba Block and Bidirectional Attention Mamba block to capture
the sequential correlations and channel dependencies inside the time series. The bidirec-
tional attention mamba block and channel mamba block can effectively model the multi-
variate time series with missing values.

• We conduct experiments on multiple real-world datasets for both time series imputation
and time series forecasting tasks. The experimental results demonstrate that our approach
achieves state-of-the-art performance across several datasets, different missing scenarios
and missing ratios.
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2 PRELIMINARIES

2.1 STATE SPACE MODELS

State Space Models (SSMs) are an emerging approach to model sequential data, which is imple-
mented by finding out state representations to model the relationship between input and output
sequences. A SSM receives a one-dimensional sequence X ∈ RL as the input and outputs a corre-
sponding sequence Y ∈ RM . Under continuous settings, the SSMs are defined according to Eq.1:{

ḣ(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t),
(1)

where x(t) ∈ RL, y(t) ∈ RM , h(t), and ḣ(t) ∈ RN stands for the input, output, hidden state, and
derivative of hidden state at timestamp t, respectively; A ∈ RN×N ,B ∈ RN×L,C ∈ RM×N and
D ∈ RM×L are learnable model parameters.

In real-world applications, the input sequences are discrete samplings of continuous sequences.
According to Gu et al. (2022), under discrete settings, by applying the zero-order hold technique to
Eq.1, it can be reformulated as follows.{

hk = Āhk−1 + B̄xk

yk = Chk
, (2)

where Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A) − I) · (∆B) and ∆ is the learnable step size in
discrete sampling. We can see from Eq.2 that the hidden state is updated according to the input
x(t) and last hidden state h(t − 1) while the output is generated by the hidden state h(t) and the
input x(t) and in Gu et al. (2020), where it introduces High-order Polynomial Projection Operator
(Hippo) to achieve longer sequence modeling.

However, it is worth noticing that A,B,C,D in Eq.1 and Eq.2 are time-invariant parameters, i.e.,
they are data-independent parameters and do not change over time. Therefore the model is not ca-
pable of assigning different weights at different positions in the input sequence while receiving new
inputs. To address this issue, Gu & Dao (2023) proposed Mamba, in which the parameter matrices
A,B,C,D are input-dependent, thus enhancing the performance of sequence modeling. To tackle
the problem of non-parallelization, Gu & Dao (2023) also introduced selective scan mechanism for
effective computing. For further performance and efficiency improvements, Dao & Gu (2024) point
out that SSMs can be categorized as a variant of linear attention model. In this work, we follow the
same architecture of parallel Mamba Blocks as Dao & Gu (2024) and a RMS-norm Zhang & Sen-
nrich (2019) module is added after the parallel Mamba block. The details of the post-normalization
Mamba Block (PNM Block) are illustrated in Fig.3a.

2.2 DIFFUSION MODELS

Let xt be a sequence of variables for t = 1, 2, · · · , T . The diffusion process consists of two pro-
cesses: 1) The forward process without learnable parameters, which transforms the data distribu-
tion into a standard Gaussian distribution by gradually adding noise to the data. 2) The reverse
process with learnable parameters, which first samples from the standard Gaussian distribution and
then progressively denoises the data to approximate the data distribution. The reverse process of
diffusion models a parameterized distribution pθ defined with the following Markov chain to ap-
proximate the real data distribution:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

where xT ∼ N (0, I) denotes the latent variable sampled from standard Gaussian distribution and
pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)I), (4)

The loss function of DDPM aims at minimizing the difference between the noise in the forward
process ϵ and the parameterized noise ϵθ in the reverse process:

Ld = Ex0,ϵ∥ϵ− ϵθ(xt, t)∥, (5)
where t stands for the diffusion time embedding and xt is calculated in the forward process. Please
refer to Appendix 7.1 for more details about the diffusion models.
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2.3 PROBLEM FORMULATION

Definition 1 (Time Series). A time series can be defined as a tuple, denoted as X̃ = (X,M, T ),
where X ∈ RK×L is the observation matrix with K observations at a time, which are ordered
along L time intervals chronologically; M ∈ RK×L is an indicator matrix that indicates whether
the observation at (i, j) in X is missing or not: if the observation at position (i, j) is missing, i.e.,
Xi,j = NA, then Mi,j = 1, otherwise, Mi,j = 0; T ∈ RL is the time stamps of the time series.

Definition 2 (Probabilistic Time Series Imputation). Given an incomplete time series X̃ =
(X,M, T ), where

∑
M < K · L, the problem of probabilistic time series imputation is to learn an

imputation function Mθ, such that
X̄ = Mθ(X̃), (6)

where X̄ ∈ RK×L is the imputed time series, where X̄i,j = µi,j ± σi,j denotes the probabilistic
output if Mi,j = 1, otherwise X̄i,j = Xi,j .

3 METHODOLOGY

3.1 DIFFUSION MODELS FOR TIME SERIES IMPUTATION

When dealing with time series imputation using diffusion models, consider a time series X̃ , our
goal is to model the posterior P (X̄|X,M, T ). To make the modeled posterior more precisely, it is
natural to introduce conditions to introduce the diffusion process. Considering the short range and
long range inter-dependencies within time series, maximizing the observed values utilized in the
diffusion process can effectively improve the performance of the imputation results. On the other
hand, due to the fact that all the observed values are utilized as condition inputs in the diffusion
process, we do not apply any extra process to the observed values to avoid the error accumulation
caused by information propagation, the observed values Xc

o are condition inputs for the diffusion
process. Thus, the reverse process in Eq.3 is modified to a conditional form with time-series inputs:

pθ(X
m
0:T |X0, X

c
o) = p(Xm

T )

T∏
t=1

pθ(X
m
t−1|Xm

t , Xc
o), (7)

where Xm
T ∼ N (0, I), Xm

t denotes the sequence of latent variables in the diffusion process and
t ∈ {1, 2, · · · , T} is the diffusion time steps. Eq.4 is reformulated as:

pθ(X
m
t−1|Xm

t , Xc
o) = N (Xm

t−1;µθ(X
m
t , t|Xc

o), σθ(X
m
t , t|Xc

o)I), (8)

the parameterized mean turns to:

µθ(Xt, t) =
1

αt

(
Xt −

βt√
1− αt

ϵθ(Xt, t|Xc
o)

)
, (9)

where
Xt =

√
αtX0 + (1− αt)ϵ, (10)

and {βt ∈ (0, 1)}Tt=1 is a predefined variance scheduler and αt =
∏t

i=1(1 − βt), hence we get the
conditional diffusion loss for time series imputation task:

L = EX0,ϵ∥ϵ− ϵθ(Xt, t|Xc
o)∥ = EX0,ϵ∥ϵ− ϵθ(

√
αtX0 + (1− αt)ϵ, t|Xc

o)∥, (11)

where ϵ ∼ N (0, I).

In the real world, the imputation problem encounters various complexities, such as different ra-
tios of missing data, the positions of missing values within the sequence and the distribution of
missing data. To simulate various complex missing situations in real-world scenarios, we adopt a
self-supervised approach for training, i.e., applying a predefined mask to the complete dataset to
construct corresponding dataset with missing data. We follow the same mask strategies in Alcaraz
& Strodthoff (2023), including Random Missing (RM) which corresponds to the situation of uni-
formly random missing values, Random Block Missing (RBM) which corresponds to the situation
of continuous missing values (missing intervals) in different channels and Blackout Missing (BM)
which contains missing intervals at the same timestamps among different channels.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Mask

Input Time Series 

Condition Input 

Masked Targets 

Parameterized
Noise 

Diffusion 
Step

Noisy Input

Noise

Minimize

Figure 1: The self-supervised framework and training process of DiffImp. First, some of observed
values are masked following the same missing pattern as the missing values (in red) to get masked
targets (X0, in magenta) and the condition input (Xc

o , in blue). The noisy input is obtain from X0

and ϵ (in orange) sampled from N (0, I) The objective of the network is to minimize the difference
between the parameterized noise ϵθ(Xt, t) and ϵ. Solid lines in each time series represent observed
values, while dashed lines represent missing values.

3.2 MODEL ARCHITECTURE

The Overall Module Architecture Fig.1 illustrates the overall self-supervised framework and train-
ing process of our model. We first mask part of the observed values according to the pattern of
missing values, where the masked values serve as the imputation target X0 during training. The
remaining observed values form the conditional input Xc

o for the noise prediction network ϵθ. We
then combine X0 with noise ϵ sampled from a standard normal distribution to obtain the noisy input
Xt. Both Xc

o , Xt, and the diffusion step t are fed into the noise prediction network ϵθ to get the
parameterized noise. The network minimizes the difference between ϵθ and ϵ according to Eq.11.

As shown in Fig.2, the forward process of ϵθ are as follows: For each diffusion step, the input con-
sists of the following parts: noisy input Xt, the condition input Xc

o and the diffusion step t. To begin
with, the inputs are embedded to the latent diffusion space. The embedding module of noisy inputs
and condition inputs share a similar model structure, which consists of a linear projection module
followed by an SMM block in Fig.3b. The SMM block is composed of stacks of Bidirectional At-
tention Mamba (BAM) blocks and Channel Mamba Blocks (CMB), which is introduced in the next
part. Due to the relatively limited information from t, the embedding module of t only consists of
linear projection modules. After the embedding step, the embedded diffusion step is concatenated
with the input embeddings. The concatenated embeddings are fed in to a SMM module. Then the
output of the SMM module is concatenated with the condition embeddings. After feeding the final
embeddings to another SMM module and final projection module, we can get the noise predictions
ϵθ(Xt, t). The training and sampling algorithm is detailed in Alg.1 and Alg.2.

Mamba Encoders for Bidirectional Modeling For probabilistic time series imputation tasks, the
objective is to attain a more precise posterior estimation for the missing points contingent upon
the observed points. Therefore, our proposed module should achieve two key objectives: Firstly,
it should possess bidirectional analysis capability, which means that the model should be able to
capture dependencies in both the forward and reverse temporal directions. Secondly, considering
that the known points at different positions relative to the missing point have varying distances, the
model should assign different weights to difference timestamps. To address these issues, we de-
vise a bidirectional attention Mamba module (BAM). BAM takes the representations from previous
layers as input, which are then fed into two distinct PNM modules (Fig.3a), enabling the model to
capture bidirectional dependencies. More specifically, temporal attention is implemented by assign-
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Figure 2: Architecture of ϵθ in DiffImp

ing different values to various time steps in the sequence, where the temporal attention module also
receives the previous layer’s representation and learns the weights for different timestamps. The
details of BAM are shown in Fig.3d.

Mamba Encoders for Inter-channel Modeling In the context of multivariate time series, inter-
dependencies exist among variables across different channels. The effective modeling of these
inter-channel correlations is instrumental in capturing the intrinsic characteristics of the time se-
ries more adeptly. Additionally, when analyzing the relationships between channels, the order of
the channels does not exhibit the sequential dependencies as that among timestamps. Consequently,
we employ unidirectional channel dependency modelling architecture, termed as Channel Mamba
Block (CMB). We first transpose the input time series representation for processing on the channel
dimension. The transposed representations are then subjected to a normalization module and pro-
cessed through a PNM block, yielding a more profound feature representation. The details of CMB
are presented in Fig.3c.

b. Sequential Mamba Module (SMM)

C
M
B

B
A
M

C
M
B

B
A
M

C
M
B

B
A
M

a. Post Norm Mamba Block (PNM)

N

Parallel
Mamba
Block

N

Conv

SSM

Parallel
Mamba
Block

c. Channel Mamba Block (CMB)

N

Forward
Conv

Forward
PNM

T

d. Bidirectional Attention Mamba (BAM)

N

Forward
Conv

Backward
Conv

Backward
Conv

Forward
PNM

Temporal
Attention

F

Activation

Sequence
Transformation
(SSM/Convolution)

Linear
Projection

N Normalization

Add

Multiplication

F Flip

T Transpose

Figure 3: Details of PNM, SMM, CMB, BAM block in the noise prediction module. (a) PNM:
backbone module based on Mamba. (b) SMM: core components of noise prediction module, com-
posed of stacks of BAM and CMB. (c) CMB: unidirectional module for inter-channel dependency
modeling. (d) BAM: bidirectional module with temporal attention for intra-channel, multi-range
dependency modeling.
Complexity Analysis While dealing with the input sequences, the core component of our module is
the PNM module in Fig.3 and the self-attention module in the Transformer architecture, respectively.
In this part, we will give a brief analysis about the time and space complexity in the SSM module
and self-attention module1. The time complexity of self-attention module is O(CL2) and the space

1We do not take the time and space complexity of MLPs before the self-attention module or SSM module
into consideration.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Training Procedure of DiffImp
1: Input: Observed sequence x0, number of iterations N , variance scheduler βt

2: Output: Denoising function ϵθ
3: For i = 1 to N do:
4: t ∼ Uniform({1, 2, · · · , T})
5: ϵ ∼ N (0, I)
6: Calculate diffusion targets xt according to Eq.10
7: Take gradient step on

∇θ(∥ϵ− ϵθ(xt, t|X0)∥)
according to Eq.11

8: End For

Algorithm 2 Sampling Procedure of DiffImp
1: Input: Trained denoising function ϵθ, sampling step T
2: Output: Mean prediction x0

3: For t = T, T − 1, · · · , 1 do:
4: z ∼ N (0, I) if t > 1 else z = 0

5: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt

)
ϵθ(xt, t) + σtz

6: End For

complexity is O(L2 +CL), where L is the length of the input sequence and C is the channel of the
input sequence.

In our method, the forward process described in Eq.2 is implemented by converting the process to
multiplications of structured matrices, which is of time complexity O(NCL) and of space complex-
ity O(CL +N(C + L)) (N is a constant number and set as 16 by default). This indicates that our
model is of linear time and space complexity with respect to the sequence length L, which ensures
scalability and reduces memory cost for longer sequences.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets and Experimental Settings We conduct experiments on five real-world datasets to val-
idate the effectiveness of our approach. These datasets span multiple domains, namely Electricity
dataset Asuncion & Newman (2007), MuJoCo dataset Rubanova et al. (2019b), ETTm1 dataset Zhou
et al. (2021), Physionet (Healthcare) dataset Silva et al. (2012) and Air quality (AQI) dataset Yi et al.
(2016).

All experiments are conducted using PyTorch Paszke et al. (2019) in Python 3.9 and execute on
an NVIDIA RTX3090 GPU. The training process is guided by Eq.11, employing the ADAM opti-
mizer Kingma & Ba (2015) with a learning rate of 2 × 10−4. More details about the datasets and
experimental settings can be found in the Appendix.

Evaluation Metrics and Baselines To achieve an extensive evaluation of imputation performance,
diverse metrics are utilized for evaluating deterministic imputation results, namely Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Root Mean Square Error (RMSE). Due to
reproducibility reasons of baselines, we compare with different baselines and report different metrics
for different datasets. The datasets and corresponding baseline and metrics are listed in Table.2. We
follow the same settings and dataset preprocessings as Alcaraz & Strodthoff (2023) and collect all
the baseline results from the same paper.

As for the evaluation of probabilistic imputation, we calculate the Continuous Ranked Proba-
bilistic Score-sum (CRPS-sum) on the electricity dataset and Continuous Ranked Probabilistic
Score (CRPS) on the Physionet dataset and Air quality dataset. The CRPS-sum and CRPS results
are collected from Yan et al. (2024). In all the tables of our experiment results, the best results are in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

bold and second best results are underlined. All the deterministic metrics are maintained by running
the experiment for 3 times and CRPS-sum is obtained by 10 runs.

Table 2: Datasets and corresponding evaluation metrics and baselines for time series imputation and
forecasting task.

Dataset Task Metric Baseline

Electricity Imputation MAE; RMSE; MRE M-RNN Yoon et al. (2019); GP-VAE Fortuin et al. (2020);
BRITS Cao et al. (2018); SAITS Du et al. (2023); CSDI; SSSD

MuJoCo Imputation MSE
RNN GRU-D Che et al. (2018); ODE-RNN Rubanova et al. (2019a);
NeuralCDE Morrill et al. (2021); Latent-ODE Rubanova et al. (2019a);
NAOMI Liu et al. (2019); NRTSI Shan et al. (2023a); CSDI; SSSD

Air Quality Imputation MAE;MSE
V-RIN Mulyadi et al. (2022);GP-VAE Fortuin et al. (2020);BRITS Cao et al. (2018);
SPIN Marisca et al. (2022);SPIN-H Marisca et al. (2022);gatgpt Chen et al. (2023a);
GRIN Cini et al. (2022);CSDI

RMSE

V-RIN Mulyadi et al. (2022);BRITS Cao et al. (2018);
SSGAN Miao et al. (2021);RDIS Choi et al. (2023);CSDI;SSSD;
CSBI Chen et al. (2023b);TS-diff Kollovieh et al. (2023);SAITS Du et al. (2023);
D3M Yan et al. (2024);TIDER Liu et al. (2023)

Physionet Imputation RMSE

V-RIN Mulyadi et al. (2022);BRITS Cao et al. (2018);
SSGAN Miao et al. (2021);RDIS Choi et al. (2023);CSDI;SSSD;
CSBI Chen et al. (2023b);TS-diff Kollovieh et al. (2023);SAITS Du et al. (2023);
D3M Yan et al. (2024);TIDER Liu et al. (2023)

ETTm1 Forecasting MAE; MSE
LSTNet Lai et al. (2018); LSTM Bahdanau et al. (2015);
Reformer Kitaev et al. (2020); LogTrans Li et al. (2019);
Informer Zhou et al. (2021); Autoformer Wu et al. (2021); CSDI; SSSD

4.2 TIME SERIES IMPUTATION

Deterministic Imputation Results Table.3 presents the experimental results on the MuJoCo dataset
under RM missing scenario with high missing ratios of 70%, 80%, and 90%, respectively. On the
MuJoCo dataset, DiffImp achieves SOTA performance under 80% and 90% missing ratio, delivering
at least 50% performance improvement over previous SOTA methods. In the experiment of 70%
missing ratio, our method achieves results very close to SOTA. The results on MuJoCo dataset
indicate that our proposed DiffImp is the optimal method for high missing ratio imputation under
the RM missing pattern. Table.4 shows the experimental results on the Electricity dataset, where
we apply the RM missing pattern with missing ratios of 10%, 30%, and 50%. We achieve the best
results across all metrics with a 30% missing ratio, significantly outperforming other methods. In
the experiments with 10% and 50% missing ratios, we obtain results with only a slight gap to the
SOTA models.

Table 3: MSE Results on MuJoCo Dataset with missing ratio 70%, 80% and 90% for the missing
scenario RM.

Model 70% RM 80% RM 90% RM
RNN GRU-D 1.134e-2 1.421e-2 1.968e-2
ODE-RNN 9.86e-3 1.209e-2 1.647e-2
NeuralCDE 8.35e-3 1.071e-2 1.352e-2
Latent-ODE 3.00e-3 2.95e-3 3.60e-3
NAOMI 1.46e-3 2.32e-3 4.42e-3
NRTSI 6.3e-4 1.22e-3 4.06e-3
CSDI 2.4e-4±3e-5 6.1e-4±1.0e-4 4.84e-3±2e-5
SSSD 5.9e-4±8e-5 1e-3±5e-5 1.90e-3±3e-5
DiffImp (Ours) 2.7e-4±1e-5 3.16e-4±9.77e-6 6.5e-4±1e-4

Table 4: MAE and RMSE results on Electricity Dataset
10% RM 30% RM 50% RM

Model MAE RMSE MRE MAE RMSE MRE MAE RMSE MRE
M-RNN 1.244 1.867 66.6% 1.258 1.876 67.3% 1.283 1.902 68.7%
GP-VAE 1.094 1.565 58.6% 1.057 1.571 56.6% 1.097 1.572 58.8%
BRITS 0.847 1.322 45.3% 0.943 1.435 50.4% 1.037 1.538 55.5%
SAITS 0.735 1.162 39.4% 0.790 1.223 42.3% 0.876 1.377 46.9%
CSDI 1.510±3e-3 15.012±4e-2 81.10±1e-1% 0.921±8e-3 8.732±7e-2 49.27±4e-1% 0.278±4e-3 2.371±3e-2 14.93±1e-1%
SSSD 0.345±1e-4 0.554±5e-5 18.4±5e-3% 0.407±5e-4 0.625±1e-4 21.8±0% 0.532±1e-4 0.821±1e-4 28.5±1e-2%

DiffImp (Ours) 0.378±6e-4 0.522±3e-3 20.2±1e-2% 0.348±1e-3 0.496±2e-3 18.6±1e-1% 0.546±3e-3 0.837±7e-3 29.2±2e-1%

Probabilistic Imputation Results Table.5 presents a comparison of our method with other proba-
bilistic time series imputation methods based on the CRPS-sum metric. The baselines for CRPS-sum
include Tashiro et al. (2021); Chen et al. (2023b); Alcaraz & Strodthoff (2023); Yan et al. (2024);
Kollovieh et al. (2023). The experimental results show that our method achieves a 21.4% perfor-
mance improvement compared to the second-best method. This indicates that our method models

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: The CRPS-sum results on electricity dataset
Model CSDI CSBI SSSD TS-Diff D3M DiffImp(Ours)

CRPS-sum 2.14e-2±8e-3 2.19e-2±7e-3 1.96e-2±1e-3 2.23e-2±6e-3 1.92e-2±4e-3 1.51e-2±4e-4
the data distribution of the sequence more accurately than other baseline methods. Please refer to
the Appendix for more experiment results on probabilistic and determinsitc time series imputation.

4.3 TIME SERIES FORECASTING

As mentioned in 3.1, the probabilistic time series forecasting problem can be treated as a variant
of the probabilistic time series imputation problem (as a special case of the missing manner BM).
Therefore, we also conduct experiments to validate the effectiveness of our experiments on prob-
abilistic time series forecasting task. Following the setup in previous works, we test five different
forecasting horizons: 24, 48, 96, 288, and 672 time steps, with corresponding conditional lengths
(i.e., the length of observed sequence) of 96, 48, 284, 288, and 384 time steps.

Table.6 presents the experimental results on the ETTm1 dataset. Our method achieves state-of-the-
art performance on prediction length of 24 and 96, outperforms other imputation-based algorithms
at the prediction length of 672, and shows only a slight gap compared to the best imputation-based
algorithms at the prediction length of 48 and 288.

Table 6: MSE and MAE results on ETTm1 dataset
Forecasting Length 24 48 96 288 672

Model MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
LSTNet 1.170 1.968 1.215 1.999 1.542 2.762 2.076 1.257 2.941 1.917
LSTMa 0.629 0.621 0.939 1.392 0.913 1.339 1.124 1.740 1.555 2.736
Reformer 0.607 0.724 0.777 1.098 0.945 1.433 1.094 1.820 1.232 2.187
LogTrans 0.412 0.419 0.583 0.507 0.792 0.768 1.320 1.462 1.461 1.669
Informer 0.369 0.323 0.503 0.494 0.614 0.678 0.786 1.056 0.926 1.192
CSDI 0.370±3e-3 0.354±1.5e-2 0.546±2e-3 0.750±4e-3 0.756±1.1e-2 1.468±4.7e-2 0.530±4e-3 0.608±3.5e-2 0.891±3.7e-2 0.946±5.1e-2
Autoformer 0.403 0.383 0.453 0.454 0.463 0.481 0.528 0.634 0.542 0.606
SSSD 0.361±6e-3 0.351±9e-3 0.479±8e-3 0.612±2e-3 0.547±1.2e-2 0.538±1.3e-2 0.648±1.0e-2 0.797±5e-3 0.783±6.6e-2 0.804±4.5e-2
DiffImp (Ours) 0.282±1.8e-2 0.331±9.9e-3 0.679±5.6e-3 0.548±5.6e-4 0.3906±1.3e-2 0.4211±8.5e-3 0.621±2.1e-3 0.741±3.3e-3 0.683±3.1e-3 0.783±6.8e-3

4.4 VISUALIZATION RESULTS

Figure 4: Visualized results of probabilistic time series imputation on MuJoCo dataset.
Fig.4 shows the visualization results for channel 5 and channel 7 on the MuJoCo dataset with a 90%
missing ratio. From the figure, we can see that almost all ground truth values for the points to be
imputed fall within the 95% confidence interval, and most of the ground truth values are within the
50% confidence interval, which demonstrates the effectiveness of our method. Please refer to the
appendix for more visualization results on different datasets.
4.5 PARAMETER SENSITIVITY AND SAMPLING TIME ANALYSIS

Table.7 presents the results of parameter sensitivity experiments. In our setup, there are three hy-
perparameters with different dimensions: sequence dimension, residual connection dimension, and
input projection dimension. These three parameters are set to be equal in our experiments. We test
different results for C = 32, 64, 128. The experimental results show that as C increases, all metrics
significantly decrease. Additionally, since C = 256 exceeds the single GPU memory capacity, and
the performance improvement from C = 64 to C = 128 is limited, which means the performance
improvement by further adding channels may be limited, we choose C = 128 in our experiments to
balance between metrics and computational cost.

Table.8 presents a comparison of sampling time between our method and other backbone-based
methods across different datasets. We find that, with consistent model parameter sizes, our method
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Table 7: Parameter sensitivity results.
#Channel MAE MSE MRE RMSE

32 0.0482±0.0004 0.0066±0.0004 0.0496±0.00131 0.0809±0.0025
64 0.0147±0.00030 0.00075±0.00007 0.0151±0.00031 0.0273±0.0012

128 0.0135±0.00075 0.00065±0.00001 0.0139±0.00076 0.0254±0.0020
exhibits inference times similar to the SSSD method with SSM backbone of linear time complexity
and CSDI has the shortest inference time due to its CNN backbone. Moreover, as the number of
channels increases, the memory consumption of our method increases linearly, indicating that our
method demonstrates linear time and space complexity.
Table 8: Model size, inference time and gpu memory cost analysis of CSDI, SSSD and DiffImp on
Electricity and MuJoCo dataset.

CSDI SSSD DiffImp (C=64) DiffImp (C=96) DiffImp (C=128)
electricity MuJoCo electricity MuJoCo electricity MuJoCo electricity MuJoCo electricity MuJoCo

Model size (M) 2.35 0.05 49.23 48.3 24.21 24 51.03 50.92 87.7 87.57
Inference time(s) 0.10 0.051 0.42 0.416 0.268 0.264 0.548 0.543 0.936 0.936

GPU Memory Cost (MB) 4046 3226 2534 2448 1662 1748 2724 2696 4604 4574

4.6 ABLATION STUDIES

To validate the effectiveness of the proposed module, we conduct ablation experiments on the fol-
lowing aspects: 1) the bidirectional modeling 2) the temporal attention mechanism 3) the inter-
channel multivariate dependencies. We also replace the CMB block with channel attention module
implemented using Hu et al. (2018) to validate the effiectiveness of CMB block. All experiments are
conducted on the MuJoCo dataset with the missing ratio 90%. During ablation experiments, we find
out that our model converges much slower than other models in the ablation experiment, so we train
till all models are converged (for same number of iterations, even if it has already been converged).
The hyperparameters in the ablation studies are presented in the appendix.

The results are shown in Table.9. It can be observed that the module equipped with BAM and
CMB block performs the best, significantly outperforming the results of removing any one of these
components across all four metrics. The temporal attention module has the largest impact on the
model, and its removal leads to a significant performance drop. Similarly, removing the CMB
module also results in a notable degradation in performance. On the other hand, adjusting the BAM
module to its unidirectional form also causes some degree of performance decrease. This fully
demonstrates the effectiveness of our proposed blocks.

Table 9: Experimental results of Ablation Study
Time Modeling Temporal Attention Inter-Channel Dependency MSE MAE MRE RMSE
Bidirectional Yes Yes 5.46e-4±1.6e-5 1.17e-2±7.4e-5 1.21±7.5e-3% 2.33e-2±3.1e-4

Forward Yes Yes 7.19e-4±2.0e-5 1.26e-2±2.1e-4 1.29±2.2e-2% 2.67e-2±2.9e-4
Forward Yes No 7.48e-4±9.5e-5 1.23e-2±3.5e-4 1.23±3.5e-2% 2.71e-2±1.5e-3

Backward Yes Yes 7.24e-4±7.3e-5 1.30e-2±4.2e-4 1.30±4.2e-2% 2.69e-2±1.3e-3
Backward Yes No 8.39e-4±6.1e-5 1.46e-2±3.8e-4 1.46±3.8e-2% 2.89e-2±1.0e-3

Bidirectional Yes No 8.85e-4±2.8e-5 1.40e-2±3.1e-4 1.44±3.4e-2% 2.97e-2±4.8e-4
Bidirectional No Yes 9.66e-4±9.5e-5 1.53e-2±3.3e-4 1.57±3.5e-2% 3.09e-2±1.3e-3
Bidirectional Yes Channel Attention 7.43e-4±4.0e-5 1.31e-2±5.5e-5 1.35±5.6e-3% 2.71e-2±5.6e-5

5 CONCLUSION AND FUTURE WORK

In this paper, we propose DiffImp, a time series imputation model based on DDPM and Mamba
backbone, which incorporates bidirectional information flow, temporal attention and inter-variable
dependencies. DiffImp enables efficient time series modeling with linear complexity. Experimental
results demonstrate that DiffImp achieves superior performance across multiple datasets, various
missing patterns, and different missing ratios.

For future work, one possible direction is to further reduce the time complexity of the sampling
process while already lowering the complexity of time series modeling, in order to enhance the
model’s inference efficiency. Another possible direction is to extend the application of diffusion
models by applying DiffImp to other time series downstream tasks and time series representation
learning tasks.

6 REPRODUCIBILITY

To ensure reproducibility and facilitate experimentation, datasets and code are available at:
https://anonymous.4open.science/r/DiffImp-843F.
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Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
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(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 12360–12371, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021. URL
https://doi.org/10.1609/aaai.v35i12.17325.

7 APPENDIX

7.1 DETAILS OF DDPM

The denoising diffusion probabilistic model (DDPM) generates unknown data by modeling the dis-
tribution of known training data with a parameterized distribution and sampling from the modeled
distribution. Concretely, a typical DDPM model consists of two processes, namely the forward pro-
cess and the reverse process. The forward process of the DDPM model is defined by a Markov
chain, which adds noise sampled from standard gaussian noise to initial data distribution q0 step by
step until q0 is transformed to standard gaussian distribution qT = N (0, I). In every single step, the
amount of noise injected to the data distribution at current step is controlled by predefined varaince
scheduler {βT ∈ (0, 1)}Tt=1, which means the injected noise is not learnable. The forward process
is defined as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (12)

where x0, x1, · · · , xt stands for the latent variables in the Markov chain and

q(xt|xt−1) = N (xt;
√

(1− βt)xt−1, βtI), (13)
Based on Eq.12 and Eq.13, xt can be represented with a closed form of:

xt =
√
αtx0 + (1− αt)ϵ, (14)

where αt =
∏t

i=1(1− βt) and ϵ ∼ N (0, I).

Correspondingly, the reverse process simulates the denoising of a standard Gaussian distribution
pt = N (0, I) to the target distribution p0, the entire reverse process is formulated as the following
Markov chain:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (15)

where xT ∼ N (0, I) denotes the latent variable sampled from standard Gaussian distribution and
pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)I), (16)

where µθ(xt, t) is parameterized by a neural network and σθ(xt, t) is determined by predefined
variance scheduler, i.e.:

µθ(xt, t) =
1

αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
(17)

and
σθ(xt, t) = β̃t

1
2 , (18)

where

β̃t =

{
1−αt−1

1−αt
βt t > 1

β1 t = 1
(19)

and ϵθ is a learnable denoising function.

The loss function of DDPM aims at minimizing the difference between the noise in the forward
process ϵ and the parameterized noise ϵθ in the reverse process:

Ld = Ex0,ϵ∥ϵ− ϵθ(xt, t)∥, (20)
where t stands for the diffusion time embedding and xt is defined in Eq.14.

15

https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.1609/aaai.v35i12.17325


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

7.2 EXPERIMENT DETAILS

7.2.1 DATASET DESCRIPTIONS

In this part, we give a brief introduction about the datasets in our experiments and the details of the
datasets are presented in Table.10.

Table 10: Details of MuJoCo, Electricity and ETTm1 dataset
Dataset #Train Size #Test Size #Sample Length #Features #Conditional Values #Target Values

MuJoCo 8000 2000 100 14 10,20,30 90,80,70
Electricity 817 921 100 370 90,70,50 10,30,50

ETTm1 33865,34417,34000,
33600,33200

11490,10000,11420,
10000,10000

120,96,480,
576,1056 7 96,48,384,

288,384
24,48,96,
288,672

Air quality: The air quality dataset contains PM2.5 data from 36 monitor stations in Beijing, which
is sampled hourly for 12 months. There are 13.3% of missing values with a non-random missing
pattern. The air quality dataset contains artificial ground truth with structured missing pattern.

Healthcare (Physionet): The healthcare dataset contains 4000 irregularly-sampled clinical time se-
ries made up of 35 variables (such as Albumin and heart-rate) for 48 hours collected from ICU. To
be consistent with previous studies, the dataset is processed hourly to get 48 timesteps and the pro-
cessed dataset contains near 80% missing values without ground truth. For evaluation, we randomly
choose 10/50/90% of the observed values as the ground truth of test dataset.

PTB-XL: The PTB-XL ECG dataset consists of 21,837 clinical 12-lead ECGs (i.e. 12 channels)
from 18,885 patients, with each ECG lasting 10 seconds at a sampling rate of 100 Hz and the
missing ratio is ser as 20%. For the 248 time-step setting, the dataset was preprocessed on crops,
corresponding to 69,764 training samples and 8,812 test samples.

MuJoCo: The MuJoCo dataset Rubanova et al. (2019b) collects a total of 10,000 simulations of
the ”Hopper” model from the DeepMind Control Suite and MuJoCo simulator. The position of the
body in 2D space is uniformly sampled from the interval [0, 0.5]. The relative position of the limbs
is sampled from the range [−2, 2], and initial velocities are sampled from the interval [−5, 5]. In all,
there are 10000 sequences of 100 regularly sampled time points with a feature dimension of 14 and
a random split of 80/20 is done for training and testing. We follow the same preprocessing as in
Shan et al. (2023b) for fair comparison.

Electricity: The Electricity dataset from the UCI repository Asuncion & Newman (2007) contains
electricity usage data (in kWh) collected from 370 clients every 15 minutes. The dataset is collected
and preprocessed as described in Du et al. (2023). Since the dataset does not contain missing values,
values of the complete dataset are randomly dropped for the computation of targets according to the
RM scenario and the data is already normalized. The first 10 months of data (2011/01 - 2011/10)
are designated as the test set, the following 10 months of data (2011/11 - 2012/08) as the validation
set, and the remaining data (2012/09 - 2014/12) as the training set. The training and test sets are
directly utilized, while the validation set is excluded. The dataset comprises 817 samples, each with
a length of 100 time steps and the aforementioned 370 features. Specifically, the 370 channels are
split into 10 batches of 37 features each. Mini-batches of 43 samples, each containing 37 features
and a respective length of 100, are then passed to the network to ensure that no data is dropped
during training.

ETTm1: This dataset contains the amount of detail required for long-time series forecasting based
on the Electricity Transformer Temperature (ETT). The data set contains information from a compi-
lation of 2-year data from two distinct Chinese counties. In our experiment, we work with ETTm1
which covers data at a 15-minute level. The data is composed of the target value oil tempera-
ture and six power load features. We follow the same preprocessing as in Zhou et al. (2021) and
cover five different forecasting horizons {24, 48, 96, 288, 672} with corresponding observed length
{96, 48, 384, 288, 384}.
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7.2.2 SUPPLEMENTARY EXPERIMENT RESULTS

Table.11 shows our MAE and MSE performance on the Air Quality dataset. We observe that we
achieve the best performance on the MAE metric, with a 29.7% improvement compared to the
second-best result. For the MAE metric, we achieve the second-best performance, with only a 1.85%
difference compared to the best result.Table.12 shows our RMSE performance on the Physionet and
Air Quality datasets. We can observe that on the Physionet dataset, for the 10%, 50%, and 90%
missing rates, our method achieves the best performance, with improvements of 22.6%, 17.2%, and
23.5% compared to the second-best result. On the Air Quality dataset, our method performs only
2.58% higher than the best method.

Table 11: MAE and MSE results on air quality dataset. - denotes the MSE result is not provided in
the original paper.

AQI
MAE MSE

V-RIN 25.4±0.62 -
GP-VAE 25.71 2589.53
BRITS 14.1±0.26 495.94±43.56
SPIN 11.77±0.54 -

SPIN-H 10.89±0.27 -
gatgpt 10.28 341.26
GRIN 10.51±0.28 371.47±17.38
CSDI 9.60±0.04 -

DiffImp 6.75±0.014 347.58±0.55

Table 12: RMSE results on PhysioNet and Air quality dataset.
Physionet AQI

10% missing 50% missing 90% missing
V-RIN 0.628±0.025 0.693±0.022 0.928±0.013 40.11±1.14
BRITS 0.619±0.018 0.701±0.021 0.847±0.021 24.28±0.65
SSGAN 0.607±0.034 0.758 ±0.025 0.830±0.009 -
RDIS 0.635±0.018 0.747 ±0.013 0.922±0.018 37.25±0.31
CSDI 0.531±0.009 0.668±0.007 0.834±0.006 19.21±0.13
CSBI 0.547±0.019 0.649 ±0.009 0.837±0.012 19.07±0.18
SSSD 0.459±0.001 0.632±0.004 0.824±0.003 18.77±0.08

TS-Diff 0.523±0.015 0.679±0.009 0.845±0.007 19.06±0.14
SAITS 0.461±0.009 0.636±0.005 0.819±0.002 18.68±0.13
D3M 0.438±0.003 0.615±0.012 0.814±0.002 18.19±0.18

TIDER 0.486±0.006 0.659±0.009 0.833±0.005 18.94±0.21
DiffImp (Ours) 0.339±0.0002 0.509±0.007 0.623±0.0001 18.66±0.26

Table 13: CRPS results on PhysioNet and Air Quality dataset.
Physionet AQI

10% missing 50% missing 90% missing
GP-VAE 0.582±0.003 0.796±0.004 0.998±0.001 0.402±0.009
V-RIN 0.814±0.004 0.845±0.002 0.932±0.001 0.534±0.013
CSDI 0.242±0.001 0.336±0.002 0.528±0.003 0.108±0.001
CSBI 0.247±0.003 0.332 ±0.003 0.527±0.006 0.110±0.002
SSSD 0.233±0.001 0.331±0.002 0.522±0.002 0.107±0.001

TS-Diff 0.249±0.002 0.348±0.004 0.541±0.006 0.118±0.003
D3M 0.223±0.001 0.327±0.003 0.520±0.001 0.106±0.002

DiffImp (Ours) 0.164±0.0004 0.2438±0.00008 0.533±0.0004 0.0959±0.0002

Table.13 shows our CRPS performance on the Physionet and Air Quality datasets. As shown in the
table, we observe that on the Physionet dataset, for the 10% and 50% missing rates, our method
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achieves the best performance, with improvements of 35.98% and 25.4% compared to the second-
best result. On the Air Quality dataset, our method also achieves the best performance, with a 9.5%
improvement over the second-best method.

Table.14 shows our imputation performance on the ECG data (PTB-XL dataset). We can conclude
that on the PTB-XL dataset, for a 20% missing rate, under three different missing scenarios—RM,
RBM, and BM, our method achieves state-of-the-art performance.

Table 14: MAE and RMSE Results on ECG data (PTB-XL dataset). The best results are in bold and
second best results are underlined.

Model MAE RMSE
20% RM on PTB-XL

LAMC 0.0678 0.1309
CSDI 0.0038±2e-6 0.0189±5e-5

DiffWave 0.0043±4e-4 0.0177±4e-4
SSSD 0.0034±4e-6 0.0119±1e-4

DiffImp (Ours) 0.0034±2e-5 0.0101±3e-4
20% RBM on PTB-XL

LAMC 0.0759 0.1498
CSDI 0.0186±1e-5 0.0435±2e-4

DiffWave 0.0250±1e-3 0.0808±5e-3
SSSD 0.0103±3e-3 0.0226±9e-4

DiffImp (Ours) 0.0067±3e-5 0.0221±1e-3
20% BM on PTB-XL

LAMC 0.0840 0.1171
CSDI 0.1054±4e-5 0.2254±7e-5

DiffWave 0.0451±7e-4 0.1378±5e-3
SSSD 0.0324±3e-3 0.0832±8e-3

DiffImp (Ours) 0.022±4e-5 0.059±1e-3

Table.15 shows the results of models trained with C = 64 at 300000 iterations and C = 128 at
150000 iterations. We can see that the two models achieve similar results on all four metrics of
different missing ratios, which indicates a smaller C leads to higher training cost.

Table 15: MSE, RMSE, MAE and MRE results of C = 64 (300000 iterations) and C = 128
(150000 iterations) on MuJoCo dataset with missing ratio 70%, 80% and 90%.

90%
MSE RMSE MAE MRE

C = 64 (300000iter) 0.0008±0.00008 0.0277±0.0014 0.0126±0.0005 0.0121±0.0001
C = 128 (150000iter) 0.0004±0.00001 0.0191±0.0003 0.0142±0.0002 0.0146±0.0002

80%
MSE RMSE MAE MRE

C = 64 (300000iter) 0.00030±0.00002 0.0174±0.0005 0.0104±0.0001 0.0107±0.0001
C = 128 (150000iter) 0.00031±0.00001 0.0178±0.0003 0.0114±0.0001 0.0117±0.0001

70%
MSE RMSE MAE MRE

C = 64 (300000iter) 0.0003±0.00001 0.0166±0.0004 0.0117±0.0001 0.0121±0.0001
C = 128 (150000iter) 0.0004±0.00001 0.0191±0.0003 0.0142±0.0002 0.0146±0.0002

Fig.5 and Table.16 presents the inference time on ettm1 dataset with different sequence length. Fig.6
and Table.17 presents the inference time on MuJoCo and Electricity dataset with different number
of channels. We can see from the result that the inference time is linear w.r.t the sequence length
and number of channels, which demonstrates the linear complexity of our model. And Table.18
presents the results of 10%, 30% and 50% missing on MuJoCo dataset and 70%, 80% and 90%
missing on Electricity dataset.
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Table 16: Inference time of different sequence length on ettm1 dataset
Sequence Length Inference time (s)

120 0.93
96 0.9252
480 0.944
576 0.946
1056 0.966

Figure 5: Inference time of different sequence length on ettm1 dataset

Table 17: Inference time of different number of channels on Mujoco and Electricity dataset
MuJoCo Electricity

Num of Channels Inference time (s) Num of Channels Inference time (s)
32 0.13 32 0.134
64 0.264 64 0.268
96 0.543 96 0.548
128 0.936 128 0.936

Figure 6: Inference time of different number of channels on Mujoco and Electricity dataset

Table 18: Experimental results of 10%, 30%, 50% on MuJoCo dataset and 70%, 80%, 90% on
Electricity dataset

MuJoCo Electricity
10% 30% 50% 70% 80% 90%

MSE 0.0003± 0.00001 0.0003±0.00001 0.0004±0.00001 1.469±0.0076 2.0085±0.0092 3.9443±0.0225
RMSE 0.0003± 0.0004 0.0182±0.00015 0.0187±0.0001 1.212±0.0031 1.4167±0.0030 1.9856±0.0058
MAE 0.0145±0.0002 0.0150±0.0001 0.0151±0.0001 0.7847±0.0013 0.9469±0.0023 1.3685±0.0033
MRE 0.0149±0.0002 0.0154±0.0001 0.0155±0.0001 0.4195±0.0006 0.5060±0.0002 0.7333±0.0007
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7.2.3 HYPERPARAMETERS

Table 19 lists the hyperparameters in our model and ablation studies.

Table 19: Hyperparameters in DiffImp and ablation studies
DiffImp DiffImp (In ablation studies)

Sequence dim (C in Fig.2) 128 64
Residual channels (K in Fig.2) 128 64
Num channels (dim of input projections before ϵθ) 128 64
Diffusion embedding dim 128 128
Training iteration 150k 450k
Num of conditional SMM 1 1
Num of input SMM 1 1
Num of sequential SMM 1 1

7.3 EVALUATION METRIC DETAILS

In this part, we give details about the evaluation metrics in our experiments. As defined in Defi-
nition.1, the original time series is denoted as y ∈ RK×L, the imputed time series is denoted as
ŷ ∈ RK×L, M is the indicator matrix.

Mean Absolute Error (MAE): MAE calculates the average L1 distance between ground truth and
the imputed values alongside the channel dimension, which is formulated as:

MAE(y, ŷ) =
1

k

K∑
i=1

L∑
j=1

|(y − ŷ)⊙ (1−M)|i,j (21)

Mean Square Error (MSE): MSE calculates the average L2 between ground truth and the imputed
values alongside the channel dimension, which is formulated as:

MSE(y, ŷ) =
1

k

K∑
i=1

L∑
j=1

((y − ŷ)⊙ (1−M))2i,j (22)

Root Mean Square Error (RMSE): RMSE is the square root of RMSE:

RMSE(y, ŷ) =
√
MSE(y, ŷ)

=

√√√√1

k

K∑
i=1

L∑
j=1

((y − ŷ)⊙ (1−M))2i,j
(23)

Mean Relative Error (MRE): MRE estimates the relative difference between y and ŷ:

MRE(y, ŷ) =
1

k

K∑
i=1

L∑
j=1

(1−M)i,j ⊙
|(y − ŷ)|i,j

yi,j
(24)

Continuous Ranked Probabilistic Score (CRPS): Given an estimated probability distribution
function F modeled with an observation x, CRPS evaluates the compatibility and is defined as
the integral of the quantile loss for all quantile levels:

CRPS(F−1, x) =

∫ 1

0

Λα(F
−1(α, x) dα, (25)

where Λα(q, y) = (α− 1y<q)(y − q), α ∈ [0, 1] and 1y<q the indicator function, i.e., if y < q, the
value of the indicator function is 1, else 0.
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Following Tashiro et al. (2021); Yan et al. (2024), we separate the interval [0, 1] to 20 quantile levels
with a stepsize of s = 0.05, and the estimated value of CRPS is:

CRPS(F−1, x) ≈
19∑
i=1

2Λi·s(F
−1(i · s, x))
19

(26)

For the whole time series X ∈ RK×L, the CRPS value is normalized for all time steps and channels:

CRPS(F−1, X) =

∑K
i=1

∑L
j=1 CRPS(F−1

i,j , Xi,j)∑K
i=1

∑L
j=1 |Xi,j |

(27)

Continuous Ranked Probabilistic Score-Sum (CRPS-Sum): CRPS-sum calculates the CRPS for
distribution F for all K features:

CRPS-Sum =

∑L
j=1 CRPS(F−1,

∑k
i=1 Xi,j)∑K

i=1

∑L
j=1 |Xi,j |

(28)

7.4 ALGORITHM DETAILS OF BAM BLOCK AND CMB BLOCK

Alg.3 and Alg.4 describes the details of forward process in BAM and CMB block.

Algorithm 3 Forward Process of BAM Block
1: Input: Time Representation Sequence Ti ∈ RB×K×L

2: Output: Time Representation Sequence Ti+1 ∈ RB×K×L

3: {Normalize input sequence Ti}
4: T ′

i = Norm(Ti)
5: {Project T ′

i to target dim}
6: x = Projx(T

′
i )

7: w = Projw(T
′
i )

8: {Processing in different directions}
9: For d in {forward,backward} do:

10: if d = forward:
11: Tf = Mamba(T ′

i )
12: if d = backward:
13: Td = Flip(T ′

i )
14: Td = Mamba(Td)
15: End For
16: {Learning weights for different positions}
17: w = Proja(w)
18: w = Sigmoid(w)
19: {Temporal attention}
20: Td = w ⊙ Td

21: Tf = w ⊙ Tf

22: {Feature fusion}
23: To = Td + Tf

24: To = Projo(To)
25: {Residual connection}
26: Ti+1 = To + Ti

7.5 VISUALIZATION RESULTS
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Algorithm 4 Forward Process of CMB Block
1: Input: Time Representation Sequence Ti ∈ RB×K×L

2: Output: Time Representation Sequence Ti+1 ∈ RB×K×L

3: {Transpose the channel dimension: RB×K×L → RB×L×K}
4: Ti = Transpose(Ti)
5: {Normalize input sequence Ti}
6: T ′

i = Norm(Ti)
7: {Project T ′

i to target dim}
8: x = Projx(T

′
i )

9: w = Projw(T
′
i )

10: Tf = Mamba(T ′
i )

11: {Learning weights for different positions}
12: w = Proja(w)
13: w = Sigmoid(w)
14: {Temporal attention}
15: Tf = w ⊙ Tf

16: To = Projo(Tf )
17: {Residual connection}
18: Ti+1 = To + Ti

19: {Transpose the channel dimension: RB×L×K → RB×K×L}
20: Ti+1 = Transpose(Ti)

Figure 7: Visualization of probabilistic imputation results on MuJoCo dataset across all 14 channels
with missing ratio 90%
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Figure 8: Visualization of probabilistic imputation results on MuJoCo dataset across all 14 channels
with missing ratio 80%

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 9: Visualization of probabilistic imputation results on Electricity dataset across the first 24
channels with missing ratio 10%
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Figure 10: Visualization of probabilistic imputation results on Electricity dataset across the first 24
channels with missing ratio 30%
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Figure 11: Visualization of probabilistic imputation results on Electricity dataset across the first 24
channels with missing ratio 50%
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Figure 12: Visualization of probabilistic forecasting results on ETTm1 dataset across all 7 channels
with forecasting length 24

Figure 13: Visualization of probabilistic forecasting results on ETTm1 dataset across all 7 channels
with forecasting length 48
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Figure 14: Visualization of probabilistic forecasting results on ETTm1 dataset across all 7 channels
with forecasting length 96

Figure 15: Visualization of probabilistic forecasting results on ETTm1 dataset across all 7 channels
with forecasting length 288
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Figure 16: Visualization of probabilistic forecasting results on ETTm1 dataset across all 7 channels
with forecasting length 672

Figure 17: Visualization of probabilistic imputation results on PTB-XL dataset across all 12 chan-
nels with missing ratio 20%
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