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ABSTRACT

Graph neural networks (GNNs) have demonstrated success in modeling relational
data, especially for data that exhibits homophily: when a connection between
nodes tends to imply that they belong to the same class. However, while this
assumption is true in many relevant situations, there are important real-world sce-
narios that violate this assumption, and this has spurred research into improving
GNNs for these cases. In this work, we propose Evolving Computation Graphs
(ECGs), a novel method for enhancing GNNs on heterophilic datasets. Our ap-
proach builds on prior theoretical insights linking node degree, high homophily,
and inter vs intra-class embedding similarity by rewiring the GNNs’ computation
graph towards adding edges that connect nodes that are likely to be in the same
class. We utilise auxiliary classifiers to identify these edges, ultimately improving
GNN performance on non-homophilic data as a result. We evaluate ECGs on a
diverse set of recently-proposed heterophilic datasets and demonstrate improve-
ments over the relevant baselines. ECG presents a simple, intuitive and elegant
approach for improving GNN performance on heterophilic datasets without re-
quiring prior domain knowledge.

1 INTRODUCTION

Neural networks applied to graph-structured data have demonstrated success across various do-
mains, including practical applications like drug discovery (Stokes et al., 2020; Liu et al., 2023),
transportation networks (Derrow-Pinion et al., 2021), chip design (Mirhoseini et al., 2021) and the-
oretical advancements (Davies et al., 2021; Blundell et al., 2021). Numerous architectures fall under
the category of graph neural networks (Bronstein et al., 2021), with one of the most versatile ones
being Message Passing Neural Networks (Gilmer et al., 2017). The fundamental concept behind
these networks is that nodes communicate with their neighbouring nodes through messages in each
layer. These messages, received from neighbours, are then aggregated in a permutation-invariant
manner to contribute to a new node representation.

It has been observed that the performance of graph neural networks may rely on the underlying as-
sumption of homophily, which suggests that nodes are connected by edges if they are similar based
on their attributes or belonging to the same class, as commonly seen in social or citation networks.
However, this assumption often fails to accurately describe real-world data when the graph con-
tains heterophilic edges, connecting dissimilar nodes. This observation holds particular significance
since graph neural networks tend to exhibit significantly poorer performance on heterophilic graphs
compared to datasets known to be homophilic. Several studies (Zhu et al., 2020b;a; Wang & Zhang,
2022; He et al., 2022) have highlighted this issue, using a mixture of strongly homophilous graphs—
such as Cora, Citeseer and Pubmed (Sen et al., 2008)—as well a standard suite of six heterophilic
datasets—Squirrel, Chameleon, Cornell, Texas, Wisconsin and Actor (Rozemberczki et al., 2021;
Tang et al., 2009)—first curated jointly by Pei et al. (2020).

In the context of this standard suite of heterophilic graphs, it has been observed that general graph
neural network architectures tend to underperform unless there is high label informativeness (Ma
et al., 2021; Platonov et al., 2022). In prior work, this issue was tackled primarily by proposing
modifications to the GNN architecture. These modifications include changes to the aggregation
function, such as separating self- and neighbour embeddings (Zhu et al., 2020b), mixing low- and
high-frequency signals (Bo et al., 2021; Luan et al., 2022), and predicting and utilising the compat-
ibility matrix (Zhu et al., 2020c). Other approaches involve using the Jacobi basis in spectral GNNs
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Figure 1: A simplified illustration of Evolving Computation Graphs. Step 1: nodes in a graph,
G, are embedded using a pre-trained auxiliary classifier. Step 2: Based on these embeddings, a
nearest-neighbour graph,GEGC, is generated. This graph is likely to have improved propagation and
homophily properties (illustrated by similar colours between neighbouring nodes). Step 3: Message
passing is performed, both in the original and in the ECG graph, to update node representations.

(Wang & Zhang, 2022) or learning cellular sheaves for neural sheaf diffusion (Bodnar et al., 2022)
to improve performance.

However, it was recently remarked (Platonov et al., 2023) that this standard heterophilic suite has
significant drawbacks, such as data originating from only three sources, two of the datasets hav-
ing significant numbers of repeated nodes and improper evaluation regarding class imbalance. To
address these shortcomings, a more recent benchmark suite has been introduced by Platonov et al.
(2023), incorporating improvements on all of the above issues. Interestingly, once such corrections
are accounted for, standard GNN models such as graph convolutional networks (Kipf & Welling,
2016, GCN), GraphSAGE (Hamilton et al., 2017, SAGE), graph attention networks (Veličković
et al., 2017, GAT), and Graph Transformers (Shi et al., 2020, GT) have demonstrated superior per-
formance compared to specialized architectures tailored specifically for heterophily—in spite of the
heterophilic properties of the datasets. The notable exception is -sep (Zhu et al., 2020b) which has
consistently improved GAT and GT by modelling self and neighbouring nodes separately.

In light of this surprising discovery, we suggest that there should be alternate routes to making the
most of heterophilic datasets. Rather than attempting to modify these standard GNNs, we propose
modifying their computation graph: effectively, enforcing messages to be sent across additional
pairs of nodes. These node pairs are chosen according to a particular measure of similarity. If the
similarity metric is favourably chosen, such a computation graph will improve the overall homophily
statistics, thereby creating more favourable conditions for GNNs to perform well.

We further propose that the modification of the computation graph should be separate from its util-
isation . That is, we proceed in two phases: the first phase learns the representations that allow us
to construct new computation graphs, and the second phase utilises those representations to con-
struct new computation graphs, to be utilised by a GNN in each layer. This design choice makes
our method elegant, performant and easy to evaluate: the two-phase nature means we are not sus-
ceptible to bilevel optimisation (as in Franceschi et al. (2019); Kazi et al. (2022)), the graphs we
use need to be precomputed exactly once rather than updated on-the-fly in every layer (as in Wang
et al. (2019b)), and because the same computation graph is used across all GNN layers, we can more
rigidly evaluate how useful this graph is, all other things kept equal.

Hence, the essence of our method is Evolving Computation Graphs (ECG), which uses auxiliary
classifiers to generate node embeddings. These embeddings are then used to define a similarity
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metric between nodes (such as cosine similarity). We then select edges in a k-nearest neighbour
fashion: we connect each node to k nodes most similar to it, according to the metric. The edges
selected in this manner form a complementary graph, which we propose using in parallel with the
input graph to update each node’s representation. For this purpose, we use standard, off-the-shelf,
GNNs. Our method is illustrated in Figure 1.

The nature of the auxiliary classifier employed in ECG is flexible and, for the purpose of this paper,
we used four representative options. The first option is a point-wise MLP classifier, attempting to
cluster together nodes based on the given training labels, without any graph-based biases. For the
second option, we attempt the converse: utilising the given graph structure and node features, but
not relying on the training labels. This is a suitable setting for a self-supervised graph representation
learning method, such as BGRL (Thakoor et al., 2021), which is designed to cluster together nodes
with similar local neighbourhoods—both in terms of subgraphs and features—through a bootstrap-
ping objective (Grill et al., 2020). We may also decide to not leverage the node features in this
approach, relying solely on the input graph structure to decide how to rewire it; this is the stan-
dard method utilised in prior work, and we use struc2vec (Ribeiro et al., 2017) as a representative
method. Lastly, all of the above methods can be considered weak classifiers: they hold out either the
node features, the graph structure, or the labels from the auxiliary classifier. While such decisions
can make for more efficient pipelines, we also wanted to evaluate whether any empirical power is
lost by doing so. Therefore, the final auxiliary classifier we attempt using for ECG is the baseline
GNN itself, which doesn’t hold out any information from the auxiliary classifier. In this “double-
GNN” approach, two GNNs are trained: the embeddings of first one—trained over the given input
graphs—are used to decide the graph structure for the second.

To evaluate the effectiveness of ECG, we conduct experiments on the benchmark suite proposed by
Platonov et al. (2023). Our results demonstrate that ECG models outperform their GNN baselines
in 19 out of 20 head-to-head comparisons. The most significant improvements can be noticed for
GCNs—which are best suited to benefit from improved homophily—where improvements reach
up to 10% in absolute terms. Further, the best performing ECG models outperform a diverse set of
representative heterophily-specialised GNNs, and weak ECG classifiers are always competitive with
the full GNN classifier, allowing for a more efficient downstream pipeline.

2 BACKGROUND

In this section, we introduce the generic setup of learning representations on graphs, along with all
of the key components that comprise our ECG method.

Graph representation learning setup We denote graphs by G = (V,E), where V is the set of
nodes and E is the set of edges, and we denote by euv ∈ E the edge that connects nodes u and v.
For the datasets considered here, we can assume that the input graphs are provided to the GNNs via
two inputs: the node feature matrix, X ∈ R|V |×k (such that xu ∈ Rk are the input features of node
u ∈ V ), and the adjacency matrix, A ∈ {0, 1}|V |×|V |, such that auv indicates whether nodes u and
v are connected by an edge. We further assume the graph is undirected; that is, A = A⊤. We also
use du =

∑
v∈V auv

(
=

∑
v∈V avu

)
to denote the degree of node u.

We focus on node classification tasks with C representing the set of possible classes, where for node
with input features xu, there is a label yu ∈ C. Thus we aim to learn a function f that minimises
E[L(yu, ŷu)], where ŷu is the prediction of f(xu) = ŷu, and L is the cross-entropy loss function.

Graph neural networks The one-step layer of a GNN can be summarised as follows:

h(l)
u = ϕ(l)

h(l−1)
u ,

⊕
(u,v)∈E

ψ(l)
(
h(l−1)
u ,h(l−1)

v

) (1)

where, by definition, we set h
(0)
u = xu. Leveraging different (potentially learnable) func-

tions for ϕ(l) : Rk × Rm → Rk′
,
⊕

: bag(Rm) → Rm and ψ(l) : Rk × Rk → Rm

then recovers well-known GNN architectures. Examples include GCN (Kipf & Welling, 2016):
ψ(l)(xu,xv) = βuvω

(l)(xv), with βuv ∈ R being a constant based on A, GAT (Veličković
et al., 2017): ψ(l)(xu,xv) = α(l)(xu,xv)ω

(l)(xv) with α(l) : Rk × Rk → R being a (softmax-
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normalised) self-attention mechanism, and -sep (Zhu et al., 2020b): ϕ(l) = W
(l)
selfϕ

(l)
1

(
h
(l−1)
u

)
+

W
(l)
aggϕ

(l)
2

(⊕
(u,v)∈E ψ

(l)(h
(l−1)
u ,h

(l−1)
v )

)
, where we explicitly decompose ϕ(l) into two parts,

with one of them (ϕ(l)1 ) depending on the receiver node only.

Homophily has been repeatedly mentioned as an important measure of the graph, especially when
it comes to GNN performance. Intuitively, it corresponds to an assumption that neighbouring nodes
tend to share labels: auv = 1 =⇒ yu = yv , which is often the case for many industrially-relevant
real world graphs (such as social networks). Intuitively, a graph with high homophily will make it
easier to exploit neighbourhood structure to derive more accurate node labels.

However, in spite of the importance of quantifying homophily in a graph, there is no universally-
agreed-upon metric for this. One very popular metric, used by several studies, is edge homophily
Abu-El-Haija et al. (2019), which measures the proportion of homophilic edges:

h-edge =
|(u, v) ∈ E : yu = yv|

|E|
(2)

while Platonov et al. (2022) also introduces adjusted homophily to account for number of classes
and their distributions:

h-adj =
h-edge−

∑C
k=1D

2
k/(2|E|)2

1−
∑C

k=1D
2
k/(2|E|)2

(3)

where Dk =
∑

u:yu=k du, the sum of degrees for the nodes belonging to class k.

Additionally, the label informativeness (LI) measure proposed in Platonov et al. (2022) measures
how much information about a node’s label is gained by observing its neighbour’s label, on average.
It is defined as

LI = I(yξ, yη)/H(yξ) (4)

where (ξ, η) ∈ E is a uniformly-sampled edge, H is the Shannon entropy and I is mutual informa-
tion.

Auxiliary classifier In order to derive novel computation graphs which are likely to result in
higher test performance, we likely require “novel” homophilic connections to emerge. To do this,
we leverage several auxiliary classifier options.

MLPs Arguably the simplest way to make a weak-but-efficient classifier, as above, is to withhold
access to the graph structure (A), and force the model to classify the nodes in pure isolation from
one another. This is effectively a standard multi-layer perceptron (MLP) applied pointwise. Another
way of understanding this model is setting A = I|V |, or equivalently, E = {(u, u) | u ∈ V }, in
Equation 1, which is sometimes referred to as the Deep Sets model (Zaheer et al., 2017). We train
this model by using cross-entropy against the training nodes’ labels (ytr) and, once trained, use the
final layer activations, h(L)

u —for a model with L layers—as our MLP embeddings.

BGRL While using the embeddings from an MLP can offer a solid way to improve homophily
metrics, their confidence will degrade for nodes where the model is less accurate outside of the
training set—arguably, the nodes we would like to improve predictions on the most. Accordingly, as
a converse approach, we may withhold access to the training labels (ytr). Now the model is forced
to arrange the node representations in a way that will be mindful of the input features and graph
structure, but without knowing the task specifics upfront, and hence not vulnerable to overfitting on
the training nodes. Such a classifier naturally lends itself to self-supervised learning on graphs.

Bootstrapped graph latents (Thakoor et al., 2021, BGRL) is a state-of-the-art self-supervised graph
representation learning method based on BYOL (Grill et al., 2020). BGRL learns two GNN encoders
with identical architecture; an online encoder, Eθ, and a target encoder, Eϕ. BGRL also contains a
predictor network pθ. We offer a “bird’s eye” view of how BGRL is trained, and defer to Thakoor
et al. (2021) for implementation details.

At each step of training, BGRL proceeds as follows. First, two data augmentations (e.g. random
node and edge dropout) are applied to the input graph, obtaining augmented graphs (X1,A1) and
(X2,A2). Then, the two encoders are applied to these augmentations, recovering a pair of latent
node embeddings: H1 = Eθ(X1,A1), H2 = Eϕ(X2,A2). The first embedding is additionally
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passed through the predictor network: Z1 = pθ(H1). At this point, BGRL attempts to preserve the
cosine similarity between all the corresponding nodes in Z1 and H2, via the following loss function:

LBGRL = − Z1H
⊤
2

∥Z1∥∥H2∥
(5)

The parameters of the online encoder Eθ and predictor pθ are updated via SGD on LBGRL, and the
parameters of the target encoder Eϕ are updated as the EMA of the online encoder’s parameters.
Once the training procedure concludes, typically only the online network Eθ is retained, and hence
the embeddings H = Eθ(X,A) are the BGRL embeddings of the input graph given by node features
X and adjacency matrix A.

Owing to its bootstrapped objective, BGRL does not require the generation of negative samples, and
is hence computationally efficient compared to contrastive learning approaches. Further, it is very
successful at large scales; it was shown by Addanki et al. (2021) that BGRL’s benefits persist on
industrially relevant graphs of hundreds of millions of nodes, leading to one of the top-3 winning
entries at the OGB-LSC competition (Hu et al., 2021). This is why we employ it as a representative
self-supervised embedding method for our ECG framework.

struc2vec We may decide to weaken the BGRL approach one step further by withholding access
to the node features (X). This is now a pure graph rewiring method, and we choose to use struc2vec
(Ribeiro et al., 2017) for this purpose, as it is the preferred method of choice in various prior works.

(Double) GNN All previous methods are weak classifiers—the model does not have access to
inputs (X), graph structure (A) and training labels (ytr) simultaneously. It is our opinion that such
methods should be competitive, as they would discover novel kinds of edges to draw under more
challenging training settings, rather than amplifying the homophily already present in A. To validate
this, we also compare against a variant of ECG that has access to all of the above, i.e., an ECG where
a GNN is used as an auxiliary classifier. We make the choice of GNN match the downstream GNN
model which will use the auxiliary edges. This auxiliary classifier can also be seen as a variant of
the MLP where we do not set A = I|V |, but retain the original adjacency of the input graph.

3 EVOLVING COMPUTATION GRAPHS

Armed with the concepts above, we are now ready to describe the steps of the ECG methodology.
Please refer to Algorithm 1 for a pseudocode summary.

Step 1: Embedding extraction Firstly, we assume that an appropriate auxiliary classifier has al-
ready been trained (as discussed in previous sections), and is capable of producing node embeddings.
We start by invoking this classifier to obtain ECG embeddings HECG = γ(X,A). We study four
simple but potent variants of γ, as per the previous section:

MLP: In this case, we utilise a simple deep MLP1; that is, γ(X,A) = σ (σ (XW1)W2), where
W· are the MLP’s weights, and σ is the GELU activation (Hendrycks & Gimpel, 2016).

BGRL: In this case, we set γ = Eθ, the online encoder of BGRL. For our experiments, we utilise a
publicly available off-the-shelf implementation of BGRL provided by DGL2 (Wang et al.,
2019a), which uses a two-layer GCN (Kipf & Welling, 2016) as the base encoder.

struc2vec: In this case, we make γ a look-up table, directly retrieving for each node its embeddings as
precomputed from struc2vec (Ribeiro et al., 2017).

GNN: In this case, we make γ have the same form as the GNN which will utilise the ECG edges;
that is, γ has the form in Equation 8, but with separate parameters.

The parameters of γ are kept frozen throughout what follows, and are not to be further trained on.

1Note that this MLP, as well as the GNN described later, only compute high-dimensional embeddings of
each node; while training γ, an additional logistic regression layer is attached to their architecture.

2https://github.com/dmlc/dgl/tree/master/examples/pytorch/bgrl
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Step 2: Graph construction Having obtained HECG, we can now use it to compute a similarity
metric between the nodes, such as cosine similarity, as follows:

S = HECGH
⊤
ECG ŝuv =

suv
∥hECGu

∥∥hECGv
∥

(6)

Based on this similarity metric, for each node u ∈ V we select its neighbourhood NECG
u to be its k

nearest neighbours in S (where k is a tunable hyperparameter):

NECG
u = top-kv∈V ŝuv (7)

Equivalently, we construct a new computation graph, GECG = (V,EECG), with edges EECG =
{(u, v) | u ∈ V ∧ v ∈ Nu}. These edges are effectively determined by the auxiliary classifier.

Step 3: Parallel message passing Finally, once the ECG graph, GECG, is available, we can run
our GNN of choice over it. To retain the topological benefits contained in the input graph structure,
we opt to run two GNN layers in parallel—one over the input graph (as in Equation 1), and one over
the ECG graph, as follows:

h
(l)
INPu

= ϕ
(l)
INP

h(l−1)
u ,

⊕
(u,v)∈E

ψ
(l)
INP

(
h(l−1)
u ,h(l−1)

v

) (8)

h
(l)
ECGu

= ϕ
(l)
ECG

h(l−1)
u ,

⊕
(u,v)∈EECG

ψ
(l)
ECG

(
h(l−1)
u ,h(l−1)

v

) (9)

Then the representation after l layers is obtained by jointly transforming these two representations:

h(l)
u = W(l)h

(l)
INPu

+U(l)h
(l)
ECGu

(10)

where W(l) and U(l) are learnable parameters.

Equations 8–10 can then be repeatedly iterated, much like is the case for any standard GNN layer. As
GECG may contain noisy edges which do not contribute to useful propagation of messages, we apply
DropEdge (Rong et al., 2020) when propagating over the ECG graph, with probability pde = 0.5.

4 EXPERIMENTS

We evaluate the performance of ECG on five heterophilic datasets, recently-proposed by
Platonov et al. (2023): roman-empire, amazon-ratings, minesweeper, tolokers and
questions. All five datasets are node classification tasks, testing for varying levels of homophily
in the input (roman-empire has the highest label informativeness), different connectivity profiles
(tolokers is the most dense, questions has the lowest values of clustering coefficients) and
providing both real-world (amazon-ratings), and synthetic (minesweeper) datasets.

We ran ECG as an extension on standard GNN models, choosing the “-sep” variant (Zhu et al.,
2020b) for GAT and GT as it was noted to improve their performance consistently on these tasks
(Platonov et al., 2023). Thus, our baselines are GCN, GraphSAGE, GAT-sep and GT-sep, which we
extend by modifying their computation graph as presented in Section 3. For each ECG model, we
ran several variants, depending on which auxiliary classifier was used to select EECG.

For each of these architectures, the hyper-parameters to sweep are the number of neighbours sampled
in the ECG graph, k (selected from {3, 10, 20}), the edge dropout rate used on it (selected from
{0., 0.5}, the hidden dimension of the graph neural networks, where the one ran on the original graph
G always matches the one ran on GECG (selected from {256, 512}), as well as the standard choice
of number of layers (selected from {2, 3, 4, 5}). In Appendix A, we present additional information
on the experiments, together with the hyper-parameters corresponding to the best validation results.

In Table 1, we show the test performance corresponding to the highest validation score among all
embedding possibilites for each of the five datasets and for each of the four baselines. Altogether,
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Algorithm 1: Evolving Computation Graph for Graph Neural Networks: ECG-GNN
Input: Graph G = (V,E); Node Feature Matrix X; Adjacency Matrix A.
Hyper-parameters: Value of k; Drop edge probability pde; Number of layers L;
Output: Predicted labels ŷ
begin

/* Step 1: Extract embeddings */
HECG ← γ(X,A) /* Embeddings stored in matrix */
/* Step 2: Construct ECG graph */

S← HECGH
⊤
ECG

for u ∈ V do
for v ∈ V do

ŝuv ← suv/(∥hECGu∥∥hECGv∥) /* Compute cosine similarities */

NECG
u ← top-kv∈V ŝuv /* Compute k nearest neighbours of u */

EECG ← {(u, v) | u ∈ V ∧ v ∈ Nu} /* Construct the ECG edges */

/* Step 3: Parallel message passing on G and GECG
*/

for u ∈ V do
h0
u ← xu /* Setting initial node features */

for l← 1 to L do
/* Message passing propagation on G and GECG respectively */

EECG
(l) ← DropEdge(EECG, pde) /* Randomly drop edges in GECG

*/
for u ∈ V do

h
(l)
INPu

← ϕ
(l)
INP

(
h
(l−1)
u ,

⊕
(u,v)∈E ψ

(l)
INP

(
h
(l−1)
u ,h

(l−1)
v

))
/* on G */

h
(l)
ECGu

← ϕ
(l)
ECG

(
h
(l−1)
u ,

⊕
(u,v)∈EECG

(l)
ψ

(l)
ECG

(
h
(l−1)
u ,h

(l−1)
v

))
/* on GECG

*/

h
(l)
u ←W(l)h

(l)
INPu

+U(l)h
(l)
ECGu

/* Updating the node representation */

/* Predict node labels */
for u ∈ V do

pu ← softmax(W(c)h
(L)
u ) ŷu ← argmaxc∈C pc /* Predicted class label */

return ŷ

there are 20 dataset-model combinations that ECG is tested on. We find that on 19 out of these
20 combinations (marked with arrow up in the table), using ECG improves the performance of the
corresponding GNN architecture, the only exception being GraphSAGE on amazon-ratings.

Moreover, we observe the highest gains in performance are achieved by ECG-GCN, being as high
as 10.84% (absolute values), in a manner that is correlated with the homophily of the dataset. This
confirms the hypothesis that, due to the aggregation function it employs, GCN is also the architecture
most prone to performance changes based on the homophily of the input graph.

Through the detailed ablations on ECG types in Appendix A, we note that the “double GNN”
approach never significantly outperforms weak auxiliary classifiers. This not only highlights that
weaker classifiers are already potent at capturing relevant information for drawing auxiliary edges,
but also that it is possible to deploy ECG using a highly efficient pre-training pipeline.

4.1 QUALITATIVE STUDIES

In Table 2, we analyse the properties of the complementary graphs GECG with k = 3 nearest
neighbours. We note that this represents the graph used by ECG-GCN, which preferred lower values
of k, while the optimal values of k for SAGE, GAT-sep and GT-sep were on the higher end, varying
between 3, 10 and 20 depending on the dataset.

We observe that MLP-ECG confirms our hypothesis: taking the edges corresponding to the pairs
of nodes marked as most similar by the MLP results in a graph GECG with high homophily, espe-
cially compared to the original input graph. It is important to note that all of our MLP-ECG graphs
were obtained with a relatively shallow MLP, which, as it can be seen in Table 1 lacks in perfor-
mance compared to the graph-based methods. However, our method’s success in conjunction with
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Table 1: Benchmarking ECG on Platonov et al. (2023). We report accuracy for roman-empire
and amazon-ratings and ROC AUC for minesweeper, tolokers, and questions.

Model roman-empire amazon-ratings minesweeper tolokers questions

MLP 65.88±0.38 45.90±0.52 50.89±1.39 72.95±1.06 70.34±0.76

GCN 73.69±0.74 49.13±0.37 89.75±0.52 83.64±0.67 77.13±0.31

ECG-GCN 84.53±0.26 (↑) 51.12±0.38 (↑) 92.89±0.10 (↑) 84.91±0.14 (↑) 77.50±0.35 (↑)

SAGE 85.74±0.67 54.41±0.29 93.66±0.13 82.56±0.10 76.44±0.62

ECG-SAGE 87.88±0.25 (↑) 53.45±0.27 (↓) 94.11±0.07 (↑) 83.81±0.12 (↑) 77.43±0.25 (↑)

GAT-sep 88.75±0.41 53.44±0.34 93.91±0.35 83.78±0.43 76.79±0.71

ECG-GAT-sep 89.62±0.18 (↑) 53.65±0.39 (↑) 94.52±0.20 (↑) 84.92±0.16 (↑) 77.67±0.18 (↑)

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

ECG-GT-sep 89.56±0.16 (↑) 53.25±0.39 (↑) 93.69±0.34 (↑) 84.28±0.38 (↑) 78.23±0.26 (↑)

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Figure 2: For roman-empire, we use a random GCN layer to obtain node embeddings based on
the original graph G (left) or the ECG graph GECG (right). The colours correspond to the ground-
truth labels of the nodes. See Appendix B for the version of this figure with a trained (ECG-)GCN.

GNNs shows that even a weak classifier can be used to generate homophilic graphs that improve
performance when complementing information provided by the input data. Table 5 further includes
statistics of the graphs obtained from BGRL embeddings and MLP and BGRL together.

In Figure 2, we also verify how predictive of the node classes the graph topology is when obtained
from the original data compared to when we build a complementary graph GECG. More precisely,
we first build the graph GECG as presented in Step 1 of Algorithm 1, using pre-trained MLP embed-
dings. Then we use a randomly initialised GCN to compute node embeddings on the input graph
G, as well as on GECG. We visualise these two sets of node embeddings using t-SNE (Van der
Maaten & Hinton, 2008) by projecting to a 2D space, attributing the colour of each point based
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Table 2: Statistics of the original heterophilic graphs, and of the ECG obtained from MLP.

roman-empire amazon-ratings minesweeper tolokers questions

edges 32, 927 93, 050 39, 402 519, 000 153, 540
edge homophily 0.05 0.38 0.68 0.59 0.84
adjusted homophily −0.05 0.14 0.01 0.09 0.02
LI 0.11 0.04 0.00 0.01 0.00

ECG (k = 3) edges 67, 986 73, 476 30, 000 35, 274 146, 763
MLP-ECG edge homophily 0.73 0.66 0.79 0.79 0.97
MLP-ECG adjusted homophily 0.7 0.53 0.33 0.4 0.41
MLP-ECG LI 0.65 0.33 0.16 0.19 0.28

on the node’s ground truth label. We can observe that using the GECG topology leads to more
distinguishable clusters corresponding to the classes even without any training, thus supporting the
enhancements in performance when building ECG-GNN.

5 RELATED WORK

Many specialised architectures have been proposed to tackle GNNs limitations in modeling het-
erophilic data. H2GCN (Zhu et al., 2020b) separates ego and neighbour embeddings, uses higher-
order neighbourhoods and combines representations from intermediate layers. CPGNN (Zhu et al.,
2020a) learns a compatibility matrix to explicitly integrate information about label correlations and
uses it to modulate messages. Similarly, GGCN (Yan et al., 2021) modifies GCN through degree cor-
rections and signed messages, based on an insight linking heterophily and oversmoothing. FAGCN
(Bo et al., 2021) uses a self-gating mechanism to adaptively integrate low-frequency signals, high-
frequency signals and raw features and ACM-GNN (Luan et al., 2022) extends it to enable adaptive
channel mixing node-wise. GPRGNN (Chien et al., 2021) learns Generalized PageRank weights
that adjust to node label patterns. FSGNN (Maurya et al., 2022) proposes Feature Selection GNN
which separates node feature aggregation from the depth of the GNN through multiplication the
node features with different powers and transformations of the adjacency matrix and uses a soft-
max to select the relevant features. GloGNN (Li et al., 2022) leverages global nodes to aggreagte
information, while GBK-GNN (Du et al., 2022) uses bi-kernel feature transformation.

Most relevant to ECG-GNN could be GeomGCN (Pei et al., 2020) and the work of Suresh et al.
(2021). The former uses network embedding methods to find neighbouring nodes in the corre-
sponding latent space, to be then aggregated with the neighbours in the original graph, over which
a two-level aggregation is then performed. Similarly, (Suresh et al., 2021) modifies the computation
graph by computing similarity of degree sequences for different numbers of hops. However, in both
cases, the input node features and labels, which could provide useful signal, are not used.

However, Platonov et al. (2023) points that the standard datasets on which these models were tested,
such as Squirrel, Chameleon, Cornell, Texas and Wisconsin, had considerable drawbacks: high
number of duplicated nodes, highly imbalanced classes and lack of diversity in setups considered.
When evaluated on the newly proposed heterophilic suite, most specialised architectures are outper-
formed by their standard counter-parts such as GCN, SAGE, GAT and GT, with only the separation
of ego and neighbour embeddings from Zhu et al. (2020b) maintaining an advantage.

6 CONCLUSIONS

We present Evolving Computation Graphs for graph neural networks, ECG-GNN. This is a two-
phase method focused on improving the performance of standard GNNs on heterophilic data. Firstly,
it builds an evolved computation graph, formed from the original input and a complementary set of
edges determined by an auxiliary classifier. Then, the two components of this computation graph
are modelled in parallel by two GNNs processors, and projected to the same embeddings space after
each propagation layer. This simple and elegant extension of existing graph neural networks proves
to be very effective – for four models considered on five diverse heterophilic datasets, the ECG-GNN
enhances the performance in 95% of the cases.
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A HYPERPARAMETER SETTINGS AND DETAILED ABLATION RESULTS

We used the same experimental setup as presented in Platonov et al. (2023). Results are aggregated
over ten random splits of the data, with each run taking 50% of the nodes for training, 25% for vali-
dation, and 25% for testing. The following hyperparameters are tuned for all models and baselines,
using the average validation performance across the splits:

• Number of layers, L ∈ {1, 2, 3, 4, 5}.
• The dimensionality for the baseline latent embeddings were d ∈ {512, 1024} and for the

ECG variants d ∈ {256, 512}, to account for the additional parameters incurred by ECG’s
two parallel processing streams.

Additionally, for the ECG models only, the following hyperparameters were swept:

• Embeddings used by ECG, τ ∈ {MLP,BGRL, struc2vec,GNN,MLPBGRL,MLP →
GNN}, referring to:

MLP: Using the embeddings from a pre-trained MLP;
BGRL: Using the embeddings from a pre-trained BGRL model;

struc2vec: Using the embeddings from a struc2vec model;
GNN: Using the embeddings from a pre-trained GNN;

MLPBGRL: Using the normalised concatenation of the MLP and BGRL embeddings;
MLP→GNN: Using the embeddings from a pre-trained MLP-ECG model of the same type.

Note that, for methods requiring access to labels (such as MLP or GNN), a separate set
of embeddings is computed for every dataset split (to avoid test data contamination). For
self-supervised methods like BGRL or struc2vec, no labels are used, and hence a single set
of embeddings is produced for all experiments.

• The number of neighbours sampled per node, k ∈ {3, 10, 20}.
• The DropEdge rate, pde ∈ {0.0, 0.5}.

The model configuration with the best-performing average validation performance is then evaluated
on the corresponding test splits, producing the aggregated performances reported in Table 1.

The best-performing hyperparameters for each model type on each dataset are given in Table 3.
Each individual experiment has been executed on a single NVIDIA Tesla P100 GPU, and the longest
training time allocated to an individual experiment has been six hours (on the questions dataset).

For convenience, and to assess the relative benefits of various ECG embedding sources, we provide
in Table 4 an expanded version of 1, showing the test performance obtained by the tuned version of
each ECG variant, for every embedding type.

For additional information, the anonymised code can be found at https://anonymous.
4open.science/r/evolving_computation_graphs-97B7/.

B ADDITIONAL QUALITATIVE RESULTS OF ECG

In Figure 3 we provide visualisations of the node embeddings on roman-empire, comparing
those obtained by a trained GCN to those obtained from ECG-GCN. Similarly to the figure in the
main text, we observe a more structured latent space in the latter, aligned with better empirical
performance when classifying.

In Table 5, we provide the homophily analysis of the original graphs, as well as the graphs obtained
using the embeddings of a pre-trained MLP, a pre-trained BGRL and from leveraging the two models
together.
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Table 3: The best-performing hyperparameters for each GNN propagation rule in our experiments.
The only experiment where the baseline model outperforms ECG is the SAGE propagation layer on
amazon-ratings; hence, the hyperparameters k and pde are irrelevant.

roman-empire amazon-ratings minesweeper tolokers questions

MLP
L 2 1 5 5 1
d 512 512 512 512 512

GCN
L 5 2 4 5 3
d 512 512 256 512 256
τ MLPBGRL MLP→GNN GNN GNN BGRL
k 3 3 3 3 3
pde 0.5 0.5 0.5 0.0 0.0

SAGE
L 5 2 5 4 5
d 512 1024 256 256 512
τ BGRL Baseline BGRL struc2vec struc2vec
k 10 — 20 10 10
pde 0.5 — 0.5 0.5 0.0

GAT-sep
L 5 2 5 4 4
d 512 512 256 256 512
τ BGRL MLP→GNN MLP struc2vec struc2vec
k 10 3 20 10 10
pde 0.5 0.5 0.5 0.5 0.0

GT-sep
L 5 2 5 5 5
d 512 512 256 256 512
τ BGRL MLP→GNN GNN struc2vec struc2vec
k 20 3 3 20 20
pde 0.5 0.5 0.5 0.5 0.5

Figure 3: For roman-empire, we use a pre-trained GCN (left) and ECG-GCN (right) layer to
obtain node embeddings. The colours correspond to the ground-truth labels of the nodes.
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Table 4: Detailed breakdown of model performance on the datasets proposed by Platonov et al.
(2023). MLP, GCN, SAGE, GAT-sep and GT-sep are the baselines, while all the other models
are variants of ECG. Red marks the best performance on each dataset for each of the consid-
ered GNN architectures and the corresponding ECGs. Accuracy is reported for roman-empire
and amazon-ratings, and ROC AUC is reported for minesweeper, tolokers, and
questions.

roman-empire amazon-ratings minesweeper tolokers questions

MLP 65.88± 0.38 45.90± 0.52 50.89± 1.39 72.95± 1.06 70.34± 0.76

GCN 73.69± 0.74 49.13± 0.37 89.75± 0.52 83.64± 0.67 77.13± 0.31
MLP-ECG-GCN 83.55± 0.39 50.99± 0.64 92.63± 0.10 84.81± 0.25 76.25± 0.59
BGRL-ECG-GCN 80.59± 0.48 48.99± 0.28 92.35± 0.10 84.25± 0.22 77.50± 0.35
Struc2vec-ECG-GCN 81.62± 0.31 49.18± 0.27 92.44± 0.09 84.22± 0.13 76.50± 0.30
GNN-ECG-GCN 84.52± 0.41 48.95± 0.30 92.89± 0.10 84.91± 0.14 77.30± 0.28
MLPBGRL-ECG-GCN 84.53± 0.26 50.11± 0.60 92.47± 0.50 84.73± 0.23 77.32± 0.31
MLP→GNN-ECG-GCN 84.39± 0.22 51.12± 0.38 92.56± 0.23 84.35± 0.31 75.16± 0.87

SAGE 85.74± 0.67 54.41± 0.29 93.66± 0.13 82.56± 0.10 76.44± 0.62
MLP-ECG-SAGE 85.82± 0.62 53.32± 0.39 94.10± 0.08 82.60± 0.23 76.13± 0.41
BGRL-ECG-SAGE 87.88± 0.25 53.12± 0.32 94.11± 0.07 82.61± 0.29 77.23± 0.36
Struc2vec-ECG-SAGE 87.67± 0.28 53.40± 0.45 94.10± 0.09 83.81± 0.12 77.43± 0.25
GNN-ECG-SAGE 87.05± 0.24 53.36± 0.60 94.09± 0.07 82.38± 0.27 75.83± 1.00
MLPBGRL-ECG-SAGE 86.50± 0.34 52.34± 0.92 94.01± 0.07 82.55± 0.18 76.55± 0.33
MLP→GNN-ECG-SAGE 85.94± 0.57 53.45± 0.27 93.77± 0.12 82.52± 0.22 75.53± 0.64

GAT-sep 88.75± 0.41 53.44± 0.34 93.91± 0.35 83.78± 0.43 76.79± 0.71
MLP-ECG-GAT-sep 88.22± 0.36 52.98± 0.30 94.52± 0.20 83.91± 0.32 77.30± 0.47
BGRL-ECG-GAT-sep 89.62± 0.18 52.20± 0.57 94.24± 0.15 84.23± 0.25 77.38± 0.18
Struc2vec-ECG-GAT-sep 89.48± 0.19 53.28± 0.45 94.37± 0.14 84.92± 0.16 77.67± 0.18
GNN-ECG-GAT-sep 88.64± 0.21 53.08± 0.48 94.46± 0.12 83.90± 0.19 76.35± 0.60
MLPBGRL-GAT-sep 88.73± 0.37 51.06± 0.73 94.39± 0.20 84.11± 0.23 76.97± 0.45
MLP→GNN-ECG-GAT-sep 88.04± 0.32 53.65± 0.39 93.97± 0.19 83.75± 0.30 75.61± 0.74

GT-sep 87.32± 0.39 52.18± 0.80 92.29± 0.47 82.52± 0.92 78.05± 0.93
MLP-ECG-GT-sep 88.56± 0.35 52.68± 0.65 93.62± 0.27 83.65± 0.29 77.82± 0.43
BGRL-ECG-GT-sep 89.56± 0.16 52.37± 0.30 93.55± 0.18 82.97± 0.26 78.12± 0.32
Struc2vec-ECG-GT-sep 89.07± 0.23 52.43± 0.49 93.66± 0.23 84.28± 0.38 78.23± 0.26
GNN-ECG-GT-sep 89.16± 0.23 52.71± 0.40 93.69± 0.34 83.43± 0.28 77.71± 0.43
MLPBGRL-GT-sep 88.70± 0.30 52.29± 0.60 93.52± 0.25 84.00± 0.24 77.85± 0.45
MLP→GNN-ECG-GT-sep 88.62± 0.46 53.25± 0.39 92.69± 0.34 83.41± 0.44 75.50± 1.13
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Table 5: Statistics of the original heterophilous graphs and of the evolutionary computation graph
obtained from MLP, BGRL and MLPBGRL.

roman-empire amazon-ratings minesweeper tolokers questions

edges 32, 927 93, 050 39, 402 519, 000 153, 540
edge homophily 0.05 0.38 0.68 0.59 0.84
adjusted homophily −0.05 0.14 0.01 0.09 0.02
LI 0.11 0.04 0.00 0.01 0.00

ECG(k = 3) edges 67, 986 73, 476 30, 000 35, 274 146, 763
MLP-ECG edge homophily 0.73 0.66 0.79 0.79 0.97
MLP-ECG adjusted homophily 0.7 0.53 0.33 0.4 0.41
MLP-ECG LI 0.65 0.33 0.16 0.19 0.28

BGRL-ECG edge homophily 0.16 0.3 0.68 0.6 0.93
BGRL-ECG adjusted homophily 0.06 0.02 0.12 0.08 0.01
BGRL-ECG LI 0.1 0.03 0.05 0.03 0.03

MLPBGRL-ECG edge homophily 0.72 0.56 0.63 0.79 0.98
MLPBGRL-ECG adjusted homophily 0.69 0.38 0.1 0.03 0.5
MLPBGRL-ECG LI 0.62 0.23 0.03 0.06 0.4
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