
Published as a conference paper at ICLR 2021

ACTING IN DELAYED ENVIRONMENTS WITH
NON-STATIONARY MARKOV POLICIES

Esther Derman˚

Technion

estherderman@campus.technion.ac.il

Gal Dalal˚

Nvidia Research

gdalal@nvidia.com

Shie Mannor
Nvidia Research & Technion

shie@ee.technion.ac.il

ABSTRACT

The standard Markov Decision Process (MDP) formulation hinges on the assump-
tion that an action is executed immediately after it was chosen. However, assuming
it is often unrealistic and can lead to catastrophic failures in applications such as
robotic manipulation, cloud computing, and finance. We introduce a framework
for learning and planning in MDPs where the decision-maker commits actions that
are executed with a delay of m steps. The brute-force state augmentation baseline
where the state is concatenated to the last m committed actions suffers from an
exponential complexity in m, as we show for policy iteration. We then prove that
with execution delay, deterministic Markov policies in the original state-space
are sufficient for attaining maximal reward, but need to be non-stationary. As for
stationary Markov policies, we show they are sub-optimal in general. Consequently,
we devise a non-stationary Q-learning style model-based algorithm that solves
delayed execution tasks without resorting to state-augmentation. Experiments on
tabular, physical, and Atari domains reveal that it converges quickly to high perfor-
mance even for substantial delays, while standard approaches that either ignore the
delay or rely on state-augmentation struggle or fail due to divergence. The code is
available at https://github.com/galdl/rl_delay_basic.git.

1 INTRODUCTION

The body of work on reinforcement learning (RL) and planning problem setups has grown vast in
recent decades. Examples for such distinctions are different objectives and constraints, assumptions
on access to the model or logged trajectories, on-policy or off-policy paradigms, etc. (Puterman, 2014).
However, the study of delay in RL remains scarce. It is almost always assumed the action is executed
as soon as the agent chooses it. This assumption seldom holds in real-world applications (Dulac-
Arnold et al., 2019). Latency in action execution can either stem from the increasing computational
complexity of modern systems and related tasks, or the infrastructure itself. The wide range of such
applications includes robotic manipulation, cloud computing, financial trading, sensor feedback in
autonomous systems, and more. To elaborate, consider an autonomous vehicle required for immediate
response to a sudden hazard on the highway. Driving at high speed, it suffers from perception module
latency when inferring the surrounding scene, as well as delay in actuation once a decision has been
made. While the latter phenomenon is an instance of execution delay, the former corresponds to
observation delay. These two types of delay are in fact equivalent and can thus be treated with the
same tools (Katsikopoulos & Engelbrecht, 2003).

Related works. The notion of delay is prominent in control theory with linear time-invariant systems
(Bar-Ilan & Sulem, 1995; Dugard & Verriest, 1998; Richard, 2003; Fridman, 2014; Bruder & Pham,
2009). While the delayed control literature is vast, our work intersects with it mostly in motivation.
In the above control theory formulations, the system evolves according to some known diffusion or
stochastic differential equation. Differently, the discrete-time MDP framework does not require any
structural assumption on the transition function or reward.

˚Equal contribution

1

https://github.com/galdl/rl_delay_basic.git

Published as a conference paper at ICLR 2021

A few works consider a delay in the reward signal rather than in observation or execution. Delayed
reward has been studied on multi-armed bandits for deterministic and stochastic latencies (Joulani
et al., 2013) and for the resulting arm credit assignment problem (Pike-Burke et al., 2017). In the MDP
setting, Campbell et al. (2016) proposed a Q-learning variant for reward-delay that follows a Poisson
distribution. Katsikopoulos & Engelbrecht (2003) considered three types of delay: observation,
execution, and reward. Chen et al. (2020b) studied execution delay on multi-agent systems. The
above works on MDPs employed state-augmentation with a primary focus on empirical evaluation
of the degradation introduced by the delay. In this augmentation method, all missing information is
concatenated with the original state to overcome the partial observability induced by the delay. The
main drawback of this embedding method is the exponential growth of the state-space with the delay
value (Walsh et al., 2009; Chen et al., 2020a) and, in the case of (Chen et al., 2020b), an additional
growth that is polynomial with the number of agents.

Walsh et al. (2009) avoided state-augmentation in MDPs with delayed feedback via a planning
approach. By assuming the transition kernel to be close to deterministic, their model-based simulation
(MBS) algorithm relies on a most-likely present state estimate. Since the Delayed-Q algorithm we
devise here resembles to MBS in spirit, we highlight crucial differences between them: First, MBS is
a conceptual algorithm that requires the state-space to be finite or discretized. This makes it highly
sensitive to the state-space size, as we shall demonstrate in Sec. 7[Fig. 5(c)], prohibiting it from
running on domains like Atari. Differently, Delayed-Q works with the original, possibly continuous
state-space. Second, MBS is an offline algorithm: it estimates a surrogate, non-delayed MDP from
samples, and only then does it solve that MDP to obtain the optimal policy (Walsh et al., 2009)[Alg. 2,
l. 16]. This is inapplicable to large continuous domains and is again in contrast to Delayed-Q.

Recent studies considered a concurrent control setting where action sampling occurs simultaneously
with state transition (Ramstedt & Pal, 2019; Xiao et al., 2020). Both assumed a single action selection
between two consecutive observations, thus reducing the problem to an MDP with execution delay
of m “ 1. Chen et al. (2020a) have generalized it to an arbitrary number of actions between two
observations. Hester & Stone (2013) addressed execution delay in the braking control of autonomous
vehicles with a relatively low delay of m § 3. All these works employ state-augmentation to preserve
the Markov property of the process, whereas we are interested whether this restriction can be lifted.
Additionally, they studied policy-gradient (policy-based) methods, while we introduce a Q-learning
style (value-based) algorithm. Likewise, Firoiu et al. (2018) proposed a modified version of the
policy-based IMPALA (Espeholt et al., 2018) which is evaluated on a single video game with delay
values of m § 7. To the best of our knowledge, our work is the first to tackle a delayed variant of the
popular Atari suite (Bellemare et al., 2013).

Contributions. Revisiting RL with execution delay both in theory and practice, we introduce:

1. Analysis of a delayed MDP quantifying the trade-off between stochasticity and delay.

2. The first tight upper and lower complexity bounds on policy iteration for action-augmented
MDPs. We stress that this is also a contribution to general RL theory of non-delayed MDPs.

3. A new formalism of execution-delay MDPs that avoids action-embedding. Using it, we
prove that out of the larger set of history-dependent policies, restricting to non-stationary
deterministic Markov policies is sufficient for optimality in delayed MDPs. We also derive a
Bellman-type recursion for a delayed value function.

4. A model-based DQN-style algorithm that yields non-stationary Markov policies. Our
algorithm outperforms the alternative standard and state-augmented DDQN in 39 of 42
experiments spanning over 3 environment categories and delay of up to m “ 25.

2 PRELIMINARIES: NON-DELAYED STANDARD MDP

Here, we describe the standard non-delayed MDP setup. Later, in Sec. 5, we introduce its general-
ization to the delayed case. We follow and extend notations from (Puterman, 2014)[Sec. 2.1.]. An
infinite horizon discounted MDP is a tuple pS,A, P, r, �q where S and A are finite state and action
spaces, P : S ˆA Ñ �S is a transition kernel, the reward r : S ˆA Ñ R is a bounded function,
and � P r0, 1q is a discount factor. At time t, the agent is in st and draws an action at according to a
decision rule dt that maps past information to a probability distribution qdt over the action set. Once
at is taken, the agent receives a reward rpst, atq.

2

Published as a conference paper at ICLR 2021

A decision rule can be history-dependent (H) or Markovian (M) , and randomized (R) or deterministic
(D). Denote by Ht the set of possible histories up to time t. Then, a history-dependent decision-rule
is given by dt : Ht Ñ �A with ht fiÑ qdtphtqp¨q. A Markovian decision-rule, on the other hand,
maps states to actions, i.e., dt : S Ñ �A with s fiÑ qdtpsqp¨q. A policy ⇡ :“ pdtqt•0 is a sequence of
decision rules whose type dictates that of the policy. It can be either Markovian deterministic (⇧MD)
or randomized (⇧MR), history-dependent deterministic (⇧HD) or randomized (⇧HR). It is stationary
if its decision rules do not depend on time, i. e., dt “ d for all t • 0. This defines the smaller class
of stationary policies: deterministic (⇧SD) and randomized (⇧SR). Note that stationary policies are
inherently Markovian. Indeed, at time t “ 0, d : H0 Ñ �A is state-dependent because H0 “ S.
Since the policy is stationary, i. e., dt “ d @t, subsequent decision rules are also state-dependent, thus
Markovian. This makes ⇧HR the most general set and ⇧SD the most specific.

We denote probability model by P⇡
0 , where the subscript 0 stands for the delay value m “ 0. The

related random variables are denoted by s̃t P S, ãt P A and h̃t P pS ˆAqt ˆ S . The value function

given policy ⇡ P ⇧HR is defined as v⇡psq “ E⇡
0

„∞8
t“0 �

t
rps̃t, ãtq

ˇ̌
ˇ̌ s̃0 “ s

⇢
, where the expectation

is taken with respect to (w.r.t.) P⇡
0 p¨|s̃0 “ sq. Let the optimal value function

v
˚psq :“ max

⇡P⇧HR
v
⇡psq, @s P S . (1)

Our goal is to find a policy ⇡
˚ that yields v˚, and it is known that focusing on stationary deterministic

policies ⇡ P ⇧SD is sufficient for reaching the optimum in (1) (Puterman, 2014)[Thm. 6.2.10.].

3 MDPS WITH DELAY: A DEGRADATION EXAMPLE

s0

a0 : r “ 1
a1 : r “ 0

s1

a0 : r “ 0
a1 : r “ 1

p

1 ´ p

p

1 ´ p

Figure 1: Degradation due to delay
in a two-state MDP.

In an MDP with execution delay1
m, any action chosen at

time t is executed at t ` m. Therefore, at each step, the agent
witnesses the current state and action being executed, but
selects a new action that will be applied in a future state. We
assume that m decided actions are already awaiting execution
at t “ 0, so at any given time, the queue of pending actions
is of constant length m. As we illustrate in the next example,
having a delay generally comes at a price.
Example 3.1 (Two-state MDP). Consider the MDP in Fig. 1.
It has two states and two actions: S “ ts0, s1u,A “ ta0, a1u.
The transition kernel is independent of the action: for all
s, s

1 P S s.t. s ‰ s
1
, P ps1|s, aq “ P ps1|sq “ p where p P

r0.5, 1s. The reward is positive for one of the two actions only:
rps0, a0q “ rps1, a1q “ 1, rps0, a1q “ rps1, a0q “ 0.

We inspect the return obtained from the commonly used set of stationary deterministic policies ⇧SD.
As expected, the highest possible return is attained when m “ 0, but monotonically decreases with
the delay, m, and increases with the level of certainty, p. We analytically quantify this effect in the
following and give a proof in Appx. A.1.

Proposition 3.1. For delay m P N and p P r0.5, 1s, the optimal return of ⇡˚ P ⇧SD is 1`p2p´1qm
2p1´�q .

Remark 3.1. This result demonstrates a clear tradeoff between stochasticity and delay. For p Ñ 0.5
or m Ñ 8, the return goes to its minimal value of 0.5{p1 ´ �q. Contrarily, for p Ñ 1 or m Ñ 0, it
goes to its maximal value of 1{p1 ´ �q.

4 THE AUGMENTATION APPROACH

In this section, we consider state-augmentation for solving MDPs with execution delay. We begin
with defining an equivalent MDP with a larger state space that memorizes all missing information for
an informed decision. Due to the full observability, the resulting optimal augmented policy attains
the optimal return in the original delayed MDP.

1The exact terminology used by Katsikopoulos & Engelbrecht (2003) is action delay, while in (Bertsekas
et al., 1995)[Section 1.4] it is time lag. We prefer the term execution delay since the action is itself decided
instantaneously.

3

Published as a conference paper at ICLR 2021

Definition 4.1 (m-AMDP). Given MDP pS,A, P, r, �q and m P N, an m-Augmented MDP (m-
AMDP) is a tuple pXm,A, F, g, �q such that Xm :“ S ˆA

m is the augmented state-space, A the
original action-space, F is the transition matrix given in Appx. B.1,(14), and g is the reward function
given in Appx. B.1, (15).

The pending action queue is concatenated to the original state to form an augmented state xt :“
pst, a´1

t , ¨ ¨ ¨ , a´m
t q P Xm, where a

´i
t is the i-th pending action at time t. It means that in the

following step, t ` 1, action a
´m
t will be executed independently of the present action selection,

the queue will shift to the right, and the newly selected action will be at the second coordinate.
By construction, the m-AMDP is non-delayed; it directly accounts for execution delay through
its state-representation, as opposed to our coming formulation in Sec. 5. We further define a
stationary deterministic policy ⇡̄ P ⇧̄SD

m with corresponding decision rule d̄ : Xm Ñ �A and
augmented value function v

⇡̄pxq :“ E⇡̄
“∞8

t“0 �
t
gpx̃t, ãtq|x̃0 “ x

‰
. As in (1), our goal is to solve

v̄
˚pxq “ max⇡̄P⇧̄SD

m
v
⇡̄pxq, @x P Xm.

We now analyze the classical Policy Iteration (PI) algorithm (Howard, 1960) for m-augmented
MDPs and provide a finite-time analysis of its convergence. We refer to it as mA-PI and provide its
pseudo-code in Appx. B.2. We consider PI since it is a canonical representative upon which many
other algorithms are built. Admittedly, we did not find any other formal result quantifying the effect
of augmentation on a planning or learning algorithm, other than a PAC upper bound for R-max with
✏-optimal policies (Walsh et al., 2009). A proof for the next result is given in Appx. B.4.
Theorem 4.1 (Lower Bound for mA-PI). The number of iterations required for mA-PI to converge
in m-AMDP Mm is ⌦p|Xm |q “ ⌦p|S ||A |mq.

Thm. 4.1 does not take advantage of the special delay problem structure but rather is an application
of our more general result to augmented MDPs (Appx.B.4). As pointed out in Scherrer et al. (2016),
the lower-bound complexity of PI is considered an open problem, at least in the most general MDP
formulation. Lower-bounds have been derived in specific cases only, such as deterministic MDPs
(Hansen & Zwick, 2010), total reward criterion (Fearnley, 2010) or high discount factor (Hollanders
et al., 2012). Even though we did not intend to directly address this open question, our lower bound
result seems to be a contribution on its own to the general theory of non-delayed MDPs.

Next, we show that the above lower bound is tight (up to a factor of |A| and logarithmic terms) and
mA-PI is guaranteed to converge after Õp|S||A|

m`1q. A proof is given in Appx. B.5.
Theorem 4.2 (mA-PI Convergence). The mA-PI algorithm converges to the optimal value-policy
pair pv̄˚

, ⇡̄
˚q in at most |S||A|

mp|A| ´ 1q
Q
log p1{�q´1 log p1{1´�q

U
iterations.

5 EXECUTION-DELAY MDP: A NEW FORMULATION

In this section, we introduce and study the stochastic process generated by an MDP with execution
delay, without resorting to state-augmentation. In the ED-MDP we consider, the probability measure
changes according to the delay value m. We assume that during the m initial steps, actions are
sequentially executed according to a fixed queue ā :“ pā0, ¨ ¨ ¨ , ām´1q P A

m. Unlike m-AMDPs,
the initial queue of pending actions here plays the role of an exogenous variable that is not embedded
into the state-space. A policy ⇡ P ⇧HR induces a probability measure P⇡

m that is defined through a
set of equations which, for brevity, we defer to Appx. C[(16)-(19)]. We note that for t † m, decision
rules do not depend on the history, while for t • m, they depend on the history up to t ´ m only. Let
µ be an initial state distribution and � a Dirac distribution. Using this and the notations from Sec. 2,
we can explicitly write the probability of a sample path. See proof in Appx. C.1.
Proposition 5.1. For policy ⇡ :“ pd0, d1, ¨ ¨ ¨ q P ⇧HR, the probability of observing history ht :“
ps0, a0, s1, a1 ¨ ¨ ¨ , at´1, stq is given by:

P⇡
mps̃0 “ s0, ã0 “ a0, s̃1 “ s1, ã1 “ a1, ¨ ¨ ¨ , ãt´1 “ at´1, s̃t “ stq

“ µps0q
˜

m´1π

k“0

�ākpakqppsk`1|sk, akq
¸ ˜

t´1π

k“m

qdk´mphk´mqpakqppsk`1|sk, akq
¸
.

From Prop. 5.1 we deduce that, differently than the standard MDP setting where any Markov policy
induces a Markov process, the delayed process is not Markovian even for stationary policies (see

4

Published as a conference paper at ICLR 2021

Appx. C.2 for a formal proof). Next, we show that for any history-dependent policy and starting state,
there exists a Markov policy (not necessarily stationary) that generates the same process distribution.
Consequently, despite execution delay, one can restrict attention to Markov policies without impairing
performance.
Theorem 5.1. Let ⇡ P ⇧HR be a history dependent policy. For all s0 P S, there
exists a Markov policy ⇡

1 P ⇧MR that yields the same process distribution as ⇡, i.e.,
P⇡1
mps̃t´m “ s

1
, ãt “ a|s̃0 “ s0q “ P⇡

mps̃t´m “ s
1
, ãt “ a|s̃0 “ s0q, @a P A, s

1 P S, t • m.

The proof is given in Appx. C.3. It builds on the concept that for each history-dependent policy
⇡ P ⇧HR, one can choose a sequence of Markov decision rules that reconstruct the same time-
dependent action distribution in the process induced by ⇡.

This result proves attainability of the optimum over ⇧MR, but not how one can efficiently find an
optimal policy. In Appx. C.5, (27), we formally define the delayed value function v

µ0:µm´1,⇡
m for

policy ⇡ and initial action distribution queue µ0 : µm´1 :“ pµ0, . . . , µm´1q. In Thm. C.1 there,
we show that it satisfies a non-stationary Bellman-type recursion. Though the question of how to
efficiently find an optimal non-stationary Markov policy remains generally open, we partially answer
it by proving that a deterministic Markov policy is sufficient for the optimal delayed value function.
Theorem 5.2. For any action distribution queue µ0 : µm´1 :“ pµ0, . . . , µm´1q and s0 P S,

max
⇡P⇧MD

v
µ0:µm´1,⇡
m “ max

⇡P⇧MR
v
µ0:µm´1,⇡
m .

Delayed
optimum

[This work]

Non-delayed
optimum

[Puterman, 1994]

Figure 2: Optimality of policy types in ED-
MDPs: Markovness is sufficient but non-
stationarity is necessary.

Degradation due to stationarity. To complement
the finding that a deterministic Markov policy can be
optimal for any ED-MDP, we show that restricting
to stationary policies impairs performance in general.
Thus, while in non-delayed MDPs it is enough to
focus on the latter, in ED-MDPs the restriction should
be to the more general class of Markov policies.
Proposition 5.2. There exists an m-ED-MDP for
which all stationary policies are sub-optimal.
This result follows from computing the optimal re-
turn for stationary and non-stationary policies in the
ED-MDP from Example 3.1 using simulation. We
elaborate on this further in Appx. C.4. There, we
also confirm that our theoretical return from Prop. 3.1
matches closely with simulation. Lastly, a visualiza-
tion of the results from this section is given in Fig. 2.

6 A NEW ALGORITHM: DELAYED-Q

Figure 3: Delayed-Q algorithm diagram.

We now introduce an algorithm capable of
successfully handling tasks with execution
delay by inferring the future m-step state
before each decision.
Algorithm Description. Fig. 3 depicts
the algorithm. As a first stage, to select
an action at to be executed in a future
state st`m, we infer that future state ŝt`m

using the current state st and the queue
of pending actions pat´m, . . . , at´1q.
This is done by successively apply-
ing an approximate forward model m

times: ŝt`1 “ fpst, at´mq, . . . , ŝt`m “
fpŝt`m´1, at´1q. More details on the for-
ward models are given in Sec. 7. The ap-
proximate model here is simpler than other
model-based algorithms such as tree-search
methods, because it does not require access to the reward function. Also, only a single trajectory is

5

Published as a conference paper at ICLR 2021

sampled rather than exponentially many w.r.t. the horizon length. We do note this method benefits
from the environment not being entirely stochastic (Walsh et al., 2009). Still, as we show next, it
performs well even on noisy environments. As a second stage, we select an action according to
a policy at “ ⇡pŝt`mq. The two stages of this procedure can be represented as a non-stationary
Markov policy ⇡tpstq, where the non-stationarity stems from the time-dependency of the action
queue, and the Markov property from the policy being applied on st and no prior history. Notably, the
Q-function here does not take past actions as input, contrarily to the augmentation approach in Sec. 4.
To better stress the non-stationarity, we note that applying the policy on the same state at different
times can output different actions. Lastly, for training, we maintain a sample-buffer of length m

which we use to shift action at into the tuple pst`m, rt`m, at, st`m`1q prior to each insertion to
the replay buffer. During the course of this work, we also experimented with a model-free variant.
Instead of ‘un-delaying’ the Q-function with the forward-model, we defined a delayed Q-function
trained on sequences whose actions were shifted m steps forward. However, the obtained results were
unsatisfactory, seemingly because the Q-function is unable to implicitly learn the m-step transition.

Point-Estimate Approaches. For completeness, we mention alternatives to using a ‘most-likely’
state estimate, such as an expected future state. To demonstrate why point-estimate prediction can
be devastating, consider an MDP where s “ px, tq: position and time, respectively. Starting from
s0 “ p0, 0q, t progresses deterministically, while x behaves like a random walk with momentum;
i. e., if x ° 0, then x ` 1 is more likely than x ´ 1, and vice versa. The process obviously diverges
with time. Consider two actions: one is good when |x| is big, and the other when |x| is small. For a
large delay m, the PDF of the state is bi-modal and symmetric around pZ,mq and p´Z,mq for some
finite Z. But, a point estimate (e. g., ML or MAP) would yield a value of p0,mq. In addition to this
example, we observe that in our Ex. 3.1, any alternative to a ‘most-likely’ state estimate is worse:
there, the optimal policy applies actions based on the most-likely state (see proof of Prop. 3.1), while
it is easy to see that any other policy weighing future state probabilities leads to lower reward.

7 EXPERIMENTS

Figure 4: Maze: Time complexity as
a function of m

We perform experiments in a wide range of domains: tab-
ular, physical, and image-based Atari. All of them include
stochasticity: In the maze we inject noise to actions; in the
physical domains we perturb the masses at each step; and
Atari is stochastic by nature. We compare our algorithm with
two baselines: Oblivious-Q and Augmented-Q. Oblivious-Q
is the standard Q-learning that ignores delay and assumes
each decision to be immediately executed. Augmented-Q
acts on the m´AMDP introduced in Def. 4.1. We test all
domains on delays m P t0, 5, 15, 25u with 5 seeds per each
run. All results are summarized in Fig. 10, and are provided
in more detail with std. in Appx. D.1, Table 2.

Tabular Maze Domain. We begin with testing Delayed-Q on a Maze domain (Brockman et al.,
2016)[tinyurl.com/y34tmfm9]. It is based on tabular Q-learning and enables us to study the
merits of our method decoupled from the coming DDQN added complexities. Moreover, it conveys
the exponential complexity of Augmented-Q. The forward-model we construct is naturally tabular as
well: it predicts a state s

1 according to the highest visitation frequency given ps, aq. The objective in
Maze is to find the shortest path from a start position to a goal state in a randomly-generated N ˆ N

maze. Reaching the goal yields a reward of 1, and ´1{p10N2q per step otherwise. The maximal
episode length is 10N2 steps, so the cumulative reward is in r´1, 1s. We also create a Noisy Maze
environment that perturbs each action w.p. p P r0, 0.5s.
Convergence plots are given in Fig. 6. Delayed-Q outperforms the rest for all delay values m, while
Oblivious-Q fails in all runs for m ° 0. Since the augmented state-space grows exponentially with
m, Augmented-Q converges more slowly as m increases. In fact, for m ° 15 the simulation fails
to run due to memory incapacity for the Q-table; this explains its absence in Figs. 6-10. To confirm
the exponential complexity growth of Augmented-Q and compare it with Delayed-Q, we trained
both agents with increasing delay values, and reported the number of training episodes each one
required before reaching a cumulative reward of 0.5. Fig. 4 clearly demonstrates the exponential (resp.
linear) dependence of Augmented-Q (resp. Delayed-Q) in the delay value. The linear dependence
of Delayed-Q in m is not surprising: Delayed-Q is algorithmically identical to Q-learning, except

6

tinyurl.com/y34tmfm9

Published as a conference paper at ICLR 2021

for the m-step forward-model calls and the replay buffer shift of m samples. To further analyze its
sensitivity to the state-space size, we ran tabular Delayed-Q on increasing maze sizes, for a fixed
m “ 5. As Fig. 5(c) shows, the performance drops exponentially, suggesting high sensitivity to the
state-space size and highlighting one shortcoming of MBS (Walsh et al., 2009) (see Sec. 1).

(a) (b) (c)

Figure 5: Delayed-Q (median over 5 seeds): (a) Total reward after 5000 training episodes on 10 ˆ 10
Maze. Performance is sensitive to both delay value and stochasticity. (b) Noisy Cartpole. (c) Reward
on varying Maze sizes. Abscissa is in log-scale, so the return decreases exponentially with m.

Figure 6: Convergence plots for Maze, Noisy Cartpole and Atari MsPacman. Note that the scale of
the y-axes (performance) may change from figure to figure.

Physical Domains. Next, we test our approach on two continuous domains: CartPole2 and Acrobot.
The CartPole task requires balancing a pole connected to a cart that actuates left or right. In Acrobot,
one needs to swing up the lower of two links connected by a joint above a certain height. The agent
receives a reward of 1 if the pole stays above a certain angle in Cartpole, and in Acrobot it receives
´1 until it reaches the goal. The episode length is 500 steps in both tasks. We also create noisy
versions of both tasks: At each step, normal additive noises are independently added to each physical
component’s mass, with std of 0.1 of the nominal mass.

We extend the famous DDQN algorithm (Van Hasselt et al., 2015) and compare to it, though our
method is general and can be seamlessly integrated into any Q-learning based algorithm. Our one-step
forward-model is implemented with a neural network (NN) of the same architecture as the Q-network.
Namely, it consists of two hidden layers, each of width 24, with ReLu activations. The input of the

2Since Cartpole fails in „10 steps if the initial actions are random, we initialize the m-lengthed action-queue
with optimal actions using a pretrained non-delayed model. We wait for 2m steps before starting to append
samples to the replay buffer to avoid unfair advantage due to these actions.

7

Published as a conference paper at ICLR 2021

Figure 7: Performance as a function of the delay (from left to right): Maze, Noisy Cartpole, Noisy
Acrobot. For Augmented-Q in Maze, m ° 10 is missing due to explosion of the state-space.

Figure 9: Noisy Cartpole: Performance gap between true and trained forward model.

forward-model NN is the concatenation of ps, aq and its output is s1
. Training the forward-model

NN is conducted together with the Q-network training with the same hyperparameters and sample
batches; this makes the implementation easy and simple. For Augmented-Q, a concatenation of the
pending actions to the state is fed to the Q-network.

Figure 8: Performance gap for
Delayed-Q trained with a delay of
m “ 10.

Fig. 6 depicts the performance of the three algorithms for
different values of m for Noisy Cartpole. As expected from
a physical domain, ignoring delay gives catastrophic results
even for m “ 5. Augmented-Q performs moderately up to
m “ 15, but fails for larger delays. Delayed-Q performs the
best for all m values, and performs well even on the challeng-
ing task of balancing a noisy pole with m “ 25. We observe
similar behavior in all Cartpole and Acrobot experiments,
as shown in Fig. 10. Moreover, in Fig. 7, we demonstrate
the relative robustness of Delayed-Q to different delay val-
ues. All tested environments exhibit superior performance
of Delayed-Q for a wide range of delays. In Noisy Acrobot,
Delayed-Q performs better for m “ 25 than the alternatives
do for m “ 2. Figs. 5(a)-5(b) show a clear trade-off between
noise and delay, as we also discuss in Rmk. 3.1. For high
delays, the agent is much more sensitive to an increase in stochasticity.

To quantify the dependence of Delayed-Q on the model accuracy, we compare the learned model to
a perfect one, i.e., the environment itself. Fig. 9 shows performance is impaired more as the delay
increases and suggests a better model can potentially improve reward by 20-30%. Further, we test
the robustness of Delayed-Q to misspecified delay by training it with m “ 10 and evaluating on
other delay values. Fig. 8 shows the evaluation performance for m P t5, . . . , 15u. It demonstrates the
robustness of our method – varying performance in evaluation (for good or bad) does not stem from
delay misspecification. Instead, the delay is ‘forgotten’ after training, and Fig. 8 depicts the general
effect of execution delay on performance. For shorter delay than the training one, i. e., m † 10,
performance even improves. The reason is that, first, during training, the Q-function is ‘un-delayed’
due to the replay buffer shift that relates the actions to the correct execution time. Second, the
forward-model is trained based on single-step transitions and only during inference is it queried m

times. Thus, these two networks composing the agent are oblivious to the delay they were trained on.

8

Published as a conference paper at ICLR 2021

Figure 10: Experiment summary: mean of episodic return for all domains. Delayed-Q outperforms
the alternatives in 39 of 42 experiments. Due to negative reward, a positive translation of 1 is applied
for Maze and 500 for Acrobot. Atari x-axis is the gain relative to lowest result in each experiment.

Atari Domains. We run the last set of experiments on the Atari Learning Environment (Bellemare
et al., 2013). We inspect 8 games from those that were successfully tackled with the original Q-
network architecture and hyperparameters of DDQN (Van Hasselt et al., 2015). Since a learned
forward-model for images conditioned on actions is a hanging question in the research frontier, we
leave it for future work and use the simulator itself for prediction. It is stochastic in nature and thus
encompasses approximation error. For Augmented-Q, we concatenate the action queue to the output
of the CNN part of the Q-network; the extended vector is then fed into the subsequent fully-connected
part of it. We train all games for 1M steps. Fig. 6 shows convergence plots for MsPacman. Delayed-Q
is consistently better than Augmented-Q for all m values, which is, in turn, better than Oblivious-Q.
Although the gap between all three algorithms is small for m “ 5, it increases with m. For m “ 25,
the delay is too large for the augmentation to have a positive effect compared to Oblivious-Q, and
they perform the same. This behavior is representative of all Atari games, as can be seen in Fig. 10.
Lastly, we compared Delayed-Q with a fourth algorithm which uses an RNN policy that is unaware of
the delay value. The results are given in Appx. D.2, showing that a recurrent policy does not improve
upon Augmented-Q or Oblivious-Q. This result is not surprising though: as stated in Thm. 5.1, the
history sequence st´m, st´m´1, . . . does not aid the policy any further than only using st´m.

8 DISCUSSION
In this work, we found that non-stationary deterministic Markov policies are optimal in delayed MDPs.
Though more expressive, the standard state augmentation approach is intractable for all but the shortest
delays, while the oblivious approach that ignores delay suffers from inferior performance. We derived
a Q-learning based algorithm that generates a Markov policy by combining a transition forward
model with Q-network. The forward-model produces a simple future-state estimate. Incorporating
probabilistic estimates and other improvements such as integration of image-based action-dependent
learned forward-models (Kim et al., 2020), are left for future research. Extensions of our work
for real-world applications can be unknown or varying delay. In the first case, a good prior for the
delay value can often be used, e. g., for autonomous vehicles, as the latency statistics of the different
hardware and software components are well studied (Zhao et al., 2019; Niu et al., 2019), while in
production systems, they are almost constant (Toschi et al., 2019). Our algorithm is also readily
extendable to the second case of varying delay. Differently from the augmentation approach, our
1-step forward-model decouples the algorithm from the delay used for training, as Fig. 8 depicts.
Also, quantization of the delay is not essential as long as the forward model can operate with variable
delay values. Finally, our framework can be extended to policy-gradient-based methods that are
particularly useful for continuous control, where observation delay is inherent.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGEMENTS

The authors would like to thank Daniel J. Mankowitz and Timothy A. Mann for motivating this work.

REFERENCES

Avner Bar-Ilan and Agnès Sulem. Explicit solution of inventory problems with delivery lags.
Mathematics of Operations Research, 20(3):709–720, 1995.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic
programming and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540v1, 2016.

Benjamin Bruder and Huyên Pham. Impulse control problem on finite horizon with execution delay.
Stochastic Processes and their Applications, 119(5):1436–1469, 2009.

Jeffrey S Campbell, Sidney N Givigi, and Howard M Schwartz. Multiple model q-learning for
stochastic asynchronous rewards. Journal of Intelligent & Robotic Systems, 81(3-4):407–422,
2016.

Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement
learning for continuous control. arXiv preprint arXiv:2005.05440, 2020a.

Baiming Chen, Mengdi Xu, Zuxin Liu, Liang Li, and Ding Zhao. Delay-aware multi-agent reinforce-
ment learning. arXiv preprint arXiv:2005.05441, 2020b.

Luc Dugard and Erik I Verriest. Stability and control of time-delay systems, volume 228. Springer,
1998.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

John Fearnley. Exponential lower bounds for policy iteration. In International Colloquium on
Automata, Languages, and Programming, pp. 551–562. Springer, 2010.

Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforcement learning with
action delay. arXiv preprint arXiv:1810.07286, 2018.

Emilia Fridman. Introduction to time-delay systems: Analysis and control. Springer, 2014.

Thomas Dueholm Hansen and Uri Zwick. Lower bounds for howard’s algorithm for finding minimum
mean-cost cycles. In International Symposium on Algorithms and Computation, pp. 415–426.
Springer, 2010.

Todd Hester and Peter Stone. Texplore: real-time sample-efficient reinforcement learning for robots.
Machine learning, 90(3):385–429, 2013.

Romain Hollanders, Jean-Charles Delvenne, and Raphaël M Jungers. The complexity of policy
iteration is exponential for discounted markov decision processes. In 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), pp. 5997–6002. IEEE, 2012.

Ronald A Howard. Dynamic programming and Markov processes. John Wiley, 1960.

10

Published as a conference paper at ICLR 2021

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed feedback. In
International Conference on Machine Learning, pp. 1453–1461, 2013.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with delays
and asynchronous cost collection. IEEE transactions on automatic control, 48(4):568–574, 2003.

Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler. Learning to
simulate dynamic environments with gamegan. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1231–1240, 2020.

Wei Niu, Xiaolong Ma, Yanzhi Wang, and Bin Ren. 26ms inference time for resnet-50: Towards
real-time execution of all dnns on smartphone. arXiv preprint arXiv:1905.00571, 2019.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grünewälder. Bandits with delayed
anonymous feedback. stat, 1050:20, 2017.

Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

Simon Ramstedt and Chris Pal. Real-time reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 3073–3082, 2019.

Jean-Pierre Richard. Time-delay systems: an overview of some recent advances and open problems.
automatica, 39(10):1667–1694, 2003.

Bruno Scherrer et al. Improved and generalized upper bounds on the complexity of policy iteration.
Mathematics of Operations Research, 41(3):758–774, 2016.

Alessandro Toschi, Mustafa Sanic, Jingwen Leng, Quan Chen, Chunlin Wang, and Minyi Guo.
Characterizing perception module performance and robustness in production-scale autonomous
driving system. In IFIP International Conference on Network and Parallel Computing, pp. 235–247.
Springer, 2019.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. arXiv preprint arXiv:1509.06461, 2015.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in environ-
ments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18(1):83, 2009.

Ted Xiao, Eric Jang, Dmitry Kalashnikov, Sergey Levine, Julian Ibarz, Karol Hausman, and Alexander
Herzog. Thinking while moving: Deep reinforcement learning with concurrent control. arXiv
preprint arXiv:2004.06089, 2020.

Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Li Erran Li, Tiancheng Lou, and Jishen
Zhao. Towards safety-aware computing system design in autonomous vehicles. arXiv preprint
arXiv:1905.08453, 2019.

11

	Introduction
	Preliminaries: Non-Delayed Standard MDP
	MDPs with Delay: A Degradation Example
	The Augmentation Approach
	Execution-Delay MDP: A New Formulation
	A New Algorithm: Delayed-Q
	Experiments
	Discussion
	MDPs with Delay: A Degradation Example
	Proof of Proposition 3.1

	The Standard Approach: Augmentation
	The augmented MDP
	mA-PI Algorithm
	Convergence of mA-PI
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Execution-Delay MDP: A New Formulation
	Proof of Proposition 5.1
	Remark regarding the Markov property
	Proof of Theorem 5.1
	Degradation due to Stationarity
	The Delayed Value Function
	Proof of Theorem 5.2

	Experiments
	Numerical Summary of Atari Results
	Comparison to RNN-Based Policy

