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ABSTRACT

Model robustness is the ability of a machine learning model to perform well when
confronted with unexpected distributional shifts during inference. While various
augmentation-based methods exist to improve common corruption robustness,
they often rely on predefined image operations, and the untapped potential of
perturbation-based strategies still exists. In response to these limitations, we
repurpose label smoothing as a tool for embedding the uncertainty of perturbations.
By correlating confidence levels with a monotonically decreasing function to the
intensity of isotropic perturbations, we demonstrate that the model eventually
acquires the increased boundary thickness and flatter minima. These metrics have
strong relationships with general model robustness, extending beyond the resistance
to common corruption. Our evaluations on CIFAR-10/100, Tiny-ImageNet, and
ImageNet benchmarks confirm that our approach not only bolsters robustness on
its own but also complements existing augmentation strategies effectively. Notably,
our method enhances both common corruption and adversarial robustness in all
experimental cases, a feature not observed with prior augmentations.

1 INTRODUCTION

Model robustness, or its ability to maintain performance when data distribution unexpectedly shifts at
inference time, is a critical aspect of machine learning. Despite their importance in high-stakes fields
like autonomous driving and medical diagnostics, Deep Neural Networks often struggle in the face of
minor but humanly imperceptible data perturbations (Szegedy et al., 2013; Goodfellow et al., 2015).

Robustness varies based on distributional shift, whether it be common corruption (Hendrycks et al.,
2022; He et al., 2021), adversarial corruption (Xu et al., 2023; Goodfellow et al., 2015), or domain
shift (Izmailov et al., 2018; Cha et al., 2021). Several strategies have been proposed to bolster
robustness against these corruptions, including augmentation-based (Hendrycks et al., 2021b;a; 2022),
model-based (Kim et al., 2021; Mao et al., 2021; He et al., 2021), and adaptation-based (Wang et al.,
2021; Rusak et al., 2022) methods. Among them, augmentation-based strategies are desirable for
their wide applicability across different contexts. Nonetheless, existing augmentation methods, while
effective against common corruptions, are limited by fixed image operations and often falter against
various distributional shifts including adversarial attacks.

To address these limitations, we introduce a strategy named Smoothing Perturbations In DEcreas-
ing Radii, or SPIDER. SPIDER leverages label smoothing as an unconventional mechanism to
address perturbation uncertainty, adjusting the confidence of the true label in relation to perturbation
magnitude, thus enhancing model robustness.

The two primary contributions of our paper are:

• We propose a novel interpretation of label smoothing as a method for incorporating pertur-
bation uncertainty. By adjusting the confidence of the true label with perturbation intensity,
our approach uniquely enhances both common and adversarial robustness, addressing a
limitation in existing augmentation techniques.

• We conduct a detailed theoretical and empirical analysis of how our algorithm enhances
robustness by examining boundary thickness and flat minima. Boundary thickness (Yang
et al., 2020) measures the model’s non-overconfident probability areas, while flat minima
(Izmailov et al., 2018) identifies regions with stable loss against perturbations.
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The remainder of this paper is structured as follows: Section 2 discusses related works on increasing
model robustness against common corruptions; Section 3 formalizes the concept of SPIDER and
investigates its properties in relation to the boundary thickness and flatness both theoretically and
empirically; finally, Section 4 presents our primary results, followed by ablation studies.

2 RELATED WORKS

Data Augmentation-based Approaches: These methods enhance model robustness via training
data augmentation. For instance, AugMix (Hendrycks et al., 2021b) creates mew images through
sequences of random image processing operations, such as cropping or shearing. PixMix (Hendrycks
et al., 2022) is an extension of AugMix that additionally combines images chosen from patterned sets
like fractal images. Unlike our approach, both depend on predefined image operations or image sets.

DeepAugment (Hendrycks et al., 2021a) uses a pretrained model to generate augmented images and
introduces predefined modifications to the network. Adversarial Noise Training (ANT) (Rusak et al.,
2020) utilizes a noise generator to create adversarial noise aimed at confusing the classifier. Both
DeepAugment and ANT involve the use of an additional network, either pretrained or trained.

Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019) create new training samples by interpolating
two samples from different classes or cutting and pasting sections from different images while
adjusting the labels accordingly. Although both have been known to improve model performance on
vision tasks, they marginally improve model robustness due to the manifold intrusion problem.

Our algorithm, SPIDER, falls into the augmentation-based approach category. Compared to exist-
ing augmentations, SPIDER utilizes simpler augmentation techniques without requirements on a
predefined set of images or other pretrained models.

Model Architecture-based Approaches: These strategies involve developing unique training
schemes for particular models. For instance, QualNet (Kim et al., 2021) employs a two-stage
invertible neural architecture that processes clean and corrupted images to enhance robustness. Vision
transformer (Dosovitskiy et al., 2021) is another model architecture that has gained attention recently,
with many succeeding works (Zhou et al., 2022; Mao et al., 2022a;b) modifying its components for
increased robustness or designing self-supervised tasks for it. While these model-specific methods
have shown remarkable performance, they often lack generalizability due to their reliance on specific
backbone architectures and have limitations to be used together with other methods.

Adaptation-based Approaches: These methods improve model robustness using the principles of
domain adaptation. Test Entropy Minimization (TENT) (Wang et al., 2021) is one such technique that
tunes the parameters of the batch normalization layers in the test time. Robust Pseudo Labeling (RPL)
(Rusak et al., 2022) operates in an unsupervised domain adaptation setting, and uses self-learning to
train classifiers. While effective, these adaptation-based methods often require additional access to
target data during either training or testing, limiting their applicability to specific circumstances.

Label Smoothing-based Approaches: These approaches focus on leveraging label smoothing which
basically softens the one-hot labels of samples. Shafahi et al. (2019) revealed an empirical connection
between the logit gap, gradient gap, and adversarial robustness, pointing out the potential benefits
of integrating Gaussian noise with standard label smoothing. Similarly, Fu et al. (2020) presented
empirical evidence of label smoothing’s benefits in enhancing adversarial robustness. Nonetheless,
these works have no theoretical understanding on how the adversarial robustness is achieved with
label smoothing.

AutoLabel (Stutz et al., 2023) relates the degree of label smoothing to the strength of augmentations
denoted as the distance between the augmented and the original image. Nonetheless, the distance
metric is method-specific limiting its cross-method applicability. SSAT (Ren et al., 2022) incorpo-
rates label smoothing with adversarial perturbations, but have limited theoretical understandings
on the behavior of perturbations. Additionally, strategies focusing on logits without considering
perturbations have been suggested by Goibert & Dohmatob (2019).

When compared to our work, SPIDER, None of the above works have repurposed label smoothing as
a monotonically decreasing function embedding the uncertainty of perturbations and lack theoretical
understandings on how label smoothing and perturbation should be combined to improve general
model robustness encompassing common corruptions.
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3 SPIDER: SMOOTHING PERTURBATIONS IN DECREASING RADII

3.1 PROPOSED ALGORITHM

Taking inspiration from ocean waves, SPIDER treats perturbed datapoints like sea waves, which
lose strength as they travel from their origin (Figure 1a, left). With a given perturbation probability
density function p(·), SPIDER mitigates perturbation uncertainty via a monotonically decreasing
smoothing function s(·) that finetunes the true label. The influence of SPIDER on the training of
neural networks is illustrated by the decision boundary of a SPIDER-trained network in Figure 1b.

Figure 1: SPIDER methodology illustration. (a) We observe how the certainty of the true label
decreases as the magnitude of perturbation increases. (b) We demonstrate the resulting smoother,
contour-like decision boundary induced by the SPIDER approach compared to traditional training.

Algorithm 1 SPIDER - Core Framework
Input: input datapoint (x, y), isotropic perturbation pdf p(·) : Rn → R, monotonically decreasing
smoothing ftn s(·) : R≥0 → R≥1/c (c = number of classes)
Output: augmented datapoint (x̃, ỹ)
x̃ := x+ δ, δ ∼ p

ỹ := [ỹ1, ỹ2, · · · , ỹc],where ỹi∈[c] =

{
s(∥δ∥) if i is the true label
(1− s(∥δ∥))/(c− 1) otherwise

return (x̃, ỹ)

Algorithm 2 SPIDER - Specific Instantiation
Input: input datapoint (x, y), hyperparameters τ, ξ
Output: augmented datapoint (x̃, ỹ)
δ = ϵ/∥ϵ∥ · r, ϵ ∼ N(0, I), r ∼ Uniform(0, τ)

s(z) := clip(e−λ(z−ϵ), 0, 1), λ := (3/4τ)−1ln c/(1 + ξc)

x̃ := x+ δ, δ ∼ p

ỹ := [ỹ1, ỹ2, · · · , ỹc],where ỹi∈[c] =

{
s(∥δ∥) if i is the true label
(1− s(∥δ∥))/(c− 1) otherwise

return (x̃, ỹ)

We will initially delve into the details of the chosen perturbation and smoothing functions in SPIDER
(see Algorithm 2), and then elaborate on the heuristic reasoning behind these choices. Our perturbation
function is akin to random sampling from an L2 sphere (ϵ/|ϵ|) with a random radius r. The smoothing
function s(·), conversely, is an exponentially decreasing function that sustains the confidence level of
the perturbed datapoint until a certain distance (τ/4) is reached (Figure 1a, right).

We opted for specific perturbation and smoothing functions based on empirical and theoretical
heuristics. Our chosen perturbation function outperformed isotropic Gaussian and random L2 ball
sampling, which can be partly explained by the high-dimensional input space (Aggarwal et al.,
2001). First, in such spaces, random L2 ball sampling approximates L2 sphere sampling, resulting in
perturbations mostly at a fixed L2 distance r. Second, isotropic Gaussian distribution can be viewed as
ϵ · r, where r follows a skewed chi-squared distribution, potentially leading to the underrepresentation
of perturbations either too distant or too proximate to the datapoint.
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3.2 BOUNDARY THICKNESS

3.2.1 UNDERSTANDING BOUNDARY THICKNESS

Boundary thickness (Yang et al., 2020) serves as a gauge for the areas of a classifier where overconfi-
dence does not occur. It measures the distance between two data points, xi and xj , with differing
labels i and j, within which the classifier’s predictions remain balanced and not overconfident.

Formally, boundary thickness can be defined as:

Θ(f, α, β, xi, xj) := ∥xi − xj∥
∫ 1

0

I{α < gij(x(t)) < β}dt

Here, x(t) := (1− t)xi + txj represents a point on the line segment between xi and xj . The term
gij(x(t)) := f(x(t))i−f(x(t))j signifies the difference between the predicted probabilities of labels
i and j at point x(t). The parameters α and β range between -1 and 1, and I is an indicator function.

Classifiers with thicker boundaries are less prone to boundary tilting problem (Tanay & Griffin, 2016),
a phenomenon in which the decision boundary leans toward one class’s manifold over another’s. Such
imbalance makes models vulnerable to misclassifications when subjected to minor data perturbations.
Theoretical and empirical evidence in the original paper validate that models with thicker boundaries
improves robustness against both common and adversarial corruptions.

3.2.2 SPIDER INCREASES BOUNDARY THICKNESS

Herein, we explain both theoretically and empirically how SPIDER’s label smoothing function
enhances a model’s boundary thickness. A detailed exposition of Theorem 1 is in Appendix B.

Theoretical Examination of SPIDER’s Impact on Boundary Thickness

Problem Setup: Suppose we have two distinct data points (xi, yi) and (xj , yj) from the training
dataset. We define ϵ as a random vector in Rn with a probability density function (pdf) pϵ(·)
symbolizing noise, and s(·) : R≥0 → R1/c as a smoothing function mapping the L2-norm of noise
to a smoothed label. We consider an isotropic pdf pϵ centered at the origin that is formalized as
pϵ(z) := pγ(∥z∥)/Sn(∥z∥), where pγ defines the probability of the perturbation size and Sn(r) :=
2π

n
2 rn−1/ Γ(n/2) is a function defining the surface of a n-dim hypersphere with radius r.

Consider a datapoint (x, y). The perturbed version can be denoted as (x̃, y), where x̃ := x+ϵ without
loss of generality. Furthermore, the perturbed datapoint with the smoothed label can be represented as
(x̃, ỹ) := (x+ ϵ, [ỹ1, ỹ2, · · · , ỹc]), with ỹi = s(∥ϵ∥) if true label and (1− s(∥ϵ∥)/(c− 1) otherwise.

We introduce f∗ and f∗
LS as optimal functions that minimize the surrogate loss along the segment

x(t) = (1 − t)xi + txj(t ∈ [0, 1]), given the stochastic datapoints (x̃i, yi), (x̃j , yj) for f∗ and
(x̃i, ỹi), (x̃j , ỹj) for f∗

LS .
Theorem 1. Given any isotropic pdf pϵ(z) := pγ(∥z∥)/Sn(∥z∥) with monotonically decreasing
function pγ(·) and a monotonically decreasing function s(·), the boundary thickness of f∗

LS is always
greater than or equal to f∗, i.e.

∀ − 1 ≤ α ≤ 0 < β ≤ 1, Θ(f∗, α, β, xi, xj) ≤ Θ(f∗
LS , α, β, xi, xj)

for datapoints (xi, yi), (xj , yj) satisfying yi ̸= yj in the dataset.

Empirical Evidence for SPIDER’s Enhancement of Boundary Thickness

Our experiments comprehensively demonstrate the effectiveness of SPIDER in augmenting the
boundary thickness, whether applied independently or in synergy with prior augmentation methods.
We also establish the pivotal role of the label smoothing function within SPIDER in enhancing
boundary thickness.

To illustrate this, we conducted experiments under two different parameter configurations: α =
0, β = 0.75 and α = 0, β = 1. The former configuration adheres to the default values utilized in
the original boundary thickness paper (Yang et al., 2020), while the latter aligns with values known
to generalize the notion of margin in Support Vector Machines (Hearst et al., 1998). For further
experimental details, readers are referred to Appendix E.
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Table 1: Boundary thickness of baseline augmentations.

(α, β) Baseline CIFAR-10 CIFAR-100
Original +SPIDER Original +SPIDER

(0, 0.75)

no aug. 0.1582 ±0.0360 0.5784 ±0.0747 (+0.4202) 0.4763 ±0.0011 0.6487 ±0.0312 (+0.1724)
AugMix 0.2126 ±0.0125 0.2411 ±0.0429 (+0.0285) 0.4490 ±0.0024 0.5960 ±0.0167 (+0.1470)

DeepAug. 0.1497 ±0.0018 0.3297 ±0.0674 (+0.1800) 0.4696 ±0.0070 0.6208 ±0.0456 (+0.1512)
PixMix 0.1293 ±0.0009 0.1828 ±0.0105 (+0.0535) 0.4403 ±0.0022 0.5315 ±0.0268 (+0.0912)

(0, 1)

no aug. 0.9376 ±0.0150 1.8954 ±0.0408 (+0.9578) 0.9041 ±0.0097 1.4760 ±0.0354 (+0.5719)
AugMix 1.2152 ±0.0179 1.3875 ±0.0994 (+0.1723) 0.9698 ±0.0122 1.2314 ±0.0172 (+0.2616)

DeepAug. 1.0459 ±0.0309 1.7484 ±0.0970 (+0.7025) 0.9467 ±0.0044 1.2233 ±0.0068 (+0.2766)
PixMix 0.8217 ±0.0053 1.1064 ±0.0456 (+0.2847) 0.9669 ±0.0206 1.1102 ±0.0165 (+0.1433)

Table 2: Ablation results on the boundary thickness of SPIDER. (CIFAR-10)

Baseline α = 0, β = 0.75 α = 0, β = 1
+SPIDER +SPIDER w/o LS +SPIDER +SPIDER w/o LS

no aug. 0.5784 ±0.0747 0.1802 ±0.0016 (−0.3982) 1.8954 ±0.0408 1.3108 ±0.0440 (−0.5846)
AugMix 0.2411 ±0.0429 0.1365 ±0.0045 (−0.1046) 1.3875 ±0.0994 0.9738 ±0.2459 (−0.4137)
DeepAug 0.3297 ±0.0674 0.1898 ±0.0003 (−0.1399) 1.7484 ±0.0970 1.2421 ±0.0169 (−0.5063)
PixMix 0.1828 ±0.0105 0.1238 ±0.0017 (−0.0590) 1.1064 ±0.0456 0.7639 ±0.0092 (−0.3425)

Tables 1 display the boundary thickness for baseline augmentations in comparison to SPIDER.
It’s evident across both CIFAR-10 and CIFAR-100 datasets that SPIDER consistently results in a
significant increase in boundary thickness, regardless of the augmentation methods (no augmentation,
AugMix (Hendrycks et al., 2021b), DeepAugment (Hendrycks et al., 2021a), PixMix (Hendrycks
et al., 2022)) used in conjunction with it. This increase is universally observed for both the default
and custom parameter configurations.

To further substantiate the role of label smoothing in SPIDER, we performed an ablation study.
As shown in Table 2, when label smoothing is omitted (SPIDER w/o LS), a decrease in boundary
thickness is observed in all the cases. This affirms our theoretical assertion (Theorem 1) regarding
the critical role of label smoothing in enhancing boundary thickness.

3.3 FLATNESS

3.3.1 UNDERSTANDING FLATNESS

Flatness characterizes the extent of change in a model’s loss across proximate points in the parameter
or input space. Flatness-aware minimization techniques have been widely adopted in the field of
domain generalization (Foret et al., 2021; Izmailov et al., 2018; Cha et al., 2021), where flatter minima
contribute to better performance. This can be formally presented as a min-max problem:

min
θ

max
∥∆∥≤γ

E(x,y)∼D[L(f(x; θ +∆), y)]

Here, ∆ denotes the neighborhood of point θ within a radius γ, while D stands for a given dataset
and L for a surrogate loss function.

Flat minima is proven to improve model’s ability to perform well in the face of distributional shifts in
the data both theoretically and empirically (Cha et al., 2021). The distributional shifts not only include
domain shifts but also data corruptions such as common corruptions and adversarial corruptions as
well (Stutz et al., 2021).

Assuming a relationship between input perturbation and parameter perturbation, we can infer that
minimizing surrogate loss with perturbed datapoints is akin to finding flat minima in the parameter
space. Therefore, as a perturbation-based algorithm, SPIDER is also expected to favor flat minima.
In subsequent sections, we will first demonstrate theoretically that perturbations in the input and
parameter spaces are interconnected, and then empirically show that SPIDER indeed promotes flatter
minima in the parameter space.
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3.3.2 SPIDER ENCOURAGES FLAT MINIMA

Developing a closed-form solution to connect perturbations in input and parameter spaces for a
universal classifier f : Rn → Rm is infeasible. As a workaround, we address the case where
f is a single-layer network with softmax activation, denoted as f(x;W ), with W ∈ Rm×n. We
first theoretically prove the relationship between perturbations in input and parameter spaces, then
empirically demonstrate that SPIDER indeed facilitates flatter minima in parameter space.

Translating Perturbations Between Input and Parameter Spaces

Problem Setup: Given a linear model f : x 7→ σ(Wx + b), our aim is to understand the linkage
between an input perturbation(δ) and a parameter perturbation (∆) that satisfy σ(W (x+ δ) + b) =
σ((W +∆)x+ b). Given an input perturbation bounded by the L2-norm, i.e., |δ| ≤ γ, what is the
potential perturbation region R∆ for ∆ that ensures, for any |δ| ≤ γ, there is a ∆ ∈ R∆ fulfilling the
equality, or vice versa? Similarly, what is the perturbation region Rδ for δ, provided |∆| ≤ γ?

Definition 1. (Definition of Rδ) Given W ∈ Rm×n, x ∈ Rn, and a parameter perturbation region
{∆ ∈ Rm×n | ∥∆∥ ≤ γ}, Rδ ∈ Rn is a region satisfying the following constraint:

∀ ∥∆∥ ≤ γ,∃ δ ∈ Rδ s.t. Wδ = ∆x and ∀ δ ∈ Rδ,∃ ∥∆∥ ≤ γ s.t. Wδ = ∆x

Definition 2. (Definition of R∆) Given W ∈ Rm×n, D = {x1, · · · , xN}(xi ∈ Rn/{0} for i ∈ [N ]),
and input perturbation region {δ ∈ Rn | ∥δ∥ ≤ γ}, R∆ ∈ Rm×n is a region that satisfies the
following constraint:

∀x ∈ D,∀∥δ∥ ≤ γ,∃∆ ∈ R∆ s.t. Wδ = ∆x and ∀x ∈ D,∀∆ ∈ R∆,∃∥δ∥ ≤ γ s.t. Wδ = ∆x

We have defined the regions of interest. Now we present theorems on the translation of perturbations
from input space to parameter space (Theorem 2) and the inverse (Theorems 3 and 4). Informally,
Theorem 2 suggests that parameter space perturbations bounded by L2 norm can be translated to
input space perturbations within a rotated ellipsoid. However, translating the perturbation from the
input space to parameter space in a closed form expression is infeasible. Instead, we offer the subset
and the superset of the converted perturbation region in hyperparameter space in Theorems 3 and 4.
The square matrix Xλ of dimensions (m× n)2 is defined by the input x and weight W . The formal
definition of Xλ is given in Appendix D.

Theorem 2. Given W ∈ Rm×n, x ∈ Rn, and parameter perturbation region {∆ ∈ Rm×n | ∥∆∥ ≤
γ}, a m-dim rotated ellipsoid satisfies the definition of Rδ .

Theorem 3. Given W ∈ Rm×n, D = {x1, · · · , xN}(xi ∈ Rn/{0} for i ∈ [N ]), and input pertur-
bation region {δ ∈ Rn | ∥δ∥ ≤ γ}, let xmax := argmaxxi

∥xi∥ and λmin := min{λ1, · · · , λm}.
Then, {∆ ∈ Rm×n | ∥∆∥ ≤ (∥xmax∥2/λ2

min)
−1} is the subset of R∆.

Theorem 4. Given W ∈ Rm×n, D = {x1, · · · , xN}(xi ∈ Rn/{0} for i ∈ [N ]), and input
perturbation region {δ ∈ Rn | ∥δ∥ ≤ γ}, let Ri := {d ∈ Rm×n | d⊤X(i)

λ d ≤ 1} and Γ := {Ri |
i ∈ [N ]}.Then, {argminR1,··· ,Rn∈Γ maxρ∈∪i∈[n]Ri

∥ρ∥2} is the superset of R∆.

Empirical Evaluation on the Flatness of SPIDER

We utilized the Monte-Carlo method by Cha et al. (2021) to assess flatness, applying random pertur-
bations to a fully trained parameter vector θ and computing the average loss for those perturbations.
To elaborate, we measure E(x,y)∼D[L(f(x; θ + ∆), y)], where ∥∆∥ = γ with γ as an increasing
radius. We conducted a robust Monte-Carlo simulation, including 150 individual samples for each
method to ensure the reliability of our findings.

Figure 2 visually summarizes our findings. We started from a radius of 30 for clean data, DeepAug-
ment, and AugMix, and 50 for PixMix, increasing in 2.5 steps. Loss values for baseline methods and
those combined with SPIDER were plotted on a logarithmic scale. In eight scenarios tested, SPIDER
consistently found flatter minima in seven when combined with baselines. The only outlier was
AugMix with SPIDER, as AugMix had already achieved flat minima compared to other CIFAR-10
augmentations. This supports our hypothesis that SPIDER, a perturbation-based algorithm, favors
flatter minima. Further details of our experimental setup and results can be found in Appendix E.
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Figure 2: Flatness measured with respect to increasing radius.

4 EXPERIMENTS

4.1 EVALUATION METHODOLOGY

General Approach: We evaluate model robustness on CIFAR-10, CIFAR-100, Tiny-ImageNet, and
ImageNet (Deng et al., 2009). Metrics for common corruption error, adversarial error, and clean
accuracy are averaged over three runs for all datasets except ImageNet, which is assessed based on
a single run due to computational constraints. Hyperparameters for SPIDER (τ , ξ) are fine-tuned
over 30 trials using Optuna (Akiba et al., 2019) with a TPE sampler (Bergstra et al., 2011) except for
Tiny-ImageNet and ImageNet experiments fine-tuned over 15 trials. We report the models exhibiting
the highest accuracy on the augmented validation set, then evaluate these models’ robustness on
common corruption/adversarial corruption benchmarks.

Common Corruption and Adversarial Robustness Metrics: We use CIFAR-10/100-C, Tiny-
ImageNet-C, and ImageNet-C (Hendrycks & Dietterich, 2019) benchmarks to evaluate common
corruption robustness, measuring the mean corruption error (mCE) for each baseline and dataset. For
adversarial robustness, we employ untargeted L2 and L∞ norm-based PGD attacks (Madry et al.,
2018) with specific parameters for each dataset. For additional details, refer to Appendix E.

4.2 EMPIRICAL EVALUATION ON THE ROBUSTNESS OF SPIDER

Table 3: Evaluation of robustness on CIFAR-10/100 and Tiny-ImageNet Benchmarks.

Benchmark Method mCE ↓ L2 (PGD) ↓ L∞ (PGD) ↓
original +SPIDER original +SPIDER original +SPIDER

CIFAR-10

no aug. 25.57 ± 0.45 14.37 ± 0.31 68.57 ± 2.47 23.76 ± 0.84 99.52 ± 0.30 56.30 ± 3.23

AugMix 11.83 ± 0.05 9.17 ± 0.11 36.91 ± 0.09 30.98 ± 2.65 93.15 ± 2.14 72.14 ± 9.77

DeepAug. 13.21 ± 0.11 11.18 ± 0.16 54.86 ± 2.32 27.92 ± 0.42 95.86 ± 1.10 71.32 ± 2.16

PixMix 11.86 ± 0.10 8.36 ± 0.02 65.37 ± 0.10 36.72 ± 3.35 99.69 ± 0.06 84.44 ± 5.78

CIFAR-100

no aug. 52.21 ± 0.47 38.62 ± 0.36 93.25 ± 0.15 62.62 ± 0.44 99.58 ± 0.09 92.76 ± 0.60

AugMix 37.80 ± 0.24 33.56 ± 0.06 91.76 ± 0.20 71.00 ± 0.98 99.75 ± 0.02 96.16 ± 0.38

DeepAug. 39.41 ± 0.23 34.64 ± 0.12 88.83 ± 0.39 68.93 ± 0.20 99.41 ± 0.12 95.40 ± 0.25

PixMix 38.15 ± 0.49 30.98 ± 0.22 92.86 ± 0.18 75.46 ± 1.29 99.78 ± 0.15 97.12 ± 0.22

no aug. 74.58 ± 0.03 69.57 ± 0.17 57.11 ± 0.27 49.29 ± 0.43 99.24 ± 0.07 97.27 ± 0.09

Tiny- AugMix 65.02 ± 0.06 61.99 ± 0.07 60.96 ± 0.50 56.40 ± 0.36 99.55 ± 0.03 99.24 ± 0.09

ImageNet DeepAug. 62.51 ± 0.62 59.94 ± 0.39 53.35 ± 0.22 48.22 ± 0.19 99.49 ± 0.07 99.26 ± 0.02

PixMix 61.94 ± 0.14 60.62 ± 0.19 63.00 ± 0.30 61.39 ± 3.15 99.64 ± 0.02 99.03 ± 0.13

In our exploration of SPIDER’s performance against common corruptions and adversarial attacks,
we compared it with established augmentation strategies such as the absence of any augmentation
(no aug.), AugMix (Hendrycks et al., 2021b), DeepAugment (Hendrycks et al., 2021a), and PixMix
(Hendrycks et al., 2022). We found SPIDER consistently diminished errors with minimal to zero
compromises on clean accuracy.
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Table 4: Clean accuracy on CIFAR-10/100 and Tiny-ImageNet benchmarks.

Benchmark No Augmentation AugMix DeepAugment PixMix
original +SPIDER original +SPIDER original +SPIDER original +SPIDER

CIFAR10 95.37 ± 0.06 94.56 ± 0.14 95.78 ± 0.07 95.33 ± 0.08 94.90 ± 0.17 92.28 ± 0.39 95.52 ± 0.19 95.87 ± 0.09

CIFAR100 76.76 ± 0.09 74.08 ± 0.16 76.85 ± 0.19 75.49 ± 0.25 74.66 ± 0.04 72.63 ± 0.37 76.81 ± 0.30 77.00 ± 0.25

Tiny-IN 64.74 ± 0.24 67.40 ± 0.20 65.08 ± 0.15 68.87 ± 0.28 63.98 ± 2.47 66.69 ± 0.05 66.97 ± 0.04 68.95 ± 0.23

Table 5: Evaluation of robustness and clean accuracy on ImageNet benchmark.

Method mCE ↓ L2 (PGD) ↓ L∞ (PGD) ↓ clean acc. ↑
original +SPIDER original +SPIDER original +SPIDER original +SPIDER

no aug. 88.17 81.61 76.96 75.92 98.29 97.19 70.12 71.30
AugMix 84.78 83.25 78.52 70.90 98.28 96.33 69.84 76.91

DeepAug. 87.54 85.49 76.93 67.49 98.26 96.23 75.79 76.19
PixMix 78.17 76.72 77.14 74.64 98.03 97.93 74.56 75.17

* The ↓ symbol denotes that lower values are better, and ↑ higher the better.

To illustrate, consider the CIFAR-10 dataset (Table 3). Without any augmentation, the mean corruption
error (mCE) was found to be 25.57. However, the introduction of SPIDER reduced it significantly to
14.37. Similarly, the L2 and L∞ adversarial errors, which were initially 68.57 and 99.52 respectively,
dropped to 23.76 and 56.30 with the addition of SPIDER. When integrated with other augmentation
strategies, SPIDER’s effectiveness becomes more evident. For instance, pairing SPIDER with
AugMix led to a notable reduction in mCE from 11.83 to 9.17.

In terms of clean accuracy, SPIDER’s integration with various augmentations showed minimal to no
compromises, and even improvements in datasets like Tiny-ImageNet and ImageNet. Particularly,
while in CIFAR benchmarks SPIDER exhibited a minor decline, the overall trend underscores
SPIDER’s capacity to boost robustness without sacrificing and sometimes enhancing clean accuracy.

Interestingly, while previous augmentation strategies for common corruption robustness showed
limited efficacy in adversarial robustness, SPIDER presents a contrast. As demonstrated in preceding
sections, SPIDER not only enhances boundary thickness but also fosters flatter minima, leading to
improved robustness against general distributional shifts. Our experiments underscore its strength: it
bolstered both common and adversarial robustness across all evaluation scenarios.

In summary, our study showcases the efficacy of SPIDER in providing robustness against both
common and adversarial corruptions across multiple benchmarks and augmentation strategies. Its
consistent performance, coupled with its minimal impact on clean accuracy, makes it a compelling
addition to the toolbox of techniques for enhancing model robustness.

4.3 ABLATION STUDY

Within this section, we aim to discern the individual contributions of SPIDER’s components to its
robustness on CIFAR-100 benchmarks. At its core, SPIDER operates on a dual-axis: the perturbation
function and the label smoothing function. These components are engineered to collaboratively
bolster model robustness, but how do they fare independently?

We first tested the scenario where we retained the perturbations but disabled the label smoothing
(denoted as ‘No LS’). It provides insights into how fundamental the label smoothing mechanism
is to SPIDER’s overall performance. In a reciprocal experiment, we implemented the standard
label smoothing without SPIDER’s perturbations (denoted as ‘STD LS’). For clarity, standard label
smoothing (Szegedy et al., 2016) operates by tempering the probability of the correct class and
uniformly allocating the residual probabilities across other classes. By isolating these functions, we
sought to understand how much each contributes to the robustness in isolation and whether there’s
any potential redundancy in their combined use. Detailed experimental procedures can be found in
Appendix E.
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Table 6: Ablation results of model robustness on CIFAR-100 benchmarks.

Metric Method Baseline SPIDER No LS STD LS Mixup

mCE ↓
no aug. 52.21 ± 0.47 38.62 ± 0.36 40.10 ± 0.20 52.48 ± 0.30 46.58 ± 0.28

AugMix 37.80 ± 0.24 33.56 ± 0.06 39.68 ± 0.15 38.11 ± 0.09 35.85 ± 0.41

DeepAug. 39.41 ± 0.23 34.64 ± 0.12 36.02 ± 0.27 39.72 ± 0.05 36.15 ± 0.19

PixMix 38.15 ± 0.49 30.98 ± 0.22 31.59 ± 0.29 32.32 ± 0.08 32.39 ± 0.10

L2 ↓
no aug. 93.25 ± 0.15 62.62 ± 0.44 59.00 ± 0.09 68.06 ± 0.31 91.32 ± 0.60

AugMix 91.76 ± 0.20 71.00 ± 0.98 72.57 ± 0.52 91.77 ± 0.24 86.83 ± 0.84

DeepAug. 88.83 ± 0.39 68.93 ± 0.20 74.04 ± 0.38 69.16 ± 0.46 79.97 ± 0.74

PixMix 92.86 ± 0.75 75.46 ± 1.29 75.78 ± 0.50 69.24 ± 0.85 80.42 ± 0.16

L∞ ↓
no aug. 99.58 ± 0.09 92.76 ± 0.60 96.86 ± 0.20 82.95 ± 1.72 99.84 ± 0.05

AugMix 99.75 ± 0.02 96.16 ± 0.38 99.32 ± 0.10 99.72 ± 0.05 99.65 ± 0.09

DeepAug. 99.41 ± 0.12 95.40 ± 0.25 99.14 ± 0.04 84.34 ± 0.60 98.31 ± 0.36

PixMix 99.78 ± 0.15 97.12 ± 0.22 99.18 ± 0.03 87.48 ± 0.72 98.72 ± 0.15

Analyzing the results shown in Table 6, it became evident that removing the label smoothing function,
i.e., the ‘No LS’ case, has a significant damage on robustness in most of the cases, suggesting its
pivotal role in SPIDER’s mechanism. This observation correlates well with Theorem 1, emphasizing
the importance of boundary thickness and its influence on model robustness. The sole use of standard
label smoothing, i.e., the ‘STD LS’ case, displays limited effect against common corruptions, but
works well particularly against certain adversarial challenges, especially the L∞ attacks. However,
when both elements are integrated as in SPIDER, the results show a more comprehensive robustness
across different distributional shifts.

Our study also evaluated Mixup’s (Zhang et al., 2018) role in robustness enhancement. Echoing
findings from AugMix (Hendrycks et al., 2021b), techniques like CutMix (Yun et al., 2019) or
Mixup often did not enhance robustness. Despite Mixup’s conceptual similarity with some of our
investigated methods, its contribution to robustness appeared marginal at best, and at times even
counterproductive. This might resonate with AugMix’s observations, where they attributed the
potential subpar performance to the possible manifold intrusions.

5 LIMITATIONS AND FUTURE DIRECTIONS

Perturbation Sensitivity: Oversized perturbations risk causing datapoints to intrude into submani-
folds of different labels, thereby impairing clean accuracy. On the other hand, very slight perturbations
fail to enhance robustness.

Hyperparameter Introduction: With SPIDER comes additional hyperparameters for shaping the
perturbation and smoothing functions, potentially increasing the training cost due to hyperparameter
search. We have attempted to alleviate this by adopting an automated hyperparameter searching
algorithm coupled with early stopping, or ‘pruning’.

Function Shape Understanding: The relationship between model robustness and the shapes of
perturbation and smoothing functions remains underexplored. While our findings confirm that
isotropic perturbation functions coupled with monotonically decreasing smoothing contribute to
enhanced robustness, the optimal function shapes remain undetermined. This presents avenues for
future research to discern efficacious configurations to optimize SPIDER’s robustness capabilities.

6 CONCLUSION

We present Smoothing Perturbations In DEcreasing Radii (SPIDER), a novel algorithm drawing
inspiration from ocean wave energy dissipation, that refines label confidence based on perturbation
magnitude. This adjustment bolsters robustness against various corruptions. We have thoroughly
investigated how each component of SPIDER perturbation and smoothing function encourages larger
boundary thickness and flatter minima, resulting in improvements on general model robustness.
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A APPENDIX

The appendix contains additional material that could not be incorporated into the main paper due to
page constraints. This includes detailed proofs of the theorems, supporting visual representations,
and supplementary experimental data. The formal proofs, accompanied by illustrative diagrams that
elucidate the basic concept behind each theorem, are discussed in sections B, C, and D. Section
E delivers in-depth experimental methodologies that underpin the primary paper and some minor
complementary experiments. These supplementary experiments comprise sensitivity analysis of the
hyperparameters and a showcase of how Optuna’s early stopping (pruning) algorithm has contributed
to minimizing training time.

B DETAILED PROOFS FOR THEOREM 1 AND ACCOMPANYING LEMMAS

Figure 3: Depictions related to Theorem 1. (a) In simplified terms, the value of gij(x(t))∗LS for
t ∈ [0, 1/2] is lower than or equal to gij(x(t))

∗, and the inverse holds true for t ∈ [1/2, 1]. This
particular pattern gives rise to tLS

α − tLS
β ≥ tα − tβ , resulting in increased boundary thickness. (b) A

simplified representation of how SPIDER’s monotonically decreasing smoothing function assures
increased boundary thickness. The yellow lines indicate the boundary thickness for SPIDER (on the
left) and SPIDER without the smoothing function (on the right), respectively.

B.1 PROOF ON THEOREM 1

Theorem 1. Given any isotropic pdf pϵ(z) := pγ(∥z∥)/Sn(∥z∥) with monotonically decreasing
function pγ(·) and a monotonically decreasing function s(·), the boundary thickness of f∗

LS is always
greater than or equal to f∗, i.e.

∀ − 1 ≤ α ≤ 0 < β ≤ 1, Θ(f∗, α, β, xi, xj) ≤ Θ(f∗
LS , α, β, xi, xj)

for datapoints (xi, yi), (xj , yj) satisfying yi ̸= yj in the dataset.

Proof. Let Elin denote the event that perturbed images xi + ϵi and xj + ϵj lies on segment x(t).
Given such event Elin, we can formulate the perturbed images as x′

i := xi + (xj − xi)ηi and
x′
j = xj +(xi −xj)ηj , where ηi and ηj are univariate random variables in [0, 1]. Since ϵi, ϵj ∼ pϵ(·)

where pϵ(·) is an isotropic decreasing function centered at origin, ηi, ηj ∼ pη(·) where pη(·) is
a 1D monotonically decreasing pdf defined in the domain [0, 1]. In addition, we assume that
∀t ∈ [0, 1], pη(t) > 0, i.e. the probabilities of perturbed images are nonzero at the segment
x(t)(t ∈ [0, 1]) to make the calculation of f∗ and f∗

LS possible. One justification for the assumption
is that for small h > 0, (1− h)pη(t) + h · Uniform(0, 1) ≈ pη(t) in practice.

Now, we are ready to calculate the expected labels on the line segment. Since the primary interest
here is boundary thickness which is parameterized by ∥xi − xj∥ and gij(x(t)), we take a closer look
at the ith and jth element of the one-hot encoded labels.

For any point x(t) and its corresponding label y = [y0 · · · yi · · · yj · · · yc] w.l.o.g.,

E[y | x(t), Elin]
∝ E[y | xi + (xj − xi)ηi = x(t)] · pη(t) + E[y | xj + (xi − xj)ηj = x(t)] · pη(1− t)
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= [0 · · · 1 · · · 0 · · · 0] · pη(t) + [0 · · · 0 · · · 1 · · · 0]pη(1− t)

E[y | x(t), Elin] =
[
0 · · · pη(t)

pη(t) + pη(1− t)
· · · pη(1− t)

pη(t) + η(1− t)
· · · 0

]
, i.e. yi =

pη(t)

pη(t) + pη(1− t)
, yj =

pη(1− t)

pη(t) + pη(1− t)
, and 0 elsewhere.

Let f∗ : Rn → ∆c be any function satisfying f∗(x(t))i =
pη(t)

pη(t) + pη(1− t)
and f∗(x(t))j =

pη(1− t)

pη(t) + pη(1− t)
for all t ∈ [0, 1], where ∆c is a probability simplex in Rc. f∗ is an optimal

function that minimizes surrogate loss along the line segment x(t), t ∈ [0, 1].

Analogously, we can formulate perturbed images with smoothed labels given Elin as (xi + (xj −
xi)ηi, ỹi) and (xj + (xi − xj)ηj , ỹj). The expected label ỹ of a point x(t) on the line segment is

E[ỹ | x(t), Elin]
∝ E[ỹ | xi + (xj − xi)ηi = x(t)] · pη(t) + E[y | xj + (xi − xj)ηj = x(t)] · pη(1− t)

= [ri · · · s(∥(xj − xi)ηi∥) · · · ri · · · ri] · pη(t) + [rj · · · rj · · · s(∥(xj − xi)ηj∥) · · · rj ] pη(1− t)(
ri :=

1− s(∥(xj − xi)ηi∥)
c− 1

, rj :=
1− s(∥(xi − xj)ηj∥)

c− 1

)
= [ri · · · s(∥(xj − xi)t∥) · · · ri · · · ri] · pη(t) + [rj · · · rj · · · s(∥(xj − xi)(1− t)∥) · · · rj ] pη(1− t)

(∵ ηi = t and ηj = 1− t given events xi + (xj − xi)ηi = x(t) and xj + (xi − xj)ηj = x(t).)

For the sake of readibility, let di(t) := ∥(xj − xi)t∥ and dj(t) := ∥(xi − xj)(1− t)∥.

0 ≤ di(t), dj(t) ≤ ∥xj − xi∥ and di(t) + dj(t) = ∥xj − xi∥. We will simply denote di(t), dj(t) as
di, dj , and ri(t), rj(t) as ri, rj wherever not necessary.

The sum of the elements of the above vector is pη(t) + pη(1− t). Thus,

E[ỹ | x(t), Elin]

=

[
ripη(t) + rjpη(1− t)

pη(t) + pη(1− t)
· · · s(di)pη(t) + rjpη(1− t)

pη(t) + pη(1− t)

· · · ripη(t) + s(dj)pη(1− t)

pη(t) + pη(1− t)
· · · ripη(t) + rjpη(1− t)

pη(t) + pη(1− t)

]
Let f∗

LS : Rn → ∆c be any function satisfying

∀ t ∈ [0, 1], f∗
LS(x(t))k∈[c] =



s(di)pη(t) + rjpη(1− t)

pη(t) + pη(1− t)
if k = i,

ripη(t) + s(dj)pη(1− t)

pη(t) + pη(1− t)
if k = j,

ripη(t) + rjpη(1− t)

pη(t) + pη(1− t)
otherwise.

f∗
LS is an optimal function that minimizes surrogate loss along the segment x(t), t ∈ [0, 1].

We can now calculate the boundary thickness of f∗ and f∗
LS . To clearly distinguish gij(x(t)) for f∗

and f∗
LS , we use notations gij(x(t))∗ and gij(x(t))

∗
LS .

Θ(f∗, α, β, xi, xj) := ∥xi − xj∥
∫ 1

0
I{α < gij(x(t))

∗ < β}dt

Θ(f∗
LS , α, β, xi, xj) := ∥xi − xj∥

∫ 1

0
I{α < gij(x(t))

∗
LS < β}dt
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gij(x(t))
∗ =

pη(t)

pη(t) + pη(1− t)
− pη(1− t)

pη(t) + pη(1− t)
=

pη(t)− pη(1− t)

pη(t) + pη(1− t)

gij(x(t))
∗
LS =

s(di)pη(t) + rjpη(1− t)

pη(t) + pη(1− t)
− ripη(t) + s(dj)pη(1− t)

pη(t) + pη(1− t)

=
(s(di)− ri)pη(t)− (s(dj)− rj)pη(1− t)

pη(t) + pη(1− t)

s(di)− ri = s(di)−
1− s(di)

c− 1
=

c · s(di)− 1

c− 1

Since 1/c ≤ s(di) ≤ 1, 0 ≤ c · s(di)− 1

c− 1
≤ 1, i.e. 0 ≤ s(di)− ri ≤ 1.

For the sake of simplicity, let γi(di) := s(di) − ri. ri(di) is a monotonically decreasing function
with respect to di (∵ s(·) and c · s(·)− 1 are monotonically decreasing functions.) Trivially, 0 ≤
γj(dj) ≤ 1 and γj(·) is a monotonically decreasing function.

Recap that gij(x(t))∗ =
pη(t)− pη(1− t)

pη(t) + pη(1− t)
. Let us rewrite gij(x(t))

∗
LS as:

gij(x(t))
∗
LS =

γi(di)pη(t)− γj(dj)pη(1− t)

pη(t) + pη(1− t)

One important thing to note here is that both gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing

functions with respect to t that are symmetric to the point (1/2, 0).

Lemma 1. gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing functions with respect to

t ∈ [0, 1] that are symmetric to the point (1/2, 0).

Another thing to note is that if we show 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2] and
0 ≥ gij(x(t))

∗
LS ≥ gij(x(t))

∗ for t ∈ [1/2, 1], at the same time we are showing ∀ − 1 ≤ α ≤ 0 ≤
β ≤ 1,Θ(f∗

LS , α, β, xi, xj) ≥ Θ(f∗, α, β, xi, xj) considering Lemma 1 (Figure 3a.)

Lemma 2. 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2] and 0 ≥ gij(x(t))
∗
LS ≥ gij(x(t))

∗ for
t ∈ [1/2, 1].

With Lemma 1 and Lemma 2, we can now finally derive that the boundary thickness of f∗
LS is greater

than or equal to f∗.

Let 0 ≤ tLS
β ≤ 1/2 ≤ tLS

α ≤ 1 be the values of t such that

(tLS
α , tLS

β ) =

(
inf
t
gij(x(t))

∗
LS = α, sup

t
gij(x(t))

∗
LS = β

)
.

Since gij(x(t))
∗
LS is monotonically decreasing, the boundary thickness of f∗

LS is ∥xi −
xj∥

∫ 1

0
I{α < gij(x(t))

∗
LS < β}dt = ∥xi − xj∥ · (tLS

α − tLS
β ).

Similarly, let 0 ≤ tβ ≤ 1/2 ≤ tα ≤ 1 be the values of t such that

(tα, tβ) =

(
inf
t
gij(x(t))

∗ = α, sup
t

gij(x(t))
∗
LS = β

)
.

The boundary thickness of f∗ is ∥xi − xj∥ · (tα − tβ).

We now show that tLS
β ≤ tβ using Lemma 1 and Lemma 2, with the definition of tLS

β and tβ . For the
sake of simplicity, let h∗(t) and h∗

LS(t) denote gij(x(t))
∗ and gij(x(t))

∗
LS respectively.
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h∗
LS(t

LS
β ) = β ≤ h∗(tLS

β ) Def. of tLS
β , Lemma 2

h∗(tβ) = β ≥ h∗
LS(tβ) Def. of tβ , Lemma 2

h∗
LS(t

LS
β ) ≥ h∗

LS(tβ) h∗
LS(t

LS
β ) = β, β ≥ h∗

LS(tβ)

tLS
β ≤ tβ Lemma 1

Likewise, we can trivially derive tLS
α ≥ tα. Then, (tLS

α − tLS
β ) ≥ (tα − tβ) , i.e.

∥xi − xj∥(tLS
α − tLS

β ) ≥ ∥xi − xj∥(tα − tβ).

16
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B.2 PROOF ON LEMMA 1

Lemma 1. gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing functions with respect to

t ∈ [0, 1] that are symmetric to the point (1/2, 0).

Proof. We divide the proof into two parts. First we prove that gij(x(t))∗ and gij(x(t))
∗
LS are

symmetric to the point
(
1
2 , 0
)
, and then prove the functions are monotonically decreasing.

A function f being symmetric to a point
(
1
2 , 0
)

indicates that f
(
1
2 + x

)
= −f

(
1
2 − x

)
.

gij(x(t))
∗ =

pη(t)− pη(1− t)

pη(t) + pη(1− t)

gij(x
(
1
2 + t

)
)∗ =

pη(
1
2 + t)− pη(

1
2 − t)

pη(
1
2 + t) + pη(

1
2 − t)

= −
pη(

1
2 − t)− pη(

1
2 + t)

pη(
1
2 − t) + pη(

1
2 + t)

= −gij(x
(
1
2 − t

)
)

gij(x(t))
∗
LS =

(s(di(t))− ri(t))pη(t)− (s(dj(t))− rj(t))pη(1− t)

pη(t) + pη(1− t)
, where

ri(t) =
1− s(di(t))

c− 1
, rj(t) =

1− s(dj(t))

c− 1

di(t) = ∥(xj − xi)t∥, and dj(t) = ∥(xi − xj)(1− t)∥ = ∥(xj − xi)(1− t)∥.
We will unpack gij(x(t))

∗
LS .

gij(x(t))
∗
LS =

1

pη(t) + pη(1− t)
·
(
c · s(di(t))− 1

c− 1
· pη(t)−

c · s(dj(t))− 1

c− 1
· pη(1− t)

)
=

1

pη(t) + pη(1− t)
×(

c · s(∥(xj − xi)t∥)− 1

c− 1
· pη(t)−

c · s(∥(xj − xi)(1− t)∥)− 1

c− 1
· pη(1− t)

)
gij(x(

1
2 + t))∗LS

=
1

pη(
1
2 + t) + pη(

1
2 − t)

×

(
c · s(∥(xj − xi)(

1
2 + t)∥)− 1

c− 1
· pη( 12 + t)−

c · s(∥(xj − xi)(
1
2 − t)∥)− 1

c− 1
· pη( 12 − t)

)
= −gij(x(

1
2 − t))∗LS

Now, we prove gij(x(t))
∗ and gij(x(t))

∗
LS are monotonically decreasing.

gij(x(t))
∗ =

pη(t)− pη(1− t)

pη(t) + pη(1− t)

We show that gij(x(t))∗ is monotonically decreasing for all t ∈ [0, 1/2]. For the sake of simplicity,
we use p(·) to denote pη(·) here. ∀ 0 ≤ a ≤ b ≤ 1/2,

gij(x(a))
∗ − gij(x(b))

∗

=
p(a)− p(1− a)

p(a) + p(1− a)
− p(b)− p(1− b)

p(b) + p(1− b)

=
2p(a)p(1− b)− 2p(1− a)p(b)

(p(a) + p(1− a))(p(b) + p(1− b))

sign(gij(x(a))∗ − gij(x(b))
∗) = sign(p(a)p(1− b)− p(1− a)p(b)) (∵ p(·) : [0, 1] → R>0)

p(a)p(1− b)− p(1− a)p(b)

17
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= p(1− a)p(b) ·
(
p(a)p(1− b)

p(1− a)p(b)
− 1

)
= p(1− a)p(b) ·

(
p(a)

p(1− a)
÷ p(b)

p(1− b)
− 1

)
Since p is monotonically decreasing, p(a) ≥ p(b) ≥ p(1− b) ≥ p(1− a) > 0.

p(a)

p(1− a)
≥ p(b)

p(1− a)
≥ p(b)

p(1− b)
→ p(a)

p(1− a)
− p(b)

p(1− b)
≥ 0.

p(a)

p(1− a)
÷ p(b)

p(1− b)
≥ 1

(
∵

p(t)

p(1− t)
> 0 ∀ t ∈ [0, 1].

)
Thus, p(a)p(1−b)−p(1−a)p(b) ≥ 0, which leads to gij(x(a))−gij(x(b)) ≥ 0 (∀0 ≤ a ≤ b ≤ 1/2.)

Since gij(x(t))
∗ is symmetric to the point

(
1
2 , 0
)
, gij(x(t))∗ is also monotonically decreasing in

t ∈
[
1
2 , 1
]
.

Likewise, let γi(di(t)) :=
c · s(di(t))− 1

c− 1
. ∀ t ∈ [0, 1], 0 ≤ γi(di(t)) ≤ 1 and γi(di(t)) is a

monotonically decreasing function.

gij(x(t))
∗
LS =

γi(di(t))pη(t)− γi(1− di(t))pη(1− t)

pη(t) + pη(1− t)

Analogously, we can derive that gij(x(t))∗LS is monotonically decreasing function with trivial
calculations.
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B.3 PROOF ON LEMMA 2

Lemma 2. 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2] and 0 ≥ gij(x(t))
∗
LS ≥ gij(x(t))

∗ for
t ∈ [1/2, 1].

Proof. gij(x(t))
∗ =

pη(t)− pη(1− t)

pη(t) + pη(1− t)
and

gij(x(t))
∗
LS =

1

pη(t) + pη(1− t)
·
(
c · s(di(t))− 1

c− 1
· pη(t)−

c · s(d− di(t))− 1

c− 1
· pη(1− t)

)
gij(x(t))

∗ − gij(x(t))
∗
LS

=
1

pη(t) + pη(1− t)
·
(
c− c · s(di(t))

c− 1
· pη(t)−

c− c · s(d− di(t))

c− 1
· pη(1− t)

)
pη(t) ∝ pϵ((xj − xi)t) =

pγ(∥(xj − xi)t∥)
Sn(∥(xj − xi)t)∥)

=
pγ(∥ϵi∥)
Sn(∥ϵi∥)

pη(1− t) ∝ pϵ((xi − xj)(1− t)) =
pγ(∥(xj − xi)(1− t)∥)
Sn(∥(xj − xi)(1− t))∥)

=
pγ(∥ϵj∥)
Sn(∥ϵj∥)

Case t ∈ [0, 1/2):

pη(t)

pη(t) + pη(1− t)
=

pγ(∥ϵi∥)
Sn(∥ϵi∥)

pγ(∥ϵi∥)
Sn(∥ϵi∥)

+
pγ(∥ϵj∥)
Sn(∥ϵj∥)

=
1

1 +
pγ(∥ϵj∥)
pγ(∥ϵi∥)

· Sn(∥ϵi∥)
Sn(∥ϵj∥)

≥ 1

1 +

(
∥ϵi∥
∥ϵj∥

)n−1

The last inequality comes from fact that pγ(·) is a monotonically decreasing function and ∥ϵi∥ =
∥(xj − xi)t∥ < d/2 < ∥(xi − xj)(1− t)∥ = ∥ϵj∥.

As n grows, (∥ϵi∥/∥ϵj∥)n−1 converges to 0 for any t ∈ [0, 1/2). In other terms, the high-
dimensionality of the input space essentially makes (|ϵi|/|ϵj |)n−1 to be practically zero. As an
example, in the CIFAR-10/100 benchmarks where the dimensionality n equals 32 · 32 · 3 = 3071,
t ∈ [0, 1/2− 10−3] gives (|ϵi|/|ϵj |)n−1

< 4.6× 10−6. Essentially, we can regard (|ϵi|/|ϵj |)n−1 as
virtually zero in real-world scenarios, unless we encounter the unlikely cases where t is extraordinarily
near to 1/2. Formally,

1 ≥ pη(t)

pη(t) + pη(1− t)
≥ 1

1 + (∥ϵi∥/∥ϵj∥)n−1 ≈ 1 −→ pη(t)

pη(t) + pη(1− t)
≈ 1.

Accordingly,
pη(1− t)

pη(t) + pη(1− t)
≈ 0.

gij(x(t))
∗ − gij(x(t))

∗
LS

=
1

pη(t) + pη(1− t)
·
(
c · s(di(t))− 1

c− 1
· pη(t)−

c · s(d− di(t))− 1

c− 1
· pη(1− t)

)
≈ c · s(di(t))− 1

c− 1
≥ 0 (∵ 1/c ≤ s(di(t)) ≤ 1)

gij(x(0))
∗
LS =

pη(0)− pη(1)

pη(0) + pη(1)
≥ 0.

Using Lemma 1 and gij(x(0))
∗
LS ≥ 0, we have gij(x(t))

∗
LS ≥ 0 for t ∈ [0, 1/2).

Case t ∈ (1/2, 1]:

Using Lemma 1 and 0 ≤ gij(x(t))
∗
LS ≤ gij(x(t))

∗ for t ∈ [0, 1/2), 0 ≥ gij(x(t))
∗
LS ≥ gij(x(t))

∗

for t ∈ (1/2, 1].
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Case t = 1/2:

Using Lemma 1, gij(x(1/2))∗LS = gij(x(1/2))
∗ = 0.
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Figure 4: Illustrations of theorems on perturbation conversions. (a) The parameter perturbation region
{∥∆∥ ≤ γ} can be connected to an ellipsoidal perturbation region Rδ (Theorem 2.) (b) The input
perturbation region {∥δ∥ ≤ γ} can be connected to parameter perturbation region R∆. R∆ has the
subset Rsub := {∥∆∥ ≤ (λmin/∥xmax∥)2} (Theorem 3) and the superset Rsup := {∥∆∥ ≤ ρ2}
(Theorem 4.)

C CONVERTING PERTURBATIONS IN PARAMETER SPACE TO INPUT SPACE

Given weights W ∈ Rm×n, b ∈ Rm, input x ∈ Rn, and parameter perturbation region ∥∆∥ ≤ γ, we
want to find the region Rδ so that ∀ ∥∆∥ ≤ γ,∃ δ ∈ Rδ s.t. σ(W (x+ δ)+ b) = σ((W +∆)x+ b)
and ∀ δ ∈ Rδ,∃ ∥∆∥ ≤ γ s.t. σ(W (x+ δ) + b) = σ((W +∆)x+ b). In other words, we want to
find the region Rδ so that for every element e1 in region {∆ ∈ Rm×n | ∥∆∥ ≤ γ} there exists an
element e2 in region Rδ satisfying the equation and vice versa.

Since σ(·) : Rm → (0, 1)m is a bijective function, σ(W (x + δ) + b) = σ((W + ∆)x + b)
⇐⇒ W (x+ δ) + b = (W +∆)x+ b. This equality can be reduced to Wδ = ∆x.

We will first examine the range of ∆x in the output space, given ∥∆∥ ≤ γ. ∆x can be written in
several ways:

∆x =

[
c1 c2 · · · cn

]
x1

x2

...
xn

 =


c11 c12 . . . c1n
c21 c22 · · · c2n

...
...

...
cm1 cm2 . . . cmn



x1

x2

...
xn



= c1x1 + c2x2 + · · ·+ cnxn =

 c11c21
. . .
cm1

x1 +

 c12c22
. . .
cm2

x2 + · · ·+

 c1nc2n
. . .
cmn

xn

, where ci is the ith column vector and cij is an element in ith row, jth column of ∆.

Next, we will rewrite ∥∆∥ ≤ γ as the following constraints:

∥∆∥ ≤ γ

⇐⇒
m∑
i=1

n∑
j=1

c2ij ≤ γ2

⇐⇒
n∑

j=1

∥cj∥2 ≤ γ2
j subject to γ2

1 + γ2
2 + · · ·+ γ2

n = γ2.

When we reexamine the above formulas in Rm, finding the range of ∆x can be regarded as finding
the range of linear combination of column vectors in Rm such that each column vector ci is restricted
to ∥ci∥ ≤ γi.

Given two vectors v1 and v2 s.t. ∥v1∥ ≤ γ1 and ∥v2∥ ≤ γ2, ∥v1 + v2∥ ≤ γ1 + γ2 . Trivially, for any
α ∈ R, ∥α · v1∥ ≤ |α|γ1. That is, the range of linear combination ∆x = c1x1 + c2x2 + · · ·+ cnxn

is also a ball, i.e. ∥∆x∥ ≤
∑n

i=1 |xi|γi subject to
∑n

i=1 γ
2
i = γ2.
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Finding the range of ∥∆x∥ is now equivalent to finding the maximum radius of
∑n

i=1 |xi|γi with
the constraint

∑n
i=1 γ

2
i = γ2. Using Lagrange multipliers method, let r := [γ1, γ2, · · · , γn],

f(r) :=
∑n

i=1 |xi|γi, g(r) :=
∑n

i=1 γ
2
i − γ2, and L(r, λ) := f(r)− λ(g(r)).

∂L

∂γi
= |xi| − 2λγi = 0 ⇐⇒ γi =

|xi|
2λ

Substituting the above equality to g(r) = 0,

n∑
i=1

x2
i

4λ2
− γ2 = 0 ⇐⇒ λ =

√∑
xi

2

2γ

γi =
|xi|
2λ

=
|xi|γ√∑

xi
2

f(r) =
n∑

i=1

xi
2γ√∑
xi

2
=

∑n
i=1 x

2
i√∑n

i=1 x
2
i

γ = ∥x∥ · γ

Therefore, ∥∆x∥ ≤ ∥x∥γ.

We now consider the LHS of equation Wδ = ∆x. Let W = UΣV ⊤ be the SVD Decomposition
of W ∈ Rm×n. Multiplying U⊤ to both sides of the equation, ΣV ⊤δ = U⊤∆x. The inequality
induced by L2 norm, i.e. ball, does not change when we multiply any orthogonal matrix. Thus,
∥U⊤∆x∥ ≤ ∥x∥γ.

Let δ′ := V ⊤δ = [δ′1, · · · , δ′n]⊤.

ΣV ⊤δ = Σδ′ =

σ1 0 · · · 0
. . .

...
...

σm 0 · · · 0




δ′1
...
δ′m

δ′m+1
...
δn


=

 σ1δ
′
1

...
σmδ′m



Since ∥U⊤∆x∥ ≤ ∥x∥γ and Σδ′ = U⊤∆x, ∥Σδ′∥ ≤ ∥x∥γ, i.e.

σ2
1δ

′2
1 + · · ·+ σ2

mδ′2m + 0 · (σ2
m+1δ

′2
m+1 + · · ·+ σ2

nδ
′2
n ) ≤ ∥x∥2γ2

However since 0 · (σ2
m+1δ

′2
m+1 + · · · + σ2

nδ
′2
n ) = 0 holds for any δ, i.e. the general solution to

Wa = Wb where a ̸= b, we need not contain it in our perturbation region Rδ which is induced
by ∥∆∥ ≤ γ. Then, the above inequality represents a m-dim region bounded by a m-dim ellipsoid
whose principal semi-axes have lengths (σ1∥x∥γ)−1, · · · , (σn∥x∥γ)−1 with respect to δ′ ∈ Rn.
Subsequently, the region of interest Rδ ∈ Rn is an rotated m-dim ellipsoid whose principal semi-axes
have lengths (σ1∥x∥γ)−1, · · · , (σn∥x∥γ)−1 with respect to δ ∈ Rn.
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D CONVERTING PERTURBATIONS IN INPUT SPACE TO PARAMETER SPACE

Given weights W ∈ Rm×n, input x ∈ Rn, and parameter perturbation region ∥δ∥ ≤ γ, we want
to find the region R∆ so that ∀ ∥δ∥ ≤ γ,∃ ∆ ∈ R∆ s.t. Wδ = ∆x and ∀ ∆ ∈ R∆,∃ ∥δ∥ ≤
γ s.t. Wδ = ∆x.

Using SVD decomposition, W = UΣV ⊤, where Σ is a diagonal matrix with entries σ1, · · · , σn.

Wδ = UΣV ⊤δ = UΣδ′, where δ′ := V ⊤δ. Since rotating or reflecting does not change the region
of a ball, ∥δ∥ ≤ γ gives ∥δ′∥ ≤ γ, i.e. δ′21 + · · · δ′2n ≤ γ2.

Let δ′′ := [δ′′1 , · · · , δ′′m] = Σδ′ = [σ1δ
′
1, · · · , σmδ′m]. ∀i ∈ [m], σ−1

i δ′′i = δ′i. Then,

δ′′21
σ2
1

+ · · ·+ δ′′2m
σ2
m

≤ γ2 −
(
δ′2m+1 + · · · δ′2n

)
(1)

The maximum value of RHS in eq. 1 is γ2, when
(
δ′2m+1 + · · · δ′2n

)
= 0. This indicates that δ′′ resides

within an ellipsoid with with principle semi-axes of lengths λi := σiγ, i ∈ [m]. Thus, Uδ′′ = Wδ is
a region bounded by an rotated ellipsoid.

Now, we will examine the region R∆ such that ∆x (∆ ∈ R∆) forms a rotated ellipsoid with principle
semi-axes of lengths λi. Unlike the case of converting parameter space’s perturbation region to input
space’s in Appendix B, R∆ need not be in a form of ellipsoid. Instead, we provide a superset Rsup

and a subset Rsub of R∆ in the form of a ball such that Rsub ⊆ R∆ ⊆ Rsup.

Let W be deomposed into UΣV ⊤ using SVD decomposition. For now, we will consider the special
case of W where U = I , i.e. the region of Wδ is bounded by an ellipsoid alligned with standard
basis. Afterwards, we will consider the general case of W , i.e. the region of Wδ is bounded by a
rotated ellipsoid.

Let dij denote the ith row, jth column element of ∆ ∈ Rm×n and xi the ith element of x ∈ Rn.
Since the range of ∆x is an ellipsoid, ∆x must satisfy the ellipsoid inequality

(x1d11 + x2d12 + · · ·+ xnd1n)
2

λ2
1

+ · · ·+ (x1dm1 + x2dm2 + · · ·+ xnd1n)
2

λ2
m

≤ 1

Let ri denote the ith row vector of ∆, and let X denote xx⊤. The above inequality can be rewritten
as:

r⊤1 Xr1
λ2
1

+
r⊤2 Xr2
λ2
2

+ · · ·+ r⊤mXrm
λ2
m

≤ 1 (2)

Since we are interested in finding the region of ∆ in Rm×n space, we may think of it as a vector
d = [r⊤1 , r

⊤
2 , · · · , r⊤m] in R(m×n) rather than as a matrix. Then, inequation 2 can be rewritten as:

d⊤Xλd ≤ 1, where Xλ :=

X/λ2
1

X/λ2
2

· · ·
X/λ2

m

 ∈ R(m×n)2

One property of Xλ is that it is a rank m matrix with singular values ∥x∥2/λ2
1, · · · , ∥x∥2/λ2

m,
regarding that X/λ2

i is a rank 1 matrix with singular value ∥x∥2/λ2
i . Another property is that Xλ is a

positive-semidefinite matrix (∵ ∀i ∈ [m], ∥x∥2/λ2
i ≥ 0.)

When we think of a single input x, the area of d satisfying d⊤Xλd ≤ 1 is not bounded. However,
when we consider the constraint over multiple values of input datapoints {x1, x2, · · · , xN}(N ≫ n)
that spans Rn, the area becomes bounded. One justification of the multiple constraints is that when
we consider x a uniform random variable over the input datapoints, the region of d that satisfies all the
possible constraint is ∪N

i=1d
⊤X

(i)
λ d ≤ 1, where X(i)

λ denotes Xλ for x = xi. Another justification is
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that when we reach a local plateau in training parameter W , there is little or no change in the value of
W .

The following lemma and theorems provide a subset Rsub and superset Rsup of R∆ in the form of
balls in the parameter space.

Lemma 3. Let R be the region of x ∈ Rn satisfying the inequality x⊤Ax ≤ 1, where A is a non-zero
positive semi-definite matrix having σmax as the maximum nonzero singular value. Let R′ be the
region of x ∈ Rn satisfying the ineqaulity x⊤x ≤ σ−1

max. R ⊆ R′.

Proof. We handle two cases where rank(A) = m and rank(A) < m.

Case rank(A) = m:

Using SVD Decomposition, A = UΣU⊤, where Σ =

σ1

. . .
σn


x⊤Ax = x⊤UΣU⊤x = x′⊤Σx′ ≤ 1, where x′ := U⊤x

Let x′ be represented as x′ = [x′
1, · · · , x′

n].

The constraint induced by R can be rewritten as:

x′⊤Σx′ = σ1x
′2
1 + · · ·+ σnx

′2
n ≤ 1, where Σ = U⊤AU

Let x ∈ Rn be some vector satisfyig x⊤x ≤ σmax. Since U is an orthogonal matrix and x⊤x ≤ σ−1
max

is an equidistant ball that is invariant under rotations and reflections, the constraint induced by R′ can
be rewritten as x′⊤x′ ≤ σ−1

max, where x′ = U⊤x.

To prove x ∈ R′ implies x ∈ R, we will show x′⊤x′ ≤ σ−1
max implies x′⊤Σx′ ≤ 1.

x′⊤x′ ≤ σ−1
max ⇐⇒ σmaxx

′⊤x′ ≤ 1

Let ϵi := σmax − σi. Then, ∀i ∈ [n], ϵi ≥ 0.

σmaxx
′⊤x′ −

n∑
i=1

ϵ(x′
i)

2 ≤ 1−
n∑

i=1

ϵi(x
′
i)

2
(
∵ σmaxx

′⊤x′ ≤ 1
)

≤ 1
(
∵ ∀i ∈ [n], ϵi(x

′
i)

2 ≥ 0
)

Case rank(A) < m:

Let rank(A) = k < m. A can be represented as UΣU⊤ using SVD decomposition, where Σ is a
diagonal matrix whose first k elements are non-zero singular values σ1, · · · , σk.

x⊤Ax = x⊤UΣU⊤x = x′Σx′ ≤ 1, where Σ = U⊤AU and x′ := U⊤x

Let x′ be represented as [x′
1, · · · , x′

n]. The constrained induced by R can be rewritten as:

x′⊤Σx′ = σ1x
′2
1 + · · ·+ σkx

′2
k ≤ 1

Let x ∈ Rn be any vector satisfying x⊤x ≤ σ−1
max. Since ball is equidistant, x⊤x ≤ σ−1

max ⇐⇒
x′′⊤x′ ≤ σ−1

max, where x′ = U⊤x.

To prove x ∈ R′ implies x ∈ R, we will show x′⊤x′ ≤ σ−1
max implies x′Σx′ ≤ 1.

x′⊤x′ ≤ σ−1
max ⇐⇒ σmaxx

′⊤x′ ≤ 1 ⇐⇒
n∑

i=1

σmax(x
′
i)

2 ≤ 1
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Let ϵi := σmax − σi. Then, ∀i ∈ [n], ϵi ≥ 0.

k∑
i=1

(σmax − ϵi)x
′2
i ≤ σmaxx

⊤x−
k∑

i=1

ϵi(x
′
i)

2 (∵
n∑

i=k+1

σmaxx
2
i ≥ 0)

≤ 1−
k∑

i=1

ϵi(x
′
i)

2
(
∵ σmaxx

′⊤x′ ≤ 1
)

≤ 1
(
∵ ∀i ∈ [k], ϵi(x

′
i)

2 ≥ 0
)

Since
k∑

i=1

(σmax − ϵi)x
′2
i = x′⊤Σx′, x′⊤Σx′ ≤ 1.

Theorem 3. Given W ∈ Rm×n, D = {x1, · · · , xN}(xi ∈ Rn/{0} for i ∈ [N ]), and input pertur-
bation region {δ ∈ Rn | ∥δ∥ ≤ γ}, let xmax := argmaxxi

∥xi∥ and λmin := min{λ1, · · · , λm}.
Then, {∆ ∈ Rm×n | ∥∆∥ ≤ (∥xmax∥2/λ2

min)
−1} is the subset of R∆.

Proof. We will rewrite theorem 3 as the following statement:

Given a set of datapoints D = {x1, x2, · · · , xN}(xi ∈ Rn/{0}, i ∈ [N ]), let R be the region
of d ∈ Rm×n satisfying the inequality d⊤Xλd ≤ 1 for all x ∈ D. Let R′ be the region of
d ∈ Rm×n satisfying d⊤d ≤ (∥xmax∥2/λ2

min)
−1, where xmax := argmaxxi

∥xi∥ and λmin :=
min{λ1, · · · , λm}. R′ ⊆ R.

Remark that X(i)
λ =

x
⊤
i xi/λ

2
1

x⊤
i xi/λ

2
2

· · ·
x⊤
i xi/λ

2
m

. X
(i)
λ is a rank m matrix with

singular values ∥xi∥2/λ2
1, · · · , ∥xi∥2/λ2

m.

Let Ri denote the region of d ∈ Rn satisfying d⊤X
(i)
λ d ≤ 1, and let R′

i denote the region d⊤d ≤(
∥xi∥2

λ2
min

)−1

.
∥xi∥2

λ2
min

being the largest singular value of X(i)
λ , R′

i ⊆ Ri by Lemma 1. Since this

holds for all i ∈ [N ],
N⋃
i=1

R′
i ⊆

N⋃
i=1

Ri.
N⋃
i=1

Ri = R, and
N⋃
i=1

R′
i = R′ is a ball with smallest radius,

i.e. d⊤d ≤

(
∥xmax∥2

λ2
min)

−1

)
.

Theorem 4. Given W ∈ Rm×n, D = {x1, · · · , xN}(xi ∈ Rn/{0} for i ∈ [N ]), and input
perturbation region {δ ∈ Rn | ∥δ∥ ≤ γ}, let Ri := {d ∈ Rm×n | d⊤X(i)

λ d ≤ 1} and Γ := {Ri |
i ∈ [N ]}.Then, {argminR1,··· ,Rn∈Γ maxρ∈∪i∈[n]Ri

∥ρ∥2} is the superset of R∆.

Proof. Let R∗
1, · · · , R∗

n denote the elements of Γ satisfying argminR1,··· ,Rn∈Γ maxρ∈∪Ri
∥ρ∥2.

R =
N⋃
i=1

Ri ⊆
n⋃

i=1

R∗
i ⊆ maxρ∈∪Ri ∥ρ∥2.

We have so far addressed the case where U = I for W = UΣV ⊤ in the equation Wδ = ∆x. Now,
let us consider the general case of full rank matrix W .

∆ ∈ Rm×n can be represented as either column vectors [c1, c2, · · · , cn] or row vectors
[r1, r2, · · · , rm]⊤. The equation Wδ = ∆x can be rewritten as:

ΣV ⊤δ = U⊤∆x = U⊤[c1, c2, · · · , cn]x = [U⊤c1, U
⊤c2, · · · , U⊤cn]x
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Let ∆′ := U⊤∆ = [c′1, c
′
2, · · · , c′n] = [r′1, r

′
2, · · · , r′m]⊤, and let d′ be the flattened vector represen-

tation [r′⊤1 , r′⊤2 , · · · , r′⊤m ] of ∆′. Then, finding R∆ is equivalent to finding the region of ∆′ satisfying
d′⊤Xλd

′ ≤ 1 and multiplying U to ∆′.

The relationship between ∆′ and ∆ can be expressed as:

Udiag


c′1
c′2
...
c′n

 =


c1
c2
...
cn

 , where Udiag :=


U

U
. . .

U

 ∈ R(m×n)2

Udiag is an orthogonal matrix since U is an orthogonal matrix. Furthermore, any permutation π that
permutes the row vectors of Udiag also results in another orthogonal matrix Uπ

diag . Then for some π,
Uπ
diag[r

′⊤
1 , r′⊤2 , · · · , r′⊤m ]⊤ = [r⊤1 , r

⊤
2 , · · · , r⊤m]⊤, i.e. Uπ

diagd
′ = d. Since the region of a ball is not

affected by rotations or reflections, the superset and the subset obtained in Theorem 1 and 2 are not
affected. In other words,

R∆ = {d ∈ Rm×n | ∀i ∈ [n], d⊤X
(i)
λ d ≤ 1}

Rsub = {d ∈ Rm×n | d⊤d ≤
(
∥xmax∥2

λ2
min

)−1

}

Rsup = {d ∈ Rm×n | argmin
R1,··· ,Rn∈Γ

max
ρ∈∪Ri

∥ρ∥2}

satisfies Rsub ⊆ R∆ ⊆ Rsup.

Lastly, we provide the implications of our theorem:

Definition 3. (b-flat local minima) Given any real-valued loss function L and dataset D =
{(x1, y1), (x2, y2), · · · , (xN , yN )}, a model parameter θ is said to have b-flat minima if the fol-
lowing conditions hold:

i) ∀∥ϵ∥ ≤ b,E(x,y)∼D[L(f(x; θ), y)] = E(x,y)∼D[L(f(x; θ + ϵ), y)]

ii) ∀∥ϵ∥ > b,E(x,y)∼D[L(f(x; θ), y)] < E(x,y)∼D[L(f(x; θ + ϵ), y)]

Given any real-valued loss L and dataset D, let θ∗ denote any optimal parameter that minimizes loss
w.r.t. dataset, i.e. θ∗ := argminθ E(x,y)∼D[L(f(x; θ), y)]. Analogously, let θ∗γ denote any optimal
parameter such that ∀∥δ∥ ≤ γ, θ∗γ := argminθ E(x,y)∼D[L(f(x+ δ; θ), y)].

The following holds for any linear classifier f : x 7→ σ(Wx+ b):
Proposition 1. θ∗ can have 0-flat minima.

Proof. There exists θ∗ such that ∀(x, y) ∈ D, θ∗ := argminθ E(x,y)∼D[L(f(x; θ), y)] and ∀δ ∈
Rm/{0}, L(f(x+ δ; θ), y) > L(f(x; θ), y).

Corollary 1. θ∗γ has b-flat minima with b ≥ (∥xmax∥2/λ2
min)

−1.

Proof. For θ∗γ to be an optimal parameter, ∀(x, y) ∈ D, ∥δ∥ ≤ γ, L(f(x + δ; θ∗γ), y) =
L(f(x; θ∗γ), y) = minθ L(f(x; θ), y). Using results from Theorem 3, ∀(x, y) ∈ D, ∥∆∥ ≤
(∥xmax∥2/λ2

min)
−1, L(f(x; θ∗γ +∆), y) = L(f(x; θ∗γ), y) = minθ L(f(x; θ), y).

The proposition and the collorary implies that exploiting perturbation-based algorithm will provide
higher lower bound of b ((∥xmax∥2/λ2

min)
−1 > 0) for the b-flat minima of the optimal parameter.
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E ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide an in-depth discussion on the experiments conducted in the main paper,
as well as present additional experimental findings related to SPIDER including hyperparameter
sensitivity analysis.

E.1 EXPERIMENTAL DETAILS

In our experiments, the hardware resources employed differ based on the complexity of the tasks. All
the tasks in the main paper related to CIFAR-10/100, and Tiny-ImageNet has been handled using 8
NVIDIA RTX A5000 GPUs. While a single A5000 GPU could have sufficed for the evaluation, the
multi-GPU setup have been opted for to facilitate the extensive evaluations for each baseline methods.
ImageNet training experiment has been carried out utilizing a single A100 GPU, owing to its superior
computational capacity.

E.1.1 MAIN TABLE

Robustness Against General Corruptions

For CIFAR-10/100 experiments, we use WRN-40-2 architecture exploited in (Hendrycks et al.,
2021b). For Tiny-ImageNet and ImageNet experiment, we use ResNet18 (He et al., 2015) as our
backbone. SGD with momentum value of 0.9 has been used in all our experiments. Cosine learning
rate decay scheduling (Loshchilov & Hutter, 2017) with initial learning rate of 0.1, 0.01, and 0.01
has been used respectively for CIFAR-10/100, Tiny-ImageNet, and ImageNet experiments to train a
model until convergence. Models have been trained for 400, 100, and 90 epochs for CIFAR-10/100,
Tiny-ImageNet, and ImageNet benchmarks respectively.

The search space for hyperparameters (τ , ξ) introduced by SPIDER instantiation are as follows. For
τ , the range was set to [0.0, 20.0] for CIFAR-10/100 and [0.0, 30.0] for Tiny-ImageNet. ξ was tested
within the range of [0, 1− c−1], with c representing the number of classes in the given dataset. The
rescaling and clipping algorithm by Rauber (Rauber & Bethge, 2020) was utilized to keep perturbed
data points within a valid domain (i.e. [0, 1]m).

Evaluation of Robustness to Common Data Corruptions

Benchmark Statistics: CIFAR-10/100-C, Tiny-ImageNet-C, and ImageNet (Deng et al., 2009)
datasets contain 15 distinct corruption types: brightness changes, contrast alterations, defocus blur,
elastic transformations, fog addition, frost addition, Gaussian blur, glass distortion, impulse noise,
jpeg compression, motion blur, pixelation, shot noise, snow addition, and zoom blur with 5 different
severity levels per each corruption. mCE calculates the average error of a model across all the distinct
corruptions and severity levels. For ImageNet, we report mCE with normalization suggested as in
Hendrycks & Dietterich (2019).

Evaluation Process: During training and validation, a model is trained and validated on the uncor-
rupted training and validation data. The validation data has been constructed using 20% of the training
data. The model achieving the best validation accuracy is chosen and evaluated on a corrupted dataset,
where the corruption types were not encountered either at the training or the validation stage. To
reduce the discrepancy between the clean, non-augmented dataset and the corrupted dataset, we
augment the clean validation data of CIFAR, Tiny-ImageNet, and ImageNet datasets using augmenta-
tions from (Mintun et al., 2021) during the validation phase. These augmentations are distinct from
the corruptions used in the common corruption benchmarks (CIFAR/100-C, Tiny-ImageNet-C, and
ImageNet-C). In short, we train a model using SPIDER on clean data, select the models with the
highest accuracy on the augmented validation data (using functions from (Mintun et al., 2021)), and
then assess these models’ robustness on common corruption benchmarks.

Evaluation of Robustness to Adversarial Attacks

To assess the model’s robustness against adversarial attacks, we use untargeted PGD attacks based
on L2 and L∞ norms. We have chosen to use the absolute value α as the coefficient of gradient
ascent for clarity, instead of using a relative step size with respect to ϵ. For L2 attacks, PGD-20
attack with (ϵ, α) = (0.5, 1/800) has been used. For L∞ attacks, we have used PGD-7 attack
with (ϵ, α) = (8/255, 2/255) for CIFAR-10/100, PGD-3 attack with (ϵ, α) = (3/255, 1/255) for
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the Tiny-ImageNet experiment, and PGD-2 L∞ attack with (ϵ, α) = (1/255, 1/510) for ImageNet
experiment. Essentially, more intense attacks have been applied to simpler datasets, while milder
attacks have been used for more complex datasets, with the CIFAR experiments’ attack configurations
borrowed from the (Yang et al., 2020). We then evaluate the adversarial robustness of models trained
following the common corruption evaluation protocol detailed above. The key interest here is not to
show that SPIDER is setting new records for robustness, but to demonstrate that SPIDER enhances
both common corruption robustness and adversarial robustness compared to previous augmentation
methods that had negligible impact on adversarial robustness.

E.1.2 BOUNDARY THICKNESS

Our approach adheres closely to the original paper that introduced the boundary thickness metric
(Yang et al., 2020). For each data point xi in the dataset, labeled with one-hot encoded label i,
we generate a corresponding adversarial instance xj . This is achieved by conducting an attack
on xi targeting a randomly selected class j that differs from i. We use an L2 PGD-20 untargeted
attack with parameters ϵ = 5.0 and α = 1.0 to produce these adversarial instances. The integral∫ 1

0
I{α < gijx(t) < β}dt is approximated by dividing the segment into 128 data points and

determining the fraction of points that fall within the interval from α to β. For the purpose of
measuring the mean and standard deviations of the boundary thickness, we generated 1600 data
points, constructed from 50 batches of 32 images each, along with their adversarial counterparts.
The data in Table 1 was calculated using baseline methods and SPIDER in combination with these
baselines, using the weights obtained from the main experiment. Table 2 was calculated training the
models that had identical configurations as the previous models, except with the smoothing function
removed.

E.1.3 FLATNESS

Flatness is evaluated by sampling parameter fluctuations of growing radii and calculating the average
loss on the model with the adjusted parameter. To elaborate, for every radius value, three independent
and identical models, trained using either standalone baseline augmentation methods or a combination
of SPIDER with the baselines, are utilized for flatness computation. For every model, 50 independent
parameter perturbations are sampled and implemented (yielding a total of 150 disturbed weight
samples) to determine the average loss related to the respective radius.

E.1.4 ABLATION TABLE

The Baseline and SPIDER columns have statistics from the main table. The hyperparameter value (τ)
of the removal of smoothing function (No LS) have been found following the same hyperparameter
search space used in main table (Appendix E.1.1.) For standard label smoothing (STD LS), the degree
of smoothing has been set as hyperparameter value and optimized using TPE sampler from Optuna
library.

E.2 ADDITIONAL EXPERIMENT

E.2.1 HYPERPARAMETER SENSITIVITY

Analysis of Figure 5: The depicted charts illustrate the effect of perturbation sensitivity on the
performance of the model trained with SPIDER augmentation solely. We gauged this sensitivity by
keeping the shape of the exponential smoothing function constant - specifically, we set s(τ) = 0.5
for the CIFAR-10/100 experiments, and observed the performance as the radius τ grew. As expected,
an overly large perturbation radius risks pushing datapoints into the submanifolds of different labels,
which degrades clean accuracy. Conversely, an excessively small perturbation radius fails to provide
sufficient robustness enhancement, as evidenced by the elevated mCE and augmented clean error
values for smaller radii. As the radius increases, there is an initial decrease in mCE, indicating
increased robustness against corruptions. However, the trend begins to reverse for larger radii, with
an accompanying rise in clean and augmented clean error. This pattern underscores the necessity of
an appropriate balance in perturbation size to maintain performance across both clean and corrupted
conditions. Despite these variations, the mean corruption error and augmented clean error consistently
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Figure 5: Sensitivity to increasing perturbations for CIFAR-10 and CIFAR-100. The plots depict the
relationships between the radius of perturbation and the mean corruption error (mCE), augmented
clean error (aug clean err), and clean error (clean err) for the CIFAR-10 (left) and CIFAR-100 (right)
datasets, with ξ = 0.4 and 0.49 respectively. Each point represents the error rate obtained with a
different radius of parameter perturbation.

stay beneath the baseline’s performance, thereby suggesting that SPIDER improves model robustness
compared to the baseline approach.

Table 7: Comparison of training times and performance between baselines with the addition of
SPIDER. The use of Optuna’s automated hyperparameter search algorithm with pruning alleviates
the added training cost.

Baselines no aug. AugMix DeepAug. PixMix
Pruned Training Duration(hour) 14.84 14.06 39.51 27.98
Predicted Full Training Duration (hour) 58.15 71.99 171.54 140.90
Speed Gain (x Faster) 3.92 5.12 4.34 5.04
Equivalent Non-Pruned Trials 7.65 5.86 6.91 5.96
Best Trial Index out of 30 2 3 2 5

Analysis of Table 7: The table compares the impact of incorporating SPIDER into various baseline
augmentation methods in terms of training duration and performance. As the introduction of SPIDER
brings additional hyperparameters for shaping the perturbation and smoothing functions, there is a
potential for an increase in training time due to the associated hyperparameter search. To mitigate
this, we have implemented Optuna’s automated hyperparameter searching algorithm with an early
stopping feature, also known as ’pruning’. The results show that the pruned training duration for
each augmentation method (no augmentation, AugMix, DeepAugment, and PixMix) is significantly
less than the predicted full training duration, indicating a substantial speed gain. The number of
equivalent non-pruned trials ranges from approximately 5.86 to 7.65, implying that the use of pruning
enables the same level of hyperparameter exploration to be achieved in a fraction of the time. The
best trial index out of 30 shows that successful models can be identified relatively early in the process,
further emphasizing the efficiency of the combined use of SPIDER with automated hyperparameter
search and pruning. This approach, therefore, effectively alleviates the potentially increased training
cost associated with the introduction of SPIDER’s additional hyperparameters.

E.2.2 VARYING BACKBONE NETWORKS

SPIDER demonstrates substantial improvement in robustness against common corruptions and
adversarial attacks across various neural network architectures. This supports previous research, which
found that augmentation techniques enhancing robustness retain their effectiveness and influence on
model resilience, regardless of differences in the underlying network structures (Hendrycks et al.,
2021b;a).

29



Under review as a conference paper at ICLR 2024

Table 8: Evaluation of robustness over different backbone networks on CIFAR-100 benchmark.

Backbone Method mCE ↓ L2 (PGD) ↓ L∞ (PGD) ↓
original +SPIDER original +SPIDER original +SPIDER

DenseNet

no aug. 57.67 ± 0.38 45.73 ± 0.56 99.44 ± 0.08 66.46 ± 0.38 100.00 ± 0.00 99.52 ± 0.06

AugMix 41.79 ± 0.46 36.72 ± 0.15 96.94 ± 0.21 62.72 ± 0.43 99.98 ± 0.02 99.21 ± 0.09

DeepAug. 44.92 ± 0.31 37.76 ± 0.29 97.37 ± 0.19 74.77 ± 0.26 89.05 ± 0.40 99.86 ± 0.01

PixMix 35.71 ± 0.17 35.40 ± 0.07 99.97 ± 0.01 62.43 ± 0.19 99.99 ± 0.01 99.40 ± 0.05

WRN-40-1

no aug. 57.07 ± 0.48 43.56 ± 0.21 99.15 ± 0.06 77.74 ± 0.55 99.99 ± 0.01 99.61 ± 0.03

AugMix 43.82 ± 0.27 35.92 ± 0.06 97.38 ± 0.09 86.91 ± 0.12 99.99 ± 0.01 99.26 ± 0.13

DeepAug. 44.38 ± 0.33 36.36 ± 0.13 96.10 ± 0.21 79.34 ± 0.52 99.98 ± 0.01 99.60 ± 0.06

PixMix 37.76 ± 0.29 37.48 ± 0.06 92.69 ± 0.35 87.86 ± 0.39 99.95 ± 0.01 99.90 ± 0.03

AllConvNet

no aug. 56.71 ± 0.11 43.35 ± 0.22 92.40 ± 0.15 66.50 ± 0.33 99.98 ± 0.01 99.50 ± 0.08

AugMix 42.52 ± 0.43 35.92 ± 0.06 85.49 ± 0.42 62.83 ± 0.35 99.93 ± 0.02 99.84 ± 0.01

DeepAug. 42.39 ± 0.18 36.39 ± 0.35 88.66 ± 0.31 74.84 ± 0.24 99.87 ± 0.02 99.86 ± 0.03

PixMix 35.77 ± 0.01 33.84 ± 0.16 73.69 ± 0.28 62.37 ± 0.24 99.74 ± 0.01 99.39 ± 0.04

E.2.3 VARYING REGULARIZATION METHODS

Table 9: Evaluation of robustness over different regularizations on CIFAR-100 benchmark with
DenseNet backbone.

Regularization Values mCE ↓ L2 (PGD) L∞ (PGD) ↓ Clean Acc. ↑

Learning Rate
3e-03 53.38 ± 0.53 99.64 ± 0.10 99.99 ± 0.02 60.84 ± 0.31

1e-02 46.99 ± 0.20 99.41 ± 0.10 99.99 ± 0.01 70.59 ± 1.82

3e-02 43.81 ± 0.71 99.51 ± 0.10 99.99 ± 0.01 72.55 ± 0.52

Weight Decay(L2) 0.0 44.98 ± 0.24 89.60 ± 0.40 99.83 ± 0.02 70.07 ± 0.11

1e-4 43.49 ± 0.20 98.96 ± 0.08 99.99 ± 0.01 72.85 ± 0.35

L1

5e-7 42.51 ± 0.12 99.48 ± 0.09 99.99 ± 0.01 74.35 ± 0.10

2e-6 43.35 ± 0.07 99.99 ± 0.01 99.57 ± 0.13 73.91 ± 0.15

5e-6 43.23 ± 0.30 99.63 ± 0.07 99.99 ± 0.01 73.61 ± 0.22

SPIDER (w/ best config) - 36.90 81.80 99.95 70.30

Effective regularization techniques significantly enhance the robustness of models. The application
of SPIDER, in conjunction with optimal regularization methods, notably amplifies both common
corruption and adversarial robustness.
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