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ABSTRACT

Time series forecasting plays a vital role for decision-making across a wide range
of real-world domains, which has been extensively studied. Most existing single-
modal time series models rely solely on numerical series, which suffer from the
limitations imposed by insufficient information. Recent studies have revealed
that multimodal models can address the core issue by integrating textual infor-
mation. However, these models primarily employ coarse-grained meta informa-
tion designed for the whole dataset (e.g., task instruction, domain description,
data statistics, etc.), while the use of sample-specific textual contexts remains un-
derexplored. To this end, we propose Dual-Forecaster, a pioneering multimodal
time series model that utilizes finer-grained textual information at the sample level
through the well-designed dual-scale alignment technique. Specifically, we de-
couple the learning of semantic and patch-level features, enabling the direct ex-
traction of both global semantic representations critical for cross-modal under-
standing and local patch features essential for time series forecasting. Our com-
prehensive evaluations demonstrate that Dual-Forecaster is a distinctly effective
multimodal time series model that outperforms or is comparable to other state-of-
the-art models, highlighting the superiority of integrating textual information for
time series forecasting. This work opens new avenues in the integration of textual
information with numerical time series data for multimodal time series analysis.

1 INTRODUCTION

With the massive accumulation of time series data in such diverse domains as retail (Leonard, 2001),
electricity (Liu et al., 2023a), traffic (Shao et al., 2022), finance (Li et al., 2022), and healthcare
(Kaushik et al., 2020), time series forecasting has become a key part of decision-making. To date,
while extensive research has been dedicated to time series forecasting, resulting in a multitude of
proposed methodologies (Hyndman et al., 2008; Nie et al., 2023; Liu et al., 2023b; Ansari et al.,
2024; Zhou et al., 2023), they are predominantly confined to single-modal models that rely exclu-
sively on numerical time series data. Recent studies have shown that simple linear models ((Zeng
et al., 2023; Xu et al., 2023)) can often match or even surpass the performance of state-of-the-art
(SOTA) complex models, suggesting that current single-modal approaches may be nearing a satura-
tion point.

To improve the model’s forecasting performance, it is crucial to introduce supplementary informa-
tion that is not present in time series data. For example, when forecasting future product sales, com-
bining numerical historical sales data with external factors, such as product iteration plans, strategic
sales initiatives, and unforeseeable events such as pandemics, enables us to give a sales forecast that
aligns more closely with business expectations. This supplementary information typically appears
in the form of unstructured text, which is rich in semantic details reflecting temporal causality and
system dynamics. However, quantifying such valuable information into auxiliary time series data
remains challenging, which presents a significant hurdle to its integration in enhancing the reliability
of time series forecasting.

Recently, there has been a surge in research proposing multimodal time series models that integrate
text as an auxiliary input modality (Liu et al., 2024b; Jin et al., 2024; Liu et al., 2024a; 2025; Xu
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et al., 2024; Wang et al., 2025). This methodology effectively overcomes the intrinsic limitations
of traditional time series forecasting methods, thereby significantly enhancing models’ accuracy
and effectiveness. However, in these works, the textual input consists of coarse-grained dataset-
level information, such as task instructions and dataset descriptions, making it difficult to provide
finer-grained sample-level discernibility. Moreover, these models focus on aligning patch-level time
series features with text for time series forecasting while overlooking the significance of semantic-
level features in enhancing multimodal understanding, which hinders their ability to capture complex
connections between textual and time series data. Thus, it is necessary to develop an effective align-
ment technique tailored for finer-grained sample-level textual data to learn multimodal embeddings
that will in turn enhance forecasting.

To tackle the aforementioned challenges, we introduce Dual-Forecaster, a cutting-edge time se-
ries forecasting model. Built upon a sophisticated framework, it effectively aligns finer-grained
textual data at the sample level with time series data through the meticulous-designed dual-scale
alignment technique. It should be noted that the word ‘Dual’ in Dual-Forecaster has two different
levels of meaning. On the one hand, it represents that Dual-Forecaster is a multimodal time series
model capable of concurrently processing both textual and time series data. On the other hand,
it denotes the model’s capacity to extract features at both the semantic and patch levels, enabling
a hierarchical integration of high-level semantic insights and fine-grained local patterns. Specifi-
cally, Dual-Forecaster comprises the textual branch and the temporal branch. The textual branch
is designed to parse textual data and extract valuable insights embedded within, while the tempo-
ral branch specializes in modeling time series dynamics. To generate high-quality embeddings for
accurate forecasting, we jointly optimize two core tasks: multimodal comprehension and time se-
ries forecasting. Central to our design is the dual-scale alignment technique, which decouples the
learning of semantic and patch-level features. This enables the model to directly extract (1) global
semantic representations–critical for multimodal comprehension and regularized by the Text-Time
Series Contrastive Loss–and (2) local patch features–essential for time series forecasting, derived
through the Modality Interaction Module.

To prove the effectiveness of our model, we conduct extensive experiments on twelve multimodal
time series datasets, which consist of six constructed datasets including a synthetic dataset and five
captioned public datasets, and six existing multimodal datasets. Experimental results demonstrate
that Dual-Forecaster achieves competitive or superior performance when compared to other SOTA
models on all datasets. In addition, ablation studies emphasize that performance improvement is
attributed to the supplementary information provided by the textual data.

Our main contributions in this work are threefold:

(1) We propose a sophisticated framework for integrating textual and time series data, grounded in
our dual-scale alignment technique. This framework is designed to generate time series embeddings
enriched with semantic insights from text, thereby enabling Dual-Forecaster to achieve more robust
forecasting performance.

(2) We introduce Dual-Forecaster, a novel time series forecasting model that tackles the critical
challenge of underutilized finer-grained textual signals in multimodal time series forecasting. By
systematically integrating sample-specific textual semantics with temporal dynamics, our model
enables the discerning of complex inter-variable dependencies.

(3) Extensive experiments across multiple datasets validate that Dual-Forecaster achieves SOTA
performance on time series forecasting task. Ablation studies further highlight the critical role of the
dual-scale alignment technique, demonstrating its indispensable contribution to the model’s superior
performance.

2 RELATED WORK

Time series forecasting. Time series forecasting models can be roughly categorized into statistical
models and deep learning models. Statistical models such as ETS, ARIMA (Hyndman et al., 2008)
can be fitted to a single time series and used to make predictions of future observations. Deep
learning models, ranging from the classical LSTM (Hochreiter, 1997), TCN (Bai et al., 2018), to
recently popular transformer-based models (Nie et al., 2023; Zhou et al., 2022; Zhang & Yan, 2023;
Liu et al., 2023b), are developed for capturing nonlinear, long-term temporal dependencies. Even
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though excellent performance has been achieved on specific tasks, these models lack generalizability
to diverse time series data.

To overcome the challenge, the development of pre-trained time series foundation models has
emerged as a burgeoning area of research. In the past two years, several time series foundation
models have been introduced (Ansari et al., 2024; Garza & Mergenthaler-Canseco, 2023; Rasul
et al., 2023; Das et al., 2024; Woo et al., 2024). All of them are pre-trained transformer-based mod-
els trained on a large corpus of time series data with time-series-specific designs in terms of time
features, time series tokenizers, distribution heads, and data augmentation, among others. These
pre-trained time series foundation models can adapt to new datasets and tasks without extensive
from-scratch retraining, demonstrating superior zero-shot forecasting capability. Furthermore, ben-
efiting from the impressive capabilities of pattern recognition, reasoning and generalization of Large
Language Models (LLMs), recent studies have further explored tailoring LLMs for time series data
through techniques such as fine-tuning (Zhou et al., 2023; Xue & Salim, 2023; Gruver et al., 2024)
and model reprogramming (Jin et al., 2024; Cao et al., 2024; Pan et al., 2024; Sun et al., 2023).
However, existing time series forecasting models have encountered a plateau in performance due
to limited information contained in time series data. There is an evident need for additional data
beyond the scope of time series to further refine forecasts.

Text-guided time series forecasting. Some works have attempted to address the prevalent issue of
information insufficiency in the manner of text-guided time series forecasting, which includes text
as an auxiliary input modality. A line of work investigate how to use some declarative prompts (e.g.,
date information, task instructions, domain expert knowledge, event description, etc.) enriching the
input time series to guide LLM reasoning (Liu et al., 2024b; Jin et al., 2024; Wang et al., 2025; Liu
et al., 2024c; Williams et al., 2024). These approaches fall into two categories: directly prompting
LLM for time series forecasting or aligning text and time series within the language space to exploit
the inference potential of the LLMs. However, they ignore the key role played by the local temporal
features in time series forecasting.

An alternative text-guided time series forecasting approach is to process textual and time series data
separately by using different models, and then merge the information of two modalities through a
modality interaction module to yield enriched time series representations for time series forecating
(Liu et al., 2024a; 2025; Xu et al., 2024). Our method belongs to this category, however, there is
limited relevant research on time series. Liu et al. (2024a) develops MM-TFSlib, which provides
a convenient multimodal integration framework. It can independently model numerical and textual
series using different time series forecasting models and LLMs, and then combine these outputs
using a learnable linear weighting mechanism to produce the final predictions. Liu et al. (2025)
presents an LLM-empowered framework via cross-modality alignment for multivariate time series
forecasting. The cross-modality alignment module aggregates the time series and LLM branches
based on channel-wise similarity retrieval to enhance forecasting. Distinct from these methods, we
focus on investigating how to utilize finer-grained textual information at the sample level to assist in
time series forecasting. Moreover, We recognize that features at different scales play unique roles in
enabling multimodal time series forecasting models to achieve better multimodal understanding and
more accurate time series forecasting. To this end, we propose Dual-Forecaster, which can jointly
optimize semantic and patch-level features based on the dual-scale alignment technique to obtain
time series representations with rich semantics, aiming to better enhance the model’s time series
forecasting ability.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given a dataset of N numerical time series and their corresponding textual series, D =

{(X(i)
t−L:t,X(i)

t:t+h, S(i)
t−L:t)}Ni=1, where X(i)

t−L:t is the input variable of the numerical time series,

L is the specified look back window length, and X(i)
t:t+h is the ground truth of horizon window

length h. S(i)
t−L:t is the overall description of X(i)

t−L:t, which can be used to augment the model’s
capacity to learn the relationships between different time series by combining detailed descrip-
tive information about the time series. The goal is to maximize the log-likelihood of the pre-
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Figure 1: Overall architecture of Dual-Forecaster. Top left is the textual branch with text as input,
and top right is the temporal branch with time series as input. Based on the obtained textual features
and time series embeddings, to achieve effective alignment of semantic and patch-level features, we
propose the Dual-Scale Alignment framework that employs the Text-Time Series Contrastive Loss
and the Modality Interaction Module. The outputs of time series embeddings from the Modality
Interaction Module are then projected through the Output Layer to generate the final forecasts.

dicted distribution p
(

Xt:t+h|ϕ̂
)

obtained from the distribution parameters ϕ̂ learned by the model

fθ : (Xt−L:t, St−L:t) → ϕ̂ based on historical time series data and its corresponding descriptive
textual information.

max
θ

E(X,S)∼p(D) log p
(

Xt:t+h|ϕ̂
)

s.t.ϕ̂ = fθ : (Xt−L:t, St−L:t)
(1)

where p(D) is the data distribution used for sampling numerical time series and their corresponding
textual series.

3.2 ARCHITECTURE

Illustrated in Figure 1, our proposed Dual-Forecaster consists of two branches: the textual branch
and the temporal branch. The textual branch comprises a pre-trained language model and an atten-
tional pooler. The frozen pre-trained language model is responsible for tokenization, encoding, and
embedding of text. The attentional pooler is adopted to customize textual representations produced
by the language model into different scales for two core tasks of multimodal understanding and
time series forecasting. The temporal branch consists of a unimodal time series encoder that is used
for patching and embedding of time series. It is noteworthy that the [CLS] as a global representa-
tion of time series is introduced into the embedded representation vector. In concrete, the textual
branch takes the historical text St−L:t as input to obtain their corresponding embeddings S̃q(t−L:t),
S̃CLS(t−L:t). The temporal branch works with the historical time series Xt−L:t to obtain its cor-
responding embedding X̃P (t−L:t), X̃CLS(t−L:t). To achieve effective alignment of semantic-level
features (S̃CLS(t−L:t), X̃CLS(t−L:t)) and patch-level features (S̃q(t−L:t), X̃P (t−L:t)), we implement
the dual-scale alignment technique, which is composed of two key components: the text-time series
contrastive loss and the modality interaction module. In the following section, we will provide a
detailed explanation of these two components.
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3.2.1 TEXT-TIME SERIES CONTRASTIVE LOSS

Previous multimodal time series models, whether they integrate historical texts like descriptions of
input time series (Liu et al., 2024a; 2025) or future texts such as news and channel descriptions
(Xu et al., 2024), typically utilize separate textual and temporal branches to process their respective
modality data. Subsequently, they employ a cross-attention-based modality interaction module to
facilitate the integration of these distinct modality data. Given that the textual features and time
series embeddings reside in their own high-dimensional spaces, it is challenging for these models to
effectively learn and model their interactions. While model reprogramming techniques like Time-
LLM (Jin et al., 2024) align time series representations into the language space, thus unleashing the
potential of LLM as a predictor, these approaches often overlook the critical role of local temporal
features.

Inspired by the VLP framework in CV (Li et al., 2021; Yu et al., 2022), in this work, we attempt
to align textual features and time series embeddings into the unified high-dimensional space before
fusing in the modality interaction modules. Therefore, we develop the text-time series contrastive
loss to deal with this problem. Specifically, for each input time series X(i)

t−L:t ∈ R1×L, it is first
normalized to have zero mean and unit standard deviation in mitigating the time series distribution
shift. Then, we divide it into P consecutive non-overlapping patches with length Lp. Given these

patches X(i)
P (t−L:t) ∈ RP×Lp , we adopt a simple linear layer to embed them as X̂

(i)

P (t−L:t) ∈ RP×dm ,
where dm is the dimensions of time series features. On this basis, we introduce the time series CLS
token X̂

(i)

CLS(t−L:t) ∈ R1×dm . Let X̂
(i)

t−L:t =
[
X̂
(i)

P (t−L:t) X̂
(i))

CLS(t−L:t)

]
∈ R(P+1)×dm . We use

the nuni unimodal time series encoder layers containing Multi-Head Self-Attention (MHSA) layers

to process time series, and finally take the outputs of the nth
uni layer as the embeddings X̃

(i)

t−L:t ∈
R(P+1)×dm :

X̃
(i)

t−L:t =
(
MHSA

(
X̂
(i)

t−L:t

)
+ X̂

(i)

t−L:t

)
nth
uni

=
[
X̃
(i)

P (t−L:t) X̃
(i)

CLS(t−L:t)

]
(2)

For each historical text S(i)
t−L:t, we use the pre-trained language model for tokenization, encoding,

and embedding to obtain Ŝ
(i)

G(t−L:t) ∈ RG×d, where G represents the number of tokens encoded in
the historical text and d is the dimensions of textual features. On this basis, we introduce learnable
text query Q̂

(i)

q ∈ Rq×dm and text CLS token Q̂
(i)

CLS ∈ R1×dm . Let Q̂
(i)

=
[
Q̂

(i)

q Q̂
(i)

CLS

]
∈

R(q+1)×dm . We use a Multi-Head Cross-Attention (MHCA) layer with Q̂
(i)

as query and Ŝ
(i)

G(t−L:t)

as key and value to obtain the embedding S̃
(i)

t−L:t ∈ R(q+1)×dm :

S̃
(i)

t−L:t = MHCA
(

Q̂
(i)
, Ŝ

(i)

G(t−L:t)

)
=
[
S̃
(i)

q(t−L:t) S̃
(i)

CLS(t−L:t)

]
(3)

Given the outputs of S̃
(i)

CLS(t−L:t) and X̃
(i)

CLS(t−L:t) from the textual branch and the temporal branch,
respectively, the text-time series contrastive loss is defined as:

simi = X̃
(i)

CLS(t−L:t)

⊙
S̃
(i)

CLS(t−L:t)

Lcontrastive = − 1

B

(
B∑
i

log
exp

(
simT

i yi/τ
)∑B

j=1 exp
(
simT

j yj
) + B∑

i

log
exp

(
yTi simi/τ

)∑B
j=1 exp

(
yTj simj

)) (4)

where B is the batch size, yi ∈ RB×B is the one-hot label matrix from ground truth text-time series
pair label, and τ is the temperature to scale the logits.

3.2.2 MODALITY INTERACTION MODULE

To ensure effective alignment of distributions between historical textual and time series data, we use
the nmul multimodal layers, including a MHSA operation and a MHCA operation in each layer, as the
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modality interaction module to obtain the aligned time series embedding that integrates historical

textual information. Formally, given S̃
(i)

q(t−L:t) and X̃
(i)

P (t−L:t) produced by the textual branch and
the temporal branch, at each layer of the modality interaction module, we sequentially process and
aggregate the textual and temporal information based on the MHSA and MHCA mechanism, and
finally take the outputs of the nth

mul layer as the aligned time series embeddings X̄(i)
align ∈ RP×dm :

X̄(i)
align =

(
MHCA

(
MHSA

(
X̃
(i)

P (t−L:t)

)
+ X̃

(i)

P (t−L:t), S̃
(i)

q(t−L:t)

)
+ X̃

(i)

P (t−L:t)

)
nth
mul

(5)

3.2.3 OUTPUT LAYER

To maintain homogeneity with Lcontrastive, we use negative log-likelihood loss as the forecast loss,
which constrains the model’s predicted distribution to closely align with the actual distribution.
Specifically, given X̄(i)

align, we linearly project the last token embedding X̄(i)
align[−1] ∈ R1×dm to

obtain the distribution parameters of the Student’s T-distribution prediction head. The forecast loss
used is defined as:

Lforecast = − 1
B

∑B
i log p

(
X(i)
t:t+h|ϕ̂

(
X̄(i)
align[−1]

))
(6)

The overall loss during training is the summation of the forecast loss Lforecast and the contrastive
loss Lcontrastive as follows:

L = Lforecast + Lcontrastive (7)

4 MAIN RESULTS

Datasets. To demonstrate the effectiveness of the proposed Dual-Forecaster, we employ three
types of dataset—synthetic dataset, captioned-public dataset, and existing multimodal time series
dataset—encompassing a spectrum of difficulty levels from simple to complex. These three dataset
categories exhibit different degrees of authenticity: synthetic dataset consists of synthetic time
series-text pairs; captioned-public dataset contains real time series data with corresponding syn-
thetic text annotations, and existing multimodal time series dataset are more reflective of real-world
scenarios. Leveraging these datasets enables a systematic, stepwise validation of the practical ef-
fectiveness of the Dual-Forecaster. We firstly design six multimodal time series benchmark datasets
across two categories: synthetic dataset and captioned-public dataset. Additionally, we gather six
existing multimodal time series benchmark datasets from the Time-MMD dataset. The Time-MMD
dataset (Liu et al., 2024a) encompasses such nine primary data domains as climate, health, energy,
and traffic. It is the first high-quality and multi-domain, multimodal time series dataset, providing
great convenience for verifying the model’s multimodal time series forecasting ability in real-world
scenarios. We conduct extensive experiments on them and compare Dual-Forecaster against a col-
lection of representative methods from the recent time series forecasting landscape, our approach
displays competitive or stronger results in multiple benchmarks.

Baseline Models. We carefully select 11 forecasting methods as our baselines which fall into two
categories: single-modal models and multimodal models. For the single-modal models, they include
DLinear (Zeng et al., 2023), FITS (Xu et al., 2023), PatchTST (Nie et al., 2023), iTransformer
(Liu et al., 2023b), and Chronos (Ansari et al., 2024). For the Multimodal models, they consist of
GPT4TS (Zhou et al., 2023), UniTime (Liu et al., 2024b), Time-LLM (Jin et al., 2024), MM-TSFlib
(Liu et al., 2024a), TimeCMA (Liu et al., 2025) and ChatTime (Wang et al., 2025). It is worth noting
that we employ GPT2 as LLM backbone and iTransformer as time series forecasting backbone
for the MM-TSFlib model based on the experimental results reported in the original paper. We
contrast Dual-Forecaster with the single-modal models to illustrate how textual insights can enhance
forecasting performance. Comparisons with the multimodal models highlight the advancement of
Dual-Forecaster’s dual-scale alignment technique in cross-modality alignment, demonstrating its
superiority over direct prompting and simple multimodal fusion methods, which in turn can further
elevate the model’s forecasting performance. Note that all these methods train a dedicated model
for each evaluated dataset except for two foundation models of Chronos and ChatTime, which are
directly used for inference.
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Table 1: Forecasting result on synthetic dataset.The best and second best results are in bold and
underlined.

Methods Dual-Forecaster GPT4TS UniTime Time-LLM MM-TSFlib TimeCMA ChatTime Chronos DLinear FITS PatchTST iTransformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

synthetic dataset 30 0.5970 0.5224 0.9467 0.7139 0.6684 0.5911 0.8907 0.6976 0.6013 0.5419 3.0644 1.4267 1.1251 0.7111 0.9273 0.6326 1.2190 0.8139 2.7585 1.3254 0.6015 0.5394 0.6190 0.5529

Table 2: Forecasting result on captioned-public datasets.The best result is highlighted in bold and
the second best is highlighted in underlined.

Methods Dual-Forecaster GPT4TS UniTime Time-LLM MM-TSFlib TimeCMA ChatTime Chronos DLinear FITS PatchTST iTransformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 96 1.3203 0.8061 1.4641 0.8787 1.4034 0.8607 1.4457 0.8730 1.3620 0.8426 2.4790 1.2475 1.7347 0.9613 1.5638 0.8987 1.5601 0.9198 2.2858 1.1810 1.4544 0.8619 1.3393 0.8299

ETTm2 96 0.9363 0.6108 1.1184 0.7042 1.0397 0.6752 1.1199 0.7054 1.0325 0.6691 2.0336 1.0727 1.8680 0.9642 1.6991 0.8582 1.1663 0.7332 1.7418 0.9709 0.9419 0.6280 1.0210 0.6557

ETTh1 96 1.3955 0.9017 1.5078 0.9495 1.4647 0.9178 1.5919 0.9914 1.4967 0.9347 1.6117 1.0065 1.9604 1.0821 1.5282 0.9402 1.4999 0.9505 1.6004 0.9952 1.6009 0.9603 1.5128 0.9438

ETTh2 96 0.9429 0.7467 0.9612 0.7679 1.0028 0.7820 1.0586 0.8083 0.9616 0.7644 1.4177 0.9220 1.5014 0.9530 1.0474 0.7761 0.9951 0.7847 1.2858 0.8875 1.0349 0.7879 0.9803 0.7703

exchange-rate 96 2.2011 0.8458 3.0947 1.1203 2.5676 0.9933 3.0564 1.1111 2.6365 1.0061 4.4906 1.4850 2.3079 1.0291 2.7269 0.9773 3.1668 1.1146 4.4656 1.4831 2.2656 1.0016 2.6426 0.9977

Implementation Details. We utilize a six-layers pre-trained RoBERTa (Liu, 2019) model to pro-
cess text inputs. All experiments are repeated three times. All computations are performed on a
single NVIDIA GeForce RTX 4070 Ti GPU.

4.1 EVALUATION ON SYNTHETIC DATASET

Setups. The synthetic dataset is adopted to assess the model’s capacity to utilize textual infor-
mation for time series forecasting while effectively mitigating distribution drift. It is composed of
simulated time series data containing different proportions of trend, seasonality, noise components,
and switch states. For a fair comparison, the input time series look back window length L is set as
200, and the prediction horizon h is set as 30. Consistent with prior works, we choose the Mean
Square Error (MSE) and Mean Absolute Error (MAE) as the default evaluation metrics.

Results. Table 1 presents the performance comparison of various models on synthetic dataset. Our
model consistently outperforms all baseline models.

4.2 EVALUATION ON CAPTIONED-PUBLIC DATASETS

Setups. The captioned-public datasets are utilized to evaluate the model’s capability of better
performing time series forecasting by combining textual information to eliminate uncertainty in
complex time series scenarios. They consist of the captioned version of ETTm1, ETTm2, ETTh1,
ETTh2, and exchange-rate datasets which have been extensively adopted for benchmarking various
time series forecasting models. In this case, the input time series look back window length L is set to
336, and the prediction horizon h is fixed as 96. It should be noted that due to resource constraints,
we construct relatively small datasets on the basis of these datasets by setting the value of stride and
conduct experiments on them. For ETTm1 and ETTm2 datasets, stride is set to 16, while for ETTh1
and ETTh2 datasets, stride is fixed as 4. For exchange-rate datasets, stride is set to 12.

Results. As demonstrated in Table 2, Dual-Forecaster consistently surpasses all baselines by a
large margin, over 2.3%/4.6% w.r.t. the second-best in MSE/MAE reduction.

4.3 EVALUATION ON EXISTING MULTIMODAL TIME SERIES DATASETS

Setups. With the increasing availability of multimodal time series datasets, we have assembled
a collection of existing datasets to further validate the Dual-Forecaster’s real-world applicability.
These datasets from the Time-MMD datasets feature more general textual data, such as reports and
news, rather than time series shape-based descriptions. Moreover, the textual data in these datasets
contains varying degrees of inaccuracies, which is more in line with the real-world scenarios.

Results. As demonstrated in Table 3, Dual-Forecaster consistently outperforms all baselines by a
significant margin, achieving a 12.5% reduction in MSE compared to the second-best model. This
underscores the actual effectiveness of Dual-Forecaster in real-world forecasting scenarios.
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Table 3: Forecasting result on existing multimodal time series datasets.The best result is highlighted
in bold and the second best is highlighted in underlined.

Methods Dual-Forecaster GPT4TS UniTime Time-LLM MM-TSFlib TimeCMA ChatTime Chronos DLinear FITS PatchTST iTransformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Time-MMD-Climate 8 0.8520 0.7496 1.4222 0.9604 1.2687 0.8827 1.3398 0.9217 1.1386 0.8212 1.3713 0.9444 1.5118 0.9420 1.0346 0.8365 2.9057 1.4165 1.5498 0.9776 1.0975 0.8054 1.1392 0.8194

Time-MMD-Economy 8 0.1785 0.3366 0.2350 0.3902 0.2691 0.4116 0.2310 0.3858 0.2066 0.3583 0.2234 0.3708 0.3199 0.4491 0.2782 0.4229 8.1634 2.5406 0.2766 0.4184 0.1960 0.3512 0.1963 0.3493

Time-MMD-SocialGood 8 1.2364 0.4978 1.5420 0.6398 1.8239 0.6488 1.5172 0.6106 1.8615 0.5550 1.5433 0.6142 1.6290 0.6176 1.5912 0.6228 4.3273 1.8199 1.7227 0.6789 1.7509 0.5761 1.7128 0.5379

Time-MMD-Traffic 8 0.1814 0.2984 0.2763 0.3953 0.3127 0.4043 0.2299 0.3370 0.1892 0.2491 0.2805 0.3971 0.4648 0.5312 0.3920 0.4944 4.3517 1.8561 0.3542 0.4570 0.1828 0.2591 0.1917 0.2503

Time-MMD-Energy 12 0.0853 0.2015 0.2069 0.3445 0.1158 0.2527 0.1263 0.2619 0.1146 0.2472 0.2553 0.3872 0.5051 0.4971 0.1193 0.2297 1.2069 0.8204 0.2893 0.4086 0.1031 0.2217 0.1123 0.2415

Time-MMD-Health-US 12 0.8563 0.5931 1.5428 0.8597 1.0753 0.7117 1.1728 0.7331 0.9710 0.6308 2.0369 1.0064 1.5114 0.8102 1.5394 0.7680 2.2140 1.0484 2.2509 1.1193 1.1000 0.7233 1.0467 0.6573

4.4 MODEL ANALYSIS

Cross-modality Alignment. To better illustrate the effectiveness of the model design in Dual-
Forecaster, we construct four model variants and conduct ablation experiments on synthetic dataset
and ETTm2 dataset. The experimental results presented in Table 4 demonstrate the importance
of integrating textual information for time series forecasting to achieve optimal performance, and
also validate the soundness of the design of the dual-scale alignment techniques. Employing tex-
tual information results in MSE/MAE of 0.5970/0.5224 (versus 0.6135/0.5379) on synthetic dataset
and 0.9363/0.6108 (versus 0.9507/0.6060) on ETTm2, respectively. Without Modality Interaction
Module, we observe an average performance degradation of 0.7%, while the average performance
reduction becomes more obvious (1.4%) in the absence of Text-Time Series Contrastive Loss. Ex-
perimental results demonstrate that as the two components of the dual-scale alignment technique,
Text-Time Series Contrastive Loss and Modality Interaction Module are both critical for deriving
high-quality and semantically rich time series representations. Notably, the absence of the Text-Time
Series Contrastive Loss leads to more significant performance degradation in metrics. We attribute
this to Text-Time Series Contrastive Loss’s discernibility at the sample level, which enables it to ef-
fectively capture inter-variable relationships and reflect them in the final time series representations.

Table 4: Ablation on synthetic dataset and ETTm2 with prediction horizon 30 and 96, respectively.
The best results are highlighted in bold.

Model Variants synthetic dataset ETTm2

MSE MAE MSE MAE

Dual-Forecaster 0.5970 0.5224 0.9363 0.6108
w/o Texts 0.6135 0.5379 0.9507 0.6060

w/ Texts
→ w/o Text-Time Series Contrastive Loss 0.6057 0.5315 0.9571 0.6117
→ w/o Modality Interaction Module 0.6038 0.5254 0.9480 0.6102

Cross-modality Alignment Interpretation. We present a case study on synthetic dataset, as illus-
trated in Figure 2, to demonstrate the alignment effect between text and time series. This is achieved
by displaying the similarity matrix that captures the relationship between text features and time se-
ries embeddings. The time series data is visualized above the matrix, while its corresponding text
descriptions are on the left. For example, the 6th subplot depicts a sequence with an exponential up-
ward trend over time, corresponding to the text description ”exponential upward trend”. Our model
accurately establishes the correlation between text and time series, as evidenced by the high similar-
ity between their representations (the value at the 6th row and 6th column of the similarity matrix is
0.94). Additionally, the text description enables the establishment of varying degrees of associations
between different variables. For instance, the similar upward trends in the 6th subplot and the 1st/4th
subplots are manifested as values of 0.41 and 0.42 at the 6th row and 1st/4th columns in the similar-
ity matrix, respectively. In contrast, less relevant variables show low values in the similarity matrix.
This result shows that Dual-Forecaster is capable of autonomously discern potential connections
between text and time series except be able to accurately recognize the genuine pairing text-time
series relationships. This indicates that our model possesses advanced multimodal comprehension
capability, which has a positive influence on improving the model’s forecasting performance.
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Figure 2: A showcase of text-time series alignment. The values in the matrix represent the similarity
between the high-dimensional representation of the time series (above the matrix) and the corre-
sponding textual description (on the left side of the matrix). The higher the similarity, the better the
match between the time series and the text.

Cross-modality Alignment Efficiency Table 5 provides an overall efficiency analysis of Dual-
Forecaster with and without cross-modal alignment techniques. Our model’s unimodal time series
encoder is lightweight, and the overall efficiency of Dual-Forecaster is actually capped by the lever-
aged effective cross-modal alignment module. This is favorable in balancing forecating performance
and efficiency.

5 CONCLUSION

In this work, we present Dual-Forecaster, an innovative multimodal time series model that integrates
sample-specific textual semantics with temporal dynamic to generate more accurate and reason-
able forecasts. Our model capitalizes on the meticulously-designed dual-scale alignment technique
comprising the text-time series contrastive loss and modality interaction module. This technique
is designed to concurrently extract semantic and patch-level features, which are crucial for cross-
modal understanding and time series forecasting, respectively. We conduct extensive experiments
on twelve datasets to demonstrate the effectiveness of Dual-Forecaster and highlight the superiority
of incorporating textual data for time series forecasting.

Limitations & Future Work While Dual-Forecaster has achieved remarkable performance in
text-guided time series forecasting, there remains room for further improvements. Due to resource
constraints, a comprehensive hyperparameter tuning was not performed, suggesting that the reported
results of Dual-Forecaster may be sub-optimal. In terms of multimodal time series dataset, the lack
of a standardized and efficient annotation methodology often leads to inadequate annotation qual-
ity on real-world datasets, with the issue being particularly pronounced in the annotation of long
time series. Future work should focus on developing a more elegant time series annotator, lever-
aging the text-time series alignment techniques that are fundamental to Dual-Forecaster. In terms
of downstream task, further research should explore the potential of expanding Dual-Forecaster to
encompass a broad spectrum of multimodal time series analysis capabilities.
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A CROSS-MODALITY ALIGNMENT EFFICIENCY

Table 5: Efficiency analysis of Dual-Forecaster on synthetic dataset and ETTm2.
Dataset-Prediction Horizon synthetic dataset-30 ETTm2-96

Metric Trainable Param. (M) Non-trainable Param. (M) Mem. (MiB) Speed(s/iter) Trainable Param. (M) Non-trainable Param. (M) Mem. (MiB) Speed(s/iter)

w/ Texts 13.5 82.1 1840 0.043 13.6 82.1 8812 0.242

w/o Texts 6.5 0 672 0.022 6.6 0 928 0.036

B BROADER IMPACTS

This work introduces a groundbreaking exploration in time series forecasting—a multimodal time
series forecasting model that leverages textual modality data to enhance predictive capabilities for
time-series analysis. The broader impact of this research is multifaceted. By delivering high-fidelity
and reliable forecasts, it empowers advanced decision-making in critical domains such as finance and
healthcare, where precision is paramount. Moreover, its strong interpretability enables actionable
insights for optimized resource allocation and enhanced patient care protocols. The societal impli-
cations are profound: this work establishes a novel framework for integrating complex time-series
data with emerging AI technologies (e.g., LLMs), fundamentally transforming how time-series data
is analyzed and utilized across diverse sectors. By bridging textual semantics and temporal dynam-
ics, this approach paves the way for next-generation predictive models that address the growing
demand for multimodal intelligence in real-world applications.

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION

All the experiments are repeated three times with different seeds and we report the averaged results.
Our model implementation is on Pytorch (Paszke et al., 2019) with all experiments conducted on a
single NVIDIA GeForce RTX 4070 Ti GPU. Our detailed model configurations are in Table 6.

C.2 MULTIMODAL TIME SERIES BENCHMARK DATASETS CONSTRUCTION

In the realm of time series forecasting, there is a notable lack of high-quality multimodal time series
benchmark datasets that combine time series data with corresponding textual series. While some
studies have introduced multimodal benchmark datasets (Liu et al., 2024a; Xu et al., 2024), these
datasets primarily rely on textual descriptions derived from external sources like news reports or
background information. These types of textual data are often domain-specific and may not be con-
sistently available across different time series domains, limiting their utility for building unified mul-
timodal models. In contrast, shape-based textual descriptions of time series patterns are relatively
easier to generate and can provide more structured insights. The TS-Insights dataset Zhang et al.
(2023) pairs time series data with shape-based textual descriptions. However, these descriptions are
based on detrended series (with seasonality removed), which may introduce bias and complicate
the interpretation of the original time series data. To address these challenges, we propose six new
multimodal time series benchmark datasets where textual descriptions are directly aligned with the
observed patterns in the time series. The construction process for these datasets is outlined below.

C.2.1 SYNTHETIC DATASET

For the synthetic time series data, we firstly design three categories of components, which are then
combined to generate simulated time series. The components are as follows:

• Trend: Linear trend, exponential trend

• Seasonality: Cosine, linear, exponential, M-shape, trapezoidal

• Noise: Gaussian noise with varying variances
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Text input: This time series shows a linear downward trend, along 

with some minor fluctuations.
Text input: This time series exhibits a gentle downward trend over 

time. The data also includes minor fluctuations, adding slight noise to 

the overall pattern.

Text input: The time series exhibits a slight downward linear trend

with minor fluctuations, a distinct cosine-like seasonality every 20

periods, and some light noise.

Text input: The time series exhibits a clear seasonal pattern resembling a

cosine function, repeating every 20 units. Despite the noticeable noise,

the underlying periodicity is evident.

Figure 3: Synthetic time series and its paired text examples.

To generate the synthetic time series, one component from each category is randomly selected.
These components are then either added together or multiplied to produce a time series, along with
a corresponding textual description of its key characteristics. To enhance the diversity of the descrip-
tions, rule-based descriptions are paraphrased using GPT-4o. Additionally, to simulate transitions
between different states, we generate time series where only one component changes over time. For
instance, a time series might exhibit a linear upward trend that transits to a linear downward trend. In
this manner, we construct the synthetic dataset with a total of 3,040 training samples. Each sample
includes time series and its paired textual series. Several examples of these constructed samples are
shown in Figure 3.

C.2.2 CAPTIONED PUBLIC DATASETS

For the real-world time series data, we construct corresponding textual descriptions using the fol-
lowing method, and Figure 4 shows the whole caption process.

• First, we apply the Iterative End Point Fitting (IEPF) algorithm (Douglas & Peucker, 1973)
to the min-max normalized time series, identifying reasonable segmentation points. IEPF
begins by taking the starting curve, which consists of an ordered set of points, and an
allowable distance threshold. Initially, the first and last points of the curve are marked as
essential. The algorithm then iteratively identifies the point farthest from the line segment
connecting these endpoints. If the distance of this point exceeds threshold, it is retained
as a segmentation point, and the process is recursively repeated for the subsegments until
no points are found that are farther than threshold from their respective line segments.
This iterative approach ensures that the segmentation preserves the curve’s critical structure
while discarding unnecessary details. The lines connecting these segmentation points can
roughly outline the overall shape of the time series.

• Once the time series is segmented, statistical features such as slope and volatility are com-
puted for each section. For each segment, a linear regression model is fitted to the data,
and the slope is calculated. The P-value from the regression determines the significance of
the trend: if it’s below 0.05, the slope indicates an upward or downward trend; if it’s above
0.05, the segment is considered to be fluctuating. The Mean Squared Error (MSE) between
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The time series declines from time point 1 to 48 with slight noise.

The time series rises from time point 49 to 89 with moderate noise.

The time series declines from time point 90 to 124 with slight noise.

The time series rises from time point 125 to 178 with slight noise.

The time series declines from time point 179 to 335 with moderate noise.

Local trend calculator

Volatility calculator

Figure 4: Captioning process for real-world time series. First, IEPF is used to segment time series,
identifying reasonable segmentation points. This algorithm works by iteratively fitting straight lines
between endpoints and adjusting segmentation points to minimize fitting errors, thereby identifying
rational breakpoints. Next, statistical features such as slope and volatility are calculated for each
segmented portion of the time series. Finally, based on these statistical characteristics, a descriptive
textual summary is generated.

the original data and the regression line is also calculated to measure the noise level. Based
on the MSE, the noise is classified into three levels: low, medium, or high.

• Finally, a textual description is generated: if the local trend is significant, the description
notes whether the segment is increasing or decreasing; if not, it indicates fluctuation. The
noise level is also included in the description based on the MSE.

We apply the above method to annotate five commonly used real-world datasets: ETTm1, ETTm2,
ETTh1, ETTh2, and exchange-rate. Each dataset is divided into training and testing sets with a
ratio of 8:2. Following the configurations of a look-back window of 336 and a forecasting horizon
of 96, we construct training samples using a sliding window approach. Figure 5 illustrates the
text annotation results on the exchange-rate dataset. Our annotation method accurately captures
segmentation points (red lines), thereby producing meaningful summary shape descriptions.

It should be noted that due to resource constraints, we construct relatively small datasets on the basis
of these datasets by setting the value of stride and conduct experiments on them. For ETTm1 and
ETTm2 datasets, stride is set to 16, while for ETTh1 and ETTh2 datasets, stride is fixed as 4. For
exchange-rate datasets, stride is set to 12.

C.3 MULTIMODAL TIME SERIES BENCHMARK DATASETS COLLECTION

Apart from our constructed multimodal time series datasets, including the synthetic dataset and
captioned-public datasets, we also collect the Time-MMD dataset. The Time-MMD dataset (Liu
et al., 2024a) encompasses such nine primary data domains as climate, health, energy, and traffic.
It is the first high-quality and multi-domain, multimodal time series dataset, providing great conve-
nience for verifying the model’s multimodal time series forecasting ability in real-world scenarios.

C.4 MODEL CONFIGURATIONS

The configurations of our models, in relation to the evaluations on various datasets, are consolidated
in Table 6. By default, optimization is achieved through the Adam optimizer (Kingma, 2014) with a
learning rate set at 0.0001 (0.005 for the Time-MMD-Economy dataset, Time-MMD-Energy dataset
and Time-MMD-Health-US dataset) and a weight deacy ratio of 0.01, throughout all experiments. In
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Look back window Prediction horizon

Shape description for look back window:

The time series fluctuates from time point 1 to 76 with slight noise. 

The time series rises from time point 77 to 118 with slight noise. 

The time series declines from time point 119 to 167 with slight noise. 

The time series rises from time point 168 to 260 with slight noise. 

The time series declines from time point 261 to 309 with slight noise. 

The time series rises from time point 310 to 335 with slight noise.

Figure 5: Visualization of a captioned example from exchange-rate dataset.

terms of dataset parameters, L and h signify the input time series look back window length and the fu-
ture time points to be predicted, respectively. For the input time series, we firstly perform patching to
obtain P non-overlapping patches with a patch length of Lp. In terms of model hyperparameters, dm
represents the dimension of the embedded representations, and nuni denotes the number of layers
of unimodal time series encoder used to process time series inputs, while nmul denotes the number
of layers of the modality interaction module, which ensures effectively alignment of distributions
between historical textual and time series data. Heads are correlate to the Multi-Head Self-Attention
(MHSA) and Multi-Head Cross-Attention (MHCA) operations utilized for cross-modality alignment.
For the synthetic dataset and Time-MMD datasets, we set the training epochs to 300, while for the
ETT, and exchange-rate datasets, we set it to 100. Additionally, to prevent overfitting, we introduce
an early stopping strategy and set the patience to 7 except for the Time-MMD-Economy dataset,
Time-MMD-Energy dataset and Time-MMD-Health-US dataset.

Table 6: An overview of the experimental configurations for Dual-Forecaster.

Dataset/Configuration Dataset Parameter Model Hyperparameter Training Process

L P Lp h dm nuni nmul Heads LR Weight Decay Batch Size Epochs Patience

synthetic dataset 200 25 8 30 256 6 3 8 0.0001 0.01 64 300 7

ETTm1 336 42 8 96 256 6 1 8 0.0001 0.01 64 100 7

ETTm2 336 42 8 96 256 6 3 8 0.0001 0.01 64 100 7

ETTh1 336 42 8 96 256 6 3 8 0.0001 0.01 64 100 7

ETTh2 336 42 8 96 256 6 3 8 0.0001 0.01 64 100 7

exchange-rate 336 42 8 96 256 6 3 8 0.0001 0.01 64 100 7

Time-MMD-Climate 8 1 8 8 256 2 1 4 0.0001 0.01 32 300 7

Time-MMD-Economy 8 1 8 8 64 2 1 2 0.005 0.01 32 300 20

Time-MMD-SocialGood 8 1 8 8 256 2 3 2 0.0001 0.01 32 300 7

Time-MMD-Traffic 8 1 8 8 128 2 1 4 0.0001 0.01 32 300 7

Time-MMD-Energy 40 5 8 12 128 2 1 2 0.005 0.01 32 300 20

Time-MMD-Health-US 40 5 8 12 128 2 1 2 0.005 0.01 32 300 20
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C.5 EVALUATION METRIC

We adopt the Mean Square Error (MSE) and Mean Absolute Error (MAE) as the default evaluation
metrics. The calculations of these metrics are as follows:

MSE =
1

H

H∑
h=1

(
Yh − Ŷh

)2
MAE =

1

H

H∑
h=1

∣∣∣Yh − Ŷh

∣∣∣
where H denotes the length of prediction horizon. Yh and Ŷh are the h-th ground truth and prediction
where h ∈ {1, · · · ,H}.

D BASELINES

DLinear: is a combination of a decomposition scheme and a linear network that first divides a time
series data into two components of trend and remainder, and then performs forecasting to the two
series respectively with two one-layer linear model.

FITS: consists of the key part of the complex-valued linear layer that is dedicatedly designed to
learn amplitude scaling and phase shifting, thereby facilitating to extend time series segment by
interpolating the frequency representation.

PatchTST: is composed of two key components: (i) patching that segments time series into patches
as input tokens to Transformer; (ii) channel-independent structure where each channel univariate
time series shares the same Transformer backbone.

iTransformer: is an inverted Transformer that raw series of different variates are firstly embedded
to tokens, applied by self-attention for multivariate correlations, and individually processed by the
share feed-forward network for series representations of each token.

Chronos: is a framework that adapts language model architectures and training procedures to prob-
abilistic time series forecasting by tokenizing time series values into a fixed vocabulary.

GPT4TS: is a unified framework that uses a frozen pre-trained GPT2 for general time series anal-
ysis tasks including time series classification, short/long-term forecasting, imputation, anomaly de-
tection, few-shot and zero-sample forecasting.

UniTime: is a unified model for cross-domain time series forecasting. It overcomes challenges
like varying data characteristics, domain confusion, and convergence speed imbalance, ans shows
superior performance and zero-shot transferability through experiments on multiple datasets.

Time-LLM: is a new framework, which encompasses reprogramming time series data into text
prototype representations before feeding it into the frozen LLM and providing input context with
declarative prompts via Prompt-as-Prefix to augment reasoning.

MM-TSFlib: is the first multimodal time-series forecasting (TSF) library, which allows the integra-
tion of any open-source language models with arbitrary TSF models, thereby enabling multimodal
TSF tasks based on Time-MMD.

TimeCMA: is an LLM-empowered framework for multivariate time series forecasting. It addresses
data entanglement issues by using a dual-modality encoding and cross-modality alignment, and
reduces computational costs through last token embedding storage.

ChatTime: is a multimodal time series foundation model that treats time series as a foreign lan-
guage. It provides zero-shot capability and supports bimodal input/output for both time series and
text.
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E ERROR BARS

All experiments are repeated three times except for ChatTime and Chronos, which execute only
one inference. The comparison between our method and all the baseline methods on all datasets is
delineated in Table 7.

Table 7: Standard deviations of Dual-Forecaster and baseline models across all datasets (MSE re-
ported).

Model Dual-Forecaster GPT4TS UniTime Time-LLM MM-TSFlib TimeCMA ChatTime Chronos DLinear FITS PatchTST iTransformer

Dataset MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE

synthetic dataset 0.5970±0.0182 0.9467±0.0570 0.6684±0.0241 0.8907±0.0296 0.6013±0.0020 3.0644±0.0132 1.1251 0.9273 1.2190±0.0254 2.7585±0.3402 0.6015±0.0063 0.6190±0.0061

ETTm1 1.3203±0.0138 1.4641±0.0303 1.4034±0.0165 1.4457±0.0048 1.3620±0.0085 2.4790±0.0013 1.7347 1.5638 1.5601±0.0106 2.2858±0.1409 1.4544±0.0348 1.3393±0.0045

ETTm2 0.9363±0.0069 1.1184±0.0351 1.0397±0.0156 1.1199±0.0375 1.0325±0.0157 2.0336±0.0021 1.8680 1.6991 1.1663±0.0060 1.7418±0.0415 0.9419±0.0040 1.0210±0.0123

ETTh1 1.3955±0.0353 1.5078±0.0949 1.4647±0.0255 1.5919±0.1427 1.4967±0.0333 1.6117±0.0042 1.9604 1.5282 1.4999±0.0043 1.6004±0.0335 1.6009±0.0840 1.5128±0.0146

ETTh2 0.9429±0.0332 0.9612±0.0183 1.0028±0.0312 1.0586±0.1008 0.9616±0.0080 1.4177±0.0070 1.5014 1.0474 0.9951±0.0015 1.2858±0.0306 1.0349±0.0578 0.9903±0.0292

exchange-rate 2.2011±0.0161 3.0947±0.1516 2.5676±0.3719 3.0564±0.0877 2.6365±0.0958 4.4906±0.0213 2.3079 2.7269 3.1668±0.0148 4.4656±0.2718 2.2656±0.0460 2.6426±0.0141

Time-MMD-Climate 0.8520±0.0018 0.1.4222±0.0491 1.2687±0.0841 1.3398±0.0845 1.1386±0.0612 1.3713±0.0139 1.5118 1.0346 2.9057±0.3899 1.5498±0.0868 1.0975±0.0130 1.1392±0.0186

Time-MMD-Economy 0.1785±0.0038 0.2350±0.0063 0.2691±0.0111 0.2310±0.0066 0.2066±0.0051 0.2234±0.0003 0.3199 0.2782 8.1634±1.7173 0.2766±0.0340 0.1960±0.0029 0.1963±0.0037

Time-MMD-SocialGood 1.2364±0.0310 1.5420±0.0254 1.8239±0.2461 1.5172±0.0413 1.8615±0.0280 1.5433±0.0033 1.6290 1.5912 4.3273±0.6212 1.7227±0.1214 1.7509±0.1066 1.7128±0.0585

Time-MMD-Traffic 0.1814±0.0010 0.2763±0.0031 0.3127±0.0418 0.2299±0.0335 0.1892±0.0076 0.2805±0.0005 0.4648 0.3920 4.3517±1.0442 0.3542±0.0761 0.1828±0.0026 0.1917±0.0017

Time-MMD-Energy 0.0853±0.0044 0.2069±0.0391 0.1158±0.0018 0.1263±0.0223 0.1146±0.0027 0.2553±0.0025 0.5051 0.1193 1.2069±0.1884 0.2893±0.0524 0.1031±0.0058 0.1123±0.0029

Time-MMD-Health-US 0.8563±0.0287 1.5428±0.1567 1.0753±0.0176 1.1728±0.0290 0.9710±0.1153 2.0369±0.0051 1.5114 1.5394 2.2140±0.2037 2.2509±0.2076 1.1000±0.0299 1.0467±0.0217
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