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Abstract

Effective anomaly detection in complex systems requires identifying change points (CPs) in
the frequency domain, as abnormalities often arise across multiple frequencies. This paper
extends recent advancements in statistically significant CP detection, based on Selective
Inference (SI), to the frequency domain. The proposed SI method quantifies the statistical
significance of detected CPs in the frequency domain using p-values, ensuring that the
detected changes reflect genuine structural shifts in the target system. We address two
major technical challenges to achieve this. First, we extend the existing SI framework to
the frequency domain by appropriately utilizing the properties of discrete Fourier transform
(DFT). Second, we develop an SI method that provides valid p-values for CPs where changes
occur across multiple frequencies. Experimental results demonstrate that the proposed
method reliably identifies genuine CPs with strong statistical guarantees, enabling more
accurate root-cause analysis in the frequency domain of complex systems.

1 Introduction

To detect failures in complex systems, it is crucial to accurately identify the frequencies where the anomalies
occur. By pinpointing these specific frequencies, the root causes of faults in the systems can be identified.
In this paper, we address the change point (CP) detection problem in the frequency domain and propose
a method that can identify statistically significant changes in specific frequencies. Quantifying statistical
significance in CP detection ensures that the detected changes in the frequency domain reflect genuine
structural alterations rather than random noise. Measures such as p-values provide a quantitative framework
to differentiate real changes from spurious ones, effectively mitigating the risk of incorrect decisions in data-
driven systems.

This study was motivated by recent developments in statistically significant CP detection based on Selective
Inference (SI) (Taylor & Tibshirani, 2015; Fithian et al., 2015; Lee & Taylor, 2014). Prior to SI, quantifying
the significance of detected CPs was challenging due to the issue of double dipping, i.e., using the same data
to both identify and test CPs inflates false positive findings. Traditional statistical approaches prior to SI
primarily focused on testing only whether a CP exists or not within a certain range using multiple testing
framework based on asymptotic distribution (Page, 1954; Mika et al., 1999). Therefore, providing statistical
significance measures, such as p-values, for specific points or frequencies was not feasible. SI is a novel
statistical inference framework designed for data-driven hypotheses. In the context of CP detection, it enables
the evaluation for the statistical significance of detected CPs conditional on a specific CP detection algorithm,
thereby resolving the aforementioned double dipping issue. The use of SI for statistically significant CP
detection in the time domain has been actively studied recently (Hyun et al., 2018; Duy et al., 2020). Our
contribution in this study is to extend these methods and realize statistically significant CP detection in the
frequency domain.

One of the difficulties in frequency-domain CP detection is that changes often appear across multiple fre-
quencies due to shared underlying phenomena influencing broad signal characteristics. Figure 1 shows an
example of frequency-domain CP detection problems along with the statistically significant CPs identified
using our proposed SI method. Panel (a) shows a time-series transformed into signals across five frequencies.
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(a) Time series signal. (b) The CP detection result for
each frequency component.

(c) The CP detection result after
integrating CPs across multiple
frequencies.

(d) Statistical test for the CPs detected in (c).

Time Point A B C

Detection True True Wrong

Proposed p-value 0.008 0.006 0.752

Naive p-value 0.000 0.000 0.000

Figure 1: A demonstration of the proposed method. Panel (a) shows the original time series signal. Panel (b)
illustrates the result of CP detection for each time variation of the five frequency components, and panel (c)
represents the CPs merged across multiple frequencies. In panel (c), the CPs for frequency d1 at time point
28 and d2 at 30, and those for d2 at 68 and d3 at 74 merge into one CP at 28 (A) and 70 (B), respectively.
Actually, the CPs A and B are truely detected, while CP C for d0 at 97 is wrong detection. Table (d) shows
the results of statistical test for the CPs detected in (c). The proposed p-value is enough large for falsely
detected CP C, while the naive metod causes a false positive because the p-value is too small. Furthermore,
the proposed method provides sufficiently small p-values for truely detected CPs A and B.
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Panel (b) presents the CP detection results for each individual frequency d ∈ {d0, d1, d2, d3, d4} 1. Panel (c)
integrates CPs across multiple frequencies, detecting three changes A, B, and C (at CP A, changes occur in
frequencies d1 and d2; at CP B, in d2 and d3; and at CP C, only in d0). The obtained p-values for changes A,
B, and C using the proposed method are 0.008, 0.006, and 0.752 (denoted as selective p-values), respectively,
indicating that at a significance level of 0.05

3 ≈ 0.0167 decided by Bonferroni correction, changes A and B
are statistically significant CPs2.

To perform statistically significant CP detection, as illustrated in Figure 1, two key technical challenges must
be addressed. The first challenge is to extend the SI framework to the frequency domain. We tackle this by
formulating the test statistic and the conditioning on the hypothesis selection that accurately account for
the properties of discrete Fourier transform (DFT). The second challenge involves quantifying the statistical
significance of CPs shared across multiple frequencies. Addressing this requires solving a combinatorial
optimization problem, which is computationally infeasible to solve globally optimally, necessitating a heuristic
approach to obtain the approximate solution. In this study, we employ a method based on simulated
annealing (Kirkpatrick et al., 1983; Černỳ, 1985) and implement the SI framework to appropriately quantify
the statistical significance of the approximate solution derived from the heuristic algorithm.

The proposed CP detection method consists of two stages. In the first stage, CP candidates in the frequency
domain are selected. Since the selection of these CP candidates is formulated as a combinatorial optimization
problem, a heuristic algorithm is used to derive an approximate solution. In the second stage, the statistical
significance of each CP candidate selected in the first stage is quantified in the form of p-values using the
SI framework. Among the CP candidates, only those with p-values below a significance level (e.g., 0.05 or
0.01) are eventually detected as final CPs. The probability of the final detected CPs being false positives is
theoretically guaranteed to be below the specified significance level.

The rest of the paper is organized as follows. Section 2 formulates the problem. Section 3 explains the
heuristic algorithm used to select CP candidates in the first stage of the proposed method. Section 4 describes
the method for quantifying the statistical significance of CP candidates using the SI framework in the
second stage. In Section 5, we demonstrate the effectiveness of our proposed method through comprehensive
numerical experiments using both synthetic and real-world data. For reproducibility, our implementation is
available at supplementary materials. Finally, Section 6 concludes the paper. We note that the selection of
CP candidates in stage 1 (Section 3) does not involve any particularly technical contributions. Our primary
contribution lies in stage 2 (Section 4), where the statistical significance of the approximate solution is
evaluated using the SI framework.

Related Work. The CP detection problem has long been studied with various applications in a variety
of fields, such as finance (Fryzlewicz & Subba Rao, 2014; Pepelyshev & Polunchenko, 2017), bioinformatics
(Chen & Wang, 2008; Muggeo & Adelfio, 2011; Pierre-Jean et al., 2015), climatology (Reeves et al., 2007;
Beaulieu et al., 2012), and machine monitoring (Lu et al., 2017; 2018). In the statistics and machine learning
communities, various methods have been proposed for identifying multiple CPs from univariate sequences.
The most straightforward approach is repeatedly applying single CP detection algorithms such as binary
segmentation (Scott & Knott, 1974). Examples of such approaches include circular binary segmentation
(Olshen et al., 2004) and wild binary segmentation (Fryzlewicz, 2014). Another line of research has proposed
numerous approaches based on penalized likelihood, such as Segment Neighbourhood (Auger & Lawrence,
1989), Optimal Partitioning (Jackson et al., 2005), PELT (Killick et al., 2012), and FPOP (Maidstone et al.,
2017). In these studies, dynamic programming is employed to solve the penalized likelihood minimization
problem. While most CP detection studies focus on the time domain, a few studies have targeted the
frequency domain, such as Adak (1998), Last & Shumway (2008), and Preuss et al. (2015).

Most existing studies for statistical inference on detected CPs have relied on asymptotic theory under re-
strictive assumptions, such as weak dependency. For single CP detection problems, approaches such as the
CUSUM score (Page, 1954), Fisher discriminant score (Mika et al., 1999; Harchaoui et al., 2009), and MMD

1Note that while the “amplitude” spectra are presented in the figures of this paper to visualize the temporal variations of
spectral sequences and the means for each segment, the “complex” spectra are utilized in the actual CP detection and hypothesis
testing (see Section 2 and the subsequent sections for details).

2In Figure 1, the values labeled as naive p-values are inappropriate because they fail to account for double-dipping, leading
to excessively small values and an inflated rate of false positive findings (see Section 4 for details).
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(Li et al., 2015) conduct statistical inference on the detected CPs based on asymptotic distribution of some
discrepancy measures. For multiple CP detection problems, methods such as SMUCE (Frick et al., 2014)
and the MOSUM procedure (Eichinger & Kirch, 2018) also employ asymptotic inference. However, these
methods primarily focus on testing whether a CP exists within a certain range rather than directly quanti-
fying the statistical significance of the location of the CP itself. Furthermore, asymptotic approaches often
fail to control the false positive rate (type I error rate) effectively, or resulting in conservative testing with
low statistical power (Hyun et al., 2018).

SI was initially introduced as a method of statistical inference for feature selection in linear models (Taylor
& Tibshirani, 2015; Fithian et al., 2015) and later extended to various feature selection algorithms, including
marginal screening (Lee & Taylor, 2014), stepwise feature selection (Tibshirani et al., 2016), and Lasso (Lee
et al., 2016). The core concept of SI is to derive the exact null distribution of the test statistic conditional on
the hypothesis selection event, thereby enabling valid statistical inference with controlled type I error rate.
Recently, significant attention has been given to applying SI to more complex supervised learning algorithms,
such as kernel models (Yamada et al., 2018), boosting (Rügamer & Greven, 2020), tree-structured models
(Neufeld et al., 2022), and neural networks (Duy et al., 2022; Miwa et al., 2023; Shiraishi et al., 2024b).
Furthermore, SI has proven valuable for unsupervised learning tasks, including clustering (Lee et al., 2015;
Chen & Witten, 2023; Gao et al., 2024), outlier detection (Chen & Bien, 2020; Tsukurimichi et al., 2022),
domain adaptation (Duy et al., 2024), and segmentation (Tanizaki et al., 2020; Duy et al., 2022). SI was
first used for CP detection problem in (Hyun et al., 2018), which focused on Fused Lasso algorithm. Since
then, the framework has been explored in various CP detection algorithms, including the CUSUM-based
method (Umezu & Takeuchi, 2017), binary segmentation and its variants (Hyun et al., 2021), dynamic
programming (Duy et al., 2020), and other related problems (Sugiyama et al., 2021; Jewell et al., 2022;
Carrington & Fearnhead, 2024; Shiraishi et al., 2024a). Existing studies on CP detection have focused on
the time domain, making this the first to offer valid statistical inferences for frequency-domain anomalies
using the SI framework.

2 Problem Setup

In this section, we first desrcribe the probabilistic model of time series on which the statistical inference is
based, and then formulate the problem of CP detection in the frequency domain.

2.1 Probabilistic Model for Time Series Data

For statistical inference, we interpret that the observed time series data is a realization of a random sequence
following a certain probabilistic model. Let us denote the univariate random sequence with length N by

X = (X1, . . . , XN )> = s + ϵ, ϵ ∼ N (0, σ2IN ), (1)

where s ∈ RN is the unknown true signal vector, and ϵ ∈ RN is the normally distributed noise vector with
the covariance matrix σ2IN

3. In other words, we assume that the observed time series data is sampled from
the probabilistic model X ∼ N

(
s, σ2IN

)
.

Then, consider applying discrete short-time Fourier transform (STFT) to the random sequence X using
rectangular window of width M without overlapping. In this case, the computations of DFT are required
T =

⌊
N
M

⌋
times, where we assume T = N

M , i.e., N is a multiple of M for simplicity. We denote M -point
DFT matrix as

WM =
(

w
(0)
M , . . . , w

(M−1)
M

)
∈ CM×M ,

where w
(d)
M =

(
ω0

M , ωd
M , . . . , ω

(M−1)d
M

)>
, and ωM = e−j( 2π

M ) for frequency d ∈ {0, . . . , M − 1} in which j is

the imaginary unit. Using w
(d)
M , we consider multiple spectral sequences across D =

⌊
M
2

⌋
+ 1 frequencies

3In the following discussion, the noise vector ϵ must be independently and identically distributed Gaussian with predeter-
mined covariance matrix. The robustness of our proposed method for unknown variance, correlation of noise, and non-Gaussian
noise is discussed in Appendix D.3.

4



Under review as submission to TMLR

due to the symmetry property of the spectrum. For d ∈ {0, . . . , D− 1}, the sequence of spectra is written as

F (d) =
(

F
(d)
1 , . . . , F

(d)
T

)>
∈ CT , d ∈ {0, . . . , D − 1},

where F
(d)
t =

(
1t:t ⊗w

(d)
M

)>
X, and 1s:e ∈ RT is a vector whose elements from position s to e are set to 1,

and 0 otherwise for 1 ≤ s ≤ e ≤ T .

2.2 Statistically Significant CP Detection in the Frequency Domain

As mentioned above, for statistical inference, we interpret that the observed time series is randomly sampled
from the probabilistic model in (1), which is denoted by

x = (x1, . . . , xN )> ∈ RN . (2)

Similarly, the sequence of spectra for frequency d, obtained by applying the aforementioned STFT to the
observed time series x, is written as

f (d) =
(

f
(d)
1 , . . . , f

(d)
T

)>
∈ CT , d ∈ {0, . . . , D − 1}. (3)

The goal of this study is to detect changes in the true signals of frequency spectral sequences
{F (d)}d∈{0,...,D−1} based on the observed sequences {f (d)}d∈{0,...,D−1}.

Among variety of changes, we focus in this paper on mean-shift of frequency spectral sequences. Let us
denote the mean spectrum of frequency d at time point t by

µ
(d)
t = E[F (d)

t ], (d, t) ∈ {0, . . . , D − 1} × [T ],

where the expectation operator E[·] is taken with respect to the probabilistic model in (1)4, and [T ] =
{1, . . . , T} indicates the set of natural numbers up to T .

Considering a segment from time points s to e with 1 ≤ s ≤ e ≤ T , we say that there is a mean-shift change
in the frequency d at time point t ∈ {s, . . . , e− 1} if and only if

1
t− s + 1

t∑
t′=s

µ
(d)
t′ 6=

1
e− t

e∑
t′=t+1

µ
(d)
t′ .

As discussed in Section 1, we have prior knowledge that simultaneous changes occur across multiple distinct
frequencies. In Section 3, we introduce a heuristic algorithm that generates CP candidates by incorporating
this prior knowledge. Subsequently, in Section 4, we present an SI framework to quantify the statistical
significance of each CP candidate in the form of p-values. Finally, we select the candidates with p-values
smaller than the user-specified significance level (e.g., 0.05 or 0.01) as our final CPs. The flow of CP detection
in the frequency domain is illustrated in Figure 2.

4Since the frequency spectral sequences are obtained through linear transformations of Gaussian random variables, the
existence of their expectations is guaranteed.
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DFT …

Time Point

Figure 2: A schematic illustration of CP detection process in the frequency domain. In this example, at CP
28, changes occur in frequencies d1 and d2; at CP 70, in d2 and d3; and at CP 97, only in d0. Our proposed
SI method in Section 4 can provide valid p-values for each CP.

3 Heuristic Algorithm for CP Candidate Selection in Multiple Frequencies

As discussed in Section 1, the types of anomalies occurring in sensor signals can be systematically determined
by simultaneously detecting multiple frequency anomalies, such as the harmonics and sidebands of the
characteristic frequencies. Thus, we formulate CP candidate selection as an optimization problem that aims
to not only estimate the optimal number and location of CPs for each frequency, but also reduce the total
number of change locations across all frequencies by aligning the positions.

3.1 Objective Function for CP Candidate Selection

Let K(d) be the number of selected CP candidates and τ (d) = {τ (d)
1 , . . . , τ

(d)
K(d)} be the ordered set of CP

candidate locations (τ (d)
1 < · · · < τ

(d)
K(d) and τ

(d)
0 = 0, τ

(d)
K(d)+1 = T ) for frequency d ∈ {0, . . . , D − 1}.

Furthermore, we define the set of CP candidate locations as

τ =
D−1⋃
d=0

τ (d) = {τ1, . . . , τK} ⊆ [T − 1], (4)

where we denote the total number of CP candidate locations as K = |τ |.

Let T = (τ (0), . . . , τ (D−1)) be the collection of all CP candidates across all the D frequencies. Then, given
an observed time-series data x in (2), the objective function of our CP candidates T is written as

E(T , x) =
D−1∑
d=0

K(d)+1∑
k=1

C
(

f
(d)
τ

(d)
k−1+1:τ(d)

k

)
+ β(d)K(d) + γK. (5)

The first term of the obejective function in (5) indicates the cost for quantifying the variability of segments
between two adjacent CP candidates, where C

(
f

(d)
s:e

)
indicates the cost function for an segment f

(d)
s:e =

6



Under review as submission to TMLR

(f (d)
s , f

(d)
s+1, . . . , f

(d)
e )> specifically defined as

C
(

f (d)
s:e

)
= c(d)

sym

e∑
t=s

∣∣∣∣∣f (d)
t − 1

e− s + 1

e∑
t′=s

f
(d)
t′

∣∣∣∣∣
2

,

where

c(d)
sym =

{
1 (d = 0, M

2 )
2 (d 6= 0, M

2 )
,

because the frequency spectra have complex conjugate symmetry. The second term indicates the penalty
term for the number of CP candidates in each frequency, while the third term indicate the penalty for the
number of total CP locations where (β(0), . . . , β(D−1)) ∈ RD, and γ ∈ R are hyper-parameters for controlling
the balance between the three terms (the details of how to determine these hyper-parameters are presented
in Appendix A). The third penalty term indicates that we take into account the trade-off between cost and
penalty term for not only K(d) but also K in (5), hence CPs of multiple frequencies tend to be detected at
the same time point.

3.2 Approximately Solving the Combinatorial Optimization Problem by Simulated Annealing

Unfortunately, since minimizing the objective function in (5) is a challenging combinatorial optimization
problem, we must rely on approximate solutions derived from heuristic algorithms. Following the approach
in Lavielle (1998), we employ simulated annealing to approximately solve the combinatorial optimization
problem in (5). Simulated annealing (Kirkpatrick et al., 1983; Černỳ, 1985) is a meta-heuristic algorithm
widely applied to various practical problems, as it converges asymptotically to a global solution with high
probability under specific conditions.

To approximately optimize the objective function in (5), we perform the following two steps:

• Step 1: Individually estimate the CP candidates for each frequency. Specifically, we solve the
problem in (5) with γ = 0. This can be optimally achieved by applying dynamic programming to
each sequence.

• Step 2: Refine the CP candidates for each frequency estimated in step 1 using simulated annealing
to estimate the changes shared across multiple frequencies.

We note that approximately solving the combinatorial optimization problem in (5) is NOT our novel con-
tribution (our key contribution, detailed in Section 4, lies in providing a theoretical guarantee for the false
positive detection probability of the obtained approximate solution). For example, a similar approach has
been used for analogous problems in studies such as Lavielle (1998). Moreover, we do NOT claim that
simulated annealing is the optimal approach for this problem; it is simply one of the reasonable choices, and
other meta-heuristics could also be used as alternatives.

3.3 Step 1: Generating Initial Solution by Dynamic Programming

We need to generate an initial solution T init = (τ init(0)
, . . . , τ init(D−1)) before applying simulated annealing.

To obtain the initial solution, we first set γ = 0 in (5) to detect CP candidates for each frequency and
formulate an optimization problem as

τ init(d) = arg min
τ (d)

K(d)+1∑
k=1

C
(

f
(d)
τ

(d)
k−1+1:τ(d)

k

)
+ β(d)K(d). (6)

This optimization problem can be solved efficiently using dynamic programming algorithm which is called
Optimal Partitioning (Jackson et al., 2005). This method employs the Bellman equation that recursively
determines optimal solutions for simpler subproblems. Given Dinit as the set of frequencies for which at least
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Algorithm 1 metropolis_algorithm

Input: ∆E and c
1: Uniformly sample θ from [0, 1)
2: if ∆E ≤ 0 then
3: status ← Acceptance
4: else
5: if exp(−∆E/c) > θ then
6: status ← Acceptance
7: else
8: status ← Rejection
9: end if

10: end if
Output: status

one CP is detected, it is sufficient to apply simulated annealing only to d ∈ Dinit because introducing an
additional CP to any frequency d requires a minimum penalty of β(d) as shown in (5). Thus, we reduce the
number of optimal solution candidates, and the computational cost of simulated annealing can be decreased
without degrading the solution quality.

3.4 Step 2: Refining Solution by Simulated Annealing

We perform multivariate CP candidate detection in the frequency domain using simulated annealing which
was proposed by Kirkpatrick et al. (1983) and Černỳ (1985). Simulated annealing is used for solving large
combinatorial optimization problems for which finding global optima is difficult. In each step of simulated
annealing, the Metropolis algorithm is used to accept transitions not only to improving solutions that decrease
the objective function, i.e., ∆E(T ′, T , x) = E(T ′, x) − E(T , x) ≤ 0, where T and T ′ are current and
new solutions, respectively, but also to deteriorating solutions that increase the objective function, i.e.,
∆E(T ′, T , x) > 0, with the probability controlled by a temperature parameter c, which allows escape from
the local solution. The pseudo code of the Metropolis algorithm is shown in Algorithm 1.

Local search. In this paper, we consider four types of neighborhood operations applied to the current
solution, i.e., adding, removing, and moving a CP (Lavielle, 1998) for a randomly selected frequency d,
and merging two adjacent CP locations that are randomly selected from τ . Schematic illustrations of these
four operations are provided in Figure 3 and 4. We set the number of searching iterations at a specific
temperature c equal to the size of neighborhoods, i.e., |Dinit| · T (Aarts & Korst, 1989). Each operation
is randomly selected from adding, removing, and moving one CP. Subsequently, two adjacent CP locations
are merged only once because this operation significantly fluctuates the objective function value. When
the operation is not possible (e.g., removing operation for a frequency with no CP), it is skipped. If no
transition to neighborhoods occurs when these operations are repeated sufficiently at a certain temperature
c, the search is terminated.

The setting of initial temperature. We determine the initial temperature c0 by setting an acceptance
ratio

χ(c0) = # accepted transitions
# proposed transitions

(7)

to a desired value in a preliminary experiment of simulated annealing. In practice, we start by setting the
temperature to a sufficiently small positive value, then multiply it with a constant factor λ+, larger than 1,
as follows

c+
i+1 = λ+c+

i ,

where c+
i represents the i-th temperature in the initial value setting, until the acceptance ratio exceeds the

predefined criterion (Aarts & Korst, 1989). Therefore, the initial temperature c0 is specified as the final
value of c+

i .

8



Under review as submission to TMLR

(a) Adding at 57. (b) Removing at 30. (c) Moving from 68 to 73.

Figure 3: An illustration of the three local search operations for a randomly selected frequency d, i.e., adding,
removing, and moving a CP. (a) Adding is to insert a CP at a randomly selected time point with no CP. (b)
Removing means to delete a CP at a randomly selected time point with a CP. (c) Moving is to shift a CP
that is randomly selected from τ (d) to a random position between its adjacent CPs.

68 74

Figure 4: An illustration of the local search operation which merges two adjacent CP locations randomly
selected from τ at a random position between them. In this figure, CP for frequency d2 at time point 68
and CP for d3 at 74 are merged at 70.
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Algorithm 2 CP candidate selection using simulated annealing
Input: x

1: Obtain spectral sequences f (d) for d ∈ {0, . . . , D − 1} in (3) by applying STFT to x
2: Initialize the CP candidates T as T init in (6) using dynamic programming
3: c← c0 such that χ(c0) in (7) is the desired value
4: while true do
5: while The number of local search is less than |Dinit| · T do
6: d is randomly selected from Dinit

7: The operation is randomly selected from adding, removing, and moving a CP for d
8: Obtain T ′ by applying the operation to T
9: status ← metropolis_algorithm(∆E(T ′, T , x), c)

10: if status is Acceptance then
11: T ← T ′

12: end if
13: end while
14: Obtain T ′ by merging two adjacent CP locations in T
15: status ← metropolis_algorithm(∆E(T ′, T , x), c)
16: if status is Acceptance then
17: T ← T ′

18: end if
19: if no transition to neighborhoods occured at c then
20: break
21: end if
22: c← λc
23: end while
Output: T

Decrement of temperature. We employ a geometric cooling schedule, which is used as a practical method
of temperature control, altough it does not guarantee the convergence to a global optimum. The decrement
function of the i-th temperature ci is given as

ci+1 = λci,

where λ is a constant factor smaller than but close to 1. The value typically lies between 0.8 and 0.99 (Aarts
& Korst, 1989). That is because the decreasing rate must be sufficiently slow to obtain a better solution for
the optimization problem.

The overall procedure of the CP candidate selection using simulated annealing is shown in Algorithm 2.

4 Selective Inference on CP Locations

In this section, using the SI framework, we quantify the statistical significance of all locations selected as CP
candidates by the algorithm A in Section 3 in the form of p-values. By setting the significance level α (e.g.,
0.05 or 0.01) and considering CP candidate locations with the p-value < α as the final CPs, it is theoretically
guaranteed that the false positive detection probabilities (type I error rates) of these final CPs is controlled
below the specified significance level α.

To formalize the SI framework, let us write the algorithm in Section 3 as

A : X 7→ T ,

and the CP candidates obtained by applying the algorithm to the actual observed time series data x are
expressed as

T det =
(

τ det(0)
, . . . , τ det(D−1)) = A(x), (8)
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where τ det(d) = {τdet
1

(d)
, . . . , τdet

K(d)
(d)} is the set of CP candidates for frequency d ∈ {0, . . . , D − 1} 5. Fur-

thermore, let τ det = {τdet
1 , . . . , τdet

K } be the ordered set of CP locations, Dτdet
k
⊆ {0, . . . , D− 1} be the set of

frequencies that have CP candidates at a CP location τdet
k , and k(d) ∈ [K(d)] be the correponding index of

the CP candidates for d and k ∈ [K], i.e., τdet
k(d)

(d) = τdet
k holds for all d ∈ Dτdet

k

6.

4.1 Statistical Test on CP Locations

Hypotheses. For testing the statistical significance of CP location τdet
k for k ∈ [K], we consider the following

null hypothesis H0,k and alternative hypothesis H1,k:

H0,k : 1
τdet

k(d)
(d) − τdet

k(d)−1
(d)

τdet
k(d)

(d)∑
t=τdet

k(d)−1
(d) +1

µ
(d)
t = 1

τdet
k(d)+1

(d) − τdet
k(d)

(d)

τdet
k(d)+1

(d)∑
t=τdet

k(d)
(d)+1

µ
(d)
t , ∀d ∈ Dτdet

k
, (9)

v.s.

H1,k : 1
τdet

k(d)
(d) − τdet

k(d)−1
(d)

τdet
k(d)

(d)∑
t=τdet

k(d)−1
(d) +1

µ
(d)
t 6= 1

τdet
k(d)+1

(d) − τdet
k(d)

(d)

τdet
k(d)+1

(d)∑
t=τdet

k(d)
(d)+1

µ
(d)
t , ∃d ∈ Dτdet

k
. (10)

The above null hypothesis H0,k indicates that, at the location τdet
k , the means of µ

(d)
t in the left segment

and the right segment are equal for all frequencies d ∈ Dτdet
k

. On the other hand, the alternative hypothesis
H1,k implies that the means of the left and right segments are not equal in at least one of the frequencies.

Test statistic. For testing with the null hypothesis (9) and alternative hypothesis (10), we consider the
test statistic constructed by computing the differences between averages of the complex spectra in the two
segments before and after the CP location τdet

k for each frequency d ∈ Dτdet
k

, and then aggregating their
squared absolute values. Formally, the test statistic is defined as follows:

Tk(X) = σ−1

√√√√√ ∑
d∈D

τdet
k

ak(d)

∣∣∣∣F̄ (d)
τdet

k(d)−1
(d)+1:τdet

k(d)
(d) − F̄

(d)
τdet

k(d)
(d)+1:τdet

k(d)+1
(d)

∣∣∣∣2

, (11)

where

ak(d) =

(
τdet

k(d)
(d) − τdet

k(d)−1
(d)

) (
τdet

k(d)+1
(d) − τdet

k(d)
(d)

)
c

(d)
sym(

τdet
k(d)+1

(d) − τdet
k(d)−1

(d)
)

M
∈ R

5Note that, to ensure deterministic behavior of the algorithm A, the random seed is fixed to a constant value at the beginning
of the procedure.

6These notations are somewhat intricate. For example, in the case of Figure 2,

• D = 5

• T det = ({97}, {28}, {28, 70}, {70}, {})

• τ det = {28, 70, 97}

• K = 3

• Dτdet
1

= {d1, d2}, Dτdet
2

= {d2, d3}, Dτdet
3

= {d0}

• k = 3, 1, 1, 2, 2 for (d, k(d)) = (d0, 1), (d1, 1), (d2, 1), (d2, 2), (d3, 1), respectively.
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is required for scaling the test statistic, and the spectral averages in the two segments before and after the
CP location τdet

k for frequency d ∈ Dτdet
k

are respectively denoted as

F̄
(d)
τdet

k(d)−1
(d)+1:τdet

k(d)
(d) = 1

τdet
k(d)

(d) − τdet
k(d)−1

(d)

τdet
k(d)

(d)∑
t=τdet

k(d)−1
(d)+1

F
(d)
t

= 1
τdet

k(d)
(d) − τdet

k(d)−1
(d)

(
1

τdet
k(d)−1

(d)+1:τdet
k(d)

(d) ⊗w
(d)
M

)>

X ∈ C,

F̄
(d)
τdet

k(d)
(d)+1:τdet

k(d)+1
(d) = 1

τdet
k(d)+1

(d) − τdet
k(d)

(d)

τdet
k(d)+1

(d)∑
t=τdet

k(d)
(d)+1

F
(d)
t

= 1
τdet

k(d)+1
(d) − τdet

k(d)
(d)

(
1

τdet
k(d)

(d)+1:τdet
k(d)+1

(d) ⊗w
(d)
M

)>

X ∈ C.

By introducing a projection matrix defined as

Pk =
∑

d∈D
τdet

k

ak(d)vk(d)v∗>
k(d) ∈ RN×N ,

the test statistic in (11) is simply written as

Tk(X) = σ−1||PkX||, (12)

where

vk(d) = 1
τdet

k(d)
(d) − τdet

k(d)−1
(d)

(
1

τdet
k(d)−1

(d)+1:τdet
k(d)

(d) ⊗w
(d)
M

)
− 1

τdet
k(d)+1

(d) − τdet
k(d)

(d)

(
1

τdet
k(d)

(d)+1:τdet
k(d)+1

(d) ⊗w
(d)
M

)
∈ CN ,

and v∗
k(d) is the complex conjugate of vk(d) .

Naive p-value. The sampling distribution of the test statistic in (11) and (12) is highly complicated.
However, if we “forget” the fact that the CP candidates are selected by looking at the sequence X, the matrix
Pk in (12) does not depend on X, meaning that the test statistic Tk(X) simply follows a χ-distribution with
tr(Pk) degrees of freedom under the null hypothesis. The p-values obtained by this sampling distribution
are referred to as naive p-values and computed as

pnaive
k = PH0,k(Tk(X) ≥ Tk(x)).

Of course, since the CP candidates are selected based on the sequence X, it is not appropriate to quantify
statistical significance using naive p-values. If naive p-values are mistakenly used, the type I error rate can
become significantly larger than the significance level α.

Selective Inference (SI). To address the above issue, we consider the sampling distribution of the test
statistic conditional on the event that the detected CP candidates T for a random sequence X is the same
as T det for the observed sequence x, that is,

Tk(X) | {A(X) = A(x)}. (13)

To compute a selective p-value based on the conditional sampling distribution in (13), we also introduce a
condition on the sufficient statistic of the nuisance parameter Q(X), which is defined as

Q(X) = {V(X), U(X)} (14)

12
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with

V(X) = σPkX

‖PkX‖
∈ RN , U(X) = (IN − Pk)X ∈ RN .

This additional conditioning on Q(X) is a standard approach for computational tractability in the SI liter-
ature. Taking into account (13) and (14), the selective p-value is defined as

pselective
k = PH0,k(Tk(X) ≥ Tk(x) |X ∈ X ), (15)

where the conditioning event X is defined as

X = {X ∈ RN | A(X) = A(x),Q(X) = Q(x)}. (16)

The subspace X is restricted to one-dimensional data space in RN (Lee et al., 2016; Liu et al., 2018), as
stated in the following theorem.

Theorem 1 The set X in (16) can be rewritten using a scalar parameter z ∈ R as

X = {X = a + bz | z ∈ Z}, (17)

where a, b ∈ RN , and the truncation region Z are defined as

a = U(x), b = V(x), (18)

Z = {z ∈ R | A(a + bz) = A(x)}. (19)

The proof of Theorem 1 is deferred to Appendix B.1. Let us denote a random variable Z = Tk(X) ∈ R and
its observation zobs = Tk(x) ∈ R that satisfy X = a + bZ and x = a + bzobs, respectively. The selective
p-value in (15) can be rewritten as

pselective
k = PH0,k(Z ≥ zobs |Z ∈ Z). (20)

Since the uncnoditional variable Z ∼ χ(tr(Pk)) under the null hypothesis, the conditional variable Z |Z ∈
Z follows a truncated χ-distribution with tr(Pk) degrees of freedom and truncation region Z. Once the
truncation region Z is identified, the selective p-value in (20) can be computed as

pselective
k = 1− F cdf

tr(Pk)
Z (zobs),

where F cdf
tr(Pk)

Z is the cumulative distribution function of the truncated χ-distribution with tr(Pk) degrees of
freedom and the truncation region Z. A schematic illustration of the SI framework is shown in Figure 5.

13
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Figure 5: A schematic illustration of the SI framework. A point in the data space RN corresponds to a
sequence with length N . The darkly shaded regions in the data space indicate that, if we input a point in
these regions into the algorithm A, the CP candidates are the same as T det obtained from the observed
sequence x. By conditioning on these regions and Q(X), the conditional sampling distribution of the test
statistic Tk(X) is represented as a truncated χ-distribution. Selective p-values are defined based on the tail
probability of such a truncated χ-distribution.

Theorem 2 The selective p-value satisfies the property of a valid p-value:

PH0,k(pselective
k ≤ α) = α, ∀α ∈ [0, 1].

The proof of Theorem 2 is deferred to Appendix B.2. This theorem guarantees that the type I error rate
can be controlled at any significance level α by using the selective p-value.

Several methods for computing selective p-values have been proposed in the SI community. In this study, we
adopt the method based on parametric programming (Duy & Takeuchi, 2022) for the identification of the
truncation region Z. For further details, refer to Appendix C.

5 Numerical Experiments

5.1 Methods for Comparison

In our experiments, we compared the proposed method (Proposed) using pselective
k in (20) with the following

methods in terms of type I error rate control and power.

• OC: In this method, that is, a simple extension of SI literature to our setting, we consider p-values
with additional conditioning (over-conditioning) described in Appendix C.1.

• OptSeg-SI-oc, OptSeg-SI (Duy et al., 2020): These methods use p-values conditioned only on the
dynamic programming algorithm, disregarding the conditioning on simulated annealing.

• Naive: This method is a conventional statistical inference.

• Bonferroni: This method applies Bonferroni correction for multiple testing correction.

The details of these comparison methods are provided in Appendix D.1.

14



Under review as submission to TMLR

5.2 Synthetic Data Experiments

Experimental setup. In all synthetic experiments, we set window size M ∈ {512, 1024}, the number of
frequencies D =

⌊
M
2

⌋
+ 1, the length of sequence N = M ·T , where T was specified for each experiment, the

sampling rate fs = 20480, and each element of mean vector s as

sn =
∑

d∈{d1,d2,d3}

A(d)
n sin

(
ω(d)(n− 1)

)
(1 ≤ n ≤ N),

where frequencies d1, d2, d3 ∈ {0, ..., D−1} were randomly selected without replacement for each simulation,
A

(d)
n was defined for each experiment, and ω(d) ∈

{
2π( fs

M )d
∣∣ d = 0, . . . ,

⌊
M
2

⌋}
. We used BIC for the choice

of penalty parameters β and γ as indicated in Appendix A, and set the parameters of simulated annealing as
c+

0 = 1000, λ+ = 1.5, χ(c0) = 0.5 and λ = 0.8 in Section 3.4. After detecting CP candidates, a CP location
τdet

k randomly selected from τ det was tested at the significance level α = 0.05.

In the experiments conducted to evaluate the control of type I error rate, we generated 1000 null sequences,
which did not contain true CPs in the frequency domain, x = (x1, . . . , xN )> ∼ N

(
s, σ2IN

)
, where A

(d)
n =

A(d) was randomly sampled from [0, 1) for d in each simulation, and σ = 1, for each T ∈ {40, 60, 80, 100}.

Regarding the experiments to compare the power, we generated sequences x = (x1, . . . , xN )> ∼ N
(
s, σ2IN

)
,

where

A(d)
n =


A(d)

(
1 ≤ t ≤M · t(d)

1

)
A(d) + ∆

(
M · t(d)

1 + 1 ≤ t ≤M · t(d)
2

)
A(d) + 2∆

(
M · t(d)

2 + 1 ≤ t ≤ T
) ,

with A(d1), A(d2), A(d3) ∈ [0, 1) which were randomly sampled in each simulation,
(

t
(d1)
1 , t

(d2)
1 , t

(d3)
1

)
=

(18, 20, 22),
(

t
(d1)
2 , t

(d2)
2 , t

(d3)
2

)
= (38, 40, 42), an intensity of the change ∆ ∈ {0.04, 0.08, 0.12, 0.16} and σ = 1,

for T = 60. In each case, we ran 1000 trials. Since we tested only when a CP candidate location was correctly
detected, the power was defined as follows

Power (or Conditional Power) = # correctly detected & rejected
# correctly detected

.

We considered the CP candidate location τdet
k to be correctly detected if it satisfied the following two

conditions:

• The set Ddet of frequencies containing at least one CP was a subset of {d1, d2, d3}.
• For Ddet satisfying the above condition, either min

d∈Ddet
t
(d)
1 ≤ τdet

k ≤ max
d∈Ddet

t
(d)
1 or min

d∈Ddet
t
(d)
2 ≤ τdet

k ≤

max
d∈Ddet

t
(d)
2 held, that is, τdet

k was detected within the true CP locations for the frequencies in Ddet.

Experimental results. The results of experiments regarding the control of the type I error rate are
shown in Figure 6. The Proposed, OC, and Bonferroni successfully controlled the type I error rate below
the significance level, whereas the OptSeg-SI, OptSeg-SI-oc, and Naive could not. That was because
the OptSeg-SI and OptSeg-SI-oc used p-values conditioned only on the dynamic programming algorithm,
excluding the conditioning on simulated annealing, and the Naive employed conventional p-values without
conditioning. Since the OptSeg-SI, OptSeg-SI-oc, and Naive failed to control the type I error rate, we
omitted the analysis of their power. The results of power experiments are shown in Figure 7. Based on these
results, the Proposed was the most powerful of all methods that controlled the type I error rate. The power
of the OC was lower than that of the Proposed due to redundant conditions (see Appendix C for details).
Furthermore, the Bonferroni method had the lowest power because it was a highly conservative approach
that accounted for the huge number of all possible hypotheses. Additionally, we provide the computational
time of the Proposed in both experiments and the information on the computer resources in Appendix D.2.
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Figure 7: Power

Robustness of type I error rate control. We also conducted the following experiments to investigate
the robustness of the Proposed in terms of type I error rate control.

• Unknown noise variance: We considered the case where the variance σ2 was estimated from the
same data.

• Non-Gaussian noise: We also considered the case where the noise was the five types of standardized
non-Gaussian distribution families.

• Correlated noise: Furthermore, we considered the sequence whose noise was correlated, i.e., the
covariance matrix Σ 6= σ2IN . In this case, although the test statistic did not theoretically follow a
χ-distribution, we conducted the hypothesis testing using our proposed framework.

These details and results are shown in Appendix D.3.

5.3 Real Data Experiment

To demonstrate the practical applicability of the Proposed, we applied the Proposed, OC, and Naive to a
real-world dataset. We used the set No.2 of the IMS bearing dataset, which was provided by the Center
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Figure 8: The vibration signals of 4 bearings.

for Intelligent Maintenance Systems (IMS), University of Cincinnati (Qiu et al., 2006), and was available
from the Prognostic data repository of NASA (Lee et al., 2007). The experimental apparatus consisted of
four identical bearings installed on a common shaft, driven at a constant rotation speed by an AC motor
under applied radial loading. In this dataset, the vibration signals were measured using accelerometers until
the outer race of bearing 1 failed at the end of the experiment, as shown in Figure 8. The analysis for
the time signal of bearing 1 in the frequency domain had revealed that an abnormal behavior was detected
in the harmonics of the characteristic frequency (236 Hz) associated with the outer race failure (Ball Pass
Frequency Outer race, BPFO) on 3-4 days (Gousseau et al., 2016). Based on this previous study, we
conducted CP candidate detection in the frequency domain (1400-4000 Hz) for two periods: 0.25-2.25 days
when no anomalies existed, and 2.25-4.25 days when the BPFO harmonics exhibited anomalous patterns.
Subsequently, we tested the detected CP candidate locations to evaluate whether each of them was a genuine
anomaly. Since the signal with 20480 samples per second had been recorded every 10 minutes, we computed
the DFT of M = 1024 consecutive points in the 20480 samples and repeated the procedure T = 288 times.
Additionally, the variance σ2 was estimated from the data on 0-0.25 days that was not used in all experiments.
The results for the signal of bearing 1 on 0.25-2.25 days and 2.25-4.25 days are shown in Figure 9. In panel
(a), the time variation of a frequency spectrum (1920 Hz) where a CP candidate location was falsely detected
is shown for the period of 0.25-2.25 days when the frequency anomaly did not actually exist. It shows that
p-values of the Proposed and OC are above the significance level 0.05, and therefore the result provides the
validity of the inference, while p-value of the Naive is too small. In panel (b), the time variations of the
8th and 15th harmonics of the BPFO where CP candidate locations were correctly detected are presented
for the period of 2.25-4.25 days when the frequency anomaly truly existed. In this case, p-values of the
Proposed are below the significance level 0.05

2 = 0.025 decided by Bonferroni correction, thus it indicates
that the inference is valid. In contrast, p-values of the OC are too large, due to the loss of power caused by
the redundant conditions. In addition, since even the time sequences of the healthy bearings 2, 3, and 4 had
been reported to indicate characteristics associated with the outer race fault in bearing 1 (Gousseau et al.,
2016), we performed the same analysis for the three signals. The results are shown in Appendix D.4.

6 Conclusion

In this paper, we developed a statistical inference method to quantify the reliability of detected CP locations
in the frequency domain. Our proposed framework contributes to various fields where time-frequency analysis
is widely employed, such as condition monitoring of machine systems using vibration, electrical, and acoustic
signals, and medical diagnosis based on biosignals. We conducted comprehensive experiments on both
synthetic and real-world datasets. The results theoretically confirmed that our method provided an unbiased
evaluation based on SI framework and demonstrated its superior performance compared to existing mothods.
As future works, we will extend our method to the case of multi-dimensional sequences. For instance,
analyzing different types of time series obtained from multiple sensors would reveal anomalies unattainable
through the univariate approach and reliability guarantee for the detections also provide a valuable future
contribution.
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Figure 9: The results of the CP candidate selection for the signal of bearing 1 in the frequency domain and
the subsequent inference for the detected CP candidate locations. In panel (b), note that p-values for the
first CP location were actually computed by considering not only a CP of the 15th harmonic but also a CP
of 1900 Hz (around the 8th harmonic).
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A Determination of Penalty Parameters in the Optimization Problem

In this section, we derive the penalty term in (5) used for detecting CP candidates in the frequency domain.
We begin by assuming that the true mean vector of f (d) for frequency d ∈ {0, . . . , D−1} is piecewise constant
as follows

f
(d)
t ∼ CN

(
µ(d)

seg

(
τ

(d)
k−1 : τ

(d)
k

)
, σ2

f

)
, t ∈

{
τ

(d)
k−1 + 1, . . . , τ

(d)
k

}
, k ∈ [K(d) + 1], (21)

where µ
(d)
seg

(
τ

(d)
k−1 : τ

(d)
k

)
represents the true mean of the k-th segment in frequency d, and σ2

f denotes the
known variance such that σ2

f = Mσ2 by the property of DFT7. Then, we introduce BIC for deriving the
values of the penalty parameters β in (5). Given the assumptions of (21), the unknown parameters θ of the
sequence f (d) are expressed as

θ =
(

τ
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Therefore, the degrees of freedom can be computed as K(d) + c
(d)
sym

(
K(d) + 1

)
. That is because the mean

vector consists of real numbers for frequency d = 0, M
2 , and complex numbers for the other frequencies.

Consequently, the BIC of this model is given by

BIC = −2 log L(θ) +
(

K(d) + c(d)
sym

(
K(d) + 1

))
log T,

where L denotes the likelihood function for this model, and it can be rewritten by ignoring the terms that
do not contribute to its minimization as

BIC =
K(d)+1∑

k=1

C
(

f
(d)
τ

(d)
k−1+1:τ(d)

k

)
+

((
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Mσ2 log T
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Comparing the BIC with (6), β(d) can be defined as

β(d) =
(

c(d)
sym + 1

)
Mσ2 log T. (22)

While β can be determined based on the BIC, to the best of our knowledge, there is no theoretical method
to define γ. Therefore, referring to (22), we employ the value scaled by Mσ2 log T as γ, which is given by

γ = κMσ2 log T,

where κ is a hyper-parameter determined by the user based on problem settings. We heuristically set κ = 0.5
in the synthetic data experiments, and κ = 3 in the real data experiment.

B Proofs

B.1 Proof of Theorem 1

Proof. According to the second condition in (16), we have

U(X) = U(x)
⇔ (IN − Pk)X = U(x)

⇔X = U(x) + V(X)z,

⇔X = U(x) + V(x)z, (∵ V(X) = V(x))
⇔X = a + bz,

7Although we impose the assumption of the piecewise constant mean structure for model selection based on BIC, the
theoretical validity of p-values obtained by our proposed SI method is guaranteed even when this assumption does not hold.
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where a = U(x), b = V(x), and z = Tk(X) = σ−1||PkX||. Then, we have

X = {X ∈ RN | A(X) = A(x),Q(X) = Q(x)}
= {X ∈ RN | A(X) = A(x), X = a + bz, z ∈ R}
= {X = a + bz ∈ RN | A(a + bz) = A(x), z ∈ R}
= {X = a + bz ∈ RN | z ∈ Z}.

Therefore, we obtain the result in Theorem 1.

B.2 Proof of Theorem 2

Proof. The sampling distribution of the test statistic conditional on A(X) and Q(X)

Tk(X) | {A(X) = A(x),Q(X) = Q(x)}

follows a truncated χ-distribution with tr(Pk) degrees of freedom and the truncation region Z defined in
(19). Thus, by applying the probability integral transform, under the null hypothesis,

pselective
k | {A(X) = A(x),Q(X) = Q(x)} ∼ Unif(0, 1),

which leads to
PH0,k

(
pselective

k ≤ α | A(X) = A(x),Q(X) = Q(x)
)

= α, ∀α ∈ [0, 1].

Next, for any α ∈ [0, 1], we have

PH0,k
(
pselective

k ≤ α | A(X) = A(x)
)

=
∫

PH0,k
(
pselective

k ≤ α | A(X) = A(x),Q(X) = Q(x)
)
PH0,k (Q(X) = Q(x) | A(X) = A(x)) dQ(x)

= α

∫
PH0,k(Q(X) = Q(x) | A(X) = A(x))dQ(x)

= α.

Therefore, we obtain the result in Theorem 2 as follows:

PH0,k
(
pselective

k ≤ α
)

=
∑
A(x)

PH0,k
(
pselective

k ≤ α | A(X) = A(x)
)
PH0,k(A(X) = A(x))

= α
∑
A(x)

PH0,k(A(X) = A(x))

= α.

C Identification of Truncation Region

In general, it is difficult to identify the truncation region Z in (19) directly because conditioning only on
the result of the CP detection, i.e., A(a + bz) = A(x), is intractable. In this case, we have to enumerate
all patterns where A(x) appears as a result of simulated annealing algorithm, which is computationally
impractical. To address this issue, we first compute the region conditioned on the process of the algorithm
A. That is to say, it is guaranteed that the process remains identical within the region. This additional
conditioning is often denoted as “over-conditioning” because it is redundant for valid inference. In the case of
SI with over-conditioning, the type I error rate can still be controlled at the significance level, while the power
tends to be low (Lee et al., 2016; Liu et al., 2018; Duy & Takeuchi, 2022). Therefore, we apply an efficient
line search method based on parametric programming to compute Z where the redundant conditioning is
removed for the purpose of improving the power (Duy & Takeuchi, 2022). In the following, we first compute
the over-conditioned region in Appendix C.1, and then identify the truncation region Z using parametric
programming in Appendix C.2.

23



Under review as submission to TMLR

C.1 Characterizing using Over-conditioning

Since we only need to consider one-dimensional data space in RN as indicated in (17), we define the over-
conditioned region Zoc where the process of the algorithm A remains unchanged as

Zoc(a + bz) = {r ∈ R | SDP(r) = SDP(z),Spre-SA(r) = Spre-SA(z),SSA(r) = SSA(z)}, (23)

where SDP, Spre-SA and SSA are the events characterized by the process of dynamic programming for gen-
erating an initial solution, the preliminary experiment to determine the initial temperature, and simulated
annealing for making the solution more sophisticated, respectively. This conditioning is redundant because
Zoc(a + bz) is a subset of the minimum conditioned region Z.

Over-conditioning on dynamic programming. We compute {r ∈ R | SDP(r) = SDP(z)} by conditioning
on all the operations based on the Bellman equation which is used in the dynamic programming algorithm
to obtain the optimal solution in (6). Since the Bellman equation consists of the cost C(·) and the penalty
β, the condition is finally represented by a quadratic inequality, as in the following discussion of simulated
annealing. The detail derivation is presented in Duy et al. (2020).

Over-conditioning on simulated annealing containing the preliminary experiment. Considering
the algorithm of simulated annealing, we find that the procedure depends on X = a+bz at only one specific
point, that is, the Metropolis algorithm, which is given by

status is


Acceptance

(
exp

(
−∆E(T i,l,T i,l−1,a+br)

ci

)
> θi,l

)
Rejection

(
exp

(
−∆E(T i,l,T i,l−1,a+br)

ci

)
≤ θi,l

) ,

where ∆E(T i,l, T i,l−1, a + br) = E(T i,l, a + br)−E(T i,l−1, a + br), and T i,l−1, T i,l respectively represent
CP candidates before and after a transition to the neighborhood in the l-th iteration with a parameter θi,l for
the i-th temperature ci. Note that while the transitions are accepted when either ∆E(T i,l, T i,l−1, a+br) ≤ 0
or exp(−∆E(T i,l, T i,l−1, a+br)/ci) > θi,l, the latter case includes the former. Thus, to compute the region
{r ∈ R | SSA(r) = SSA(z)} where the process of simulated annealing is identical, we need to condition on all
results of the Metropolis algorithm at each temperature. This condition consists of multiple inequalities as
follows

{r ∈ R | SSA(r) = SSA(z)}

=
Iz⋂

i=0

Lz⋂
l=1

{
r ∈ R

∣∣∣∣∣
{

∆E(T i,l, T i,l−1, a + br) + ci ln(θi,l) < 0 (status is Acceptance)
∆E(T i,l, T i,l−1, a + br) + ci ln(θi,l) ≥ 0 (status is Rejection)

}
, (24)

where Iz and Lz denote the number of temperature updates and operations at each temperature for z,
respectively.

We subsequently consider solving this inequality for r. The cost C
(
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)
used in the objective function

E can be expressed as a quadratic form of X such that
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u
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s+1:e,t = 1t:t ⊗w
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(
1s+1:e ⊗w

(d)
M

)
∈ CN ,

and u∗(d)

s+1:e,t is the complex conjugate of u
(d)
s+1:e,t. Therefore, the objective function E(T , a + br) in (5) can

be rewritten as follows

E(T , a + br) = (a + br)>
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K(d)+1∑
k=1

C
(d)
τ

(d)
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k
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β(d)K(d) + γK

= e2r2 + e1r + e0, (25)

where

e2 = b>
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C
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τ
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k
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β(d)K(d) + γK.

Thus, the multiple inequalities in (24) can be easily solved after computing the coefficients in (25).

Note that the region {r ∈ R | Spre-SA(r) = Spre-SA(z)} can be computed similarly to (24) because the
preliminary experiment is also based on the Metropolis algorithm. Therefore, this condition is formulated
as

{r ∈ R | Spre-SA(r) = Spre-SA(z)}

=
I+

z⋂
i=0

L+
z⋂

l=1

{
r ∈ R

∣∣∣∣∣
{

∆E(T +
i,l, T +

i,l−1, a + br) + c+
i ln(θ+

i,l) < 0 (status is Acceptance)
∆E(T +

i,l, T +
i,l−1, a + br) + c+

i ln(θ+
i,l) ≥ 0 (status is Rejection)

}
,

where T +
i,l, c+

i , θ+
i,l, I+

z and L+
z in the preliminary experiment correspond to the respective parameters in

(24), and T +
i,0 = T init.

Based on the above discussion, since the conditioning in (23) is represented as the intersection of multiple
quadratic inequalities, the region Zoc(a + bz) can be computed by solving them as

Zoc(a + bz) =
Rz⋃
r=1

[Loc
z(r), Uoc

z(r)],

where, for z, Loc
z(r) and Uoc

z(r) denote the lower and upper bounds of the r-th over-conditioned region, respec-
tively, and Rz represents the number of the intervals.

C.2 Parametric Programming

Having derived Zoc(a + bz) in the previous analysis, the region Z in (19) conditioned on the result of the
algorithm A can be obtained using a computational method called parametric programming as follows

Z =
⋃

z∈R|A(a+bz)=A(x)

Zoc(a + bz). (26)

The overall procedure for computing selective p-values of the detected CP candidate locations is presented
in Algorithm 3. Furthermore, the line search method based on (26) for obtaining the region Z required for
the computation of pselective

k is detailed in Algorithm 4. An overview of the proposed search method is shown
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Algorithm 3 SI for detected CP candidate locations
Input: x

1: T det ← A(x) in (8)
2: Obtain τ det by (4)
3: for τdet

k ∈ τ det do
4: Z ← compute_solution_path

(
x, T det, τdet

k

)
5: Compute pselective

k by (20)
6: end for

Output:
{(

τdet
k , pselective

k

)}K

k=1

Algorithm 4 compute_solution_path

Input: x, T det and τdet
k

1: zobs ← Tk(x) in (12)
2: Compute a and b by (18)
3: Obtain Zoc(a + bzobs) by (23)
4: S ← Z ← Zoc(a + bzobs)
5: while Sc 6= ∅ do
6: Obtain Zoc(a + bz) for z ∈ Sc by (23)
7: S ← S ∪ Zoc(a + bz)
8: if A(a + bz) = A(a + bzobs) then
9: Z ← Z ∪ Zoc(a + bz)

10: end if
11: end while
Output: Z

in Figure 10. Watanabe & Suzuki (2021) proposed a selective inference method for model selection using
simulated annealing in latent block models; however, this approach was limited to the specific algorithm
and computed an approximated truncation region. In contrast, our proposed method can be applied to
not only CP detection in the frequency domain which is the subject of this paper, but also a wide range
of optimization problems solved using simulated annealing. Even in such a general case, we consider the
over-conditioning based on the process of algorithm as in (23), and can obtain the “exact” truncation region
using the parametric programming approach in (26).

D Details of the Numerical Experiments

D.1 Detailed descriptions of comparison methods

In our experiments, we compared the proposed method (Proposed) with the following methods.

• OC: In this method, we consider p-values conditioned on the process of the algorithm A. The over-
conditioned p-value is computed as

poc
k = PH0,k

(
Z ≥ zobs |Z ∈ Zoc (

a + bzobs))
.

This method is computationally efficient, however, its power is low due to over-conditioning.

• OptSeg-SI-oc (Duy et al., 2020): This method uses a p-value conditioned only on the process of
dynamic programming algorithm. The over-conditioned p-value is computed as

pOptSeg-SI-oc
k = PH0,k

(
Z ≥ zobs |Z ∈

{
r ∈ R | SDP(r) = SDP

(
zobs)})

.

• OptSeg-SI (Duy et al., 2020): This method removes over-conditionning from OptSeg-SI-oc, that is,
the p-value is conditioned only on the result of dynamic programming.
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…

Simulated annealing: 
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Figure 10: A schematic illustration of the proposed line search method for the identification of the trunca-
tion region Z. We first compute the over-conditioned region where the process of the algorithm A remains
unchanged. Then, we identify the truncation region Z by removing the redundant conditioning using para-
metric programming.

• Naive: This method uses a conventional p-value without conditioning, which is computed as

pnaive
k = PH0,k

(
Z ≥ zobs) .

• Bonferroni: This is a method to control the type I error rate by applying Bonferroni correction
which is widely used as multiple testing correction. Since the number of all possible hypotheses is
m = (2D − 1)(T − 1), the bonferroni p-value is computed by pbonferroni

k = min(1, m · pnaive
k ).

D.2 Computational Time and Computer Resources

We measured the computational time of our proposed method for the synthetic data experiments presented
in Section 5.2 and computed the medians for each settings. The results for the type I error rate and power
experiments are shown in Figure 11. Panels (a) and (b) indicate that the computational time increases
exponentially with the sequence length. In addition, the computational time becomes shorter as the signal
intensity increases in panels (c) and (d). This may be because the results of hypothesis testing in the case of
high intensity are more likely to be obvious and the inference process can be terminated early. All numerical
experiments were conducted on a computer with a 96-core 3.60GHz CPU and 512GB of memory.
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Figure 11: Computational time in the type I error rate and the power experiments.
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D.3 Robustness of Type I Error Rate Control

We evaluated the robustness of the Proposed in terms of the type I error rate control. For this purpose, we
conducted experiments under three distinct noise conditions: (i) unknown noise variance, (ii) non-Gaussian
noise, and (iii) correlated noise. The details of each experiment are given below.

Unknown noise variance. We generated 1000 null sequences in the same manner as the type I error rate
experiment with known variance presented in Section 5.2. To estimate the variance σ2 from the same data,
we first applied CP candidate detection algorithm to identify the segments and then computed the empirical
variance of each segment for all frequencies. Since the estimated variance tended to be smaller than the true
value, we adopted the maximum value for each frequency. Given σ̂f as the average of the values, σ could be
estimated from the property of DFT as σ̂ = σ̂f√

M
. The results for the significance levels α = 0.01, 0.05, 0.1

are shown in Figure 12 and the Proposed still could properly control the type I error rate.

Non-Gaussian noise. We considered the case where the noise was the following five non-Gaussian distri-
bution families:

• skewnorm: Skew normal distribution family.

• exponnorm: Exponentially modified normal distribution family.

• gennormsteep: Generalized normal distribution family whose shape parameter β is limited to be
steeper than the normal distribution, i.e., β < 2.

• gennormflat: Generalized normal distribution family whose shape parameter β is limited to be
flatter than the normal distribution, i.e., β > 2.

• t: Student’s t distribution family.

To generate sequences used in the experiment, we first obtained a noise distribution such that the 1-
Wasserstein distance from the standard normal distribution N (0, 1) was {0.01, 0.02, 0.03, 0.04} in each afore-
mentioned distribution family. Subsequently, we standardized the distribution to have a mean of 0 and a
variance of 1. Then, we generated 1000 null sequences x = (x1, . . . , xN )>, where the mean vector was speci-
fied in the same manner as described in the type I error rate experiment with known variance, and the noise
followed the obtained distribution, for T = 60. We applyed hypothesis testing using the test statistic with
σ = 1 for the detected CP candidate locations. The results for the significance levels α = 0.05 are shown in
Figure 13 and the Proposed could properly control the type I error rate for all non-Gaussian distributions.

Correlated noise. We generated 10000 null sequences x = (x1, . . . , xN )> ∼ N (s, Σ), where mean vector s
was specified in the same manner as described in the type I error rate experiment with known variance, and
covariance matrix Σ was defined as Σ = σ2 (

ρ|i−j|)
ij
∈ RN×N with σ = 1 and ρ ∈ {0.025, 0.05, 0.075, 0.1},

for T = 60. After CP candidate detection, we conducted the hypothesis testing using the test statistic with
σ = 1. The results for the significance levels α = 0.01, 0.05, 0.1 are shown in Figure 14. For weak covariance,
the Proposed could properly control the type I error rate. However, the type I error rate could not be
controlled with increasing noise correlation. This remains a challenge for future work.

D.4 More Results on Real Data Experiment

Additional results for the signals of bearing 2, 3, and 4 before and after the anomaly of bearing 1 occurred
are shown in Figure 15, 16, and 17. In panel (a) of each figure, the time variation of frequency spectra where
CP candidate locations were falsely detected are shown for the period of 0.25-2.25 days when the frequency
anomaly in bearing 1 did not actually exist. The results indicates that the inferences using p-values of the
Proposed and OC are valid. In panel (b), the time variations of the BPFO harmonics where CP candidate
locations were correctly detected are presented for the period of 4-6 days (bearing 2), 4.75-6.75days (bearing
3), and 4-6 days (bearing 4), respectively. In these cases, although the detection was delayed by several
days relative to the occurrence of the frequency anomaly in bearing 1, the outer race fault signatures were
successfully identified in all bearings using the Proposed.
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Figure 12: Robustness of type I error control for estimated variance.
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(b) M = 1024

Figure 13: Robustness of type I error control for non-Gaussian noise.
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Figure 14: Robustness of type I error control for correlation of noise.
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(a) The inference on a falsely detected CP
candidate location for 3260 Hz (around the
14th harmonic) on 0.25-2.25 days
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Figure 15: The results of bearing 2. In panel (b), note that p-values were actually computed by considering
not only a CP of the 6th harmonic but also CPs of 3240 and 3460 Hz (around the 14th and 15th harmonics).
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(a) The inference on a falsely detected CP
candidate location for 3380 Hz (around the
14th harmonic) on 0.25-2.25 days
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(b) The inferences on truely detected CP
candidate locations for 1420 Hz (the 6th
harmonic) on 4.75-6.75 days

Figure 16: The results of bearing 3.
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(a) The inference on a falsely detected CP
candidate location for 3540 Hz (the 15th
harmonic) on 0.25-2.25 days
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(b) The inference on a truely detected CP
candidate location for 1420 Hz (the 6th har-
monic) on 4-6 days

Figure 17: The results of bearing 4. In panel (b), note that p-values were actually computed by considering
not only a CP of the 6th harmonic but also a CP of 3440 Hz (around the 15 harmonic).
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