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Abstract

We propose DRAGO, a novel approach for continual model-based reinforcement
learning aimed at improving the incremental development of world models across
a sequence of tasks that differ in their reward functions but not the state space
or dynamics. DRAGO comprises two key components: Synthetic Experience
Rehearsal, which leverages generative models to create synthetic experiences from
past tasks, allowing the agent to reinforce previously learned dynamics without
storing data, and Regaining Memories Through Exploration, which introduces an
intrinsic reward mechanism to guide the agent toward revisiting relevant states
from prior tasks. Together, these components enable the agent to maintain a com-
prehensive and continually developing world model, facilitating more effective
learning and adaptation across diverse environments. Empirical evaluations demon-
strate that DRAGO is able to preserve knowledge across tasks, achieving superior
performance in various continual learning scenarios.

1 Introduction

Model-based Reinforcement Learning (MBRL) aims to enhance decision-making by developing a
world model that captures the underlying dynamics of the environment. A robust world model allows
an agent to predict future states, plan actions, and adapt to new situations with minimal real-world
trial and error. For MBRL to be effective in dynamic, real-world applications, the world model
must incrementally learn and adapt, continually integrating new information as the agent encounters
diverse environments and tasks.

Imagine an agent initially exploring a small, confined part of a complex world, like a robot navigating
a single room in a large building. At first, the robot learns the dynamics specific to that room, such
as the layout of obstacles and how to maneuver around them. As it moves to different rooms and
floors, it must learn new dynamics (i.e., new layouts, different lighting conditions, varying types
of obstacles), while retaining its understanding of the previously explored areas. Over time, as the
robot encounters more and more distinct environments, it becomes familiar with a broader range of
settings, eventually developing a comprehensive understanding of the building’s overall structure.
This incremental learning process aligns with the principles of continual learning, where the agent
must progressively acquire new knowledge across a sequence of tasks without forgetting earlier
experiences. Developing world models that can grow their understanding from one small part of the
world toward encompassing an ever broader array of different environments remains a critical and
underexplored area in MBRL.

In principle, continual MBRL would allow agents to learn a generalizable model that captures the
dynamics needed to support a universal set of tasks. If data from all previous tasks are available,
this problem could be tackled effectively using multitask learning strategies (Fu et al., 2022). The
agent could leverage the shared structure and learn a comprehensive model that generalizes across
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tasks. However, in real-world scenarios, agents often do not have access to the data collected from
earlier tasks due to storage constraints, privacy concerns, or the evolving nature of the environment.
In such cases, standard MBRL methods struggle to maintain performance across tasks; as illustrated
in Figure 1 and shown in the experiment section, naive model-based RL approaches tend to suffer
from catastrophic forgetting, where knowledge acquired from earlier tasks is lost when encoding new
experiences. Ideally, as the agent encounters more tasks and diverse environments, its world model
should become increasingly complete, accumulating a richer understanding of the dynamics across
different scenarios. To achieve this goal, we require a strategy that retains the essential knowledge
from prior environments, ensuring that the model builds upon its past experiences even when direct
access to earlier data is no longer available.

Task 1 Task 2

Task 3 Task 4

Naive continual model-based RL Continual model-based RL without forgetting

Task 1 Task 2

Task 3 Task 4

Figure 1: Comparison between the world model learned by naive continual MBRL and MBRL
without forgetting. Each task requires the agent to move from the corner of one room to a specific
point in the same room. Shaded areas represent the world model’s coverage after finishing each
task. Naively continually training MBRL (Left) tends to suffer the catastrophic forgetting problem—
the agent forgets almost everything about the first room after training in the second room. (Our
experimental results support this claim.) Our project identifies a continual MBRL method (Right)
that helps the world model preserve the knowledge of previous tasks even when the old data is no
longer available.

Specifically, we propose DRAGO, a novel continual model-based reinforcement learning approach
designed to address the challenges of catastrophic forgetting and incomplete world models in the
absence of prior task data. DRAGO consists of two key components: Synthetic Experience Rehearsal
and Regaining Memories Through Exploration. Synthetic Experience Rehearsal uses a continually
learned generative model to enable the agent to internally simulate and learn from synthetic experi-
ences that resemble those from prior tasks. This process allows the agent to synthesize representative
transitions that resemble prior experience, reinforcing its understanding of previously learned dynam-
ics without requiring access to past data. In the Regaining Memories Through Exploration component,
we introduce an intrinsic reward mechanism that encourages the agent to actively explore states where
the previous transition model performs well. This exploration bridges the gap between different tasks
by discovering connections within the environment, leading to a more comprehensive and cohesive
world model. By integrating these two strategies, DRAGO enables the agent to incrementally build a
complete understanding of the environment’s dynamics across a sequence of tasks while effectively
mitigating catastrophic forgetting. Our empirical results clearly demonstrate that DRAGO achieves
superior performance on challenging continual learning scenarios without retaining any data from
prior tasks.

2 Dynamics-learning while RegAinG MemOries

2.1 Synthetic Experience Rehearsal

The concept of Synthetic Experience Rehearsal draws inspiration from how humans and animals
replay and consolidate memories during sleep (Wilson & McNaughton, 1994). We refer to this
process as dreaming because the agent simulates experiences from its past internally, without direct
interaction with the environment. Imagine a robot that has navigated through several rooms in a
building. As it progresses to new rooms, it may begin to forget the layouts and navigation strategies
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of earlier ones due to limited memory capacity and the inability to revisit those rooms. By internally
generating and rehearsing synthetic experiences that mimic its interactions in earlier rooms, the robot
can maintain and reinforce its knowledge of how to navigate them. This internal rehearsal helps the
robot integrate past experiences with new ones, ensuring a more comprehensive understanding of the
entire environment.

Our method leverages a generative model to produce synthetic data that aids in training the dynamics
model, thereby preventing forgetting of previously learned dynamics. Specifically, we employ a
Variational Autoencoder (VAE) (Kingma & Welling, 2014) that encodes and decodes both states and
actions, capturing the joint distribution of state-action pairs encountered in previous tasks. Including
actions is crucial, especially in continuous action spaces where randomly sampled actions may not
correspond to meaningful behaviors.

When training dynamics model on the current task Ti, we generate synthetic state-action pairs
using the VAE trained up to task Ti−1. Sampling latent variables z from the prior distribution p(z),
we obtain synthetic state-action pairs: (ŝ, â) = Gi−1(z), z ∼ p(z), where Gi−1 represents the
generative model from previous tasks. We then use the previous dynamics model Ti−1 to predict the
next states for these pairs: ŝ′ = Ti−1(ŝ, â). This process yields synthetic transitions (ŝ, â, ŝ′) that
simulate experiences from prior tasks.

We integrate these synthetic transitions directly into the training batches when updating the current
dynamics model Tψ (the synthetic transitions are not directly added to the current tasks’s replay
buffer). By combining synthetic transitions with real transitions from the current task Di, we form a
training dataset: Dtrain = Di ∪ D̂, where D̂ = {(ŝ, â, ŝ′)}. The dynamics model is then trained by
minimizing the prediction loss over this combined dataset.

To prevent forgetting within the generative model itself, we adopt a continual training strategy. We gen-
erate synthetic state-action pairs using the previous generative model Gi−1: (s̃, ã) = Gi−1(z̃), z̃ ∼
p(z), and combine these with real data from the current task to form the training dataset for the new
generative model: Dgen = Di∪D̃, where D̃ = {(s̃, ã)}. The new generative model Gi is then trained
by minimizing the VAE loss over Dgen:

Lgen(ϕi, θi) = E(s,a)∼Dgen

[
−Ez∼qϕi

(z|s,a) [log pθi(s, a | z)] + KL (qϕi(z | s, a) ∥ p(z))
]
. (1)

This continual learning procedure ensures that the generative model retains its ability to produce
state-action pairs representative of all previous tasks.

Our method is general and can be applied with other types of generative models. While we use a
VAE for its effectiveness and simplicity, alternative models like diffusion models (Ho et al., 2020)
or generative adversarial networks (GANs) (Goodfellow et al., 2014) could also be employed to
generate synthetic state-action pairs.

2.2 Regaining Memories Through Exploration

While generating synthetic data via a generative model helps mitigate forgetting, it may not fully
capture the richness of real experiences, and the agent might still benefit from revisiting areas of the
environment related to previous tasks. To further enhance the agent’s retention of prior knowledge,
we propose an intrinsic reward mechanism that encourages the agent to actively explore states where
the previous transition model performs well, effectively "regaining" forgotten memories through real
interaction with the environment.

Our approach is inspired by the need to complement the generation-based “dreaming” method with
actual exploration that bridges the gap between different tasks. The generative model can produce
states from prior tasks, but these imagined states might not be naturally encountered or connected
within the current task’s environment. Consider the earlier example of a robot exploring different
rooms within a building. The “Dreaming” method introduced in the last section can generate imagined
states from previously visited rooms, but without actual exploration, the robot might not find the
doorways or corridors connecting these rooms to its current location. Our intrinsic reward incentivizes
the robot to search for these connections, enabling it to discover pathways that link the new room to
the old ones. Without exploring the actual environment to find these connections, the agent’s world
model remains fragmented, lacking a cohesive understanding of how different regions relate.
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Specifically, during training on task Ti, we introduce an intrinsic reward ricont designed to guide the
agent towards states that are familiar to the previous transition model Ti−1 but less familiar to the
current model Ti. The intrinsic reward is defined as:

ricont(st, at, st+1) := σ (− log |Ti−1(st, at)− st+1|)− α · σ (− log |Ti(st, at)− st+1|) , (2)

where σ denotes the sigmoid function, and α is a weighting coefficient that balances the two terms.

Intuitively the first term assigns higher rewards when the previous transition model Ti−1 predicts the
next state st+1 accurately. This incentivizes the agent to revisit states that were well-understood in
previous tasks. The second term penalizes the agent for visiting states where the current model Ti
already has low prediction error. This encourages the agent to explore less familiar areas to improve
the current model’s understanding.

By actively exploring and connecting different regions, the agent’s world model becomes more com-
prehensive, capturing the dynamics across tasks more effectively. Revisiting familiar states reinforces
prior knowledge, reducing the tendency of the model to forget previously learned information. This
approach complements the synthetic data generation in Section 2.1 by providing actual experience that
reinforces the agent’s knowledge. Compared to pure novelty-seeking exploration strategies (Pathak
et al.), our method emphasizes revisiting and reinforcing previously learned dynamics.

3 Experiments
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Figure 2: Visualization of the evaluated domains. Task names in
Blue denote the continual training tasks; Task names in Red denote
the test tasks. More details about the tasks and environments can be
found in the appendix.

We evaluated DRAGO on
three continual learning do-
mains. For each domain, we
let the agent train on a se-
quence of tasks, where the
tasks share the same transi-
tion dynamics but different
reward functions. Although
the transition dynamics are
the same, the training tasks
are designed in a way such
that to solve each task only
part of the state space’s tran-
sition dynamics needs to be
learned and different tasks in-
volve learning transition dy-
namics corresponding to dif-
ferent parts of the state space
with a small overlap. We
evaluate the agent’s continual
learning performance on test
tasks that requires the combi-
nation of knowledge from more than one previously learned tasks. For example, to better transfer on
Cheetah jump2run the agent is expected to still remember the knowledge learned in Cheetah run even
after continual training on Cheetah jump. These transfer tasks are designed to test the agent’s ability
to retain knowledge from previous tasks, as solving them requires understanding multiple tasks.

As shown in Figure 3, we find that the proposed method DRAGO achieves the best overall per-
formance compared to all the other approaches across three domains. The results demonstrate its
advantage in continual learning settings by effectively retaining knowledge from previous tasks and
transferring it to new ones. We can also see that naively continual Model-based RL may suffer
from severe plasticity loss: Continual TDMPC constantly performs worse than learning from scratch
baseline. Equipped with EWC, it can achieve better overall performance but still not as good as
DRAGO. But DRAGO does not fully alleviate the plasticity loss, in Cheetah Jump and runbackward
(Last plot in the mid row of Figure 3), learning from scratch still has the best performance, but we
can see that DRAGO still improves a lot compared to Continual TDMPC — the Continual MBRL
baseline it is built on.
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Figure 3: We evaluate the continual learning transfer performance on 12 tasks (3 domains, 4 tasks
each) that are not seen during the agent’s previous training. For each test task of MiniGrid, the
agent starts in one room and have to move to the goal in another room. E.g., Transfer 3to4 after 4
means that after sequentially training on four tasks, the agent is tested on a new task where it starts
in room 3 and the target position is in room 4. For each test task of Cheetah and Walker, the agent
has to start from a state in one locomotion mode and the goal is to switch to another mode. E.g.,
Jump2runforward after Jump means that after training on Cheetah-Jump, the agent is tested on a new
task where it starts in one state of the jumping mode, and the goal is to run forward.

In Figure 4, we also visualize the prediction accuracy of the learned world models across the whole
gridworld, comparing just naively continually training TDMPC and our method. The results are
aligned with our intuition. Without other counter-forgetting techniques, world models easily forget
almost everything it has learned in previous tasks and are only accurate in the transition space that is
related to the current task. In contrast, DRAGO is able to retain most of the knowledge learned in
previous tasks and have a more and more complete world model as it continually trains on different
tasks, which leads to the performance gain of transferring on new tasks as we show in Figure 3.

Continual 
TDMPC

DRAGO

Post-task1 Post-task2 Post-task3 Post-task4

Figure 4: Prediction accuracy of the learned world models across the entire gridworld after each task.
The heatmaps compare the performance of naive continual training of TDMPC (top row) with our
proposed DRAGO method (bottom row) after Tasks 1 to 4. The results show that continual MBRL
suffers from significant forgetting, maintaining accuracy only in regions relevant to the current task,
whereas DRAGO effectively retains knowledge from previous tasks, leading to a more comprehensive
world model and improved performance in new tasks.
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