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ABSTRACT

Accurate weather forecasting is critical for science and society. Yet, existing
methods have not demonstrated high accuracy, low uncertainty, and high com-
putational efficiency simultaneously. On one hand, to quantify the uncertainty in
weather predictions, the strategy of ensemble forecast (i.e., generating a set of
diverse predictions) is often employed. However, traditional ensemble numeri-
cal weather prediction (NWP) is computationally intensive. On the other hand,
even though most existing machine learning-based weather prediction (MLWP)
approaches are efficient and accurate, they are deterministic and cannot capture
the uncertainty of weather forecasting. To tackle these challenges, we propose
CoDiCast, a conditional diffusion model to generate accurate global weather
prediction, while achieving uncertainty quantification and modest computational
cost. The key idea behind the prediction task is to generate realistic weather sce-
narios at a future time point, conditioned on observations from the recent past.
Due to the probabilistic nature of diffusion models, they can be properly applied
to capture the uncertainty of weather predictions. Therefore, we accomplish un-
certainty quantifications by repeatedly sampling from stochastic Gaussian noise
for each initial weather state and running the denoising process multiple times.
Experimental results demonstrate that CoDiCast outperforms several existing
MLWP methods in accuracy, and is faster than NWP models in the inference
speed. CoDiCast can generate 3-day global weather forecasts, at 6-hour steps
and 5.625◦ latitude-longitude resolutions, for over 5 variables, in about 12 minutes
on a commodity A100 GPU machine with 80GB memory. The anonymous code
is provided at https://anonymous.4open.science/r/CoDiCast/.

1 INTRODUCTION

Weather prediction describes how the weather states evolve by mapping the current weather states
to future weather states (Palmer, 2012). Accurate weather forecasting is crucial for a wide range of
societal activities, from daily planning to disaster preparedness (Merz et al., 2020; Shi et al., 2024).
For example, governments, organizations, and individuals rely heavily on weather forecasts to make
informed decisions that can significantly impact safety, economic efficiency, and overall well-being.
However, weather predictions are intrinsically uncertain largely due to the complex and chaotic
nature of atmospheric processes (Slingo & Palmer, 2011; Palmer et al., 2005). Therefore, assessing
the range of probable weather scenarios is significant, as it facilitates informed decision-making.

Traditional numerical weather prediction (NWP) methods achieve weather forecasting by approxi-
mately solving the differential equations representing the integrated system between the atmosphere,
land, and ocean (Price et al., May 2024; Nguyen et al., 2023). However, running such an NWP model
can produce only one possibility of the forecast, which ignores the weather uncertainty. To solve
this problem, Ensemble forecast1 of multiple models is often employed to model the probability
distribution of different future weather scenarios (Palmer, 2019; Leinonen et al., 2023). While such
NWP-based ensemble forecasts effectively model the weather uncertainty, they have two primary
limitations: physics-based models inherently make restrictive assumptions of atmospheric dynamics
(Palmer et al., 2005) and running multiple these NWP-models require extreme computational costs
(Rodwell & Palmer, 2007).

1Generating a set of forecasts, each of which represents a single possible scenario.
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In recent years, machine learning (ML)-based weather predictions (MLWP) have been proposed to
challenge NWP-based prediction methods (Ben Bouallègue et al., 2024; Bülte et al., 2024). They
have achieved enormous success with comparable accuracy and a much (usually three orders of
magnitude) lower computational overhead. Representative work includes Pangu (Bi et al., 2023),
GraphCast (Lam et al., 2023), ClimaX (Nguyen et al., 2023), ForeCastNet (Pathak et al., 2022),
Fuxi (Chen et al., 2023b), Fengwu (Chen et al., 2023a), and W-MAE (Man et al., 2023). They are
typically trained to learn weather patterns from a huge amount of historical data and predict the
mean of the probable trajectories by minimizing the mean squared error (MSE) of model forecasts
(Hewage et al., 2021). Despite the notable achievements of these MLWP methods, most of them are
deterministic (Kochkov et al., 2024), falling short in capturing the uncertainty in weather forecasts
(Jaseena & Kovoor, 2022). This limitation motivates us to explore an approach for uncertainty
quantification while being capable of forecasting weather scenarios accurately.

Denoising probabilistic diffusion models (DDPMs) (Ho et al., 2020) stand out as a probabilistic type
of generative models, which can generate high-quality image samples. By explicitly and iteratively
modeling the noise additive and its removal, DDPMs can capture intricate details and textures of im-
ages. Furthermore, controllable diffusion models (Rombach et al., 2022; Zhang et al., 2023) enable
the generation process to be guided by specific attributes or conditions, e.g., class labels, textual de-
scriptions, or other auxiliary information. By doing so, the models can generate images that adhere
to the specified conditions. This inspires us to consider the weather “prediction” tasks as “genera-
tion” tasks - generating plausible weather scenarios with conditional diffusion models. Promising
potentials could be the following: (1) Weather numerical data is usually a 2-D grid over latitude
and longitude, sharing a similar modality with the image. Diffusion models can capture the intricate
weather distribution with iterative denoising. (2) Weather states from the recent past (i.e., initial con-
ditions) can be injected into diffusion models to guide the generation of future weather evolution. (3)
More notably, probabilistic diffusion models can generate a set of diverse weather scenarios rather
than a single deterministic one. This capability makes them well-suited for modeling the uncertain
nature of weather evolution. Our contributions are presented as follows:

• We identify the shortcomings of current weather prediction methods. NWP-based methods
are limited to restrictive assumptions and computationally intensive. Moreover, a single
deterministic NWP- and MLWP-based method cannot achieve uncertainty quantification.

• To address these problems, we propose CoDiCast, a conditional diffusion model for
global weather prediction conditioning on observations from the recent past while prob-
abilistically modeling the uncertainty. In addition, we use the cross-attention mechanism
to effectively integrate conditions into the denoising process to guide the generation tasks.

• We conduct extensive experiments on a decade of ERA5 reanalysis data from the European
Centre for Medium-Range Weather Forecasts (ECMWF), and evaluate our method against
several state-of-the-art models in terms of accuracy, efficiency, and uncertainty. It turns out
that CoDiCast achieves an essential trade-off among these valuable properties.

2 RELATED WORK

Numerical Weather Prediction. Numerical Weather Prediction (NWP) methods obtain weather
forecasts by modeling the system of the atmosphere, land, and ocean with complex differential
equations (Bauer et al., 2015). High-Resolution Forecasts System (HRES) (ECMWF, 2023) is
a representative NWP method that forecasts possible weather evolution out to 10 days ahead.
However, HRES is a deterministic NWP method that only provides a single forecast. The ensemble
forecast suite (ENS) (Buizza, 2008) was developed as an ensemble of 51 forecasts by the European
Centre for Medium-Range Weather Forecasts (ECMWF). ENS provides a range of possible future
weather states in the medium range, allowing for investigation of the detail and uncertainty in the
forecast. Even if ENS and other NWP-based ensemble forecasts effectively model the weather
evolution, they exhibit sensitivity to structural discrepancies across models (Balaji et al., 2022),
regional variability (Verma et al., 2024), and high computational demands (Lam et al., 2023).

ML-Based Weather Prediction. Numerous machine learning (ML)-based weather prediction
(MLWP) approaches have emerged as a compelling alternative to NWP methods on weather
forecasting. They are trained on enormous historical data and produce the mean of the probable
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trajectories by minimizing the mean squared error (MSE) between model forecasts and ground-truth
(Hewage et al., 2021). Pangu (Bi et al., 2023) employed three-dimensional transformer networks
and Earth-specific priors to deal with complex patterns in weather data. GraphCast (Lam et al.,
2023) achieved medium-range weather prediction by utilizing an “encode-process-decode” config-
uration with each part implemented by graph neural networks (GNNs). GNNs perform effectively
in capturing the complex relationship between a set of surface and atmospheric variables. A similar
GNN-based work is (Keisler, 2022). Fuxi (Chen et al., 2023b) and Fengwu (Chen et al., 2023a)
also employ the “encode-decode” strategy but with the transformer-based backbone. FourCastNet
(Pathak et al., 2022) applied Vision Transformer (ViT) (Dosovitskiy et al., 2020) and Adaptive
Fourier Neural Operators (AFNO) (Guibas et al., 2021), while ClimaX (Nguyen et al., 2023) also
uses a ViT backbone but the trained model can be fine-tuned to various downstream tasks. However,
these models fall short in modeling the uncertainty of weather evolution (Jaseena & Kovoor,
2022; Bülte et al., 2024). Additionally, ClimODE (Verma et al., 2024) incorporated the physical
knowledge and developed a continuous-time neural advection PDE weather model.

Diffusion Models. Diffusion models (Ho et al., 2020; Rombach et al., 2022) have shown their
strong capability in computer vision tasks, including image generation (Li et al., 2022), image edit-
ing (Nichol et al., 2021), semantic segmentation (Brempong et al., 2022) and point cloud comple-
tion (Luo & Hu, 2021). Conditional diffusion models (Ho & Salimans, 2022) were later proposed
to make the generation step conditioned on the current context or situation. However, not many
efforts have adopted diffusion models in global medium-range weather forecasting. More recent
research has focused on precipitation nowcasting (Asperti et al., 2023; Gao et al., 2024; Yu et al.,
2024), and are localized in their predictions. GenCast (Price et al., May 2024) is a recently proposed
close-sourced conditional diffusion-based ensemble forecasting for medium-range weather predic-
tion. However, the conditioning is shown to be insufficient in our paper (see the last case in ablation
study). Since GenCast is not open-sourced, we do not have access to details for a fair comparison.

3 PRELIMINARIES

In this section, we introduce the problem formulation of global weather prediction and briefly review
Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020).

3.1 PROBLEM FORMULATION

Deterministic Global Weather Predictions. Given the input consisting of the weather state(s),
Xt ∈ RH×W×C at time t, the problem is to predict a point-valued weather state, Xt+∆t ∈
RH×W×C at a future time point t + ∆t. H × W refers to the spatial resolution of data which
depends on how densely we grid the globe over latitudes and longitudes, C refers to the number of
channels (i.e., weather variables), and the superscripts t and t + ∆t refer to the current and future
time points. The long-range multiple-step forecasts could be achieved by autoregressive modeling
or direct predictions.

Figure 1: Deterministic vs Probabilistic.

Probabilistic Global Weather Predictions. Unlike the
deterministic models that output point-valued predic-
tions, probabilistic methods model the probability of fu-
ture weather state(s) as a distribution P (Xt+∆t | Xt),
conditioned on the state(s) from the recent past. Prob-
abilistic predictions are appropriate for quantifying the
forecast uncertainty and making informed decisions.

3.2 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) generates target samples by learn-
ing a distribution pθ(x0) that approximates the target distribution q(x0). DDPM comprises a forward
diffusion process and a reverse denoising process.

The forward process involves no learnable parameters and transforms an input x0 with a data dis-
tribution of q(x0) to a white Gaussian noise vector xN in N diffusion steps. It can be described

3
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as a Markov chain that gradually adds Gaussian noise to the input according to a variance schedule
{β1, . . . , βN}:

q(x1:N | x0) =

N∏
n=1

q(xn | xn−1), (1)

where at each step n ∈ [1, N ], the diffused sample xn is obtained q(xn | xn−1) =
N

(
xn;

√
1− βnxn−1, βnI

)
. Instead of iteratively sampling xn step by step following the chain,

the forward process enables sampling xn at an arbitrary step n in the closed form:

q(xn | x0) = N
(
xn;

√
ᾱnx0, (1− ᾱn)I

)
, (2)

where αn = 1 − βn and ᾱn =
∏n

s=1 αs. Thus, xn can be directly obtained as xn =
√
ᾱnx0 +√

1− ᾱnϵ with ϵ is sampled from N (0, I).

In the reverse process, the denoiser network is used to recover x0 by gradually denoising xn starting
from a Gaussian noise xN sampled from N (0, I). This process is formally defined as:

pθ(x0:N ) = p(xN )

N∏
n=1

pθ(xn−1 | xn), (3)

where the data distributions, parameterized by θ, are represented as pθ(xn), pθ(xn−1), . . . , pθ(x0).

For each diffusion iteration n ∈ {1, 2, . . . , N}, diffusion models can be trained to minimize the
following KL-divergence:

Ln = DKL (q(xn−1 | xn) || pθ(xn−1 | xn)) . (4)

where q(xn−1|xn) is often replaced by:

q(xn−1 | xn, x0) = N
(
xn−1; µ̃n(xn, x0, n), β̃n

)
, (5)

and pθ(xn−1 | xn) is represented by:

pθ(xn−1 | xn) = N (xn−1;µθ(xn, n),Σθ(xn, n)) . (6)

In practice, Σθ(xn, n) is fixed at σ̃2
nI where σ̃2

n = β̃n = βn
1−ᾱk−1

1−ᾱk
, and µθ(xn, n) is modeled by

denoiser, a neural network parameterized by θ. Therefore, comparing Eq. (6) and Eq. (5), the loss
function in Eq. (4) is transformed to:

Ln =
1

2σ̃2
n

∥µ̃n(xn, x0, n)− µθ(xn, n)∥2 , (7)

where

µ̃(xn, x0, n) =
1

√
αn

(
xn − 1− αn√

1− ᾱn
ϵn

)
, (8)

µθ(xn, n) =
1

√
αn

(
xn − 1− αn√

1− ᾱn
ϵθ(xn, n)

)
. (9)

Now, the loss function above can be simplified to Eq. (10). Each diffusion step n simply minimizes
the difference between the noise added in the forward process and the one from the denoiser output.
DDPM (Ho et al., 2020) claims that such a simplified loss function is easy to train and beneficial for
generating samples of better quality.

Lsimple(θ) = Ex0,ϵ,n ∥ϵ− ϵθ (xn, n)∥2 , (10)

where ϵθ(·) is a denoiser network to predict the added noise in the forward process. Once trained,
target variables are first sampled from Gaussian as the input of ϵθ(·) to progressively learn the
distribution pθ(xn−1|xn) and denoise xn until x0 is obtained, as shown in Eq. (3).

4 METHODOLOGY

This section introduces our approach for global weather prediction, CoDiCast, implemented as a
conditional diffusion model. The key idea is to consider “prediction” tasks as “generation” tasks
while conditioning on the context guidance of past observation(s). An overview of the proposed
CoDiCast is shown in Figure 2.
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Figure 2: Framework of CoDiCast for global weather forecast. The superscript T and the subscript
N denote the time point and iteration step of adding/denoising noise. H and W represent the height
(#latitude) and width (#longitude) of grid data. C is the number of variables of interest.

4.1 FORWARD DIFFUSION PROCESS

The forward diffusion process is straightforward. Assuming the current time point is t, for the
sample at time point t+ 1, Xt+1

0 ∈ RH×W×C , which is of interest to predict, we first compute the
diffused sample by gradually adding noise until the N th iteration (see the dotted lines in Figure 2):

Xt+1
n =

√
ᾱn ·Xt+1

0 +
√
1− ᾱnϵ, (11)

where ϵ is sampled from N (0, I) with the same size as Xt+1
0 , and ᾱ is same as that in Eq. (2).

4.2 REVERSE CONDITIONAL DENOISING PROCESS

CoDiCast models the probability distribution of the future weather state conditioning on the cur-
rent and previous weather states. More specifically, we exploit a pre-trained encoder to learn condi-
tions as embedding representations of the past observations Xt−1 and Xt, which are used to control
and guide the synthesis process. Compared to modeling the past observations in the original space,
we found that our embedding representations in the latent space work better.

pθ(X
t+1
0:N | Z̃t−1:t) = p(Xt+1

N )

N∏
n=1

pθ(X
t+1
n−1 | Xt+1

n , Z̃t−1:t), (12)

where Xt+1
N ∼ N (0, I), Z̃t−1:t is the embedding representation as shown in Eq. (14).

After prediction at the first time point is obtained, a forecast trajectory, X1:T , of length T , can be
auto-regressively modeled by conditioning on the predicted “previous” states.

pθ(X
1:T
0:N ) =

T∏
t=1

p(Xt
N )

N∏
n=1

pθ(X
t
n−1 | Xt

n, Z̃
t−2:t−1). (13)

4.3 PRE-TRAINED ENCODER

Figure 3: Autoencoder structure.

We learn an encoder by training an autoencoder
network (Baldi, 2012). An Encoder com-
presses the input at each time point into a latent-
space representation, while Decoder recon-
structs the input from the latent representation.
After the encoder, F , is trained, it can serve as
a pre-trained representation learning model to
project the original data into latent embedding in Eq. (14). Appendix B.1 provides more details.

Z̃t−1:t = F(Xt−1, Xt) (14)

5
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4.4 ATTENTION-BASED DENOISER NETWORK

Figure 4: Attention-based denoiser structure.

Our denoiser network consists of two blocks: cross-
attention and U-net (as shown in Figure 4). Cross-
attention mechanism (Hertz et al., 2022) is employed
to capture how past observations can contribute to
the generation of future states. The embedding of
past observations, Z̃t−1:t, and the noise data Xt+1

n
at diffusion step n, are projected to the same hidden
dimension d with the following transformation:

Q = Wq ·Xt+1
n ,K = Wk · Z̃t−1:t, V = Wv · Z̃t−1:t,

(15)
where Xt+1

n ∈ R(H×W )×C and Z̃t−1:t ∈
R(H×W )×dz . Wq ∈ Rd×C ,Wk ∈ Rd×dz ,Wv ∈ Rd×dz are learnable projection matrices (Vaswani
et al., 2017). Then we implement the cross-attention mechanism by Attention(Q, K, V) =

softmax(QKT

√
d
)V . A visual depiction of the cross-attention mechanism is in Appendix B.2.

U-Net (Ronneberger et al., 2015) is utilized to recover the data by removing the noise added at each
diffusion step. The skip connection technique in U-Net concatenates feature maps from the encoder
to the corresponding decoder layers, allowing the network to retain fine-grained information that
might be lost during downsampling. The detailed U-Net architecture is presented in Appendix B.3.

4.5 TRAINING PROCESS

The training procedure is shown in Algorithm 1. Firstly, we pre-train an encoder to learn the con-
dition embedding of the past observations. Subsequently, we inject it into our conditional diffusion
model and train CoDiCast with the devised loss function:

Lcond(θ) = EX0,ϵ,n

∥∥ϵ− ϵθ
(
Xt+1

n , n,cond
)∥∥2 , (16)

where Xt+1
n =

√
ᾱnX

t+1
0 +

√
1− ᾱnϵ, cond = F(Xt−1:t), and ϵθ is the denoiser in Figure 4.

4.6 INFERENCE PROCESS

Algorithm 2 describes the inference process. We first extract the conditional embedding representa-
tions, Z̃t−1:t, by the pre-trained encoder, and then randomly generate a noise vector XN ∼ N (0, I)
of size H ×W ×C. The sampled noise vector, XN , is autoregressively denoised along the reversed
chain to predict the target until n equals 1 (ζ is set to zero when n = 1), we obtain weather pre-
diction X̂0 at the time t+ 1. Later, multi-step prediction can be implemented autoregressively - the
output from the previous time step is the input while predicting the next step, as shown in Eq. (13).

Algorithm 1 Training
1: Input: Number of diffusion steps N , pre-

trained encoder F
2: Output: Trained denoising function ϵ(·)
3: repeat
4: Xt+1

0 ∼ q(Xt+1
0 )

5: n ∼ Uniform(1, 2, . . . , N)
6: ϵ ∼ N (0, I)
7: Get the past observations Xt−1, Xt

8: Get embedding Z̃t−1:t = F(Xt−1, Xt)
9: Take gradient descent step on:

∇θ

∥∥∥ϵ− ϵθ
(
Xt+1

n , n, Z̃t−1:t
)∥∥∥2

10: until converged

Algorithm 2 Inference
1: Input: Number of diffusion steps N , pre-trained

encoder F , trained denoising network ϵ(·), past ob-
servations Xt−1, Xt

2: Output: Inference target Xt+1
0

3: Get embedding Z̃t−1:t = F(Xt−1, Xt)
4: XN ∼ N (0, I)
5: for n = N, . . . , 1 do
6: ζ ∼ N (0, I) if n ≥ 1, else ζ = 0
7: Xt+1

n−1 =
1√
αn

(
Xt+1

n − 1−αn√
1−ᾱn

ϵθ(X
t+1
n , n, Z̃t−1:t

)
+

σnζ
8: end for
9: return Xt+1

0
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4.7 ENSEMBLE FORECAST

To enhance the reliability of weather forecasts, ensemble forecast strategy is often employed to
capture the variability among forecasts by separately running multiple deterministic models, e.g.,
ensemble forecast suite (ENS) (Buizza, 2008). In our approach, since CoDiCast is a probabilistic
model that can generate a distribution of future weather scenarios rather than a single prediction,
following (Price et al., May 2024), we run the trained CoDiCastmultiple times to get the ensemble
instead. More specifically, by integrating both initial conditions and noise sampled from a Gaussian
distribution, CoDiCast implements the ensemble forecast through multiple stochastic samplings
during inference, capturing a range of possible forecasts for the uncertainty quantification.

5 EXPERIMENTS

5.1 DATASET AND BASELINES

Dataset. ERA5 (Hersbach et al., 2020) is a publicly available atmospheric reanalysis dataset pro-
vided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Following the ex-
isting work (Verma et al., 2024), we use the preprocessed 5.625◦ resolution (32 × 64) and 6-hour
increment ERA5 dataset from WeatherBench (Rasp et al., 2020). We downloaded 5 variables for the
globe: geopotential at 500 hPa pressure level (Z500), atmospheric temperature at 850 hPa pressure
level (T850), ground temperature (T2m), 10 meter U wind component (U10) and 10 meter V wind
component (V10). More details can be found in Table 4 in Appendix A.

Baselines. We comprise the following methods as baselines. The first four ML benchmarks use
the same data set described in Section 5.1 for a fair comparison. We are unable to compare against
Pangu-Weather (Bi et al., 2023) and Graphcast (Lam et al., 2023) due to the various resolutions they
used, their partially released code, and our limited computing resources.

• ClimODE (Verma et al., 2024): a spatiotemporal continuous-time model that incorporates
the physic knowledge of atmospheric advection over time.

• ClimaX (Nguyen et al., 2023): a state-of-the-art vision Transformer-based method trained
on the same dataset (without pre-training that is used in the original paper).

• FourCastNet (FCN) (Pathak et al., 2022): a global data-driven weather model using adap-
tive Fourier neural operators.

• Neural ODE (Chen et al., 2018): an ODE network that learns the time derivatives as neural
networks by solving an ordinary differential equation.

• Integrated Forecasting System IFS (Rasp et al., 2020): one of the most advanced global
numerical weather prediction (NWP) models. IFS is often viewed as the gold standard.

5.2 EXPERIMENTS DESIGN

We use data between 2006 and 2015 as the training set, data in 2016 as the validation set, and data
between 2017 and 2018 as the testing set. We assess the global weather forecasting capabilities of
our method CoDiCast by predicting the weather at a future time t + ∆t (∆t = 6 to 36 hours)
based on the past two time units. To quantify the uncertainty in weather prediction, we generate an
“ensemble” forecast by running CoDiCast three times during the inference phase. We also analyze
and compare the inference efficiency between the NWP-based methods and CoDiCast.

Training. We first pretrain an encoder with the Autoencoder architecture. For the diffusion
model, we used U-Net as the denoiser network with 1000 diffusion/denoising steps. The architec-
ture is similar to that of DDPM (Ho et al., 2020) work. We employ four U-Net units for both the
downsampling and upsampling processes. Each U-Net unit comprises two ResNet blocks (He et al.,
2016) and a convolutional up/downsampling block. Before training, we apply Max-Min normal-
ization (Ali et al., 2014) to scale the input data within the range [0, 1], mitigating potential biases
stemming from varying scales (Shi et al., 2023). Adamwas used as the optimizer, where the learning
rate = 2e−4, decay steps = 10000, decay rate = 0.95. The batch size and number of epochs were
set to 64 and 800 respectively. More training details and model configurations are in Appendix C.

7
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Evaluation Metrics. Following (Verma et al., 2024), we use latitude-weighted Root Mean Square
Error (RMSE) and Anomaly Correlation Coefficient (ACC) as deterministic metrics. RMSE mea-
sures the average difference between values predicted by a model and the actual values. ACC is the
correlation between prediction anomalies relative to climatology and ground truth anomalies rela-
tive to climatology. It is a critical metric in climate science to evaluate the model’s performance in
capturing unusual weather or climate events. Moreover, following (Rasp et al., 2024) we utilize the
continuous ranked probability score (CRPS) (Gneiting & Raftery, 2007) as a probabilistic metric to
measure the discrepancy between the predicted distribution and a single ground-truth value. A lower
CRPS value indicates higher forecast accuracy. Appendix D contains the formulas of these metrics.

5.3 QUANTITATIVE EVALUATION

Accuracy. We compare different models in forecasting five primary meteorological variables as
described in Section 5.1. From Table 1, we observe that CoDiCast presents superior performance
across latitude-weighted RMSE metrics over other MLWP baselines while it shows comparable per-
formance across ACC scores. In Appendix E, we provide the predictions with longer lead times (up
to 6 days). However, CoDiCast still falls short in comparison with the gold-standard IFS model.

Table 1: Latitude-weighted RMSE (↓) and ACC (↑) comparison with baselines on global weather
forecasting. We mark the scores in bold if CoDiCast performs the best among MLWP methods.

Variable Lead Time RMSE (↓) ACC (↑)

NODE ClimaX FCN IFS ClimODE CoDiCast NODE ClimaX FCN IFS ClimODE CoDiCast

Z500

6 300.6 247.5 149.4 26.9 102.9±9.3 73.1±6.7 0.96 0.97 0.99 1.00 0.99 0.99
12 460.2 265.3 217.8 N/A 134.8±12.3 114.2±8.9 0.88 0.96 0.99 N/A 0.99 0.99
18 627.6 319.8 275.0 N/A 162.7±14.4 152.4±10.4 0.79 0.95 0.99 N/A 0.98 0.99
24 877.8 364.9 333.0 51.0 193.4±16.3 186.5±11.8 0.70 0.93 0.99 1.00 0.98 0.98
36 1028.2 455.0 449.0 N/A 259.6±22.3 256.7±14.6 0.55 0.89 0.99 N/A 0.96 0.97

T850

6 1.82 1.64 1.18 0.69 1.16±0.06 1.02±0.05 0.94 0.94 0.99 0.99 0.97 0.99
12 2.32 1.77 1.47 N/A 1.32±0.13 1.26±0.10 0.85 0.93 0.99 N/A 0.96 0.99
18 2.93 1.93 1.65 N/A 1.47±0.16 1.41±0.12 0.77 0.92 0.99 N/A 0.96 0.97
24 3.35 2.17 1.83 0.87 1.55±0.18 1.52±0.16 0.72 0.90 0.99 0.99 0.95 0.97
36 4.13 2.49 2.21 N/A 1.75±0.26 1.75±0.19 0.58 0.86 0.99 N/A 0.94 0.96

T2m

6 2.72 2.02 1.28 0.97 1.21±0.09 0.95±0.07 0.82 0.92 0.99 0.99 0.97 0.99
12 3.16 2.26 1.48 N/A 1.45±0.10 1.21±0.07 0.68 0.90 0.99 N/A 0.96 0.99
18 3.45 2.45 1.61 N/A 1.43±0.09 1.34±0.08 0.69 0.88 0.99 N/A 0.96 0.99
24 3.86 2.37 1.68 1.02 1.40±0.09 1.45±0.07 0.79 0.89 0.99 0.99 0.96 0.98
36 4.17 2.87 1.90 N/A 1.70±0.15 1.65±0.11 0.49 0.83 0.99 N/A 0.94 0.97

U10

6 2.30 1.58 1.47 0.80 1.41±0.07 1.24±0.06 0.85 0.92 0.95 0.98 0.91 0.95
12 3.13 1.96 1.89 N/A 1.81±0.09 1.50±0.08 0.70 0.88 0.93 N/A 0.89 0.93
18 3.41 2.24 2.05 N/A 1.97±0.11 1.68±0.08 0.58 0.84 0.91 N/A 0.88 0.91
24 4.10 2.49 2.33 1.11 2.01±0.10 1.87±0.09 0.50 0.80 0.89 0.97 0.87 0.89
36 4.68 2.98 2.87 N/A 2.25±0.18 2.25±0.12 0.35 0.69 0.85 N/A 0.83 0.87

V10

6 2.58 1.60 1.54 0.94 1.53±0.08 1.30±0.06 0.81 0.92 0.94 1.00 0.92 0.95
12 3.19 1.97 1.81 N/A 1.81±0.12 1.56±0.09 0.61 0.88 0.91 N/A 0.89 0.93
18 3.58 2.26 2.11 N/A 1.96±0.16 1.75±0.11 0.46 0.83 0.86 N/A 0.88 0.91
24 4.07 2.48 2.39 1.33 2.04±0.10 1.94±0.14 0.35 0.80 0.83 1.00 0.86 0.89
36 4.52 2.98 2.95 N/A 2.29±0.24 2.35±0.18 0.29 0.69 0.75 N/A 0.83 0.85

Figure 5: Forecast with confidence intervals.

Uncertainty. The error range (in gray) associated
with our CoDiCast in Table 1 is smaller than
ClimODE, indicating that our method can produce
more robust predictions. We provide a case study of
CoDiCast forecast for 72 hours with uncertainty
quantification in Figure 5. It shows the mean predic-
tion tracks the general trend of the ground truth and
the uncertainty grows as the lead time increases. Be-
sides, most actual values fall within the 1 or 2 stan-
dard deviation (σ) ranges, indicating that predictions
are reasonably accurate but could be improved for
higher precision. We also report CRPS scores with
24-hour prediction in Table 2. Because most existing MLWP methods produce deterministic fore-
casts, we use IFS ENS, an ensemble of 51 NWP-based forecasts (Buizza, 2008) for a relative ref-
erence. We observe that there is still room for CoDiCast to be improved, but we claim it achieves
valuable probabilistic forecasts and the inference speed is faster than IFS ENS (next subsection).
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Table 2: Continuous ranked probability
scores (CRPS) (↓) with 24 hours lead time
IFS ENS are from (Rasp et al., 2024).

Model Z500 T850 T2m U10 V10

CoDiCast 86.03 0.63 0.61 0.71 0.76

IFS ENS 24.76 0.36 0.37 0.55 0.56

Inference efficiency. Generally, numerical weather
prediction models (e.g., IFS) require around 50 min-
utes for the medium-range global forecast, while de-
terministic ML weather prediction models take less
than 1 minute (Rasp et al., 2020) but cannot model the
weather uncertainty. CoDiCast needs about 12 min-
utes (see the last row in Table 3) for the global weather
forecast, potentially balancing the efficiency and accu-
racy with essential uncertainty quantification. The efficiency also depends on the model complexity.

5.4 QUALITATIVE EVALUATION

In Figure 6, we qualitatively evaluate the performance of CoDiCast on global forecasting tasks for
all target variables, Z500, T850, T2m, U10 and V10 at the lead time of 6 hours. The first row is the
ground truth of the target variable, the second row is the prediction and the last row is the difference
between the model prediction and the ground truth. From the scale of their color bars, we can tell
that the error percentage is less than 3% for variables Z500, T850, and T2m. Nevertheless, error
percentages over 50% exist for U10 and V10 even though only a few of them exist. Furthermore, we
observe that most higher errors appear in the high-latitude ocean areas, probably due to the sparse
data nearby. We provide visualizations for longer lead times (up to 3 days) in Appendix F.

Figure 6: Visualization of true and predicted values at 6 hours lead time.

5.5 ABLATION STUDY

CoDiCast includes two significant components: pre-trained encoder and cross attention. To study
their effectiveness, we conduct an ablation study as follows: (a) No-encoder directly considers past
observations as conditions to diffusion model; (b) No-cross-attention simply concatenate the em-
bedding and the noisy sample at each denoising step; (c) No-encoder-cross-attention concatenate
the past observations and the noisy sample at each denoising step. From the results in Figure 7, we
can observe that the full version of CoDiCast consistently outperforms all other variants, demon-
strating both components positively contribute to generating plausible weather scenarios.

5.6 PARAMETER STUDY

Diffusion step. We try various diffusion steps N = {250, 500, 750, 1000, 1500, 2000}. Ta-
ble 3 shows that the accuracy improves as the number of diffusion steps increases when N <
1000, indicating that more intermediate steps are more effective in learning the imperceptible
attributes during the denoising process. However, when 1000 < N < 2000, the accuracy
remains approximately flat but the inference time keeps increasing linearly. Considering the
trade-off between accuracy and efficiency, we finally set N = 1000 for all experiments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Ablation study to study the effect of pre-trained encoder and cross-attention.

Figure 8: Effect of linear and quadratic variance scheduling methods.

Table 3: Latitude-weighted RMSE with various diffu-
sion steps. We mark the lowest scores in bold font. The
last row represents the inference time of CoDiCast.

Variable Lead Diffusion Step

250 500 750 1000 1500 2000

Z500

6 341.1 187.9 121.2 73.1 73.7 75.3
12 359.6 178.7 116.9 114.2 117.2 118.6
18 664.6 331.6 189.2 152.4 155.7 156.2
24 696.1 324.8 190.6 186.5 193.5 191.9
36 973.8 472.6 255.9 256.8 267.3 262.7

T850

6 2.41 1.65 1.31 1.02 1.04 1.05
12 2.33 1.65 1.27 1.26 1.28 1.31
18 3.94 2.25 1.47 1.41 1.43 1.45
24 3.88 2.38 1.53 1.52 1.56 1.58
36 5.32 3.14 1.82 1.75 1.79 1.81

T2m

6 3.06 1.75 1.29 0.95 0.98 0.99
12 3.25 1.73 1.26 1.21 1.26 1.27
18 5.41 2.62 1.58 1.34 1.39 1.42
24 5.26 2.79 1.63 1.44 1.50 1.53
36 7.07 3.74 1.97 1.65 1.70 1.78

U10

6 1.90 1.62 1.49 1.24 1.31 1.35
12 1.92 1.59 1.42 1.50 1.60 1.64
18 2.65 2.04 1.77 1.68 1.79 1.83
24 2.74 2.05 1.81 1.87 1.99 2.01
36 3.65 2.64 2.19 2.25 2.36 2.40

V10

6 1.87 1.63 1.54 1.30 1.37 1.41
12 1.79 1.64 1.56 1.56 1.67 1.69
18 2.47 2.01 1.84 1.75 1.85 1.88
24 2.43 2.11 1.89 1.94 2.04 2.06
36 3.21 2.55 2.18 2.35 2.46 2.47

Inference time (min) ∼ 3 ∼ 6 ∼ 10 ∼ 12 ∼ 20 ∼ 27

Method for variance scheduling. We
use the same start and end variance value,
β, as DDPM (Ho et al., 2020) where β ∈
[0.0001, 0.02]. We study the effect of “lin-
ear” and “quadratic” variance scheduling
in this section. The results are provided in
Figure 8. It shows that the “linear” vari-
ance scheduling provides better perfor-
mance than “quadratic” one for variables
Z500, T2m, U10, and V10, while the per-
formance of both “linear” and “quadratic”
modes is roughly same for variable T850.
Therefore, “linear” variance scheduling is
utilized in our CoDiCast model.

6 CONCLUSIONS

In this work, we start with analyz-
ing the limitations of current determinis-
tic numerical weather prediction (NWP)
and machine-learning weather prediction
(MLWP) approaches—they either cause
substantial computational cost or lack un-
certainty quantification in the forecasts. To
address these limitations, we propose a
conditional diffusion model, CoDiCast,
which contains a conditional pre-trained
encoder and a cross-attention component. Quantitative and qualitative experimental results demon-
strate it can simultaneously complete more accurate predictions than existing MLWP-based models
and a faster inference than NWP-based models while being capable of providing uncertainty quan-
tification compared to deterministic methods. In conclusion, CoDiCast achieves a critical trade-off
between high accuracy, high efficiency, and low uncertainty for global weather prediction.

Limitation and Future work. We use low-resolution (5.625◦) data currently due to the relatively
slow inference process of diffusion models compared to deterministic ML models. In the future, we
will focus on accelerating diffusion models (Song et al., 2020) to adapt the higher-resolution data.
Besides the meteorological numerical data, weather events are often recorded or reported in the form
of text. We will study how to leverage LLMs to extract their implicit interactions (Li et al., 2024)
and inject them into diffusion models to guide the generation process.
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APPENDIX

A DATASET

We introduce a detailed description of the ERA5 dataset. As the predominant data source for learn-
ing and benchmarking weather prediction systems, the ERA5 reanalysis archive from the European
Center for Medium-Range Weather Forecasting (ECMWF) provides reanalyzed data from 1979 on-
wards. This data is available on a 0.25◦ × 0.25◦ global latitude-longitude grid of the Earth’s sphere,
at hourly intervals, with different atmospheric variables at 37 different altitude levels and some
variables on the Earth’s surface. The grid overall contains 721 × 1440 grid points for latitude and
longitude, respectively. Due to the limited computational resources, we used the preprocessed ver-
sion of ERA5 from WeatherBench Rasp et al. (2020) in our work. This dataset2 contains re-gridded
ERA5 reanalysis data in three lower resolutions: 5.625◦, 2.8125◦, and 1.40625◦. To guarantee fair
comparison with the benchmarks Verma et al. (2024), we follow the ClimODE work and choose
the 5.625◦ resolution dataset for variables: geopotential at 500 hPa pressure level (Z500), atmo-
spheric temperature at 850 hPa pressure level (T850), ground temperature (T2m), 10 meter U wind
component (U10) and 10 meter V wind component (V10). Single represents surface-level variables,
and Atmospheric represents time-varying atmospheric properties at chosen altitudes. A sample at
a certain time point can be represented by Xt ∈ RH×W×C where H × W refers to the spatial
resolution of data which depends on how densely we grid the globe over latitude and longitude, C
refers to the number of channels (i.e, weather variables). In our work, H,W , and C are 32, 64,
and 5, accordingly. Notably, both Z500 and T850 are two popular verification variables for global
weather prediction models, while T2m, U10, and V10 directly pertain to human activities.

Table 4: Variable Information.

Type Variable Abbrev. ECMWF ID Levels Range Unit

Single 2 metre temperature T2m 167 [193.1, 323.6] K
Single 10 metre U wind U10 165 [−37.3, 30.2] m/s
Single 10 metre V wind V10 166 [−31.5, 32.5] m/s
Atmospheric Geopotential Z 129 500 [43403.6, 59196.9] m2/s2

Atmospheric Temperature T 130 850 [217.9, 313.3] K

B MODEL ARCHITECTURE

We present the detailed architectures of the autoencoder, cross-attention block, and U-Net model
used in our work. Meanwhile, we also illustrate how we organize the input data and how they flow
through different machine-learning model blocks. We recommend readers check out Figures 2, 3,
and 4 while looking into the following architectures.

B.1 AUTOENCODER

We train an autoencoder model consisting of two main parts: an encoder and a decoder. The en-
coder compresses the input to feature representation (embedding) in the latent space. The decoder
reconstructs the input from the latent space. After training, the pre-trained encoder can be extracted
to generate embedding for input data. In our work, the convolutional autoencoder architecture is de-
signed for processing spatiotemporal weather data at a time point, t, represented as Xt ∈ RH×W×C .
The encoder consists of a series of convolutional layers with 2× 2 filters, each followed by a ReLU
activation function. The layers have 32, 128, 256, and 512 filters, respectively, allowing for a pro-
gressive increase in feature depth, thereby capturing essential patterns in the data. The decoder
starts with 512 filters and reduces the feature depth through layers with 256 and 128 filters, each
followed by ReLU activations. This design ensures the reconstruction of the input data while pre-
serving the learned features, enabling the model to extract meaningful embeddings that encapsulate
the spatiotemporal characteristics of the input.

2https://github.com/pangeo-data/WeatherBench
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Figure 9: Architecture of the Autoencoder model.

B.2 CROSS-ATTENTION

The cross-attention is used to learn the interaction between past observations and the noisy data
at each diffusion step. We consider the past observations as the conditions to guide the diffusion
models during generation. Given the weather states in the past two time points, XT×H×W×C , we
utilize the pre-trained encoder to learn the embedding from each time point, XT×H×W×de . To
better use the attention mechanism, we first reshape it to X(H∗W )×(T∗de) and convert it to key and
value matrices: K ∈ R(H∗W )×dk and V ∈ R(H∗W )×dv . We consider the noisy sample at each
diffusion step, Xn ∈ RT×H×W×C , as a query. It is transformed to Q ∈ R(H∗W )×dq . Then, the
cross-attention mechanism is implemented by Attention(Q,K, V ) = softmax(QKT

√
d
) · V . In our

work, we set dq = dk = dv = d = 64 where d is the projection embedding length.

Figure 10: Architecture of the cross-attention block.

B.3 U-NET

Our U-Net architecture is similar to that3 of DDPM Ho et al. (2020) but with necessary changes to
adapt to the problems in this work. Each U-Net unit comprises two ResNet blocks He et al. (2016)
and a convolutional up/downsampling block. Self-attention was included between the convolution
blocks once we reached a specific resolution (4× 8, 2× 4), represented in blue arrows. We employ
four U-Net units for both the downsampling and upsampling processes. We use MaxPooling in the
downsampling units where the channel dimension is 64 × j (j = {1, 2, 3, 4} refers to the layer
index). The upsampling units follow the reverse order. We set the upsampling factor as 2 and the
“nearest” interpolation. We used the swish activation function throughout the network. We also
had GroupNormalization layer for more stable training where the number of groups for Group
Normalization is 8. Group Normalization divides the channels into groups and computes within each
group the mean and variance for normalization.

Notably, for the target variable, Xt+1 at the n diffusion step, the input to U-Net involves the mixture
embedding of past weather states, Xt−1:t, and the noisy sample from the last diffusion step, Xt+1

n .
The mixture embedding is obtained by the cross-attention mechanism described above. The channel
dimension output is five because of five weather variables of interest to predict. This is achieved by
a convolutional layer with a 1× 1 kernel.

3https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/
models/unet.py
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Figure 11: Architecture of the U-Net model.

C TRAINING DETAILS

We provide the hyperparameters for training our model CoDiCast, which includes pre-training
Autoencoder and training the denoiser network. Since it is more helpful to find the minimum
loss if using a decayed learning rate as the training progresses, we applied an exponential decay
function to an optimizer step given a provided initial learning rate.

Table 5: Hyperparameters of Training Autoencoder.

Abbreviation Training Autoencoder Training Denoiser

Epochs 100 800
Batch size 128 256
Learning rate 1e-4 2e-4
Decay steps 10000 10000
Decay rate 0.95 0.95

D EVALUATION METRICS

Root Mean Square Error. Following (Verma et al., 2024), we assess the model performance
using latitude-weighted Root Mean Square Error (RMSE). RMSE measures the average difference
between values predicted by a model and the actual values.

RMSE =
1

M

M∑
m=1

√√√√ 1

H ×W

H∑
h=1

W∑
w=1

L(h)(X̃m,h,w −Xm,h,w)2,

where L(h) = 1
H cos(h)

∑H
h′ cos(h′) is the latitude weight and M represents the number of test

samples.

Anomaly Correlation Coefficient. ACC is the correlation between prediction anomalies X̃ ′ rela-
tive to climatology and ground truth anomalies X̂ relative to climatology. ACC is a critical metric in
climate science to evaluate the model’s performance in capturing unusual weather or climate events.

ACC =

∑
m,h,w L(h)X̃ ′

m,h,wX
′
m,h,w√∑

m,h,w L(h)X̃
′2
m,h,w ·

∑
m,h,w L(h)X

′2
m,h,w

,

where observed and forecasted anomalies X ′ = X − C, X̃ ′ = X̃ − C, and climatology C =
1
M

∑
m X is the temporal mean of the ground truth data over the entire test set.
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Continuous Ranked Probability Score. Following (Rasp et al., 2024) we utilize the continu-
ous ranked probability score (CRPS) as a probabilistic metric to measure the discrepancy between
the predicted distribution and a single ground-truth value. It is a generalization of the MAE for
distributional predictions. CRPS penalizes over-confidence in addition to inaccuracy in ensemble
predictions—a lower CRPS is better. More specifically, it is a score function that compares the
ground truth target y with the cumulative distribution function (CDF) F of the prediction:

CRPS(D, y) =

∫
(FD(x)− 1{x≥y})

2 dx,

where FD is the cumulative distribution function of the forecasted distribution D, 1 is the indicator
function (or Heaviside step function), and y ∈ R is the scalar observation. Based on the work
(Gneiting & Raftery, 2007), the continuous ranked probability score can be written as:

CRPS(D, y) = EX∼D[|X − y|]− 1

2
EX,X′∼D[|X −X ′|]

where X and X ′ are independent and identically distributed (iid) samples from the distributional
prediction D. We use the non-parametric “fair estimate to the CRPS” (Ferro, 2014) estimating D
with the empirical CDF of n = 20 iid samples Xi ∼ D:

ˆCRPS(X, y) =
1

n

n∑
i=1

|Xi − y| − 1

2n(n− 1)

n∑
i=1

n∑
j=1

|Xi −Xj |,

where the first term is the MAE between the target and samples of the predictive distribution, while
the second term is small for small predictive variances, vanishing completely for point estimates.

E EXPERIMENTAL RESULTS WITH LONGER LEAD TIMES

In this section, we compare CoDiCast against the other two baselines for the longer lead time. We
observe that CoDiCast shows more accurate and robust performance on ACC scores. Additionally,
it still performs the best for the 3-day forecast on RMSE scores, but its performance gradually drops
as the lead time increases up to 6 days.

Table 6: Latitude-weighted RMSE (↓) and ACC (↑) comparison with baselines on global weather
forecasting. We mark the scores in bold if CoDiCast performs the best.

Variable Lead Time RMSE (↓) ACC (↑)

ClimaX ClimODE CoDiCast ClimaX ClimODE CoDiCast

Z500 72 687.0 478.7±48.3 451.6±39.5 0.73 0.88 0.92
144 801.9 783.6±37.3 825.5±45.2 0.58 0.61 0.78

T850 72 3.17 2.58±0.16 2.54±0.14 0.76 0.85 0.93
144 3.97 3.62±0.21 3.81±0.19 0.69 0.77 0.85

T2m 72 2.87 2.75±0.49 2.39±0.37 0.83 0.85 0.96
144 3.38 3.30±0.23 3.45±0.22 0.83 0.79 0.91

U10 72 3.70 3.19±0.18 3.15±0.19 0.45 0.66 0.71
144 4.24 4.02±0.12 4.45±0.15 0.30 0.35 0.42

V10 72 3.80 3.30±0.22 3.26±0.14 0.39 0.63 0.68
144 4.42 4.24±0.10 4.51±0.17 0.25 0.32 0.37

F VISUALIZING PREDICTION WITH LONGER LEAD TIMES

We provide the forecast at longer lead times (i.e., 24, 36, 72 hours). The first row is the ground
truth of the target variable, the second row is the prediction of CoDiCast and the last row is the
difference between the model prediction and the ground truth.
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F.1 SHORT RANGE WEATHER FORECASTING

Short-range weather forecasting at the 24-hour lead time for all target variables.

Figure 12: Visualizations of true and predicted values of all five variables at 24 hours lead time.

F.2 MEDIUM-RANGE WEATHER FORECASTING

Medium-range weather forecasting at the 36-hour lead time for all target variables.

Figure 13: Visualizations of true and predicted values of all five variables at 36 hours lead time.

F.3 LONG-RANGE WEATHER FORECASTING

Longer-range weather forecasting at the 72-hour lead time for all target variables.
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Figure 14: Visualizations of true and predicted values of all five variables at 72 hours lead time.

20


	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Denoising Diffusion Probabilistic Models

	Methodology
	Forward Diffusion Process
	Reverse Conditional Denoising Process
	Pre-trained Encoder
	Attention-based Denoiser Network
	Training Process
	Inference Process
	Ensemble Forecast

	Experiments
	Dataset and Baselines
	Experiments Design
	Quantitative Evaluation
	Qualitative Evaluation
	Ablation Study
	Parameter Study

	Conclusions
	Dataset
	Model Architecture
	Autoencoder
	Cross-Attention
	U-Net

	Training Details
	Evaluation Metrics
	Experimental results with longer lead times
	Visualizing Prediction with longer lead times
	Short range weather forecasting
	Medium-range weather forecasting
	Long-range weather forecasting


