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Abstract
When first deploying an anomaly detection001
system, e.g., to detect out-of-scope queries in002
chatbots, there are no observed data, making003
data-driven approaches ineffective. Zero-shot004
anomaly detection methods offer a solution to005
such "cold-start" cases, but unfortunately they006
are often not accurate enough. This paper stud-007
ies the realistic but underexplored generalized008
cold-start setting where an anomaly detection009
model is initialized using zero-shot guidance,010
but subsequently receives a small number of011
contaminated observations (namely, that may012
include anomalies). The goal is to make effi-013
cient use of both the zero-shot guidance and014
the observations. We propose ColdFusion, a015
method that effectively adapts the zero-shot016
anomaly detector to contaminated observations.017
To support future development of this new set-018
ting, we propose an evaluation suite consisting019
of evaluation protocols and metrics.020

1 Introduction021

Anomaly detection methods aim to flag data that022

violate accepted norms. For example, a customer023

support chatbot may be designed to answer queries024

about particular intents (in-scope) but not about025

other intents (out-of-scope). Unlike related tasks026

such as out-of-scope intent discovery and classifi-027

cation, which rely on large labeled in-scope data,028

anomaly detection approaches relax the labeling029

assumption and treat the problem as a one-class030

classification task (Lin et al., 2020; Zhang et al.,031

2021b; Mou et al., 2022; Zheng et al., 2020; Zhan032

et al., 2021; Lin and Xu, 2019; Zeng et al., 2021;033

Zhang et al., 2021a; Xu et al., 2020). Most anomaly034

detection methods (Reiss et al., 2021; Qiu et al.,035

2021; Zhang et al., 2023) require previous obser-036

vations for training and are effective when many037

past observations are available. Such methods are038

not effective for systems just after deployment, as039

they lack access to any past observations. Zero-040

shot anomaly detection (Jeong et al., 2023; Li et al.,041

2024; Zhou et al., 2024) uses descriptions of the 042

normal classes and does not require training data. 043

While zero-shot methods can be used for freshly 044

deployed systems, they result in reduced accuracy 045

as the descriptions often fail to properly express 046

the distribution of real data. 047

We explore the generalized cold-start setting 048

which provides two types of guidance: i) a textual 049

description of each normal class, serving as initial 050

guidance, such as predefined topic names in chat- 051

bot systems; ii) a stream of t contaminated observa- 052

tions (that may include anomalies), e.g., real user 053

queries. It is particularly relevant in real-world ap- 054

plications where, shortly after deployment, a short 055

stream of user queries becomes available but the 056

queries are not labeled into intent types and some 057

of them are out-of-scope. To our knowledge, the 058

only work that deals with a similar setting (Jeong 059

et al., 2023) assumes prior knowledge of anomalies, 060

that observations come from a single normal class 061

and that they are not contaminated by anomalies. 062

To tackle the generalized cold-start setting, we 063

present ColdFusion, a method for adapting a zero- 064

shot model given the distribution of a limited obser- 065

vation stream. Our method is very effective, achiev- 066

ing considerably better results than pure zero-shot 067

and observation-based methods. To encourage fu- 068

ture research into this promising new setting, we 069

provide evaluation protocols and metrics. 070

Our contributions are: 071

1. Proposing the new setting of generalized cold- 072

start anomaly detection. 073

2. Presenting ColdFusion for tackling the setting. 074

0753. Introducing a dedicated evaluation suite con- 076

sisting of evaluation protocols and metrics. 077

2 Generalized Cold-Start Anomaly 078

Detection 079

Task Definition. In the generalized cold-start set- 080

ting, a model has access to K class descriptions 081
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Figure 1: ColdFusion assigns each of the t observations
to their nearest class, then adapts the embeddings of
each class towards the assigned observations.

Dprior = {c1, c2, ..., cK} and a stream of t observa-082

tions Dt = {x1, x2, ..., xt}, where t is small. We083

denote the percentage of anomalous observations084

as the contamination ratio r%. An observation x085

either comes from one of the K normal classes or is086

anomalous, but we do not have access to the class087

or anomaly label. The task is to learn a model S088

to map each training sample x to an anomaly score089

such that high values indicate anomalous samples.090

Application to chatbots. Our practical motiva-091

tion is identifying out-of-scope queries in a recently092

deployed chatbot. We observe a stream of queries093

sent to the chatbot, as well as descriptions of all094

allowed intents. At time step t + 1, we leverage095

both Dt and Dprior to classify a given query xt+1096

as in-scope (INS) or out-of-scope (OOS).097

3 Methodology098

3.1 Recap: Zero-Shot Anomaly Detection099

Zero-shot (ZS) anomaly detection maps each data100

point x to an anomaly score S(x). Notably, ZS101

methods do not require past data, instead they are102

guided by a set of distinct normal class names103

{c1, c2, ..., cK} provided by the user. A pre-trained104

feature extractor ϕ maps each of the class names ck,105

and observations xt to deep embeddings ϕ(ck) and106

ϕ(xt). It then computes the distance d (often L2 or107

Cosine) between the embeddings of the example108

and each of the class names. The final anomaly109

score is given by the distance to the nearest class:110

Szs(x) = min
k

{d(ϕ(x), ϕ(ck))}Kk=1 (1)111

High anomaly scores serve as indicators of anoma-112

lies. The anomaly score can be converted to a113

binary label by choosing a threshold α such that114

y = 0 if S(x) < α and y = 1 if S(x) ≥ α.115

Zero-shot anomaly detection can be used for116

OOS query detection by first specifying a set of117

Algorithm 1: ColdFusion
Input: Dprior, Dt, p, query x.
Output: Anomaly score Sadapt(x).
Step 1: Encode class descriptions and

observations: ϕ(Dprior), ϕ(Dt);
Step 2: Assign observations to classes

based on nearest class descriptor:
a(x) = argmink{d(ϕ(x), ϕ(ck))}Kk=1;

Step 3: Adapt class embeddings:
zk = median(ϕ(ck), {ϕ(x)|a(x) = k});

Step 4: Compute anomaly score for x:
Sadapt(x) = mink{d(ϕ(x), zk)}Kk=1;

allowed intents. Then a deep encoder extracts the 118

embeddings of the target user query and intent de- 119

scriptions. Finally, the method labels the user query 120

as OOS if it is far from all allowed intent names. 121

3.2 Limitations of Existing Methods 122

In practice, it is impossible to provide perfect class 123

descriptions, and therefore zero-shot anomaly de- 124

tection often does not achieve sufficient accuracy. 125

On the other hand, if the number of observations 126

is limited, observation-based anomaly detection 127

methods, such as K-nearest neighbors, struggle for 128

three key reasons: i) the observations may not in- 129

clude all in-scope classes; ii) it is hard to estimate 130

the true distribution of normal data from a few sam- 131

ples; iii) the observations may be contaminated, 132

meaning they may include anomalies. Empirically, 133

observation-based methods underperform ZS meth- 134

ods for small t (see Tab. 1 and Fig. 2). 135

3.3 Our Method: ColdFusion 136

To bridge the gap between ZS and observation- 137

based methods, we propose ColdFusion (illustrated 138

in Fig. 1), a method for generalized cold-start 139

anomaly detection using domain adaptation. It 140

improves ZS anomaly detection using the t obser- 141

vations in two key stages: i) assigning observations 142

to classes; ii) adapting ZS class embeddings based 143

on the assigned observations. 144

Assignment. We assign each of the t observa- 145

tions to the nearest class as measured in the feature 146

space ϕ. We denote the class assignment of obser- 147

vation x as a(x). More formally: 148

a(x) = argmin
k

{d(ϕ(x), ϕ(ck))}Kk=1 (2) 149

We further define Ck, the set of all observations 150

assigned to class k as Ck = {ϕ(x)|a(x) = k}. 151
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Method
AUC2

10% AUC2
25% AUC2

50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

G
T

E

ZS 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8
DN2 76.7 64.8 70.0 76.2 76.0 75.6 75.9 80.2 79.6 75.3 82.2 80.2
ColdFusion 81.7 82.3 84.8 81.8 87.0 87.3 81.9 88.6 88.7 82.3 89.2 89.0

M
PN

E
T ZS 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1

DN2 78.3 69.7 69.8 78.2 78.9 76.9 77.6 82.3 80.9 76.3 83.6 81.1
ColdFusion 83.3 84.4 84.1 82.8 87.8 86.0 82.8 88.8 87.8 83.0 89.4 88.3

Table 1: AUC2
t̃ results, with contamination of r = 5%. Best results are in bold.

Method
AUC2

10% AUC2
25%

B77 C-Bank C-Cards B77 C-Bank C-Cards

K-means 80.0 79.2 83.7 78.9 84.0 87.0
Mean 81.6 80.8 84.7 81.7 86.4 87.5
MI 81.6 82.3 84.8 81.8 87.0 87.1
Median 81.7 82.3 84.8 81.8 87.0 87.3

Table 2: AUC2
t̃ results, with contamination of r = 5%

using the GTE model. MI refers to multiple iterations
with median adaptation. Best results are in bold.

Adaptation. We now adapt each class embed-152

ding by considering both the initial class descrip-153

tion and the assigned observations. Concretely, the154

adapted code for each class is the median of the set155

containing the embedding of the class descriptions156

and the embeddings of all assigned observations:157

zk = median({ϕ(ck)} ∪ Ck) (3)158

We chose the median and not mean for contamina-159

tion robustness. Note that this step will not modify160

the embedding of classes with no observations.161

Anomaly scoring. ColdFusion uses the same162

anomaly scoring as ZS except that the class codes163

are the adapted {zk}Kk=1 instead of the encod-164

ing of the original description i.e., Sadapt(x) =165

mink{d(ϕ(xt+1), zk)}Kk=1.166

4 Experiments167

Experimental setting. Our experiments simulate168

the deployment of an OOS query detection sys-169

tem. We first randomly sort the queries so that170

each query has a unique time t, modeling a query171

stream. At each time t, we train a model using the t172

available observations and the K class names, and173

evaluate the model on the entire test set.174

Datasets. We use three evaluation datasets,175

Banking77-OOS and CLINC-OOS segmented176

into CLINC-Banking and CLINC-Credit_Cards.177

Banking77-OOS (Casanueva et al., 2020; Zhang178

et al., 2021c) consists of 13, 083 customer service179

queries, categorized into 77 fine-grained intents 180

within the online banking domain. Among these, 181

50 intents are in-scope, while the remaining 27 are 182

OOS queries. CLINC-OOS (Larson et al., 2019; 183

Zhang et al., 2021c), derived from the broader 184

CLINC dataset, consists of two domains: "Bank- 185

ing" and "Credit cards", each featuring 10 in-scope 186

and 5 OOS intents. The training sets for each do- 187

main include 500 in-scope queries, while the test 188

sets contain 850 queries, with 350 designated as 189

OOS instances. Notably, our setting is unsuper- 190

vised i.e., observations do not include intent labels 191

for training. Further details are in App. B.1. 192

Feature extractor & class encoding. We explored 193

two feature encoders, namely the GTE model (Li 194

et al., 2023) and MPNET (Song et al., 2020), both 195

pre-trained on a large corpus of text pairs across 196

various domains. We found that directly encoding 197

intent topic names using these encoders did not 198

meet our performance expectations (See Sec. 5). 199

To overcome this challenge, we leverage ChatGPT 200

to generate a query corresponding to each topic 201

and utilize these generated queries as class descrip- 202

tions instead of the intent topic names. For further 203

details, please refer to App. A. 204

Baselines. We compare ColdFusion (Sec. 3.3) 205

to several baselines. These include the zero-shot 206

model (ZS), detailed in Sec. 3.1, which relies solely 207

on the generated normal class descriptions. Addi- 208

tionally, we consider DN2, an observation-based 209

anomaly detection method proposed by (Reiss 210

et al., 2021). DN2 computes the anomaly score 211

of an observation by its deep 1-nearest neighbor 212

distance versus the previous observations Dt. For 213

implementation details refer to App. B.2. 214

Evaluation metrics. We propose a new metric to 215

evaluate the cold-start setting, which emphasizes 216

high-accuracy shortly after deployment (low t). At 217

each time step t, we evaluate the performance of 218

the anomaly scores model using the Area Under the 219

Receiver Operation Characteristic (AUROC) curve. 220
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(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 2: Performance trends with contamination r = 5% using the GTE model over time demonstrate the
superiority of our ColdFusion method over other baseline approaches.

We obtain an AUROC score for every time step, and221

we denote them as {AUC(t)}Tt=1. We summarize222

this t vs. AUROC curve by the area under it up to223

time t. This is denoted as AUC2
t̃
=

∑t
t′=1 AUC(t′)

t ,224

where t̃ = t
T , the fraction of the training set used.225

The AUC2
t̃

metric provides a concise summary of226

the model’s accuracy freshly after deployment.227

4.1 Results228

We present our results in Tab. 1 and Fig. 2. ColdFu-229

sion consistently outperforms all baselines across230

the evaluated datasets by a large margin. Particu-231

larly, we see that DN2 performs poorly, especially232

with small t, and the zero-shot baseline (ZS) main-233

tains constant performance over time. Conversely,234

our approach performs well even for low t values,235

and improves over time. The presence of anomalies236

in the data stream poses a challenge for DN2, as it237

solely relies on the observed contaminated stream.238

This reliance often leads to occasional decreases239

in performance for DN2, highlighting the vulner-240

ability of methods that exclusively depend on the241

observed data without considering the underlying242

anomalies. Furthermore, our method’s robustness243

to different feature encoders, as evidenced by con-244

sistent trends in both the GTE and MPNET models,245

suggests that it is not reliant on a single feature246

extractor. Results for different contamination are247

in App. C.248

5 Ablation Study249

Class embedding adaptation method. We inves-250

tigate several variations of the adaptation method,251

shown in Tab. 2. i) Replacing our assignment and252

adaptation stages with K-means notably reduces253

performance, mainly due to its less effective ran-254

dom initialization method vs. our descriptor initial-255

ization; ii) Iterating multiple steps of assignment256

Method B77 C-Bank C-Cards

G
T

E Naive 76.9 60.7 69.8
Generated 78.9 83.1 81.8

M
PN

E
T Naive 79.8 69.6 73.7

Generated 81.8 82.7 80.1

Table 3: Comparison of ZS models in terms of AUROC.
As ZS models maintain constant performance over time
and are not exposed to data, AUC2

t̃ and contaminations
are irrelevant. Best results are in bold.

and adaptation, each time assigning to the adapted 257

center, fails to outperform ColdFusion. The single 258

iteration of ColdFusion is preferred, since multiple 259

iterations increase the computational cost. Addi- 260

tionally, the results in Tab. 2 show that median 261

adaptation is slightly better than using the mean on 262

the evaluated datasets. 263

Effectiveness of generated queries. In Tab. 3, we 264

examine the impact of a naive ZS detector that sim- 265

ply encodes the intent names, compared to our ZS 266

approach, which uses ChatGPT to generate a query 267

for each intent and then encodes the generated 268

query as the class embedding. The results highlight 269

that naive encoding of intent names alone yields 270

subpar performance, whereas our pre-processing 271

procedure considerably improves results. 272

6 Conclusion 273

We introduced the new setting of generalized cold- 274

start anomaly detection, modeling freshly deployed 275

anomaly detection systems. Our proposed solution, 276

ColdFusion, is a method for adapting zero-shot 277

anomaly detection to align with an observation 278

stream. We introduced an evaluation protocol and 279

metrics for comparing future methods. 280
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Limitations281

Our proposed method has several limitations. i)282

Not all deployed anomaly detection systems en-283

counter the generalized cold-start problem and in-284

deed in the case where there are many observations285

and very few anomalies, it is sometimes better to286

use observation-driven methods e.g., DN2 (Reiss287

et al., 2021). However, we believe that it is a com-288

mon issue, particularly in domains like chatbots;289

ii) Our approach relies on user-provided guidance290

for zero-shot detection, which may not be avail-291

able in systems lacking such priors; iii) We assume292

a low contamination ratio; if this ratio is signifi-293

cantly higher, the effectiveness of our method may294

decrease.295

Ethics Statement296

Our work focuses on the development and eval-297

uation of generalized cold-start anomaly detec-298

tion methods, which have practical implications299

across various domains. Given the critical nature300

of anomaly detection systems, especially in appli-301

cations where they may impact decision-making302

processes or user interactions, it is vital to con-303

sider ethical considerations at every stage of our304

research. Specifically, in the context of deploying305

anomaly detection systems, there is a risk of false306

positives or false negatives, which could lead to307

wrong outcomes. Therefore, it is crucial to thor-308

oughly evaluate the robustness and reliability of309

our proposed methods, ensuring they perform effec-310

tively and equitably across diverse scenarios. From311

a societal perspective, our research contributes to312

the advancement of anomaly detection techniques,313

potentially enhancing the safety and security of314

systems deployed in various domains. Moreover,315

we recognize the importance of transparency in our316

research practices. We commit to openly sharing317

our findings, methods, and code to ensure repro-318

ducibility and enable further study by the research319

community.320
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intent detection with dual sentence encoders. arXiv324
preprint arXiv:2003.04807.325

Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid326
Portnoy, and Sal Stolfo. 2002. A geometric frame-327
work for unsupervised anomaly detection. In Appli-328

cations of data mining in computer security, pages 329
77–101. Springer. 330

Michael Glodek, Martin Schels, and Friedhelm 331
Schwenker. 2013. Ensemble gaussian mixture mod- 332
els for probability density estimation. Computational 333
Statistics, 28(1):127–138. 334

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and 335
Dawn Song. 2019. Using self-supervised learning 336
can improve model robustness and uncertainty. In 337
NeurIPS. 338

Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing 339
Zhang, Avinash Ravichandran, and Onkar Dabeer. 340
2023. Winclip: Zero-/few-shot anomaly classifi- 341
cation and segmentation. In Proceedings of the 342
IEEE/CVF Conference on Computer Vision and Pat- 343
tern Recognition (CVPR), pages 19606–19616. 344

Ian Jolliffe. 2011. Principal component analysis. 345
Springer. 346

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron 347
Sarna, Yonglong Tian, Phillip Isola, Aaron 348
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su- 349
pervised contrastive learning. Advances in neural 350
information processing systems, 33:18661–18673. 351

Stefan Larson, Anish Mahendran, Joseph J Peper, 352
Christopher Clarke, Andrew Lee, Parker Hill, 353
Jonathan K Kummerfeld, Kevin Leach, Michael A 354
Laurenzano, Lingjia Tang, et al. 2019. An evalua- 355
tion dataset for intent classification and out-of-scope 356
prediction. arXiv preprint arXiv:1909.02027. 357

Longin Jan Latecki, Aleksandar Lazarevic, and 358
Dragoljub Pokrajac. 2007. Outlier detection with 359
kernel density functions. In International Workshop 360
on Machine Learning and Data Mining in Pattern 361
Recognition, pages 61–75. Springer. 362

Xurui Li, Ziming Huang, Feng Xue, and Yu Zhou. 2024. 363
Musc: Zero-shot industrial anomaly classification 364
and segmentation with mutual scoring of the unla- 365
beled images. In International Conference on Learn- 366
ing Representations. 367

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, 368
Pengjun Xie, and Meishan Zhang. 2023. Towards 369
general text embeddings with multi-stage contrastive 370
learning. arXiv preprint arXiv:2308.03281. 371

Ting-En Lin and Hua Xu. 2019. Deep unknown in- 372
tent detection with margin loss. arXiv preprint 373
arXiv:1906.00434. 374

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis- 375
covering new intents via constrained deep adaptive 376
clustering with cluster refinement. In Proceedings 377
of the AAAI Conference on Artificial Intelligence, 378
volume 34, pages 8360–8367. 379

Yutao Mou, Keqing He, Yanan Wu, Zhiyuan Zeng, 380
Hong Xu, Huixing Jiang, Wei Wu, and Weiran Xu. 381

5



2022. Disentangled knowledge transfer for ood in-382
tent discovery with unified contrastive learning. In383
Proceedings of the 60th Annual Meeting of the As-384
sociation for Computational Linguistics (Volume 2:385
Short Papers), pages 46–53.386

Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan387
Mandt, and Maja Rudolph. 2021. Neural transfor-388
mation learning for deep anomaly detection beyond389
images. In International Conference on Machine390
Learning, pages 8703–8714. PMLR.391

Tal Reiss, Niv Cohen, Liron Bergman, and Yedid392
Hoshen. 2021. Panda: Adapting pretrained features393
for anomaly detection and segmentation. In Pro-394
ceedings of the IEEE/CVF Conference on Computer395
Vision and Pattern Recognition, pages 2806–2814.396

Tal Reiss and Yedid Hoshen. 2023. Mean-shifted con-397
trastive loss for anomaly detection. In Proceedings398
of the AAAI Conference on Artificial Intelligence,399
volume 37, pages 2155–2162.400

Lukas Ruff, Nico Gornitz, Lucas Deecke,401
Shoaib Ahmed Siddiqui, Robert Vandermeulen,402
Alexander Binder, Emmanuel Müller, and Marius403
Kloft. 2018. Deep one-class classification. In ICML.404

Bernhard Scholkopf, Robert C Williamson, Alex J405
Smola, John Shawe-Taylor, and John C Platt. 2000.406
Support vector method for novelty detection. In407
NIPS.408

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-409
Yan Liu. 2020. Mpnet: Masked and permuted pre-410
training for language understanding. Advances in411
Neural Information Processing Systems, 33:16857–412
16867.413

David MJ Tax and Robert PW Duin. 2004. Support414
vector data description. Machine learning.415

Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zi-416
jun Liu, and Weiran Xu. 2020. A deep generative417
distance-based classifier for out-of-domain detection418
with mahalanobis space. In Proceedings of the 28th419
International Conference on Computational Linguis-420
tics, pages 1452–1460.421

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu,422
Yanan Wu, Hong Xu, Huixing Jiang, and Weiran Xu.423
2021. Modeling discriminative representations for424
out-of-domain detection with supervised contrastive425
learning. arXiv preprint arXiv:2105.14289.426

Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-427
Ming Wu, and Albert Lam. 2021. Out-of-scope in-428
tent detection with self-supervision and discrimina-429
tive training. arXiv preprint arXiv:2106.08616.430

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2021a. Deep431
open intent classification with adaptive decision432
boundary. In Proceedings of the AAAI Conference433
on Artificial Intelligence, volume 35, pages 14374–434
14382.435

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu. 436
2021b. Discovering new intents with deep aligned 437
clustering. In Proceedings of the AAAI Conference 438
on Artificial Intelligence, volume 35, pages 14365– 439
14373. 440

Jianguo Zhang, Kazuma Hashimoto, Yao Wan, Zhi- 441
wei Liu, Ye Liu, Caiming Xiong, and Philip S Yu. 442
2021c. Are pretrained transformers robust in in- 443
tent classification? a missing ingredient in evalua- 444
tion of out-of-scope intent detection. arXiv preprint 445
arXiv:2106.04564. 446

Xuan Zhang, Shiyu Li, Xi Li, Ping Huang, Jiulong Shan, 447
and Ting Chen. 2023. Destseg: Segmentation guided 448
denoising student-teacher for anomaly detection. In 449
Proceedings of the IEEE/CVF Conference on Com- 450
puter Vision and Pattern Recognition (CVPR), pages 451
3914–3923. 452

Yinhe Zheng, Guanyi Chen, and Minlie Huang. 2020. 453
Out-of-domain detection for natural language un- 454
derstanding in dialog systems. IEEE/ACM Trans- 455
actions on Audio, Speech, and Language Processing, 456
28:1198–1209. 457

Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and 458
Jiming Chen. 2024. Anomalyclip: Object-agnostic 459
prompt learning for zero-shot anomaly detection. 460

6



A Zero-Shot Anomaly Detection461

Zero-shot (ZS) anomaly detection assigns an462

anomaly score S(x) to each data point x without463

relying on past data. Instead, it is guided by a set of464

class names {c1, c2, ..., cK} provided by the user.465

To tackle this challenge, we leverage ChatGPT to466

generate a user query corresponding to each class467

topic name. We use these generated queries as class468

descriptions instead of the intent topic names.469

Query Generation: Utilizing ChatGPT-3.5, we470

generate a user query for each topic to serve as our471

class descriptions. Here, [DOMAIN] represents the472

chatbot domain (e.g., "Banking"). We employ the473

following template: "Generate queries that some-474

one would ask a chatbot in [DOMAIN]. Generate475

one-sentence queries for each of the following top-476

ics: {c1, c2, ..., cK}." This process yields a set of477

K user queries, denoted by {qk}Kk=1.478

A pre-trained feature extractor ϕ maps each gen-479

erated class name qk and observation x to deep480

embeddings ϕ(qk) and ϕ(x). Subsequently, we481

compute the L2 distance between the example em-482

beddings and each generated user query. The final483

anomaly score is determined by the distance to the484

nearest class:485

Szs(x) = min
k

{d(ϕ(x), ϕ(ck))}Kk=1486

Alg. 2 outlines our zero-shot model.487

A comparison between naive class names and488

generated queries is presented in Tab. 3.489

B Experimental Details490

B.1 Datasets491

We employ three widely used datasets, Banking77-492

OOS and CLINC-OOS (which is split into CLINC-493

Banking and CLINC-Credit_Cards), to evaluate494

our anomaly detection approach.495

Banking77-OOS. Banking77-OOS (Casanueva496

et al., 2020; Zhang et al., 2021c) is an annotated in-497

tent classification dataset designed for online bank-498

ing queries. Comprising 13, 083 customer service499

queries, each query is labeled with one of 77 fine-500

grained intents within the banking domain. The501

dataset focuses on fine-grained, single-domain in-502

tent detection. Of these 77 intents, Banking77-503

OOS incorporates 50 in-scope intents, while the504

out-of-scope (OOS) queries are constructed based505

on 27 held-out in-scope intents. The training set506

consists of 5,095 in-scope user queries, and the test507

set comprises 3,080 user queries, including 1,080508

OOS instances.509

Algorithm 2: Zero-Shot Detector
Input: Dprior, ϕ, query x.
Output: Anomaly score Szs(x).
Step 1: Generate user queries using
ChatGPT and Dprior: {qk}Kk=1;

Step 2: Encode generated queries:
{ϕ(qk)}Kk=1 and input query: ϕ(x);

Step 3: Compute anomaly score for x:
Szs(x) = mink{dϕ(x), ϕ(qk))Kk=1;

CLINC-OOS. CLINC-OOS (Larson et al., 510

2019; Zhang et al., 2021c) emanates from the 511

broader CLINC dataset, encompassing 15 intent 512

classes across 10 different domains, with integrated 513

out-of-scope examples. For our evaluation, we fo- 514

cus on two domains: "Banking" and "Credit cards". 515

Each domain is characterized by 5 in-scope and 516

10 out-of-scope intents. The training set for each 517

domain comprises 500 in-scope user queries, while 518

the test set includes 850 user queries, with 350 519

designated as out-of-scope instances. 520

B.2 Implementation Details & Baselines 521

Our implementation relies on two feature encoders: 522

the GTE model (Li et al., 2023) and MPNET (Song 523

et al., 2020), both pre-trained on a large corpus 524

of text pairs across various domains. We use the 525

HuggingFace library for both models. Specifically, 526

for the GTE model, we employ the "thenlper/gte- 527

large" model checkpoint, while for MPNET, we 528

use the "sentence-transformers/all-mpnet-base-v2" 529

model checkpoint. It’s noteworthy that all baselines 530

are using the same feature encoders in our compar- 531

isons. We use L2 as a distance metric. For DN2 532

(Reiss et al., 2021), the implementation involves 533

encoding Dt and the target query x with our feature 534

encoder ϕ, followed by computing the 1-nearest- 535

neighbor distance to ϕ(Dt). We employ the faiss 536

library for nearest-neighbor distance computations. 537

In our ColdFusion in order to be robust to anoma- 538

lies, we excluded observations assigned to class k 539

but are further than τ . Formally, we define Ck, as 540

the set of all observations assigned to class k as: 541

Ck = {ϕ(x)|a(x) = k, d(ϕ(x), ϕ(ck)) ≤ τ} 542

We set τ by first computing the distances between 543

all samples and their assigned centers, sorting them, 544

and choosing τ as the 90% percentile. An ablation 545

study on this parameter is in App. C. 546
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E
nc

od
er

Method
AUC2

10% AUC2
25% AUC2

50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

G
T

E

ZS 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8
DN2 74.6 71.2 71.6 77.5 79.4 79.1 78.8 82.9 82.9 79.2 84.7 85.7
ColdFusion 79.0 85.1 85.2 80.9 86.9 87.6 81.8 87.7 88.7 82.3 89.1 89.1

M
PN

E
T ZS 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1

DN2 76.6 74.7 70.7 79.1 82.4 78.5 80.1 85.7 82.7 80.5 86.9 84.8
ColdFusion 80.6 87.0 85.2 81.7 89.0 87.6 82.5 89.5 89.0 83.2 90.0 89.1

Table 4: AUC2
t̃ results, with contamination of r = 2.5%. Best results are in bold.

E
nc

od
er

Method
AUC2

10% AUC2
25% AUC2

50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

G
T

E

ZS 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8 78.9 83.1 81.8
DN2 70.6 67.2 71.3 72.5 77.5 78.1 73.4 80.5 81.1 73.8 80.8 81.9
ColdFusion 77.4 83.4 86.4 78.9 87.0 87.1 79.9 88.4 87.9 80.8 88.9 88.2

M
PN

E
T ZS 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1 81.8 82.7 80.1

DN2 72.3 72.8 70.7 74.5 82.4 78.0 75.3 84.8 80.9 75.3 84.1 80.9
ColdFusion 79.9 85.5 85.4 81.1 88.1 86.9 81.8 88.9 87.8 82.6 89.2 88.0

Table 5: AUC2
t̃ results, with contamination of r = 7.5%. Best results are in bold.

C More Results & Analysis547

Contamination Ratios. We extend our analysis548

by considering additional contamination ratios of549

r% = 2.5 and r% = 7.5, as shown in Tables 4550

and 5, respectively. Additionally, we present visual551

insights into ColdFusion’s adaptive performance552

over time through the figures presented in Fig. 3,553

Fig. 4, Fig. 5, and Fig. 6. Across all contamina-554

tion ratios, ColdFusion consistently outperforms555

all baselines by a significant margin, reinforcing556

our approach’s robustness and effectiveness. These557

supplementary results further support the stability558

and reliability of ColdFusion’s performance trends559

observed in the main analysis.560

Effect of τ . Table 6 provides an ablation analysis561

of different τ parameters as defined in Eq. B.2. We562

observe that selecting the 50% and 75% percentiles563

yields suboptimal performance compared to using564

the 90% and 100% percentiles. These percentiles565

involve minimal filtering. Interestingly, there is566

a slight improvement in performance when em-567

ploying the 90% percentile compared to the 100%568

percentile.569

D Related Works570

Out-of-scope intent discovery. Out-of-scope571

(OOS) intent discovery involves clustering new,572

unknown intents to identify potential development573

directions and expand the capabilities of dialogue574

systems. Prior works (Lin et al., 2020; Zhang et al.,575

2021b; Mou et al., 2022) in this domain have ex-576

plored semi-supervised clustering using labeled 577

in-domain data. Methods such as pre-training a 578

BERT encoder with cross-entropy loss (Lin et al., 579

2020; Zhang et al., 2021b) and utilizing similar- 580

ity constrained or supervised contrastive losses 581

(Khosla et al., 2020) to learn discriminative features 582

(Mou et al., 2022) aim to transfer intent representa- 583

tions. However, these approaches face challenges 584

related to in-domain overfitting, where represen- 585

tations learned from in-scope data may not gen- 586

eralize well to OOS data. In contrast to this line 587

of work, our approach focuses on detecting OOS 588

intents rather than discovering them. Notably, our 589

setting involves unlabeled in-scope intents, and our 590

model’s prior knowledge is limited to intent names. 591

Out-of-scope intent classification. OOS intent 592

classification is categorized based on the use of ex- 593

tensive labeled OOS intent samples during training. 594

The first category involves methods that use OOS 595

samples during training, treating OOS intent classi- 596

fication as a (n+1)-class classification task (Zheng 597

et al., 2020; Zhan et al., 2021). In contrast, the sec- 598

ond category aims to minimize intra-class variance 599

and maximize inter-class variance to widen the 600

margin between in-scope and OOS intents (Lin and 601

Xu, 2019; Zeng et al., 2021). Some approaches 602

(Zhang et al., 2021a; Xu et al., 2020; Zeng et al., 603

2021) incorporate Gaussian distribution into the 604

learned intent features to aid OOS detection. Our 605

work stands apart from this line of research as it 606

specifically addresses OOS intents, where in-scope 607
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intents (topics) lack labels, and the model has no608

information or exposure to any OOS intents.609

Classical anomaly detection methods. Detect-610

ing anomalies in images has been researched for611

several decades. The methods follow three main612

paradigms: i) Reconstruction - this paradigm first613

attempts to characterize the normal data by a set614

of basis functions and then attempts to reconstruct615

a new example using these basis functions, typ-616

ically under some constraint such as sparsity or617

weights with a small norm. Samples with high618

reconstruction errors are atypical of normal data619

distribution and anomalous. Some notable meth-620

ods include: principal component analysis (Jolliffe,621

2011) and K-nearest neighbors (kNN) (Eskin et al.,622

2002); ii) Density estimation - another paradigm623

is to first estimate the density of normal data. A624

new test sample is denoted as anomalous if its esti-625

mated density is low. Parametric density estimation626

methods include Ensembles of Gaussian Mixture627

Models (EGMM) (Glodek et al., 2013), and non-628

parametric methods include kNN (which is also a629

reconstruction-based method) as well as kernel den-630

sity estimation (Latecki et al., 2007). Both types631

of methods have weaknesses: parametric methods632

are sensitive to parametric assumptions about the633

nature of the data whereas non-parametric methods634

suffer from the difficulty of accurately estimating635

density in high-dimensions; iii) One-class classi-636

fication (OCC) - this paradigm attempts to fit a637

parametric classifier to distinguish between normal638

training data and all other data. The classifier is639

then used to classify new samples as normal or640

anomalous. Such methods include one-class sup-641

port vector machine (OCSVM) (Scholkopf et al.,642

2000) and support vector data description (SVDD)643

(Tax and Duin, 2004).644

Deep learning for anomaly detection. This line645

of work is based on the idea of initializing a neural646

network with pre-trained weights and then obtain-647

ing stronger performance by further adaptation of648

the training data. DeepSVDD (Ruff et al., 2018)649

suggested to first train an auto-encoder on the nor-650

mal training data, and then using the encoder as651

the initial feature extractor. Moreover, since the en-652

coder features are not specifically fitted to anomaly653

detection, DeepSVDD adapts to the encoder train-654

ing data. However, this naive training procedure655

leads to catastrophic collapse. An alternative di-656

rection is to use features learned from auxiliary657

tasks on large-scale external datasets. Transferring658

pre-trained features for out-of-distribution detec-659

tion has been proposed by (Hendrycks et al., 2019). 660

It was recently established (Reiss et al., 2021) that 661

given sufficiently powerful representations, a sim- 662

ple criterion based on the kNN distance to the nor- 663

mal training data achieves strong performance. The 664

best performing methods (Reiss et al., 2021; Reiss 665

and Hoshen, 2023) combine pre-training on exter- 666

nal datasets and a second finetuning stage on the 667

provided normal samples in the training set, but 668

they require many data observations and assume 669

that the observations are not contaminated. 670
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(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 3: Performance trends with contamination r = 2.5% using the MPNET model over time.

(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 4: Performance trends with contamination r = 5% using the MPNET model over time.

(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 5: Performance trends with contamination r = 7.5% using the MPNET model over time.

(a) Banking77-OOS (b) CLINC-Banking (c) CLINC-Credit_Cards

Figure 6: Performance trends with contamination r = 7.5% using the GTE model over time.
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τ
AUC2

10% AUC2
25% AUC2

50% AUC2
100%

B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards B77 C-Bank C-Cards

τ = perc(ϕ(Dt), 50%) 80.1 80.4 80.7 80.6 83.6 83.0 80.7 85.1 84.6 81.3 86.5 85.4
τ = perc(ϕ(Dt), 75%) 81.8 81.9 83.0 81.9 85.5 84.8 81.8 87.4 86.7 82.1 88.2 87.7
τ = perc(ϕ(Dt), 100%) 82.0 81.1 85.0 82.1 86.0 86.7 81.8 88.0 88.0 82.3 89.0 88.5
τ = perc(ϕ(Dt), 90%) 81.7 82.3 84.8 81.8 87.0 87.3 81.9 88.6 88.7 82.3 89.2 89.0

Table 6: AUC2
t̃ results using the GTE model, with contamination of r = 5%. Best results are in bold.
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