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ABSTRACT

Multivariate time series forecasting (MTSF) plays a vital role in a wide range of
real-world applications, such as weather prediction and traffic flow forecasting.
Although recent advances have significantly improved the modeling of temporal
dynamics and inter-variable dependencies, most existing methods overlook index-
related descriptive information, such as timestamps and variable indices, which
carry rich contextual semantics. To unlock the potential of such information and
take advantage of the lightweight and powerful periodic capture ability of MLP-
based architectures, we propose IndexNet, an MLP-based framework augmented
with an Index Embedding (IE) module. The IE module consists of two key
components: Timestamp Embedding (TE) and Channel Embedding (CE).
Specifically, TE transforms timestamps into embedding vectors and injects them
into the input sequence, thereby improving the model’s ability to capture long-term
complex periodic patterns. In parallel, CE assigns each variable a unique and
trainable identity embedding based on its index, allowing the model to explicitly
distinguish between heterogeneous variables and avoid homogenized predictions
when input sequences seem close. Extensive experiments on 12 diverse real-
world datasets demonstrate that IndexNet achieves comparable performance across
mainstream baselines, validating the effectiveness of our temporally and variably
aware design. Moreover, plug-and-play experiments and visualization analyses
further reveal that IndexNet exhibits strong generality and interpretability, two
aspects that remain underexplored in current MTSF research. Implementation
details and reproducible code are provided in the supplementary materials.

1 INTRODUCTION

Multivariate time series forecasting (MTSF) aims to predict future values from historical observations
and plays a pivotal role in numerous real-world applications, including financial investment (Sezer
et al., 2020), weather forecasting (Karevan & Suykens, 2020), and traffic flow prediction (Shu et al.,
2021; Miao et al., 2024b). In such scenarios, temporal and variable index information, such as
timestamps and variable indexes, provides rich semantic cues. For instance, timestamps naturally
provide periodic patterns (Yue et al., 2022; Dyreson & Snodgrass, 1993), while variable indexes
indicate different dynamics across heterogeneous variables (Shao et al., 2022).

Although timestamps and variable indexes are crucial for interpreting multivariate time series,
existing MTSF methods still struggle to exploit them effectively (Dai et al., 2024a; Liu et al., 2024b).
This drawback not only diminishes predictive accuracy but also raises issues of reliability and
interpretability, both of which are vital in domains such as investment and decision-making (Ismail
et al., 2020; Oreshkin et al., 2019; Lim et al., 2021; Fortuin et al., 2018). Reviewing earlier studies on
timestamp modeling, as shown in Fig. 1, early efforts integrated timestamps by aligning them with
sequences along the channel dimension and fusing them through addition in the latent space (Wu
et al., 2021; Zhou et al., 2021; Wu et al., 2023), yet the gains were often marginal. A retrospective
perspective (Wang et al., 2024a) indicates that projecting timestamp information across multiple
channels drives models into overly complex multivariate interactions to extract complete temporal
cues (Han et al., 2023). Subsequently, inspired by the strong performance of models (Zeng et al.,
2023; Nie et al., 2023) without timestamps, many approaches abandoned them altogether. Although
a few recent works have revisited timestamp modeling, the improvements remain limited.

Moreover, with respect to variable indices, although they naturally correspond to variable identi-
ties, their role has been largely overlooked in existing studies (Hu et al., 2025; Liu et al., 2024a).
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Figure 1: The general timestamp processing strategy in early works and its comparative experimental
results with more recent methods. Subfigure (a) illustrates the typical processing of timestamp
information before to modeling. Subfigure (b) compares the forecasting performance of different
methods with timestamp on the Electricity dataset, with input and output sequence lengths are 96.

Incorporating identity information can substantially enhance models in characterizing heterogeneous
variables, especially when they exhibit similar inputs but diverge in future dynamics. By assigning
variable-specific identities, the model can effectively distinguish unique temporal patterns and pro-
duce tailored forecasts for each variable. For example, in weather forecasting, humidity and wind
speed are fundamentally different variables with distinct temporal behaviors. Current approaches,
however, often treat all variables as homogeneous sequences, either modeling them independently or
relying on intricate mechanisms to capture inter-variable interactions and differences (Shao et al.,
2024). The former strategy risks confusion, particularly when heterogeneous channels share similar
inputs yet evolve differently, making it difficult for channel-independent models to account for
variable-specific properties (Liang et al., 2022). The latter, in contrast, typically requires elaborate
designs and complex network architectures, which tend to be fragile and computationally expensive.

To address these issues, we propose an index-aware network, termed IndexNet. IndexNet comprises
two core components: an Index Embedding (IE) module and a lightweight MLP-based backbone.
The IE module integrates index-related prior knowledge (e.g., timestamps and variable indices)
through two submodules: Timestamp Embedding (TE) and Channel Embedding (CE). The TE
submodule injects temporal information into each sequence by constructing and retrieving a set of
learnable timestamp embeddings, where each embedding encodes periodic patterns at a specific
scale (e.g., day, hour, minute). Any time series can retrieve the corresponding embedding based on
its timestamp, thereby improving predictive accuracy and reliability. The CE submodule captures
variable-specific dynamics by encoding variable identities. It builds a group of learnable channel
embeddings, assigning each variable a unique representation. Each variable retrieves the identity
vector via its index for variable-aware modeling. Meanwhile, given the efficiency, generalization,
and periodic modeling capacity of MLPs (Li et al., 2023), an MLP-based backbone is employed for
representation learning. Through this design, IndexNet not only preserves the unique advantages
of MLPs in sequence modeling but also effectively exploits both timestamp and variable identity
information, delivering a lightweight, robust, and interpretable solution for MTSF.

In a nutshell, the contributions of our paper are summarized as follows:

• We propose an index-aware network, named IndexNet, which leverages both timestamp
and variable identity information to provide a robust and interpretable solution for MTSF,
addressing the long-standing neglect of index-related cues in existing models.

• The Index Embedding (IE) module contains two subcomponents: Timestamp Embedding
(TE), which injects periodic information into sequences to enhance reliability and inter-
pretability; and Channel Embedding (CE), which assigns each variable a distinct learnable
identity vector, enabling the model to capture variable-specific patterns.

• Experiments on 12 public MTSF datasets show that IndexNet achieves competitive perfor-
mance against recent methods. In addition, plug-and-play and visualization results highlight
the generality and interpretability of our approach, offering meaningful temporal- and
variable-wise insights.
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2 RELATED WORK

2.1 MULTIVARIATE TIME SERIES FORECASTING

Multivariate time series forecasting (MTSF) has garnered significant attention due to its wide
applicability in real-world scenarios (Dai et al., 2024b; Liu et al., 2024c; Nie et al., 2023). Classical
statistical approaches, such as ARIMA (Nelson, 1998) model temporal dynamics via autoregressive
and moving average components. However, the complexity and dynamics of real-world data often
challenge the adaptability of such methods (Gough et al., 2010; Ramana et al., 2000). With the
rapid progress of deep neural networks (DNNs) in domains such as natural language processing
and computer vision, DNN-based models have emerged as a dominant paradigm in MTSF. These
methods aim to capture intricate dependencies across multiple variables through carefully designed
network architectures. Recent research broadly categorizes these models into Channel Independent
(CI) and Channel Dependent (CD) approaches. CI methods (Zeng et al., 2023; Das et al., 2023; Nie
et al., 2023; Dai et al., 2024a; Lin et al., 2024; Miao et al., 2025) make predictions solely based on
the historical values of each individual variable, deliberately avoiding inter-variable interactions and
timestamps. This design simplifies the learning process, stabilizes training, and excels at capturing
rapid, channel-specific temporal dynamics. In contrast, CD methods (Wu et al., 2021; Zhou et al.,
2022; Wu et al., 2023; Zhang & Yan, 2023; Liu et al., 2024c), predominantly Transformer-based,
explicitly model the correlations among different variables to exploit cross-channel dependencies.
While these models incorporate richer information, they often suffer from severe overfitting when
capturing complex inter-variable relationships, leading to marginal improvements or even performance
degradation in practical forecasting tasks.

2.2 TIMESTAMP AND VARIABLE INDEX

Early deep learning-based models for multivariate time series forecasting typically adopt complex
encoder-decoder architectures with embedding layers. Representative models such as Informer (Zhou
et al., 2021), TimesNet (Wu et al., 2023), and others (Zhou et al., 2022; Liu et al., 2021) incorporate
timestamp information by adding timestamp embeddings to positional and value embeddings. While
this approach helps extract temporal patterns from raw observations, it entangles timestamp semantics
across all variable channels, forcing the model to implicitly learn timestamp-variable interactions.
This often leads to overfitting and limited generalization (Wang et al., 2024a). Later studies, such as
DLinear (Zeng et al., 2023), demonstrated that simple linear models without timestamp inputs or
inter-variable modeling could outperform these complex frameworks, highlighting the strength of
lightweight architectures and questioning the utility of timestamp encoding.

As a result, recent methods (Nie et al., 2023; Lin et al., 2024) have removed timestamp inputs
altogether. However, this overlooks the semantic value of timestamps in varying order, periodicity,
and seasonality—key elements in real-world temporal signals. Some recent approaches have revis-
ited timestamp modeling from new angles. For example, (Shao et al., 2022) introduces temporal
indices at intermediate layers, achieving gains in limited settings. iTransformer (Liu et al., 2024c)
embeds timestamp features into attention tokens, though improvements remain marginal. Similarly,
GLAFF (Wang et al., 2024a) integrates timestamp semantics at the decoder stage but fails to deliver
consistent benefits across datasets. In contrast, variable index information remains largely underuti-
lized in MTSF. Variable indexes encode variable-specific identities and can provide valuable priors
for disentangling heterogeneous temporal dynamics. Despite this, only a few models Shao et al.
(2022); Lin et al. (2023) explicitly incorporate variable index cues, leaving a gap in the development
of identity-aware forecasting approaches.

3 METHOD

In multivariate time series forecasting, the goal is to predict the future sequence Y =
[xL+1, . . . ,xL+T ] ∈ RN×T given the historical input sequence X = [x1, . . . ,xL] ∈ RN×L, where
L and T denote the lengths of the input and output sequences respectively, and N represents the
number of variables. It is important to note that the timestamp information corresponding to each time
step varies according to the sampling interval and temporal resolution of the dataset. For example,
when data is recorded at an hourly resolution spanning multiple years, each timestamp generally
consists of four components: year, month, day, and hour, which together form a timestamp sequence
TS = [S1, . . . ,SL] ∈ R4×L.
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Figure 2: The overall architecture of IndexNet, which consists of three modules: Timestamp Embed-
ding, Channel Embedding, and Forecasting.

3.1 STRUCTURE OVERVIEW

As illustrated in Fig. 2, IndexNet consists of three modules: Timestamp Embedding (TE), Channel
Embedding (CE), and Forecasting. Given a multivariate input sequence, IndexNet first normalizes
the raw data, which is then combined with index-related information throughout the pipeline. The TE
module generates learnable embeddings for timestamp components such as day, hour, and minute,
injecting temporal semantics into each time step by retrieving and integrating the corresponding
embeddings based on the timestamp values. After that, the CE module assigns each variable a unique,
learnable identity vector, which is concatenated with the input features following a linear projection,
explicitly encoding variable-specific information. Finally, this enriched representation is fed into the
Forecasting module—an encoder composed of multiple MLP layers—that models temporal dynamics
and produces the forecast through a final linear projection and de-normalization. Each of these
modules will be described in detail in the following sections.

3.2 DATA PREPROCESSING

We first apply Z-score normalization (Kim et al., 2022) to the input X = [x1, . . . ,xN ] ∈ RN×L to
obtain normalized sequence x̂n. Later, we construct a timestamp sequence TS = [S1, . . . ,SL] ∈
Rk×L, where k is the dimensionality of each timestamp. This sequence is subsequently fed into the
Timestamp Embedding module. If explicit timestamps are unavailable in the original dataset, we
use sequential indices along the time axis as a proxy. Assuming a sampling interval of one hour, we
extract coarse-grained periodic time features such as the hour of day and day of week:

HourOfDay(t) = t mod 24, HourOfWeek(t) =
⌊

t

24

⌋
mod 7,

St = Concatenate(HourOfDay(t), HourOfWeek(t)),

where t ∈ {0, 1, . . . ,H − 1}, and H is the number of time steps in the dataset; 24 and 7 correspond
to the number of hours in a day and days in a week, respectively. The extracted HourOfDay(t) ∈
{0, 1, . . . , 23} and HourOfWeek(t) ∈ {0, 1, . . . , 6} features are concatenated to form the timestamp
representation St for each time step t. This encoding assigns each time step a periodic index that
captures cyclical temporal patterns as well as the relative position within the sequence.

3.3 TIMESTAMP EMBEDDING

To encode periodic temporal semantics, the Timestamp Embedding (TE) module constructs multiple
sets of learnable embeddings, each corresponding to a specific temporal feature such as minute,
hour, day of week, and so forth. Each set contains embedding vectors whose number matches the
cardinality of the respective temporal feature (e.g., 7 vectors for day of week, 24 for hour of day).
Each embedding vector has a dimensionality equal to the input sequence length L, ensuring proper
alignment of embeddings with each time step. Formally, the embedding matrices are defined as:

Eminute ∈ RK×Tdim , Ehour ∈ R24×Tdim , Edow ∈ R7×Tdim ,

Edom ∈ R31×Tdim , Emonth ∈ R12×Tdim ,

4
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where Tdim denotes the latent dimension of the feature. Eminute,Ehour, and Edow correspond to the
minute of an hour, hour of a day, and day of a week, respectively. For finer granularity, Eminute

encodes minute-level features, where K = 60
τ specifies the number of minute intervals per hour given

a sampling interval of τ minutes. In contrast, Edom and Emonth capture coarser month-level patterns.
All embedding matrices are initialized to zero to promote stable training.

Based on the constructed groups of timestamp embeddings, we retrieve temporal representations by
indexing into the corresponding timestamp embeddings using the discrete values from the timestamp
sequence. Given a timestamp input sequence TS = [S1, . . . ,SL] ∈ Rd×L, where each St contains d
discrete temporal fields (e.g., minute, hour, weekday), the corresponding embeddings are retrieved as
follows:

et
minute = Eminute[Minute(t)], et

hour = Ehour[Hour(t)], et
dow = Edow[DayofWeek(t)],

et
dom = Edom[DayofMonth(t)], et

month = Emonth[Month(t)],

where the functions Minute(t), Hour(t), and DayofWeek(t) extract the integer index values for the
respective temporal features from the timestamp vector St at time step t. The retrieved embedding
vectors et

minute, et
hour, et

dow, et
dom, et

month represent the timestamp embeddings aligned with the
input sequence length. When the sampling granularity τ = 60 minutes (i.e., hourly sampling),
the minute-level embedding is omitted since it provides no additional temporal resolution. These
embeddings are then aggregated to form the final timestamp representation as follows:

ewt = eminute
t + ehour

t + edow
t , emt = edom

t + emonth
t ,

where ewt aggregates embeddings from features with week-level periodicity, and emt aggregates
those from features with longer month-level periodicity. Given a sequence x, we first retrieve the
corresponding temporal information based on its starting timestamp, and then integrate the retrieved
information ewt and emt into the representation as follow:

z = Linear(x), z ∈ Rdmodel ,

zt = Concatenate(z, ewt + emt ), zt ∈ Rdmodel+Tdim .

Here, zt denotes the feature representation enriched with timestamp information, dmodel is the temporal
representation dimension. In practice, a subset of these embeddings is selected according to the
dataset characteristics. By default, ewt is adopted, as most datasets span sufficiently long periods
to capture weekly patterns without severe overfitting. In contrast, emt is usually excluded, since
their monthly cycles are too long to provide enough samples for effective modeling in relatively
small datasets. With this design, the TE module dynamically retrieves temporal priors from discrete
calendar fields and integrates them into sequence representations, thereby enhancing the model’s
sensitivity to temporal variations.

3.4 CHANNEL EMBEDDING

To incorporate channel-specific identity information, the Channel Embedding (CE) module encodes
variable indices into dedicated learnable embedding vectors. Given a multivariate input sequence
X ∈ RN×L, we define a learnable channel embedding matrix Eidentity ∈ RN×cdim , where cdim
ddenotes the embedding dimensionality. This matrix is initialized with zeros and jointly optimized
during training.

For each variable xn ∈ {1, . . . , N}, its corresponding identity embedding is retrieved by indexing
into a learnable identity embedding matrix Eidentity ∈ RN×Cdim . Specifically, the identity index is
defined as In = n− 1, and the retrieved embedding is defined as:

eidentity
n = Eidentity[In].

These identity embeddings are concatenated with the timestamp-enhanced sequence representations
to form the input for subsequent encoding. Specifically, the timestamp-enhanced sequence xts

n ∈ RL

is first projected into the model’s feature space via a linear transformation and then concatenated with
the identity embedding to yield the final representation:

ztcn = Concatenate(ztn, e
identity
n ), ztcn ∈ Rdmodel+Tdim+Cdim ,

where ztn denotes the projected timestamp-enhanced features, and ztcn represents the identity-enriched
embedding that jointly encodes temporal dynamics and variable-specific semantics. With this design,
the identity information of different channels can be effectively fused into their corresponding
representations.

5
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Models IndexNet SOFTS iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer TSMixer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.448 0.436 0.449 0.442 0.454 0.447 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.463 0.452 0.496 0.512

ETTh2 0.381 0.405 0.373 0.400 0.383 0.407 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.401 0.417 0.450 0.459

ETTm1 0.374 0.392 0.393 0.403 0.407 0.410 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.398 0.407 0.588 0.517

ETTm2 0.278 0.321 0.287 0.330 0.288 0.332 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.289 0.333 0.327 0.371

Weather 0.240 0.268 0.255 0.278 0.258 0.278 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.256 0.279 0.338 0.382

ECL 0.169 0.259 0.174 0.264 0.178 0.270 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.186 0.287 0.227 0.338

Traffic 0.411 0.267 0.409 0.267 0.428 0.282 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.522 0.357 0.628 0.379

Solar-Energy 0.223 0.256 0.229 0.256 0.233 0.262 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.260 0.297 0.885 0.711

Table 1: Multivariate forecasting results with prediction lengths T ∈ {96, 192, 336, 720} for all datasets and fixed lookback length
L = 96. Results are averaged from all prediction lengths. Full results are listed in Appendix B.6.1 and the short-term forecasting
results on PeMS datasets are show in Appendix B.7.

3.5 FORECASTING

The Forecasting module consists of two primary components: an MLP-based encoder that processes
the index-enriched sequence representations, and a linear projection layer that generates the final
forecasts. The output of the CE module Ztc ∈ RN×(dmodel+Tdim+Cdim) is fed into a stack of feedforward
layers designed to capture complex variable-wise interactions and produce the forecasting outputs.
Formally, the prediction process consists of m residual MLP layers:

H(0) = Ztc, H(l) = H(l−1) + Linear(ReLU(Linear(H(l−1)))), l = {1, . . . ,m},

where each layer consists of two linear transformations separated by a ReLU activation, with residual
connections applied to facilitate gradient flow and stabilize training. The output of the last layer H(n)

is then passed through a final linear projection that maps the features to the output sequence length T :

Ŷ = Linear(H(n)), Ŷ ∈ RN×T .

Finally, we restore the predicted outputs to their original scale by de-normalization operation,
generating final output Y ∈ RN×T .

4 EXPERIMENT

To validate the effectiveness of the proposed IndexNet, we conduct extensive experiments across
various time series forecasting tasks, encompassing both long-term and short-term scenarios.

Baselines. We compare IndexNet against a diverse set of state-of-the-art models, including
Transformer-based methods such as iTransformer (Liu et al., 2024c), PatchTST (Nie et al., 2023),
Crossformer (Zhang & Yan, 2023), FEDformer (Zhou et al., 2022), Autoformer (Wu et al., 2021), and
Informer (Zhou et al., 2021); MLP-based methods including SOFTS (Han et al., 2024), TiDE (Das
et al., 2023), DLinear (Zeng et al., 2023), and TSMixer (Wang et al., 2024b); as well as CNN-based
models such as TimesNet (Wu et al., 2023), SCINet (Liu et al., 2022), and MICN (Wang et al., 2022).

Implementation Details. All experiments are implemented in PyTorch (Paszke et al., 2019) and
conducted on a single NVIDIA A100 80GB GPU. We adopt the Adam optimizer (Kingma, 2014).
More implementation details about hyperparameter settings and metrics are provided in Appendix
Sec. B.2 and Sec. B.3, respectively.

4.1 LONG-TERM FORECASTING

Setups. We conduct long-term forecasting experiments on several widely used real-world datasets,
including the Electricity Transformer Temperature (ETT) dataset with its four subsets (ETTh1,
ETTh2, ETTm1, ETTm2) (Wu et al., 2021; Miao et al., 2024a), as well as Weather, Electricity,
Traffic, and Solar (Liu et al., 2025a;b). Following previous works (Zhou et al., 2021; Wu et al., 2021),
we use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. We set
the input length L to 96 for all methods. The detailed introduction can be found in B.1.
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Results. As shown in Tab. 1, IndexNet consistently achieves either the best or second-best perfor-
mance across most datasets, with the only exception being the Solar dataset. While our model falls
slightly behind the top-performing method on a few individual datasets, it delivers overall superior
results. Remarkably, despite adopting a relatively simple MLP-based backbone and a channel-
independent (CI) modeling strategy—typically more effective in low-dimensional settings—IndexNet
remains highly competitive even on the dataset with a large number of channels. Specifically, In-
dexNet outperforms state-of-the-art Transformer-based channel-dependent (CD) models such as
iTransformer and Crossformer, reducing MSE by 2.34% and 24% on average, respectively. In
contrast, on the lower-dimensional ETTm1 dataset, IndexNet also demonstrates strong performance,
surpassing representative CI baselines like PatchTST and DLinear with MSE reductions of 8.11%
and 6.5%, respectively. These results highlight the robustness and adaptability of IndexNet across
datasets with varying dimensionality and dependency structures.

(a) Visualization of Channel Embedding (b) Visualization of Variable 0 & 2 (c) Visualization of Variable 1 & 3 (d) Visualization of Variable 4 & 5 & 6

Figure 3: Visualization of Channel Embeddings and multivariate time series from the ETTh1 dataset.
(a) shows the 3D projection of learned channel embeddings after dimensionality reduction via PCA.
(b), (c), and (d) illustrate the time sequences of selected variable groups.

(a) ETTh1 
Timestamp Embeddings

(b) Weather 
Timestamp Embeddings

Figure 4: Visualization of 24-hour Timestamp Embeddings. Subfigure (a) displays the 3D
PCA projection of Timestamp Embeddings on the ETTh1 dataset, while subfigure (b) shows the
corresponding visualization on the Weather dataset.

4.2 ABLATION STUDIES

Case TE CE ETTm1 Weather Solar Electricity Traffic

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
① × × 0.386 0.398 0.257 0.278 0.266 0.290 0.189 0.274 0.459 0.288

② × ✓ 0.380 0.396 0.245 0.272 0.260 0.287 0.179 0.267 0.458 0.286

③ ✓ × 0.381 0.396 0.252 0.274 0.238 0.269 0.178 0.266 0.415 0.272

④ ✓ ✓ 0.374 0.392 0.240 0.268 0.223 0.256 0.169 0.259 0.411 0.267

Table 2: Ablation on the effect of removing TE and CE sub-modules. ✓ indicates the use of the
sub-module, while × means removing the sub-module. Results are averaged from all prediction
lengths. Full results are listed in Appendix B.8.
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Figure 5: Visualization of ablation results in Electricity dataset. Subfigure (a) illustrates the
difference in capturing week-level periodicity with and without the TE module, while (b) and (c)
compare the predictions of two similar channels before and after introducing the CE module.

Components Ablation. To assess the effectiveness of the temporal and channel-aware enhancement
modules, namely TE (Timestamp Embedding) and CE (Channel Embedding), we conduct ablation
studies by selectively removing each component. As shown in Tab. 2, removing the TE module
results in a clear drop in forecasting accuracy, especially on datasets with strong periodicity such as
Solar, Electricity, and Traffic. More intuitively, Fig. 5(a) shows that with TE, our MLP model can not
only leverage day-level variations (e.g., Monday-Thursday) to predict Friday and Monday, but also
use week-level timestamp cues to distinguish the different patterns of Saturday and Sunday. Further-
more, Fig. 5(b) illustrates that with CE, the channel-independent model no longer produces overly
similar predictions for correlated channels, but instead adjusts them according to the characteristics
of each channel sequence.

Methods IndexNet PatchTST iTransformer

Metric MSE MAE Params(M) GFLOPs Test(ms) MSE MAE Params(M) GFLOPs Temst(ms) MSE MAE Params(M) GFLOPs m Test(ms)

W
ea

th
er

96 0.150 0.198 1.77 0.596 0.957 0.152 0.199 4.133 7.962 23.671 0.155 0.206 4.870 3.271 2.239
192 0.192 0.241 1.828 0.613 0.962 0.197 0.243 8.199 8.483 23.871 0.200 0.245 4.920 3.304 2.245
336 0.247 0.285 1.907 0.639 0.974 0.249 0.283 14.298 9.263 23.918 0.252 0.289 4.994 3.354 2.253
720 0.321 0.335 2.116 0.710 0.984 0.320 0.335 30.564 11.344 24.396 0.323 0.340 5.191 3.486 2.259

E
le

ct
ri

ci
ty 96 0.125 0.218 1.776 9.104 2.385 0.130 0.222 62.222 30.427 90.367 0.132 0.230 5.465 28.052 9.143

192 0.146 0.252 1.828 9.372 2.466 0.148 0.240 124.378 32.415 91.156 0.153 0.252 5.517 28.320 9.264
336 0.163 0.255 1.907 9.774 2.572 0.167 0.261 217.612 35.397 91.896 0.167 0.264 5.595 28.723 9.377
720 0.196 0.286 2.116 10.847 2.765 0.202 0.291 466.236 43.349 110.241 0.199 0.288 5.805 29.796 9.741

Tr
af

fic

96 0.334 0.240 6.446 88.805 15.683 0.367 0.251 500.931 327.539 298.311 0.354 0.256 13.326 183.727 61.380
192 0.352 0.251 6.544 90.161 15.924 0.385 0.259 1001.498 339.551 300.224 0.369 0.269 13.424 184.213 61.934
336 0.372 0.358 6.691 92.195 16.331 0.398 0.265 1752.348 357.568 303.281 0.389 0.271 13.514 186.322 62.229
720 0.422 0.279 7.085 97.618 17.254 0.434 0.287 3754.615 405.615 312.592 0.435 0.301 13.815 190.474 63.176

Table 3: Comparison of performance and computational cost under the longer look-back window L=336.

Longer Look-back Window and Computational Cost. To evaluate the performance and com-
putational efficiency of our method under longer input horizons, we conducted experiments with
an extended look-back window of L = 336. The inference time was measured by averaging over
100 runs to estimate the cost of a single forward pass. As shown in Tab. 3, our method consis-
tently achieves competitive or superior forecasting accuracy while maintaining significantly lower
computational overhead compared with recent representative baselines.

Overall, the results demonstrate that our approach achieves a favorable balance between accuracy and
efficiency. In terms of parameter size, IndexNet requires only 1.9M parameters, which is substantially
fewer than PatchTST (over 14M) and iTransformer (approximately 5M). Regarding computational
cost, IndexNet incurs merely 0.639 GFLOPs, compared with 9.263 GFLOPs for PatchTST and 3.354
GFLOPs for iTransformer. This lightweight design directly translates to faster inference: the average
test latency of IndexNet is nearly 1 ms, far outperforming PatchTST (23.9 ms) and iTransformer (2.3
ms). These results clearly indicate that our method not only surpasses strong baselines in predictive
performance, but also provides a substantial advantage in computational efficiency and inference
speed, making it highly practical for real-world applications with limited resources.
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Models iTransformer + IE + TE + CE + GALF + VH ModernTCN + IE + TE + CE + GALF + VH

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.174 0.214 0.160 0.204 0.173 0.214 0.166 0.210 0.177 0.216 0.170 0.213 0.154 0.205 0.146 0.197 0.151 0.202 0.147 0.198 0.157 0.208 0.150 0.200

192 0.221 0.254 0.210 0.250 0.224 0.256 0.212 0.251 0.224 0.259 0.219 0.252 0.203 0.246 0.193 0.241 0.199 0.245 0.194 0.241 0.205 0.249 0.198 0.244
336 0.278 0.296 0.270 0.293 0.280 0.298 0.270 0.294 0.284 0.301 0.276 0.295 0.252 0.285 0.245 0.281 0.253 0.283 0.246 0.281 0.254 0.288 0.248 0.282
720 0.358 0.347 0.350 0.345 0.356 0.348 0.350 0.346 0.372 0.358 0.357 0.347 0.318 0.334 0.308 0.329 0.316 0.333 0.311 0.331 0.322 0.336 0.315 0.329

E
C

L

96 0.148 0.240 0.138 0.233 0.147 0.239 0.139 0.233 0.146 0.242 0.142 0.237 0.132 0.223 0.126 0.218 0.129 0.221 0.128 0.219 0.130 0.220 0.128 0.219
192 0.162 0.253 0.154 0.247 0.160 0.251 0.154 0.248 0.163 0.253 0.159 0.251 0.149 0.242 0.143 0.237 0.144 0.238 0.144 0.238 0.146 0.240 0.142 0.237
336 0.178 0.269 0.168 0.264 0.174 0.268 0.172 0.267 0.176 0.267 0.174 0.266 0.168 0.261 0.161 0.253 0.163 0.255 0.163 0.254 0.167 0.261 0.162 0.254
720 0.225 0.317 0.202 0.296 0.235 0.318 0.201 0.295 0.221 0.314 0.211 0.302 0.204 0.294 0.196 0.286 0.197 0.287 0.199 0.288 0.202 0.293 0.198 0.288

Tr
af

fic

96 0.395 0.268 0.391 0.265 0.380 0.266 0.428 0.279 0.393 0.270 0.392 0.266 0.369 0.255 0.341 0.242 0.343 0.245 0.340 0.242 0.372 0.258 0.366 0.252
192 0.417 0.276 0.421 0.275 0.391 0.274 0.451 0.287 0.415 0.277 0.415 0.276 0.388 0.254 0.362 0.248 0.366 0.250 0.363 0.248 0.385 0.255 0.385 0.252
336 0.392 0.283 0.434 0.283 0.408 0.281 0.465 0.292 0.431 0.284 0.430 0.282 0.397 0.265 0.380 0.250 0.384 0.253 0.382 0.251 0.393 0.261 0.387 0.258
720 0.467 0.302 0.469 0.293 0.437 0.292 0.508 0.309 0.462 0.300 0.458 0.298 0.438 0.288 0.414 0.277 0.416 0.280 0.414 0.278 0.430 0.285 0.419 0.280

Table 4: Applying Our Embedding Module to Different Network Architectures and Comparing with Existing Embedding
Methods.

Plug-and-Play. To compare our method with existing embedding strategies across different network
architectures, we conducted experiments on both the Transformer architecture (iTransformer (Liu
et al., 2024c)) and the CNN architecture (ModernTCN (Donghao & Xue, 2024)). For the Transformer-
based model, we followed the original hyperparameter settings, while for the CNN-based model,
we directly replaced the FFN module with ModernTCN block and evaluated under the look-back
window of length 336.

The results in Tab. 4 show that, in most cases, the proposed IE method effectively combines the
performance gains brought by both TE and CE, and outperforms other existing embedding ap-
proaches (Yang et al., 2025; Wang et al., 2024a). For example, in the channel-independent CNN
architecture, the CE module provides a substantial boost in accuracy, while in channel-dependent
methods, the TE module demonstrates clear advantages. However, it is worth noting that when the
IE module was applied to the Transformer-based model on the Traffic dataset, we observed obvious
performance drop. We conjecture that this may be attributed to the intrinsic strength of iTransformer
in capturing channel-specific dependencies, where the additional CE component could introduce
redundancy, thereby diminishing overall predictive performance.

Visualization Analysis. We apply PCA to reduce the dimensions of feature in latent space,
visualizing what the model has learned in Timestamp and Channel Embeddings. The results reveal
clear temporal periodicity and inter-variable relationships. By examining spatial distances among
channel embeddings, we observe the similarity of dynamic patterns across variables. As shown in
Figure 3, variables 1 and 3, as well as 0 and 2, exhibit highly similar identity embeddings, matching
their similar temporal behaviors in the raw sequences. In contrast, variables 4, 5, and 6 form a
separate cluster, indicating a distinct group. Likewise, the learned timestamp embeddings capture
periodic patterns. In (Figure 4(a)), the ETTh1 dataset—collected in China. We observe consistent
electricity usage from 9 a.m. to 5 p.m., shifting toward evening routines, late-night consumption, and
a unique dip around 1–2 p.m., reflecting the midday rest hours of Chinese people. Weather dataset
embeddings reveal strong 24-hour periodicity, consistent with natural climate cycles. These results
demonstrate the strong interpretability of our method, which is crucial for practical MTSF but has
been largely overlooked.

5 CONCLUSION

In this work, we propose IndexNet, a simple yet effective MLP-based framework for multivariate
time series forecasting. Unlike most existing methods, IndexNet explicitly incorporates index-related
prior knowledge through a dedicated Index Embedding (IE) module. By integrating timestamp
and variable index information via the proposed TE and CE components, IndexNet significantly
enhances the model’s temporal awareness and its ability to distinguish variable-specific patterns.
This design enables more reliable forecasting and improves the interpretability of predictions—two
critical yet often underexplored aspects in current MTSF research. Extensive experiments across
diverse real-world datasets validate the effectiveness of our approach, highlighting the potential of
incorporating index semantics in building temporally- and variably-aware forecasting models. We
discuss the limitations and potential impacts of our work in Sec. A.
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LLM USABLE STATEMENT

This paper employs LLMs solely for grammar checking and linguistic refinement, not involving any
substantive content generation or fabrication.

A LIMITATIONS

Despite achieving significant progress on relatively simple linear-, Transformer-, and CNN-based
architectures, our approach still faces challenges when extended to more complex models. While this
work partially overcomes the limitation of current general forecasting methods that rely solely on
input sequences, and provides a reliable, interpretable, and lightweight solution, integrating index
information into sophisticated architectures remains non-trivial. In particular, given the fragility
and intricate design of many existing models, how to avoid overfitting or disrupting the original
structure when injecting index cues warrants further investigation. We believe these limitations
can suggest promising directions for future research, including the development of more universal,
architecture-agnostic schemes that can flexibly adapt to diverse scenarios.

B ADDITIONAL EXPERIMENT

B.1 DESCRIPTION ON DATASETS

Tasks Dataset Dim Prediction Length Dataset Size Frequency ADF† Timestamp
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min −14.98 ✓

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min −5.66 ✓

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour −5.91 ✓

Long-term ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour −4.13 ✓

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour −8.44 ✓

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour −15.02 ✓

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min −26.68 ✓

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10 min −37.23 ×
PeMS03 358 12 (15617, 5135, 5135) 5 min −19.05 ×

Short-term PeMS04 307 12 (10172, 3375, 3375) 5 min −15.66 ×
Forecasting PeMS07 883 12 (16911, 5622, 5622) 5 min −20.60 ×

PeMS08 170 12 (10690, 3548, 265) 5 min −16.04 ×
Timestamp: the ✓means the dataset contains explicit timestamp, and × is not.
† Augmented Dickey-Fuller (ADF) Test: A smaller ADF test result indicates a more stationary time series data.

Table 5: Dataset detailed descriptions. “Dataset Size” denotes the total number of time points in
(Train(s), Validation, Test) split respectively. “Prediction Length” denotes the future time points to be
predicted. “Frequency” denotes the sampling interval of time points.

We conduct extensive experiments on several widely-used time series datasets for long-term forecast-
ing. Additionally, we use the PeMS datasets for short-term forecasting. We report the statistics in
Tab. 5. Detailed descriptions of these datasets are as follows:

(1) ETT (Electricity Transformer Temperature) dataset (Zhou et al., 2021) encompasses temper-
ature and power load data from electricity transformers in two regions of China, spanning
from 2016 to 2018. This dataset has two granularity levels: ETTh (hourly) and ETTm (15
minutes).

(2) Weather dataset (Wu et al., 2023) captures 21 distinct meteorological indicators in Germany,
meticulously recorded at 10-minute intervals throughout 2020. Key indicators in this dataset
include air temperature, visibility, among others, offering a comprehensive view of the
weather dynamics.

(3) Electricity dataset (Wu et al., 2023) features hourly electricity consumption records in
kilowatt-hours (kWh) for 321 clients. Sourced from the UCL Machine Learning Repository,
this dataset covers the period from 2012 to 2014, providing valuable insights into consumer
electricity usage patterns.
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(4) Traffic dataset (Wu et al., 2023) includes data on hourly road occupancy rates, gathered by
862 detectors across the freeways of the San Francisco Bay area. This dataset, covering the
years 2015 to 2016, offers a detailed snapshot of traffic flow and congestion.

(5) Solar-Energy dataset (Liu et al., 2024c) contains solar power production data recorded
every 10 minutes throughout 2006 from 137 photovoltaic (PV) plants in Alabama.

(6) PeMS dataset (Liu et al., 2022) comprises four public traffic network datasets (PeMS03,
PeMS04, PeMS07, and PeMS08), constructed from the Caltrans Performance Measurement
System (PeMS) across four districts in California. The data is aggregated into 5-minute
intervals, resulting in 12 data points per hour and 288 data points per day.

B.2 HYPERPARAMETERS SETTINGS

n layers Tdim Cdim Timestamp lr d model d ff

ETTh1 3 16 16 ✓ 5e-4 128 128

ETTh2 2 16 16 ✓ 5e-5 128 128

ETTm1 3 16 16 ✓ 2e-4 128 128

ETTm2 3 16 16 ✓ 2e-4 128 128

Weather 3 16 16 ✓ 5e-4 512 512

Solar 2 16 16 × 5e-4 512 512

Electricity 3 16 16 ✓ 1e-3 512 512

Traffic 3 256 256 ✓ 1e-3 512 1024

PSME03 3 16 16 × 1e-3 512 512

PSME04 3 16 16 × 1e-3 512 512

PSME07 3 16 16 × 1e-3 512 512

PSME08 3 16 16 × 1e-3 512 512

Table 6: Hyperparameter settings for different datasets. In fixed timestamp column, the ✓means we
only use minute of hour, hour of day, and day of week, while the × means we additionally use the
year and the month of year. It is notably that we only use it in traffic dataset, because pervious work
(Das et al., 2023) has found that traffic dataset can be benefited from the calendar information for the
complete year.

B.3 PERFORMANCE METRICS

B.4 LONG-TERM FORECASTING

We use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. Given
the ground truth values Xi and the predicted values X̂i, these metrics are defined as follows:

MSE =
1

N

N∑
i=1

(Xi − X̂i)
2, MAE =

1

N

N∑
i=1

|Xi − X̂i|,

where N is the total number of predictions.

B.5 SHORT-TERM FORECASTING

We use MAE (the same as defined above), Mean Absolute Percentage Error (MAPE), and Root Mean
Squared Error (RMSE) to evaluate the performance. These metrics are defined as follows:

MAPE =
1

N

N∑
i=1

∣∣∣∣∣Xi − X̂i

Xi

∣∣∣∣∣× 100, RMSE =

√√√√ 1

N

N∑
i=1

(Xi − X̂i)2.
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B.6 FULL RESULTS

B.6.1 LONG-TERM FORECASTING

Table 7: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of TimesNet (Wu et al., 2023). The input
sequence length is set to 96 for all baselines. Avg means the average results from all four prediction
lengths.

Models IndexNet SOFTS iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer TSMixer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.312 0.352 0.325 0.361 0.334 0.368 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.323 0.363 0.505 0.475
192 0.355 0.379 0.375 0.389 0.377 0.391 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.376 0.392 0.553 0.496
336 0.386 0.402 0.405 0.412 0.426 0.420 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.407 0.413 0.621 0.537
720 0.445 0.437 0.466 0.447 0.491 0.459 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.485 0.459 0.671 0.561

Avg 0.374 0.392 0.393 0.403 0.407 0.410 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.398 0.407 0.588 0.517

E
T

T
m

2 96 0.173 0.255 0.180 0.261 0.180 0.264 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.182 0.266 0.255 0.339
192 0.240 0.297 0.246 0.306 0.250 0.309 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.249 0.309 0.281 0.340
336 0.301 0.338 0.319 0.352 0.311 0.348 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.309 0.347 0.339 0.372
720 0.398 0.395 0.405 0.401 0.412 0.407 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.416 0.408 0.433 0.432

Avg 0.278 0.321 0.287 0.330 0.288 0.332 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.289 0.333 0.327 0.371

E
T

T
h1

96 0.378 0.393 0.381 0.399 0.386 0.405 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.401 0.412 0.449 0.459
192 0.435 0.425 0.435 0.431 0.441 0.436 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.452 0.442 0.500 0.482
336 0.483 0.450 0.480 0.452 0.487 0.458 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.492 0.463 0.521 0.496
720 0.495 0.475 0.499 0.488 0.503 0.491 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.507 0.490 0.514 0.512

Avg 0.448 0.436 0.449 0.442 0.454 0.447 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.463 0.452 0.496 0.487

E
T

T
h2

96 0.295 0.345 0.297 0.347 0.297 0.349 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.319 0.361 0.346 0.388
192 0.377 0.395 0.373 0.394 0.380 0.400 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.402 0.410 0.456 0.452
336 0.419 0.431 0.410 0.426 0.428 0.432 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.444 0.446 0.482 0.486
720 0.431 0.447 0.411 0.433 0.427 0.445 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.441 0.450 0.515 0.511

Avg 0.381 0.405 0.373 0.400 0.383 0.407 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.401 0.417 0.450 0.459

E
C

L

96 0.137 0.230 0.143 0.233 0.148 0.240 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.157 0.260 0.201 0.317
192 0.154 0.245 0.158 0.248 0.162 0.253 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.173 0.274 0.222 0.334
336 0.171 0.262 0.178 0.269 0.178 0.269 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.192 0.295 0.231 0.338
720 0.212 0.299 0.218 0.305 0.225 0.317 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.223 0.318 0.254 0.361

Avg 0.169 0.259 0.174 0.264 0.178 0.270 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.186 0.287 0.227 0.338

Tr
af

fic

96 0.384 0.253 0.376 0.251 0.395 0.268 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.493 0.336 0.613 0.388
192 0.391 0.260 0.398 0.361 0.417 0.276 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.497 0.351 0.616 0.382
336 0.411 0.270 0.415 0.269 0.433 0.283 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.528 0.328 0.361 0.337
720 0.459 0.286 0.447 0.287 0.467 0.302 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.569 0.380 0.660 0.408

Avg 0.411 0.267 0.409 0.267 0.428 0.282 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.522 0.357 0.628 0.379

W
ea

th
er

96 0.155 0.198 0.166 0.208 0.174 0.214 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.166 0.210 0.266 0.336
192 0.202 0.243 0.217 0.253 0.221 0.254 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.215 0.256 0.307 0.367
336 0.260 0.287 0.282 0.300 0.278 0.296 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.287 0.300 0.359 0.395
720 0.343 0.341 0.356 0.351 0.358 0.347 0.354 0.348 0.398 0.418 0.351 0.323 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.355 0.348 0.419 0.428

Avg 0.240 0.268 0.255 0.278 0.258 0.278 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.256 0.279 0.338 0.382

So
la

r-
E

ne
rg

y 96 0.192 0.230 0.200 0.230 0.203 0.237 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.221 0.275 0.884 0.711
192 0.219 0.255 0.229 0.253 0.233 0.261 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.268 0.306 0.834 0.692
336 0.239 0.271 0.243 0.269 0.248 0.273 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.272 0.294 0.941 0.723
720 0.241 0.269 0.245 0.272 0.249 0.275 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.281 0.313 0.882 0.717

Avg 0.223 0.256 0.229 0.256 0.233 0.262 0.270 0.307 0.641 0.639 0.347 0.416 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.260 0.297 0.885 0.711

B.7 SHORT-TERM FORECASTING

Setups. For short-term forecasting, we conduct experiments on PeMS datasets (Wang et al., 2024b),
which capture complex spatio-temporal correlations among multiple variates across city-wide traffic
networks. We use mean absolute error (MAE), mean absolute percentage error (MAPE), and root
mean squared error (RMSE) as evaluation metrics. The input length L is set to 96 and the output
length T to 12 for all baselines. Details of datasets and metrics are in Sec. B.1 and Sec. B.5.

Results As shown in Table Tab. 8, methods that perform well in long-term forecasting under channel-
independent (CI) settings, such as PatchTST (Nie et al., 2023) and DLinear (Zeng et al., 2023),
experience a notable performance drop on the PeMS datasets, which are characterized by strong
spatiotemporal dependencies. In contrast, although IndexNet also adopts a CI modeling approach,
it achieves consistently strong performance across all four PeMS benchmarks. This improvement
can be attributed to the incorporation of spatiotemporal prior information via timestamp and variable
index embeddings. For instance, on the PeMS04 dataset, IndexNet reduces MAE and RMSE by
19.2% and 23.1% compared to PatchTST, and by 18.4% and 21.2% compared to DLinear. Similarly,
on PeMS07, IndexNet achieves a 27.5% reduction in MAE compared to PatchTST, and a 15.1%
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Models Metric IndexNet SCINet Crossformer PatchTST TimesNet MICN DLinear iTransformer Autoformer Informer

PeMS03
MAE 15.18 15.64 15.97 18.95 16.41 15.71 19.70 16.72 18.08 19.19

MAPE 15.16 15.89 15.74 17.29 15.17 15.67 18.35 15.81 18.75 19.58
RMSE 24.16 24.55 25.56 30.15 26.72 25.20 32.35 27.81 27.82 32.70

PeMS04
MAE 19.57 20.35 20.38 24.86 21.63 21.62 24.62 21.81 25.00 22.05

MAPE 12.15 12.84 12.84 16.65 13.15 13.53 16.12 14.85 16.70 14.88
RMSE 31.14 32.31 32.41 40.46 34.90 34.39 39.51 33.91 38.02 36.20

PeMS07
MAE 20.66 22.28 22.54 27.87 25.12 22.79 28.65 23.01 26.92 27.26

MAPE 8.55 9.38 9.41 12.69 10.60 9.57 12.15 10.02 11.83 11.63
RMSE 33.42 35.40 35.49 42.56 40.71 35.61 45.02 35.56 40.60 45.81

PeMS08
MAE 15.17 17.38 17.56 20.35 19.01 17.76 20.26 17.94 20.47 20.96

MAPE 9.64 10.76 10.92 13.15 11.83 10.80 12.09 10.93 12.27 13.20
RMSE 24.17 27.34 27.21 31.04 30.65 27.26 32.38 27.88 31.52 30.61

Table 8: Short-term forecasting results in the PeMS datasets.

reduction in RMSE compared to DLinear. Furthermore, IndexNet even surpasses recent channel-
dependent (CD) methods such as iTransformer (Liu et al., 2024c) and Crossformer (Zhang & Yan,
2023), demonstrating its effectiveness in capturing complex spatiotemporal correlations despite its
CI architecture. These results highlight the robustness and generalization ability of IndexNet in
real-world traffic forecasting scenarios.

B.8 ABLATION STUDY

ETTm1 Weather Solar Electricity Traffic
TE CE Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

× ×
96 0.328 0.365 0.175 0.215 0.229 0.266 0.164 0.250 0.434 0.276

192 0.363 0.380 0.222 0.256 0.263 0.289 0.173 0.259 0.446 0.281
336 0.395 0.404 0.278 0.296 0.287 0.303 0.190 0.276 0.462 0.288
720 0.459 0.442 0.354 0.347 0.286 0.301 0.229 0.309 0.493 0.306
Avg. 0.386 0.398 0.257 0.278 0.266 0.290 0.189 0.274 0.459 0.288

× ✓

96 0.326 0.365 0.162 0.207 0.224 0.262 0.150 0.240 0.432 0.274
192 0.359 0.379 0.207 0.248 0.256 0.285 0.163 0.252 0.444 0.280
336 0.388 0.401 0.263 0.289 0.280 0.299 0.180 0.269 0.460 0.286
720 0.448 0.438 0.346 0.344 0.282 0.300 0.222 0.306 0.494 0.305
Avg. 0.380 0.396 0.245 0.272 0.260 0.287 0.179 0.267 0.458 0.286

✓ ×
96 0.311 0.353 0.168 0.207 0.202 0.244 0.152 0.241 0.392 0.258

192 0.365 0.383 0.216 0.250 0.233 0.267 0.163 0.251 0.397 0.266
336 0.394 0.406 0.273 0.293 0.246 0.279 0.180 0.269 0.418 0.273
720 0.453 0.442 0.351 0.345 0.260 0.283 0.219 0.302 0.453 0.290
Avg. 0.381 0.396 0.252 0.274 0.238 0.269 0.178 0.266 0.415 0.272
96 0.312 0.352 0.155 0.198 0.192 0.230 0.137 0.230 0.384 0.253

192 0.355 0.379 0.202 0.243 0.219 0.255 0.154 0.245 0.391 0.260
✓ ✓ 336 0.386 0.402 0.260 0.287 0.239 0.271 0.171 0.262 0.411 0.270

720 0.445 0.437 0.343 0.341 0.241 0.269 0.212 0.299 0.459 0.286
Avg. 0.374 0.392 0.240 0.267 0.223 0.256 0.169 0.259 0.411 0.256

Table 9: Ablation on the effect of removing TE and CE sub-modules. ✓ indicates the use of the
sub-module, while × means removing the sub-module. Results are averaged from all prediction
lengths.
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ETTm1 Weather Solar Electricity Traffic
TE Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.312 0.352 0.155 0.198 0.192 0.230 0.137 0.230 0.384 0.253
192 0.355 0.379 0.202 0.243 0.219 0.255 0.154 0.245 0.391 0.260

Zeros Init 336 0.386 0.402 0.260 0.287 0.239 0.271 0.171 0.262 0.411 0.270
720 0.445 0.437 0.343 0.341 0.241 0.269 0.212 0.299 0.459 0.286
Avg. 0.374 0.392 0.240 0.267 0.223 0.256 0.169 0.259 0.411 0.256
96 0.321 0.360 0.159 0.201 0.202 0.246 0.142 0.233 0.693 0.460
192 0.367 0.384 0.210 0.249 0.230 0.269 0.158 0.249 0.650 0.453

Random Init 336 0.387 0.402 0.271 0.295 0.258 0.288 0.174 0.264 0.680 0.465
720 0.447 0.443 0.351 0.347 0.261 0.289 0.216 0.303 0.751 0.501
Avg. 0.380 0.397 0.246 0.273 0.237 0.272 0.172 0.262 0.694 0.470
96 0.315 0.356 0.155 0.199 0.198 0.245 0.139 0.230 0.405 0.261
192 0.358 0.381 0.203 0.244 0.228 0.268 0.156 0.247 0.409 0.265

Latent Addition 336 0.391 0.408 0.262 0.289 0.258 0.288 0.174 0.266 0.422 0.276
720 0.448 0.439 0.347 0.346 0.261 0.290 0.210 0.299 0.462 0.291
Avg. 0.378 0.396 0.241 0.269 0.236 0.272 0.170 0.260 0.424 0.273
96 0.348 0.380 0.174 0.224 0.254 0.293 0.169 0.269 0.602 0.351
192 0.382 0.391 0.222 0.268 0.301 0.326 0.181 0.275 0.612 0.362

Channel Projection 336 0.414 0.412 0.282 0.309 0.322 0.357 0.198 0.303 0.632 0.360
720 0.481 0.455 0.369 0.364 0.341 0.355 0.224 0.318 0.654 0.373
Avg. 0.406 0.410 0.262 0.291 0.304 0.333 0.193 0.291 0.625 0.362

Table 10: We conduct ablation studies to investigate the impact of timestamp embedding (TE) model-
ing strategies. Zeros Init refers to initializing the TE vectors with zeros, while Rand Init denotes
random initialization. Latent Addition represents an early-stage timestamp modeling approach,
where timestamp embeddings are added to the latent projected input sequence. Channel Projection
represents another early-stage timestamp modeling approach, where timestamp embeddings and the
original multivariate series are projected along the channel dimension to fuse temporal information.

Embedding Strategies. To compare the effectiveness of different timestamp embedding strategies, we
conduct ablation studies as shown in Tab. 10. We first compare two initialization methods for learnable
timestamp embeddings: zero initialization and random initialization. The results indicate that zero
initialization generally yields more stable and superior performance, while random initialization may
introduce noise that leads to performance degradation, particularly on complex datasets like Traffic.
Injecting timestamp embeddings into the latent space also causes a slight performance drop, possibly
due to misalignment between the projected representations and temporal positions. Finally, adding
timestamp information after channel projection leads to the most significant decline, suggesting
that improper integration of temporal cues can hinder model performance, consistent with recent
findings (Wang et al., 2024a).
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