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ABSTRACT

We tackle the general category discovery problem, which aims to discover novel
classes in unlabeled datasets by leveraging the information of known classes. Most
previous works transfer knowledge implicitly from known classes to novel ones
through shared representation spaces. However, the implicit nature of knowledge
transfer in these methods poses difficulties in controlling the flow of information
between known and novel classes. Furthermore, it is susceptible to the label un-
certainty of unlabeled data learning. To overcome these limitations, our work
introduces an explicit and adaptive knowledge transfer framework that can facil-
itate novel class discovery. This framework can be dissected into three primary
steps. The initial step entails obtaining representations of known class knowledge.
This is achieved through a pre-trained known-class model. The subsequent step
is to transform the knowledge representation to enable more targeted knowledge
transfer, realized through an adapter layer and a channel selection matrix. The
final step is knowledge distillation, where we maximize the mutual information
between two representation spaces. Furthermore, we introduce a challenge bench-
mark iNat21 which is comprised of three distinct difficulty levels. We conduct
extensive experiments on various benchmark datasets and the results demonstrate
the superiority of our approach over the previous state-of-the-art methods.

1 INTRODUCTION

Despite the notable achievements of various deep learning models (He et al., 2016; Dosovitskiy
et al., 2020), they still face challenges in open-world scenarios when encountering novel concepts. In
contrast, humans are able to leverage their existing knowledge for the discovery of new concepts. For
instance, when presented with data belonging to previously unseen classes, humans can effectively
cluster them based on their prior knowledge. Taking inspiration from this capability, Han et al. (2019;
2021) introduce the concept of the novel class discovery (NCD) problem, while Vaze et al. (2022a)
propose a more practical setting named generalized category discovery (GCD), which is our focus in
this work. The key challenge of GCD is to effectively utilize the rich semantic information inherent
in known classes to facilitate the discovery of novel classes.

In order to discover novel classes, most GCD works (Vaze et al., 2022a; Wen et al., 2022; Zhang et al.,
2022; Sun & Li, 2022) follow a single-stage training paradigm in which all data, whether labeled
or unlabeled, is amalgamated into a unified learning process with a shared encoder. This entails an
implicit manner of knowledge transfer in these approaches. However, such an implicit strategy makes
it challenging to regulate the flow of information between labeled and unlabeled data, and can be
susceptible to the label uncertainty of unlabeled data in the learning process.

Recent work has attempted to explore explicit strategies for knowledge transfer in NCD, outperform-
ing the traditional implicit strategies (Gu et al., 2023). Nonetheless, they typically focus on distilling
class relations in the model output space and hence are limited in the scope of transferred knowledge.
On the other hand, we observe that the representation of a trained model for known classes can
also provide highly informative clustering cues for the novel classes, resulting in competitive class
discovery performance (as shown in Tab.1). This naturally raises a question on the form of knowledge
transfer: What is the most effective explicit transfer strategy for the GCD problem?

Building upon this motivation, we design an explicit knowledge transfer paradigm as shown in Fig.1,
comprising three core steps: 1) Knowledge generation. The initial step learns a representation of
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Method BL Clu.

ImgNet100 78.7 71.7
CUB 58.5 62.7
Scars 42.0 41.5

Aircraft 46.2 42.5

Table 1: "BL" denotes
the typical GCD method.
"Clu." denotes cluster-
ing novel classes on the
pre-trained known-class
model without joint train-
ing. Details in Sec.4.3.

Figure 1: The comparison of our explicit knowledge transfer frame-
work and implicit knowledge transfer framework.

the known-class knowledge from the labeled data. 2) Knowledge alignment. After obtaining the
known-class representation, we introduce an alignment step that adaptively transforms the initial
representation to facilitate the novel class discovery. In particular, we incorporate a nonlinear
feature transform with a data-specific channel-wise selection mechanism, which allows us to keep
relevant information in an efficient manner for the classification tasks of known and novel classes. 3)
Knowledge distillation. Armed with the aligned known-class knowledge representation, the third
step is to distill this knowledge to facilitate the learning process of known and novel classes using the
unlabeled data.

To achieve this, we develop a novel GCD framework that instantiates the above three essential steps.
Specifically, we first train a deep network model on the labeled known-class data and use it as our
knowledge representation. After that, we employ an Adapter Layer to transform the pretrained feature
representation so that it is better aligned with the joint representation of all classes. Subsequently,
our method introduces a Channel Selection Matrix to choose relevant feature channels for the novel
class learning. Finally, we propose a new contrastive loss for learning the knowledge transfer from
the known to novel classes, which maximizes the mutual information between the transformed
known-class representation and the joint feature representation used for classifying both known and
novel classes. To cope with the mixed nature of the unlabeled data, we also adopt a mixed-up negative
sample generation scheme in the contrastive learning.

We conduct extensive experiments on six widely-used benchmarks and our method achieves signif-
icant improvement over the previous state of the art, which showcases the efficacy of our method.
The experimental analysis further demonstrates the effectiveness of each module in our design. Our
contributions can be summarized as follows:

• We propose a novel explicit knowledge transfer framework for generalized category discov-
ery, which can transfer known-class knowledge more effectively to novel class learning.

• We develop an adapter layer and a channel selection matrix for better knowledge alignment,
and a new contrastive loss to encourage the knowledge transfer in model learning.

• We conduct extensive experiments on several benchmarks to validate the effectiveness of our
method, which outperforms the SOTA by a significant margin. Particularly, we introduce
iNat21, a new benchmark with three difficulty levels, to assess our framework’s performance.

2 RELATED WORK

Novel Class Discovery. The problem of NCD is formalized in (Han et al., 2019), aiming to cluster
novel classes by transferring knowledge from labeled known classes. Specifically, KCL (Hsu et al.,
2018a) and MCL (Hsu et al., 2018b) use the labeled data to learn a network that can predict the
pairwise similarity between two samples and use the network to cluster the unlabeled data. Instead of
using pairwise similarity to cluster, DTC (Han et al., 2019) utilizes the deep embedding clustering
method (Xie et al., 2016) to cluster the novel class data. Later works mostly focus on improving
the pairwise similarity (Han et al., 2021; Zhao & Han, 2021), feature representations (Zhong et al.,
2021a;b), or clustering methods (Fini et al., 2021; Zhang et al., 2023).
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Recently, Vaze et al. (2022a) extended Novel Class Discovery into a more realistic scenario where the
unlabeled data come from both novel and known classes, known as Generalized Category Discovery
(GCD). To tackle this problem, GCD (Vaze et al., 2022a) adopts semi-supervised contrastive learning
on the pre-trained visual transformer (Dosovitskiy et al., 2020). Meanwhile, ORCA (Cao et al.,
2022) proposes an uncertainty adaptive margin mechanism to reduce the bias caused by the different
learning speeds on labeled data and unlabeled data. Later, most concurrent works (Sun & Li, 2022;
Zhang et al., 2022; Pu et al., 2023) focus on designing a better contrastive learning strategy to
cluster novel classes. For example, PromptCAL (Zhang et al., 2022) uses auxiliary visual prompts
in a two-stage contrastive affinity learning way to discover more reliable positive pairwise samples
and perform more reasonable contrastive learning. DCCL (Pu et al., 2023) proposes a dynamic
conceptional contrastive learning framework to alternately explore latent conceptional relationships
between known classes and novel classes, and perform conceptional contrastive learning. However,
those methods typically rely on transferring knowledge implicitly by sharing encoders, which can be
restrictive as shown in (Gu et al., 2023).

In contrast, our method focuses on extracting and transferring known-class knowledge explicitly.
Concurrently, Gu et al. (2023) distill knowledge in the model’s output space in the standard NCD
setting, but their method cannot be applied to the GCD setting directly due to its special design of
weight function. In addition, they only consider a limited form of knowledge transfer while our
proposed framework distills knowledge from the entire representation space of a pre-trained model of
known classes, which is more flexible and effective.

Knowledge Distillation The concept of knowledge distillation was originally introduced by Hinton
et al. Hinton et al. (2015), with the goal of transferring the "dark knowledge" from large models
into small models. Based on the level of distilling, subsequent works can be categorized into two
groups: distilling from logits and distilling from intermediate features. The first group (Zhao et al.,
2022; Mirzadeh et al., 2020) which distills knowledge from logits primarily focuses on designing
more effective knowledge distillation loss and optimization methods. The second group (Tian et al.,
2020; Romero et al., 2014; Zagoruyko & Komodakis, 2016) considers that the intermediate features
have richer knowledge and mainly focuses on directly transferring the feature representation or the
similarity between samples. We refer the readers to Wang & Yoon (2021) for a more comprehensive
survey on this topic.

In contrast to traditional knowledge distillation methods, which typically transfer knowledge within
the same task, our approach transfers knowledge between two distinct tasks. Specifically, we extract
knowledge from a model trained on known classes to guide the training of a model on both known
classes and novel classes.

3 METHOD

3.1 PRELIMINARILY

We first introduce the setting of generalized category discovery problem (Vaze et al., 2022a), which
aims to leverage known-class knowledge to discover novel classes. The dataset is composed of a
labeled known classes set Dl = {xl

i, y
l
i}

|Dl|
i=0 and an unlabeled set Du = {xu

j }
|Du|
j=0 , which contains

both known and novel classes. Here x, y represents the input image data and the corresponding label.
In addition, we denote the number of known and novel classes as Ck and Cn, and assume Cn is
known (Vaze et al., 2022a; Zhang et al., 2022). The goal is to classify known classes and cluster
novel classes in Du by leveraging Dl.

Among almost all existing GCD methods (Vaze et al., 2022a; Wen et al., 2022; Zhang et al., 2022;
Sun & Li, 2022), the basis of these models can be succinctly deconstructed into two components. The
first component is the supervised learning of the labeled known class data. The second component is
the unsupervised learning of both known and novel class unlabeled data. Therefore, the core part of
their final loss function can be written as:

Lbase = (1− α)Ls + αLu, (1)

where Ls is the supervised learning loss on labeled data, and Lu is the unsupervised learning loss on
unlabeled data. α is a hyperparameter to balance the learning of labeled and unlabeled data.
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Figure 2: The overview of our adaptive knowledge transfer framework. Train, Cat and Dog, Bird
represent known and novel classes. Cls denotes classifier. We discover novel classes by joint
learning on all data and under the guidance of the pre-trained known-class model. To make our
knowledge transfer framework more effective, we apply an adapter layer to transform features of
the pre-trained known-class model, and utilize the transformed feature to generate an instance-wise
Channel Selection Matrix to select channels to transfer. Finally, we maximize mutual information
between two representation spaces in the selected channels by Lakt.

3.2 MOTIVATIONS AND METHOD OVERVIEW

One of the main challenges in GCD is to transfer knowledge from known classes to novel classes.
To achieve it, most existing methods (Vaze et al., 2022a; Wen et al., 2022; Zhang et al., 2022; Sun
& Li, 2022) focused on the formulation of the unsupervised loss term Lu and establish a shared
representation space for knowledge transfer from known to novel classes. However, this knowledge
transfer is implicit which means it is hard to control the information flow between labeled and
unlabeled data. Furthermore, our own experiment in Tab.1 have shown the inefficiency of this implicit
knowledge transfer strategy in certain GCD problems.

To tackle this challenge, as shown in Fig.2, we propose an explicit knowledge transfer framework,
comprising three core steps: 1) Knowledge Generation. This step is dedicated to generating the
knowledge representation by a pre-trained known-class model fϕ. 2) Knowledge Alignment. This step
is specifically designed to enhance the transferability of the generated knowledge representation. 3)
Knowledge Distillation. This step achieves knowledge transfer by maximizing the mutual information
between two representation spaces. In the subsequent sections, we will provide a comprehensive
explanation of each component in our novel adaptive knowledge transfer framework.

3.3 ADAPTIVE KNOWLEDGE TRANSFER

As discussed above, to transfer knowledge explicitly and effectively, we propose a novel adaptive
knowledge transfer framework compromising three key components. In this section, we introduce
the details of each component in turn.

Knowledge Generation. As demonstrated by our experiment in Tab.1, a pre-trained known-class
model can effectively capture meaningful semantic clusters for novel classes, indicating that the
pre-trained known-class model contains rich information useful for learning novel classes. In light of
these observations, we posit that the pre-trained known-class model fϕ serves as an effective means
to represent the knowledge pertaining to learning both the known and novel classes.

Knowledge Alignment. Although the representation space initialized with known classes contains
rich information about the known-class data, it has not encountered novel classes during training.
Consequently, this knowledge representation space is not well aligned with the all-class knowledge
representation space. This misalignment can lead to ineffective knowledge transfer and bias the final
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knowledge space towards known classes. To mitigate this issue, we propose a simple adapter layer
fw that transforms this original representation space into the joint representation space. Specifically,
our adapter layer consists of a linear and a ReLU layer. The original representation space is linearly
transformed and truncated so that the transformed space can retain most of the original structure. We
provide a detailed analysis of our adapter layer in the ablation study (Sec.4.3).

While we obtain the representation of known class knowledge, it is important to acknowledge that
not all aspects of this knowledge are applicable to novel class learning. To select specific channels
for knowledge transfer, we introduce a channel selection matrix. Since our adapter layer contains a
ReLU layer, the channels whose values are less than 0 do not contribute to the final classification and
clustering. Based on that, we assume that the channels whose values are greater than 0 are valuable
for novel class learning. Therefore, we only transfer knowledge in the channels whose values are
greater than 0. Consequently, we design our data-specific channel selection matrix Ws as:

Ws = diag(1(v > 0)), (2)

where 1 is the indicator function, and v = fw(fϕ(x)). It is worth noting that Ws is a function of v.

Knowledge Distillation. We implement our knowledge transfer by maximizing the mutual informa-
tion between two representation spaces in the selected channels. In detail, let U and V represent the
random variables corresponding to the representations of data in the joint model fθ and the composite
model of adapter layer and the pre-trained known-class model, respectively. Our objective is to
maximize the mutual information between these two random variables in the selected channels,

max
U

I(WsU;WsV), (3)

where U = fθ(X), V = fw(fϕ(X)) and X is the random variable of the unlabeled data.

Specifically, inspired by InfoNCE proposed by Oord et al. (2018), we propose a contrastive rep-
resentation loss, which utilizes noise-contrastive estimation to approximate mutual information in
Equ.(3). See Appendix A for detail derivation. Specifically, we take the two representations of the
same unlabeled data xi in two representation spaces, ui = fθ(xi), vi = fw(fϕ(xi)) as a positive
pair meanwhile we take ui and the generated features from the negative sample generator as negative
pairs. Therefore, the adaptive knowledge transfer constraint term is formulated as:

Lakt = − 1

|Du|

|Du|∑
i=1

log
eu

⊤
i Wsvi/τ

eu
⊤
i Wsvi/τ +

∑
z∈N eu

⊤
i Wsz/τ

, (4)

where τ is the hyperparameter of temperature and N is the set of the generated negative samples in
memory. In addition, we adopt a negative sample generation strategy based on a mixup scheme and
provide a detailed implementation of N in Appendix E.

3.4 LEARNING STRATEGY

We adopt a two-stage learning strategy to learn our adaptive knowledge transfer framework. The first
stage involves training the model fϕ on labeled known class data using the standard cross-entropy
loss to extract the rough knowledge representation of known classes. In the second stage, to align
representation, we first learn an adapter layer to transform the knowledge representation into joint
representation space, and then utilize it to capture the channel selection matrix Ws. To learn the
adapter layer, we fix fϕ, utilize the features of all data after the adapter layer to perform classification
and clustering, and adopt Ls,Lu to learn labeled and unlabeled data, respectively. The total loss
is denoted as (1 − α)Ls + αLu, which is the same as Equ.(1). To learn the joint representation
space (fθ) and cosine classifier (h), we introduce a comprehensive loss function consisting of two
components. The first component is the basis loss Lbase of the labeled and unlabeled data learning.
The second component is our proposed adaptive knowledge transfer loss Lakt. In summary, the loss
function of the joint representation space can be written as:

L = Lbase + βLakt = (1− α)Ls + αLu + βLakt (5)

where α, β is a hyperparameter that controls the weight of loss. In our final model, we set Ls as the
typical cross-entropy loss on labeled data and Lu as the self-labeling loss on unlabeled data (Caron
et al., 2021; Xu et al., 2022). We detail the Lu in Appendix D. It is worth noting that our method
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does not depend on the design of Lu. Furthermore, we empirically demonstrate the versatility of
our approach by showing that Lakt yields performance enhancements across a spectrum of diverse
designs for Lu, as showcased in Tab.8.

In summary, our novel adaptive knowledge transfer loss enables the construction of an explicit
knowledge transfer bridge between the labeled and unlabeled data. Consequently, the joint represen-
tation learning process retains the knowledge of known classes while also preserving the potential
relationships between known and novel classes within the pre-trained known-class model.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To validate the effectiveness of our method, we conduct experiments on various datasets,
including generic datasets such as CIFAR100 (Krizhevsky et al., 2009) and ImageNet100 (Deng
et al., 2009), as well as the Semantic Shift Benchmark (Vaze et al., 2022b), namely CUB (Wah et al.,
2011), Stanford Cars (Scars) (Krause et al., 2013), FGVC-Aircraft (Maji et al., 2013). In addition, as
demonstrated by (Li et al., 2023), the semantic relationship between known and novel classes has a
significant impact on novel class discovery. Therefore, to better evaluate the generalization capability
of different methods, we propose a new benchmark dataset containing four splits with varying levels
of semantic similarity between known and novel classes. Specifically, we select 20 classes from each
of the 11 superclasses in the iNat21 dataset (Van Horn et al., 2021), totaling 220 classes. To create
fine-grained splits, we divide each superclass into two halves, one for known classes and the other
for unknown classes. For the other three splits, we utilize the CLIP model (Radford et al., 2021) to
convert the superclass names into embeddings. We then randomly group these 11 superclasses into
two groups and calculate the similarity between these two groups. A higher similarity between the
two groups indicates a greater semantic similarity between the classes in these two splits. We rank
these similarities and select different proportions to create Easy, Medium, and Hard splits. For more
details, please refer to Appendix B.

Finally, for each dataset, we split the datasets into sets of known and novel classes. We take half of
the data within the known classes as the labeled set Dl, leaving the remaining portion unlabeled. As
a result, Du consists of unlabeled data from known classes and data from novel classes. The split
details are in the Appendix C.

Evaluation protocol. Similar to (Vaze et al., 2022a), we evaluate the model on unlabeled datasets
with clustering accuracy. Specifically, we first employ the Hungarian matching algorithm to obtain
the best matching between cluster and ground truth, and then we report the performance separately
on the known classes, novel classes, and all classes.

Implementation details. We adopt the DINO (Caron et al., 2021) pre-trained ViT-B/16 (Dosovitskiy
et al., 2020) as our backbone, and we only finetune the last block of ViT-B/16. The adapter layer is
composed of a linear and ReLU layer. In the first stage, we train our model by 20 epochs on labeled
data. In the second stage, we train our model by 100 epochs on all data. We adopt the SGD optimizer
with a momentum of 0.9, a weight decay of 5 × 10−5, and an initial learning rate of 0.1, which
reduces to 1e− 4 at 100 epoch using a cosine annealing schedule. The batch size is 128. The data
augmentation is the same as (Vaze et al., 2022a). For hyperparameter, we follow (Vaze et al., 2022a;
Xu et al., 2022) to set α = 0.35, ϵ = 1. Moreover, we follow (Caron et al., 2021) to set τ to 0.1, and
τ ′ is initialized to 0.07, then warmed up to 0.04 with a cosine schedule in the starting 30 epochs.
For the hyperparameter β that we introduced, we set it to 0.1 for all datasets. We then validate its
sensitivity in the ablation study. All the experiments are conducted on a single NVIDIA TITAN RTX.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Tab.2 presents the comparison results of our model with current state-of-the-art methods. Our results
significantly outperform SOTA on almost all datasets. Specifically, on CIFAR100-80, our method
achieves 2.3% improvement on novel classes. On ImageNet100-50, our method obtains 1.4% gains
on novel classes. On three fine-grained datasets, our method outperforms the previous SOTA method
on the overall metric by at least 3%. While on novel classes, we only drop 1% compared to DCCL (Pu
et al., 2023) on CUB, and achieve 5.3% and 1.3% gains on Scars and Aircraft respectively.
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Table 2: Comparison with state-of-the-art methods. We have adapted the original crNCD method for
use in the GCD settings, and we refer to this adapted version as "crNCD*".

Method CIFAR100-80 ImageNet100-50 CUB Scars Aircraft
All Known Novel All Known Novel All Known Novel All Known Novel All Known Novel

K-means 52.0 52.2 50.8 72.7 75.5 71.3 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8
RS+ 58.2 77.6 19.3 37.1 61.1 24.8 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2
UNO 69.5 80.6 47.2 70.3 95.0 57.9 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2

ORCA 69.0 77.4 52.0 73.5 92.6 63.9 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1
GCD 70.8 77.6 57.0 74.1 89.8 66.3 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9

PromptCAL 81.2 84.2 75.3 83.1 92.7 78.3 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3
DCCL 75.3 76.8 70.2 80.5 90.5 76.2 63.5 60.8 64.9 43.1 55.7 36.2 - - -

SimGCD 78.1 77.6 78.0 82.4 90.7 78.3 60.3 65.6 57.7 46.8 64.9 38.0 48.8 51.0 47.8
crNCD* 80.4 85.3 70.6 81.7 91.3 76.9 64.1 75.2 58.6 54.8 76.5 44.3 53.1 57.0 51.3

Ours 82.8 84.0 80.3 84.1 92.8 79.7 67.1 73.7 63.8 59.2 79.1 49.6 55.9 60.7 53.6

Table 3: Results on proposed iNat21 benchmark

Method Fine-grain Easy Medium Hard
All Known Novel All Known Novel All Known Novel All Known Novel

RS+ 35.4 55.6 25.3 36.9 63.1 21.2 38.5 68.2 20.3 41.2 71.7 22.9
UNO 36.5 65.6 22.0 33.7 60.1 17.9 33.2 60.2 16.9 32.7 61.2 15.7
GCD 48.0 61.4 41.4 51.1 67.5 41.2 49.7 69.7 37.8 50.4 72.8 36.9

SimGCD 52.5 60.7 48.4 52.6 64.3 45.6 49.7 67.6 38.9 49.0 70.5 36.2
crNCD* 50.8 63.5 44.4 51.4 66.9 42.2 50.7 68.5 40.0 49.2 73.3 34.7

Ours 57.7 71.3 51.0 57.8 75.3 47.4 56.8 76.6 44.9 55.3 78.8 41.1

In Tab.3, we present the results on our proposed iNat21 benchmark. Our method demonstrates
significant improvements over the previous state-of-the-art across all splits. Specifically, our approach
achieves at least a 5% improvement on known classes while delivering more than a 2% gain on novel
classes. Furthermore, when compared to SimGCD (Xu et al., 2022), our improvements are more
pronounced on the medium and hard splits than on the easy and fine-grain splits. This observation
suggests that knowledge transfer is more effective on splits with larger semantic differences. Addi-
tionally, we observe a trade-off between the performance of known classes and novel classes. Known
classes perform best on the hard split but worst on the novel classes, whereas on the fine-grain split,
known classes perform poorly while novel classes excel. In conclusion, the above results confirm the
effectiveness of our proposed approach.

4.3 ABLATION STUDY

In this section, we conduct several analyses to evaluate and understand the effectiveness of our
proposed method. We start with an ablation study to examine the contribution of each component in
our approach. Next, we assess the representation ability of our pre-trained model on known classes to
support our motivation and investigate the impact of different knowledge transfer designs. To gain
visual insights, we visualize the representation space of different models, including the pre-trained
model, adapter layer, and our proposed model. Additionally, we test our method in more challenging
scenarios with limited labeling and fewer classes to assess its robustness. Meanwhile, we also present
our model in a more realistic situation where the number of clusters is unknown. Finally, we analyze
our approach performance with different Lu. These analyses provide a comprehensive understanding
of our approach and its effectiveness in various scenarios.

Baseline and Cluster. In Table 1, the baseline (BL) is trained by Lbase, which achieves competing
results. And “Cluster” (Clu.) means we freeze the backbone pretrained by known classes and only
learn cluster head for the unlabeled data by Lbase.

Component analysis. In Tab.4, we present the results of an ablation study to evaluate the effec-
tiveness of three components in our model: naive Mutual Information loss (nMI), Adapter Layer
(AL), and Channel Selection Matrix(CSM). Here, “nMI” means that we directly maximize the mutual
information between the pre-trained known-class representation space and the joint representation
space without AL and CSM. The results demonstrate that incorporating nMI significantly improves
the performance of both novel and known classes across all datasets, highlighting the importance of
explicit knowledge transfer. Furthermore, including AL results in a 1.3%, 2.7%, and -0.4% increase
in all-class accuracy on fine-grained datasets. This indicates that AL effectively transforms the known-
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Table 4: Ablation study. nMI, AL, and CSM denote naive mutual information loss, adapter layer, and
channel selection matrix respectively.

nMI AL CSM CUB Aircraft Scars
All Known Novel All Known Novel All Known Novel

61.7 68.0 58.5 49.6 56.3 46.2 51.8 71.9 42.0
65.5 71.9 62.2 52.9 59.5 49.6 58.0 77.4 48.5
66.8 75.6 62.5 55.6 60.5 53.1 57.6 75.9 48.8
67.1 73.7 63.8 55.9 60.7 53.6 59.2 79.1 49.6

Table 5: Adapter layer designs.

Layer 0 1 2

AL 62.7 56.9 48.2
Ours 62.2 63.8 58.0

Table 6: Comparison of different knowledge transfer designs.

Method CUB Aircraft Scars
All Known Novel All Known Novel All Known Novel

Baseline 61.7 68.0 58.5 49.6 56.3 46.2 51.8 71.9 42.0
+MSE 63.8 70.9 60.2 51.8 57.6 48.9 54.1 76.8 43.2
+KL 63.7 74.2 58.4 51.0 55.3 48.9 55.7 77.6 45.1
+nMI 65.5 71.9 62.2 52.9 59.5 49.6 58.0 77.4 48.5

class representation into a more suitable form for novel classes, enhancing the transfer efficiency.
Finally, adding CSM to our model leads to improvements of 1.3%, 0.5%, and 0.8% on novel classes
for CUB, Aircraft, and Scars datasets, respectively. Simultaneously, the performance of known
classes on the three fine-grained datasets increases by -1.9%, 0.2%, and 3.2%. This outcome aligns
with our original design intention that using CSM to select the relevant channels for novel classes to
enhance knowledge transfer efficiency. Additionally, we offer a visual analysis of CSM in Appendix
K. Overall, the results demonstrate each component’s effectiveness in our model, highlighting their
contributions to improving the performance of known and novel classes.

Variant knowledge transfer designs. Tab.6 provides an analysis of different implementations
of the knowledge transfer without the knowledge alignment. Here “KL” denotes the knowledge
distillation loss term proposed in (Gu et al., 2023) but without their additional weight function design.
First, we observe that even with the simplest mean squared error (MSE) loss, the model achieves
significant performance improvements across all datasets. Specifically, with MSE, the model shows
improvements of 2.1%, 2.2%, and 2.3% in all class accuracy on CUB, Aircraft, and Scars datasets,
respectively, demonstrating the importance of explicit knowledge transfer. Furthermore, comparing
the results of nMI with KL, we observe a significant improvement of 1-2% on all datasets with nMI
which indicates the superiority of our method.

Adapter layer analysis. In this part, we analyze the design of our adapter layer. In Fig.3, we
visualize representation spaces before and after the adapter layer by t-SNE. After passing through
the adapter layer, the representation space of the model undergoes a notable transformation from
a disorganized and scattered representation found in the pre-trained known-class model to a more
compact and structured configuration. This observation is in line with the intended purpose of our
adapter layer design, which aims to transform the representation space of the pre-trained known-class
model into the joint space. Furthermore, it is worth noting that compared to the adapter layer, our
final model can exhibit more compact feature representations, with samples of the same class tightly
grouped together, further confirming our method’s effectiveness. Additionally, in Tab.5, we compare
the model’s performance on CUB novel classes with different numbers of layers, both with and
without knowledge transfer. Each layer in our adapter layer consists of a linear layer and a ReLU
layer. Upon analyzing the results after the adapter layer, we observe that the model with 0 layers (i.e.,
without additional layers) outperforms the models with more layers. This finding can be attributed to
the noise generated during unsupervised learning. More complex models are susceptible to overfitting
this noise, leading to a decrease in model generalization performance. Our analysis concludes that
the one-layer design is the optimal choice for our proposed adaptive knowledge transfer. This design
effectively converts the known-class representation space into a joint representation space.

The number of clusters Cn is unknown. The experiments presented so far have relied on the
assumption that the number of clusters is known a priori, which is often unrealistic in practice. To
address this limitation, we conduct additional experiments to analyze our model’s performance when
the number of clusters is unknown. In this experiment, we employ the method proposed in (Vaze
et al., 2022a) to infer the number of classes for each dataset. Specifically, we consider Aircraft to
have 108 classes, CUB to have 231 classes, and Scars to have 230 classes. The results presented in
Tab.7 show that our method significantly improves over the baseline for known and novel classes.
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Pre-trained Known-class Model Adapter Layer Ours

Figure 3: t-SNE visualization of data features on Aircraft. Here “Pre-trained Known-class Model”
is the pre-trained model representation space before the Adapter Layer. The middle figure is the
pre-trained model representation space after the Adapter Layer. Moreover, we also present our final
model representation space with the label “Ours”.

Table 7: Cn is unknown.

Method CUB Scars Aircraft
All Known Novel All Known Novel All Known Novel

Baseline 62.4 67.1 60.0 52.6 72.7 42.9 52.3 56.2 50.3
Ours 68.0 72.5 65.8 54.9 75.3 45.1 55.6 60.4 53.1

Table 8: Different Lu loss.

Method CUB Scars Aircraft
All Known Novel All Known Novel All Known Novel

Lpw
u 33.2 24.0 37.8 34.2 31.3 35.7 17.2 18.3 16.7

Lpw
u + Lakt 38.6 36.6 39.5 35.1 25.6 39.9 26.8 39.4 20.8

Lot
u 53.9 63.0 49.3 42.3 47.5 39.7 40.4 45.6 37.9

Lot
u + Lakt 58.7 59.1 58.5 48.8 47.8 49.2 49.8 63.1 43.3

These findings underscore the robustness of our approach in a realistic setting. Notably, our model’s
performance on the CUB dataset under a wrong estimate is better than that under the correct estimate.
This may be attributed to overestimating the number of novel classes reduces the occurrence of
extremely large clusters. Further analysis is provided in Appendix J.

Analysis of different Lu. In this part, we demonstrate that our knowledge transfer framework is not
dependent on the design of Lu. Specifically, we conduct experiments with two different unsupervised
loss functions: the typical pairwise loss proposed by (Cao et al., 2022), denoted as Lpw

u , and the
optimal transport-based self-labeling loss proposed by (Fini et al., 2021), denoted as Lot

u . As shown
in Tab.8, our Lakt loss significantly improves the performance of both novel and known classes.
Notably, even with the relatively strong Lot

u , we achieve a substantial improvement in the performance
of novel classes, highlighting the effectiveness of our method with different Lu formulations.

5 CONCLUSION

This paper introduces a novel adaptive knowledge transfer framework for generalized category
discovery aiming at establishing an explicit knowledge transfer between known classes and novel
classes. The framework comprises three essential components: knowledge generation, knowledge
alignment, and knowledge distillation. In the knowledge generation component, we utilize a model
trained on known class data. The knowledge alignment consists of two submodules: an adapter
layer, which can align the known-class representation space with the joint representation space, and a
channel selection matrix, which facilitates more targeted knowledge transfer. Finally, our knowledge
distillation component focuses on maximizing the mutual information between two representation
spaces. Our extensive evaluations reveal the remarkable superiority of our approach when compared
to existing methods in the field. Moreover, our explicit knowledge transfer framework introduces a
fresh perspective for advancing knowledge transfer in generalized category discovery. This novel
approach holds promise for addressing the critical challenge of effectively transferring knowledge
from known to novel classes in GCD.
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A ESTIMATING OF MUTUAL INFORMATION

For notation simplicity, we derive the mutual information between X and Y in the following. The
mutual information between X and Y is defined as:

I(X;Y ) = Ep(x,y)[log
p(x, y)

p(x)p(y)
] (6)

However, the above equation is intractable due to p(x), p(y) is unknown, we turn to model the density
ratios:

f(x, y) ∝ p(x, y)

p(x)p(y)
(7)

We will prove this equation later. Note that the density ratio can be modeled by a neural network
fθ(x, y), where θ is the parameters of the neural network. We simply use the following form:

fθ(x, y) = exp(xgθ(z)) (8)

Although we cannot evaluate p(y) or p(y|x) directly, we can sample from these distributions, and
then use the Noise-Contrastive Estimation to approximate mutual information. Specifically, given
a set U = {y1, y2, ..., yN}, N - 1 negative samples from the proposal distributions p(y) and one
positive sample from p(y|x) denoted as yN , we minimize the following objective:

L = E
U
[log

fθ(x, yN )∑N
i=1[fθ(x, yi)]

] (9)

Now, we prove that minimizing L is equivalent to maximizing I(X;Y ). First, we show the L achieve
optimal when f(x, y) ∝ p(x,y)

p(x)p(y) . As L is the cross-entropy loss to classify positive samples correctly,
and N = i denotes yi is the positive sample from p(y|x). We write the optimal probability as:

p(N = i|X,Y ) =
p(yi|x)

∏
j ̸=i

p(yj)∑N
j=1 p(yj |x)

∏
k ̸=j p(yk)

. (10)

Dividing the numerator and denominator simultaneously by
∏N

i=1 p(yi), the above equation turns to
the following form:

p(N = i|X,Y ) =

p(yi|x)
p(yi)∑N

j=1
p(yj |x)
p(yj)

. (11)

Therefore, the optimal value for fθ(x, yi) in L is proportional to p(yi|x)
p(yi)

.

Then, we plug in the optimal fθ(x, yi) in L. The optimal loss is denoted as:

Lopt = −E[log
p(yN |x)
p(yN )∑N

j=1
p(yj |x)
p(yj)

]

= E[log 1 +
p(yN )

p(yN |x)

N−1∑
j=1

p(yj |x)
p(yj)

]

≈ E[log 1 +
p(yN )

p(yN |x)
(N − 1)Ey∈p(y)

p(yj |x)
p(yj)

]

= E[log 1 +
p(yN )

p(yN |x)
(N − 1)]

≥ E[log
p(yN )

p(yN |x)
N ]

= −I(X;Y ) + logN.
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Therefore, I(X;Y ) ≥ logN − Lopt ≥ logN − L. In conclusion, we minimize L w.r.t θ to
approximate I(X;Y ). For more in-depth analysis and proof please see InfoNCE (Van den Oord
et al., 2018).

B INAT21 BENCHMARK CONSTRUCTION

To manage computational costs effectively, we randomly selected 20 fine-grained classes from each
of the 11 super categories contained within the iNat21 dataset. The detailed benchmark is further
constructed by partitioning it into four distinct splits. These splits were strategically organized based
on semantic similarity and a hierarchical, coarse-to-fine structure within the classes. This methodical
division ensures that the proposed benchmark encapsulates a rich variety of class relationships and
hierarchies, thereby facilitating a more comprehensive assessment of knowledge transfer techniques.

B.1 FINE-GRAIN SPLITS

For fine-grain split, we simply sample 10 classes from each super-category. In this specific split, we’ve
introduced a noteworthy characteristic: the unlabeled classes share coarse-level label information
with their labeled counterparts. By incorporating this fine-grained setting, we aim to create a more
realistic and demanding evaluation scenario for knowledge transfer techniques.

B.2 CORASE SPLITS

Similarity Computation. With the success of the Vision-Language Model such as CLIP (Radford
et al., 2021), text and vision information are well aligned in the feature space. Leveraging the
powerful representations learned by these models, we propose to use the similarity between class
labels to approximate the semantic similarity of a large amount of visual data.
Specifically, given two sets of labels Y1 = [y1,1, y1,2, ...y1,N1

], Y2 = [y2,1, y2,2, ...y2,N2
] and a

Vision-Language model G, class embeddings are computed by f1 = G(Y1) and f2 = G(Y2). Next,
a distance matrix is calculated by considering cosine similarity between feature embeddings, i.e.
d = norm(f1) · norm(fT

2 ).
We make the assumption that classes close to each other in the feature space contain valuable semantic
information for the discovery of novel classes. Conversely, distant classes have limited relevance
for this task. Thus, the final distance for the two label sets is calculated by the average of k smallest
measure for each label in Y1, i.e.

D =
1

N1 · k

N1∑
i=1

k∑
j=1

d̂i,j (12)

where d̂i,j denotes the jthsmallest distance in di. This distance measure is used to represent the
semantic similarity of two sets of data. This approach is able to capture the semantic relationships
between labels in a data-driven manner, emphasizing the most informative and closely related labels
while disregarding those that are distant and less relevant.

Corase Split design. For our detailed splits, we consider the 11 super-category labels in the original
iNat21 dataset (Van Horn et al., 2021), which 5 of them will be novel classes and the rest known.
Specifically N1 = 5, N2 = 6 and we set k = 1, so for all the possible splits in the 11 superclasses, we
can calculate a list of similarity measure Dk

i=1 where k =
(
11
5

)
. We then arrange all these similarity

measures in descending order and strategically select 0%, 60%, and 100% of the sorted list to create
hard, medium, and easy splits, respectively. This approach ensures that the ’hard’ split exhibits the
lowest similarity between known and novel classes, while the ’easy’ split demonstrates the highest,
and the ’medium’ split achieves a balanced similarity level. Further, all the split we introduce creates
a different scenario that both known/novel classes are fine-grained but do not share corase level
information, which is more challenging for the knowledge transfer task.

C DATASETS

We conduct experiments on widely-used datasets such as CIFAR100 (Krizhevsky et al., 2009) and
ImageNet100 (Deng et al., 2009), as well as the recently proposed Semantic Shift Benchmark (Vaze
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et al., 2022b), namely CUB (Wah et al., 2011), Stanford Cars (Scars) (Krause et al., 2013) and
FGVC-Aircraft (Maji et al., 2013). The details of the split are as follows:

Table 9: The detail of datasets.

Dataset Labeled Dl Unlabeled Du

#Image #Class #Image #Class

CIFAR100 20K 80 30k 100
ImageNet100 31.9K 50 95.3K 50

CUB 1.5K 100 4.5K 200
Stanford Cars 2.0K 98 6.1K 196

FGVC-Aircraft 1.7K 50 5.0K 100

D THE DETAILS OF Lu

In this paper, we adopt the self-labeling loss (Caron et al., 2021; Wen et al., 2022) as our Lu.
Specifically, for each unlabeled data point xi, we generate two views xv1

i and xv2
i through random

data augmentation. These views are then fed into the ViT (Dosovitskiy et al., 2020) encoder
and cosine classifier (h), resulting in two predictions yv1

i = h(fθ(x
v1
i )) and yv2

i = h(fθ(x
v2
i )),

yv1
i ,yv2

i ∈ RCk+Cn

. As we expect the model to produce consistent predictions for both views, we
employ yv2

i to generate a pseudo label for supervising yv1
i . The probability prediction and its pseudo

label are denoted as:

pv1
i = Softmax(yv1

i /τ), qv2
i = Softmax(yv2

i /τ ′) (13)

Here, τ, τ ′ represents the temperature coefficients that control the sharpness of the prediction and
pseudo label, respectively. Similarly, we employ the generated pseudo-label qv1

i , based on yv1
i , to

supervise yv2
i . However, self-labeling approaches may result in a degenerate solution where all novel

classes are clustered into a single class (Caron et al., 2018). To mitigate this issue, we introduce an
additional constraint on cluster size. Thus, the loss function can be defined as follows:

Lu =
1

2|Du|

|Du|∑
i=1

[l(pv1
i ,SG(qv2

i )) + l(pv2
i ,SG(qv1

i ))] + ϵH(
1

2|Du|

|Du|∑
i=1

pv1
i + pv2

i ) (14)

Here, l(p,q) = −q logp represents the standard cross-entropy loss, and SG denotes the “stop
gradient” operation. The entropy regularizer H enforces cluster size to be uniform thus alleviating
the degenerate solution issue. The parameter ϵ represents the weight of the regularizer.

E THE DETAILS OF N

Due to the presence of samples from the same class in a simple negative samples set N , minimizing
Lakt may have detrimental effects on clustering (Zheng et al., 2021; Zhang et al., 2022; Zhong
et al., 2021b), particularly for novel classes. To address this concern, we propose a negative sample
generation strategy based on mixup. The use of contrastive loss poses a potential issue as it may
mistakenly treat different unlabeled data samples from the same class as negative samples, which
hinders the effective clustering of novel classes (Zhang et al., 2022; Zheng et al., 2021). To address
this concern, we generate negative samples by combining the representation of labeled and unlabeled
data. Specifically, we mix the representations of labeled and unlabeled data as follows:

N = {z|z = ηzl + (1− η)zu, η ∈ (0.5, 1]} (15)

Here, zl and zu represent the representations of labeled and unlabeled data in two representation
spaces, and η is a random value between 0.5 and 1. Because η > 0.5, the generated negative
samples tend to be biased towards the known classes since the labeled data belong to known classes.
Consequently, this approach helps to avoid class collision issues for novel classes. As the known
classes already have supervised losses, the negative impact of the contrastive loss on the classification
of known classes is relatively small. Furthermore, as shown in Tab.10, using NSG can slightly
improve the model’s performance, especially on novel classes.
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Table 10: Comparison of model’s performance with and without NSG.

Method CUB StanfordCars Aircraft
All Seen Novel All Seen Novel All Seen Novel

Ours w/o NSG 67.2 73.2 64.2 58.9 80.2 48.6 54.1 60.3 51.0
Ours 67.1 73.7 63.8 59.2 79.1 49.6 55.9 60.7 53.6

Table 11: Comparison with state-of-the-art Method

Method Herbarium
All Seen Novel

K-means 12.9 12.9 12.8
Rankstats 27.9 55.8 12.8

UNO 28.3 53.7 14.7
ORCA 20.9 30.9 15.5
GCD 35.4 51 27

OpenCons 39.3 58.9 28.6
PromptCAL - - -

DCCL - - -
SimGCD 43.3 57.9 35.3
crNCD - - -
Ours 43.0 56.2 35.9

F RESULTS ON HERBARIUM19 DATASET.

We conduct the experiment on the Herbarium19 dataset, which is a long-tailed dataset. The results in
Tab.11 show we achieve comparable results on the Herbarium19 with SimGCD, while PromptCAL,
DCCL, and crNCD do not report results on the Herbarium19 dataset.

G MORE ABLATION ON COARSE-GRAINED DATASET

We conduct an ablation study on the coarse-grained dataset. The observation in the table below
regarding the coarse-grained dataset reveals a significant drop in novel class performance after using
nMI. We attribute this to two main reasons. a) The representation space initialized with known classes
has not encountered novel classes during training, potentially introducing bias in the final knowledge
space towards known classes. This motivated the design of AL in our approach. b) The knowledge
in known class data is not universally useful, and some information may even be harmful to novel
class learning. This phenomenon is more pronounced in coarse-grained datasets. Consequently,
we introduce CSM to address this issue by filtering out harmful knowledge. We provide a detailed
analysis of this phenomenon in the subsequent section.

The table results highlight the limitations of directly using nMI, particularly in scenarios with a large
semantic gap between classes. The subsequent improvement seen after employing AL and CSM
underscores their efficacy in enabling more targeted knowledge transfer for novel class learning.

H THE DETAILS OF CLUSTERING ON THE PRE-TRAINED MODEL

We initialize Ck + Cn prototypes, and then use (1 − α)Ls + αLu to learn prototypes on all data.
Finally, we evaluate the model on unlabeled datasets with clustering accuracy. Specifically, we first
employ the Hungarian matching algorithm to obtain the best matching between cluster and ground
truth, and then we report the performance on the known classes, novel classes, and all classes. More
results are shown in Tab.13

I MORE IMPLEMENTATION DETAILS OF CRNCD

As crNCD is originally designed for NCD problems, we have adapted it to the GCD setting using a
widely employed architecture utilized in other GCD methods. Additionally, to mitigate the influence
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Table 12: Ablation study on coarse-grained dataset.

nMI AL CSM CIFAR100-80
All Known Novel

79.2 78.7 80.0
79.9 84.6 70.5
82.2 84.1 78.3
82.8 84.0 80.3

Table 13: More analysis of the pre-trained known-class model. "Clustering" denotes clustering novel
classes on the pre-trained model.

Method CIFAR100-80 ImageNet100-50 CUB Scars Aircraft
All Known Novel All Known Novel All Known Novel All Known Novel All Known Novel

Baseline 79.3 78.4 80.9 83.6 93.3 78.7 61.7 68.0 58.5 49.6 56.3 46.2 51.8 71.9 42.0
Clustering 57.6 81.6 45.6 80.1 96.7 71.7 67.3 76.5 62.7 52.5 75.2 41.5 48.0 59.0 42.5

of different self-labeling designs, we employ the same Lbase (Equ.1) as in our method, instead of
using the original Lopt from crNCD. The original Lopt in crNCD did not perform well in the GCD
setting, as indicated in the table below. It is important to note that we have made no modifications to
the core loss LrKT .

J MORE ANALYSIS ON Cn IS UNKNOWN

In the experiment section, we have presented the performance of our model when the number of
novel classes Cn is unknown. Notably, we observed that the model achieves better performance in
the Cn unknown scenario compared to the Cn known scenario on the CUB dataset. In this section,
we aim to provide some insights into this phenomenon.

In our experiment setup, we select a subset of the CUB unlabeled training dataset, where the number
of samples in a novel class ranges between 29 and 30, while the number of samples in a known class
is around 15.

In Fig.4, we provide visual representations of the confusion matrices corresponding to the Cn

known and Cn unknown scenarios. Notably, when Cn is unknown, we observe that the model
exhibits a low tendency to predict data belonging to the additional classes (ranging from 200 to 230).
Furthermore, the confusion matrix appears to exhibit a more sparse structure in the Cn unknown
scenario. Specifically, when compared to the Cn known scenario, the Cn unknown scenario displays
a decreased number of instances with large values in the confusion matrix. Specifically, in the Cn

known scenario, we observe five instances of large incorrect values exceeding 20, whereas, in the Cn

unknown scenario, only 3 such instances are present. This finding indicates that in the Cn unknown
scenario, the model is less inclined to generate erroneous sub-classes, resulting in a sparser confusion
matrix.

In Fig.5, we present the histograms of cluster sizes specifically focusing on the novel classes.
Interestingly, we observe that in the Cn unknown scenario, there is a lower occurrence of large
clusters with sizes ranging between 50 and 60. This observation further supports our findings that in
the Cn unknown scenario, the model is less prone to generating large clusters.

K CHANNEL SELECTION MATRIX VISUALIZATION ANALYSIS

To visualize the pattern of the Channel Selection Matrix, we first extract the Channel Selection
Matrix for each sample. Next, we aggregate the Channel Selection Matrix for each class by summing
them. Finally, we apply normalization to the aggregated values for each class. The diagonal of the
aggregated Channel Selection Matrix is shown in Fig.6. Note that for fine-grained datasets, the classes
often exhibit similarity when their indexes are close. The pattern of the Channel Selection Matrix
is evident and distinct for the fine-grained dataset, particularly for the aircraft dataset. However,
for ImageNet100, the pattern appears less clear. In Fig.6, we observe that for each class, specific
dimensions are activated in the Channel Selection Matrix. Additionally, when classes are similar,
the activations also exhibit similarity, indicating a correlation between class similarity and mask
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Figure 4: Comparisons of confusion matrix on different settings in CUB dataset. The x-axis is the
predicted label, and the y-axis is the true label. Red circles mark values greater than 20 that are not
on the diagonal.

Figure 5: Comparisons of cluster size histograms on novel classes in CUB dataset. The true cluster
size is between 29 and 30. Notably, in the Cn unknown scenario, because of the additional class,
there are 31 extra items in the Cn unknown histogram.
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Table 14: crNCD performance with original loss Lopt

Method CUB StanfordCars Aircraft
All Seen Novel All Seen Novel All Seen Novel

Lopt + crNCD 56.9 57.8 56.4 46.6 62.3 39.1 45.2 59.0 43.4
Lbase + crNCD 64.1 75.2 58.6 54.8 76.5 44.3 53.1 57.0 51.3

Figure 6: Visualization of the Channel Selection Matrix. The diagonal of the Channel Selection
Matrix is shown.

activations. This observation aligns perfectly with our initial motivation behind the Channel Selection
Matrix. Our approach selects different features to transfer for different classes, tailoring the knowledge
transfer process according to the unique characteristics of each class. Meanwhile, the unselected
features are unconstrained, enhancing the flexibility of the joint training model.

L FEWER KNOWN CLASSES AND LOWER LABELING RATIOS

In Fig.7, we evaluate our proposed method in two scenarios: (1) we reduce the number of known
classes while annotating half of each known class, and (2) we reduce the labeling ratios while given
100 classes as known classes. The results demonstrate that our method surpasses the baseline model in
both scenarios. In the fewer known classes situation, our method achieves a significant improvement
of 3-7%. Similarly, in the lower labeling ratios situation, we observe a 1-9% improvement. These
results highlight the effectiveness and robustness of our method in addressing more challenging and
realistic scenarios.
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Figure 7: The left and right plots show the model performance with fewer known classes and lower
labeling ratios, respectively.
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Figure 8: Analysis of hyperparameter β on CUB.

M SENSITIVE ANALYSIS OF HYPERPARAMETER β

In our approach, we introduce a hyperparameter β to control the strength of representation alignment,
as illustrated in Eqn.(5). In Fig.8, we show the model performance with different values of β.
Compared to the baseline model (β = 0), the model with different values of β has a significant
improvement. This result indicates that our model is robust to the value of β. Notably, as β increases,
the model’s novel class accuracy decreases, while the known class accuracy increases. Based on our
results, we suggest using a default value of β = 0.1, which can achieve a balance between known
and novel class learning.
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