
BARNN: A Bayesian Autoregressive and Recurrent Neural Network

Dario Coscia 1 2 Max Welling 2 Nicola Demo 3 Gianluigi Rozza 1

Abstract
Autoregressive and recurrent networks have
achieved remarkable progress across various
fields, from weather forecasting to molecular gen-
eration and Large Language Models. Despite
their strong predictive capabilities, these mod-
els lack a rigorous framework for addressing un-
certainty, which is key in scientific applications
such as PDE solving, molecular generation and
Machine Learning Force Fields. To address this
shortcoming we present BARNN: a variational
Bayesian Autoregressive and Recurrent Neural
Network. BARNNs aim to provide a principled
way to turn any autoregressive or recurrent model
into its Bayesian version. BARNN is based on
the variational dropout method, allowing to apply
it to large recurrent neural networks as well. We
also introduce a temporal version of the “Vari-
ational Mixtures of Posteriors” prior (tVAMP-
prior) to make Bayesian inference efficient and
well-calibrated. Extensive experiments on PDE
modelling and molecular generation demonstrate
that BARNN not only achieves comparable or
superior accuracy compared to existing methods,
but also excels in uncertainty quantification and
modelling long-range dependencies.

1. Introduction
Autoregressive and recurrent models have demonstrated
impressive advancements in different disciplines, from
weather prediction (Bodnar et al., 2024; Lam et al., 2022),
to molecules generation (Shi et al., 2020; Simm et al., 2020)
and Large Language Models (LLMs) (Bengio et al., 2000;
Vaswani, 2017; Radford et al., 2019). However, while au-
toregressive models show strong predictive abilities, they are
also prone to overfitting to the specific tasks they are trained

1Mathematics Area, International School of Advanced Studies,
Italy 2Informatics Institute, University of Amsterdam, The Nether-
lands 3FAST Computing Srl, Italy. Correspondence to: Dario
Coscia <dario.coscia@sissa.it>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

on, challenging their application outside their training do-
main (Papamarkou et al., 2024). Overcoming this behaviour
is critical, not only in scientific applications where phenom-
ena can show complex data distribution shifts away from
the training data, but also in deep over-parametrized mod-
els. For example, in weather forecasting, rapidly changing
climate patterns can cause significant deviations from the
training data and lead to unpredictable results, while over-
parametrized LLMs often provide incorrect answers with
high confidence, highlighting issues with model calibra-
tion (Jiang et al., 2021; Xiao et al., 2022; Yang et al., 2022).
This problem is also prevalent across many other domains,
and Bayesian approaches present a promising direction for
improvement (Papamarkou et al., 2024).

This work aims to close the gap between autoregressive/
recurrent models and Bayesian methods, presenting a fully
Bayesian, scalable, calibrated and accurate autoregressive/
recurrent model, named BARNN: Bayesian Autoregressive
and Recurrent Neural Network. BARNN provides a princi-
pled way to turn any autoregressive/ recurrent model into
its Bayesian version. In BARNN the network weights are
evolved jointly with the observable states (e.g. language
tokens, PDE states, etc.), creating a joint probabilistic model
(see Figure 1). A new state is generated by sampling from
the distribution conditioned on previous states and the cur-
rent network weights. At the same time, the latter are
drawn from a variational posterior distribution that is condi-
tioned on the previous states. We derive a variational lower
bound for efficiently training BARNN that is related to the
VAE (Kingma & Welling, 2014) (ELBO) objective. To make
Bayesian Inference over a large number of network weights
computationally efficient, we propose an extension of Vari-
ational Dropout (Kingma et al., 2015; Gal & Ghahramani,
2016), which also opens the door to explore quantization and
network efficiency (Louizos & Welling, 2017; Van Baalen
et al., 2020) for overparametrized autoregressive models.
Finally, we introduce a temporal version of the “Variational
Mixtures of Posteriors" (Tomczak & Welling, 2018) prior
(tVAMP-prior) to make Bayesian inference efficient and
well-calibrated.

Building on the recent successful application of autoregres-
sive and recurrent models to Scientific Machine Learning
tasks (Pfaff et al., 2021; Lippe et al., 2024; Segler et al.,
2018) we apply our methodology to uncertainty quantifica-

1

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

states
evolution

weights
evolution

states
evolution

weights
evolution

(a) (b)

Figure 1: BARNN generative model (a) and inference model (b). Solid lines represent the generative process, whereas dotted
lines indicate the variational approximation used for inference. The network weights ωt evolve jointly with the states yt,
forming a coupled probabilistic model. During inference, the weights are sampled from the variational posterior q, allowing
for improved parameter estimation based on observed data. The draw depicts the one-step causal evolution of the states.

tion (UQ) for Neural PDE Solvers, and to molecules genera-
tion with Language models for drug discovery. Experiments
demonstrate that BARNN not only offers greater accuracy
but also provides calibrated and sharp uncertainty estimates,
and excels in modelling long-range molecular dependencies
compared to related methods. To the best of our knowledge,
BARNN is the first approach that transforms any autore-
gressive or recurrent model into its Bayesian version with
minimal modifications, ensuring greater accuracy compared
to its not Bayesian counterpart and providing a structured
way to quantify uncertainties.

2. Background and Related Work
2.1. Autoregressive and Recurrent Networks

Autoregressive and Recurrent models represent a joint prob-
ability distribution as a product of conditional distributions,
leveraging the probability product rule (Bengio et al., 2000;
Uria et al., 2016). In recent years, autoregressive and re-
current models have been successfully applied in various to
different tasks, such as text (Bengio et al., 2000; Vaswani,
2017), graphs (Li et al., 2018; Liu et al., 2018), audio
(Dieleman et al., 2016), and, more recently, PDE mod-
elling (Brandstetter et al., 2022a;b) and molecules genera-
tion (Segler et al., 2018; Özçelik et al., 2024; Schmidinger
et al., 2024). Despite their vast applicability, those mod-
els are known to overfit, leading to unreliable predictions,
especially in over-parameterized regimes, such as modern
LLMs, or when the testing data distribution shifts signifi-

cantly from the training data distribution (Papamarkou et al.,
2024). However, so far in the literature, it appears that quan-
tifying the uncertainty of these model parameters, namely
epistemic uncertainty, is far from being the norm, and prin-
cipled ways to do it are still missing (Aichberger et al.,
2024).

2.2. Bayesian Modelling and Uncertainty Quantification

Bayes’ theorem (Bayes, 1763) offers a systematic approach
for updating beliefs based on new evidence, profoundly in-
fluencing a wide array of scientific disciplines. In Deep
Learning (DL), Bayesian methods have extensively been
applied (Hinton & Van Camp, 1993; Korattikara et al., 2015;
Graves, 2011; Kingma & Welling, 2014). They provide a
probabilistic treatment of the network parameters, enable
the use of domain knowledge through priors and overcome
hyper-parameter tuning issues through the use of hyper-
priors (Papamarkou et al., 2024). Bayesian Models have
been historically applied to model epistemic uncertainty, i.e.
uncertainty in network parameters. For example in (Gal
& Ghahramani, 2016) the Dropout (Srivastava et al., 2014)
method was linked to Gaussian Processes (Rasmussen &
Williams, 2005) showing how to obtain uncertainties in neu-
ral networks; while in (Kingma et al., 2015) the authors
connect Gaussian Dropout objectives to Stochastic Gradient
Variational Bayesian Inference, allowing to learn dropout co-
efficients and showing better uncertainty. This last method
is the most related work to ours, but differently from our
approach, the weights do not evolve in time, leading to less

2

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

accurate uncertainties (see the experiment section 4.2).

2.3. Neural PDE Solvers

A recent fast-growing field of research is that of surrogate
modelling, where DL models, called Neural PDE Solvers,
are used to learn solutions to complex physical phenom-
ena (Li et al., 2020; Bhattacharya et al., 2021; Rozza et al.,
2022; Pichi et al., 2024; Coscia et al., 2024; Li et al., 2024).
In particular, Autoregressive Neural PDE Solvers (Brand-
stetter et al., 2022b; Sanchez-Gonzalez et al., 2020) gained
significant attention since they can be used to infer solutions
of temporal PDEs orders of magnitude faster compared to
standard PDE solvers, and generate longer stable solutions
compared to standard (not-autoregressive) Neural Operators.
However, Autoregressive Neural PDE Solvers accumulate
errors in each autoregressive step (Brandstetter et al., 2022b),
slightly shifting the data distribution over long rollouts. This
yields inaccurate solutions for very long rollouts, and meth-
ods to quantify the uncertainty have been developed: PDE
Refiner (Lippe et al., 2024) obtains the PDE solution by
refining a latent variable starting from unstructured random
Gaussian noise, similarly to denoising diffusion models (Ho
et al., 2020); while in GraphCast (Lam et al., 2022) the au-
thors introduced a method called Input Perturbation, which
adds small random Gaussian noise to the initial condition,
and unroll the autoregressive model on several samples to
obtain uncertainties.

2.4. RNN for Molecule Generation

Drug design involves discovering new molecules that can
effectively bind to specific biomolecular targets. In re-
cent years, generative DL has emerged as a powerful
tool for molecular generation (Shi et al., 2020; Eijkel-
boom et al., 2024). A particularly promising approach
is the use of Chemical Language Models (CLMs), where
molecules are represented as molecular strings. In this
area, RNNs have shown significant potential (Segler et al.,
2018; Özçelik et al., 2024; Schmidinger et al., 2024). In
the experiments section, we will demonstrate how classical
RNNs, when combined with BARNN, can enhance perfor-
mance—particularly by improving the model’s ability to
capture long-range dependencies, generating statistically
more robust molecules, and achieving better learning of
molecular properties

3. Methods
Bayesian Autoregressive and Recurrent Neural Network
(BARNN) is a practical and easy way to turn any autore-
gressive or recurrent model into its Bayesian version. The
BARNN framework creates a joint distribution over the
observable states (e.g. language tokens, PDE states, etc.)
and model weights, with both alternatingly evolving in time

(section 3.1). We show how to optimize the model by deriv-
ing a novel variational lower bound objective that strongly
connects to the VAEs (Kingma & Welling, 2014) framework
(section 3.2). Finally, we present a scalable variational pos-
terior and prior for efficient and scalable weight-parameter
sampling (section 3.3).

3.1. The State-Weight Model

Autoregressive models represent a joint probability distribu-
tion as a product of factorized distributions over states:

p(y0, . . . ,yT) =

T∏
t=1

p(yt | yt−1, . . . ,y0), (1)

where a new state yt is sampled from a distribution condi-
tioned on all the previous states yt−1, . . . ,y0, and T is the
state-trajectory length. In particular, deep autoregressive
models (Schmidhuber et al., 1997) approximate the factor-
ized distribution p(yt | yt−1, . . . ,y0) with a neural network
with optimizable deterministic weights w. We construct a
straightforward Bayesian extension of this framework by
jointly modelling states yt and weights ωt via a joint distri-
bution p(y0,ω1,y1,ω2,y2, . . . ,ωT ,yT) = p(y0:T ,ω1:T)
on states and weights, accounting for the variability in time
for both1. The full joint distribution is given by:

p(y0:T ,ω1:T) =

T∏
t=1

p(yt | yt−1, . . . ,y0,ωt)p(ωt). (2)

Hence, a new state yt is obtained by sampling from the
distribution conditioned on previous states and the current
weights ωt, while the latter are sampled from a prior distri-
bution p(ωt), see Figure 1.

3.2. The Temporal Variational Lower Bound

Learning the model in eq. (2) requires maximising the log-
likelihood log p(y≥0). Unfortunately, directly optimizing
log p(y0:T) by integrating eq. (2) over the weights, or by
expectation maximization is intractable; thus we propose
to optimize log p(y0:T) by variational inference (Kingma
& Welling, 2014). The variational posterior over network
weights given the states qϕ(ω1:T | y0:T) is parametrized by
(different time-independent) weights ϕ and reads:

qϕ(ω1:T | y0:T) =
T∏

t=1

qϕ(ωt | yt−1, . . . ,y0). (3)

Given the variational posterior above, in Appendix A.1 we
derive the following variational lower bound to be max-
imised over the variational parameters:

L(ϕ) = Et∼U [1,T][Eωt∼qϕ [log p(yt | y0:t−1,ωt)]

−DKL [qϕ(ωt | y0:t−1)∥p(ωt)]].
(4)

1We indicate a sequence (ak,ak+1,ak+2, . . . ,ak+l) with
ak:k+l ∀l > k ∈ N.

3

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

The equation above has two nice properties. First, it resem-
bles the VAE objective (Kingma & Welling, 2014) creating
a connection between Bayesian networks and latent vari-
able models. Second, BARNN incorporates into the ELBO
the timestep dependency, allowing for adjustable weights
in time which we will show provide sharper, better cali-
brated uncertainties as well the ability to better capture long
range dependencies in the sequences. Finally, in the limit
of time-independent peaked distribution with prior and pos-
terior perfectly matching, the BARNN loss simplifies to
the standard log-likelihood optimization used in standard
autoregressive and recurrent models (see Appendix A.5 for
derivation). This suggests interpreting eq. (4) as a form of
Bayesian weight regularization during autoregressive model
training. Finally, once the model is trained, the predictive
distribution and uncertainty estimates can be easily com-
puted by Monte Carlo sampling (see Appendix A.4).

3.3. Variational Dropout Approximation

When examining the generative model in eq. (2) or the
lower bound in eq. (4), a key challenge arises: how can
we efficiently sample network weights? Directly sampling
network weights is impractical for large networks, making
alternative approaches necessary. Variational Dropout (VD)
(Kingma et al., 2015; Molchanov et al., 2017) offers a solu-
tion by reinterpreting traditional Dropout (Srivastava et al.,
2014)—which randomly zeros out network weights during
training—as a form of Bayesian regularization, and use the
local reparametrization trick for sampling only the activa-
tions resulting in computational efficiency. We re-interpret
VD for sampling dynamic weights ωt during training and
inference. Our goal is to do a reparametrization of the
weights ωt = f(Ω,αt, ϵ), with Ω static-deterministic net-
work weights, αt deterministic time-dependent variational
weights, ϵ ∼ p(ϵ) some random noise, and f a differen-
tiable function. This parametrization is very flexible: (i) it
allows to apply the global-reparametrization trick (Kingma
& Welling, 2014); (ii) it uses fixed network weights Ω en-
abling to scale the Bayesian methodology to large networks;
(iii) it incorporates time and previous state dependency by
perturbing Ω with deterministic time-dependent variational
weights αt, and adds stochasticity with random noise ϵ,
making the methodology easily implementable with little
change to the main autoregressive or recurrent model. We
present a specific method for defining this reparameteriza-
tion while leaving other potential approaches and extensions
for future work.

Variational Posterior: First, assume that weights ωt fac-
torize over layers l ∈ (1, . . . , L) for the posterior qϕ, imply-
ing:

qϕ(ωt | y0:t−1) =

L∏
l=1

qϕ(ω
l
t | y0:t−1), (5)

where ωl
t are the weights at time t for layer l of the au-

toregressive or recurrent network. Second, assume qϕ(ω
l
t |

y0:t−1) follows a normal distribution as follows:

qϕ(ω
l
t | y0:t−1) = N (αl

tΩ
l, (αl

tΩ
l)2)

⇌

ωl
t = αl

tΩ
l(1 + ϵ) , ϵ ∼ N (0, I),

(6)

where the square on Ωl is done component-wise, mean-
ing weights in each layer are not correlated, and αl

t are
scalar positive dropout variational coefficients depending
on y0:t−1 (and possibly t depending on the specific ap-
plications). In practice, a network encoder Eψ is used
to output the vector of dropouts coefficients for all layers
αt = [α1

t , . . . , α
L
t] = Eψ(y0:t−1), with ψ the encoder

weights and the local-reparametrization trick is applied
(Kingma et al., 2015) component-wise for linear layers.
Thus, the variational parameter to optimize are ϕ = (Ω,ψ),
with Ω = {Ω1, . . . ,ΩL} static weights, and ψ encoder
weights.

Aggregated Variational Posterior in Time Prior To find
a suitable prior for the model, we first observe that if the
KL-divergence in eq. (4) is independent of Ω, then max-
imising the variational bound L with respect to Ω for fixed
αt, is equivalent to maximise the expected log-likelihood
log p(yt | Ω,ψ,y0:t−1)

2, where we made explicit the
weight dependency. Thus, we look for a prior that allows us
to have a KL-term independent of Ω.

Following the ideas of (Tomczak & Welling, 2018), we can
find that the best prior for the lower bound in eq. (4) is given
by (proof in Appendix A.2):

p(ωt) =

∫
p(y0:t−1)q(ωt | y0:t−1) dy0:t−1. (7)

We call this prior Temporal Variational Mixture of Posterior
(tVAMP). This result is very similar to VAMP obtained in
(Tomczak & Welling, 2018) but with a few differences: (i)
VAMP is a prior on the latent variables, while tVAMP is
a prior on the Bayesian Network weights; (ii) tVAMP is
time-dependent, i.e. for each time t the best prior is given
by the aggregated posterior, while in (Tomczak & Welling,
2018) time dependency was not considered. Assuming the
prior factorize similarly to the posterior, by carrying out the
computations (see Appendix A.2), we obtain the following

2This is the same as optimising the network weights Ω in
standard deterministic networks.

4

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

prior indicating with k the batch index:

p(ωl
t) = N (βl

tΩ
l, (γl

tΩ
l)2),

βl
t =

1

N

N∑
k=1

αl
t(y

k
0:t−1),

γl
t =

√√√√ 1

N

N∑
k=1

(αl
t(y

k
0:t−1))

2 ∀l, t.

(8)

Finally, for the given prior and posterior defined above,
the KL-divergence is indeed independent of Ω (proof in
Appendix A.3) and reads:

DKL [qϕ(ωt | y0:t−1)∥p(ωt)] =

L∑
l=1

|Ωl|
2

[(
αl
t − βl

t

γl
t

)2

+

(
αl
t

γl
t

)2

− 1− 2 ln
αl
t

γl
t

]
(9)

where |Ωl| is the dimension of the weights in layer l.

3.4. Bayesian Neural PDE Solvers

Autoregressive Neural PDE Solvers map PDE states yt to
future states yt+1, given a specific initial state y0 (Brand-
stetter et al., 2022b). Those solvers are deterministic and
compute the solution without providing estimates of uncer-
tainty. BARNN can be used to convert any Autoregressive
Neural PDE Solver into its Bayesian version by adopting a
few steps. First, we model the joint weight-state distribution
as:

p(y0:T ,ω1:T) =

T∏
t=1

p(yt | yt−1,ωt)p(ωt), (10)

which is a special case of eq. (2) when markovianity
of first order on the states is assumed. Then, we as-
sume a Gaussian state distribution p(yt | yt−1,ωt) =
N (NO(yt−1;ωt), diag(σ2

t)), where the mean at time t is
obtained by applying the Autoregressive Neural PDE Solver
to the state yt−1, while the standard deviation is not learned.
Specifically, NO indicates any Neural PDE Solver archi-
tecture, with ωt its probabilistic weights, showing that the
framework is independent of the specific architecture used.
The probabilistic weights are obtained with the transforma-
tion f(Ω,αt, ϵ) applied layerwise as explained in eq. (6),
with the encoder Eψ taking only one state as input (due to
markovian updates). Learning is done by maximizing eq.
(4), which, given the specific state distribution, becomes the
minimization of the standard one-step MSE loss (Brandstet-
ter et al., 2022a) commonly used to train Autoregressive
Neural PDE Solvers, plus a Bayesian weight regularization
term given by the negative KL divergence in eq. (9). The
training algorithm is reported in Appendix D.

3.5. Bayesian Recurrent Neural Networks

Given a sequence y0,y1, . . . ,yT a standard Recurrent Neu-
ral Network (RNN) (Bengio et al., 2000; Schmidhuber et al.,
1997) computes eq. (1) by introducing hidden variables
{ht}tt=0 that store3 the input information up to the time t.
Given these variables, the conditional probability is mod-
elled as:

p(yt | yt−1, . . . ,y0) = σ(ht−1)

ht = NN(yt,ht−1;ω),
(11)

where σ is the softmax function, and NN is a neural network
with deterministic weights ω and a specific gate mecha-
nism depending on the RNN structure. Importantly, the
variable ht contains historical information up to time t, i.e.
knowledge of yt−1, . . . ,y0.

Extending RNNs to Bayesian RNNs is straightforward with
BARNN. In particular, the states distribution becomes:

p(yt | yt−1, . . . ,y0,ωt) = σ(ht−1)

ht = NN(yt,ht−1;ωt),
(12)

while the posterior distribution over the weights is obtained
by conditioning on the hidden states:

qψ(ωt | yt−1, . . . ,y0) = qψ(ωt | yt−1,ht−2). (13)

The probabilistic weights ωt are obtained again with the
transformation f(Ω,αt, ϵ) applied layerwise as explained
in eq. (6), with the encoder Eψ taking yt−1,ht−2 as input.
Finally, learning is done by maximizing eq. (4), which,
given the specific state distribution, becomes the minimiza-
tion of the cross entropy loss (Bengio et al., 2000) commonly
used in causal language modelling or next token prediction,
plus the negative KL divergence in eq. (9). The training
algorithm is reported in Appendix D.

4. Experiments
We demonstrate the effectiveness of BARNN by applying it
to different tasks. To begin, we validate the tVAMP prior on
a synthetic time series dataset and demonstrate its superior-
ity over the widely used log-uniform prior. Then, we show
that BARNN combined with Neural PDE Solvers (Bar-Sinai
et al., 2019; Brandstetter et al., 2022b; Li et al., 2020) can
solve PDEs and quantify the related uncertainty. Finally, we
apply BARNN to RNNs for molecule unconditional gen-
eration (Segler et al., 2018; Özçelik et al., 2024) using the
SMILES syntax and show stronger generation capabilities
compared to existing methods. We make our code publicly
available at https://github.com/dario-coscia/barnn.

3With the convention that h−1 = 0.

5

https://github.com/dario-coscia/barnn

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

0 2 4 6
x

1

0

1

y t
Burgers

0 20 40 60
x

5

0

5

KS

0 20 40 60
x

0.0

0.5

1.0

KdV

Figure 2: Prediction and uncertainty intervals for different PDEs at last time-step. The figure depicts the CFD solution (red
dotted line) alongside the BARNN mean prediction (solid blue line) with ±3 std for uncertainty quantification (shaded blue
area).

4.1. Time Series

We evaluate the performance of the proposed tVAMP prior
on a synthetic time series forecasting task. The dataset is
constructed by generating sequences of sinusoidal signals
with varying frequencies and phases:{

xt = xt−1 +
3π
100 , x0 = 0

yt = 1
5

∑5
j=1 sin(αixt + βi),

(14)

with αi ∼ U [0.5, 1.5], βi ∼ U [0, 3π], t ∈ {1, 2, . . . , 100}.
This setup serves as a controlled environment to test the
effect of prior choice on model uncertainty and forecasting
accuracy. We generate 1024 trajectories for training, and
100 for testing. All models are trained using the same ar-
chitecture, a 2-layer neural network of 64 units and Relu
activation. The mean-square-error (MSE) loss is minimized
for 1500 epochs using the Adam (Kingma & Ba, 2014)
optimizer with learning rate 10−4 and weight decay 10−8.

tVAMP Outperforms Log-Uniform Prior in Synthetic
Forecasting Task Table 1 presents an ablation study com-
paring different prior choices for BARNN on the synthetic
time series dataset. We also compare BARNN against
standard non-Bayesian MLP, and Monte Carlo Dropout
(Dropout) (Gal & Ghahramani, 2016) with different levels
of dropout probability. The BARNN model using the pro-
posed tVAMP prior achieves the best performance across
all metrics, outperforming both the log-uniform prior and
standard baselines such as dropout and deterministic MLPs.
Notably, tVAMP improves over the log-uniform prior, the
negative log-likelihood from −0.092 to −0.166, indicating
better-calibrated predictive uncertainty, while also achieving
the lowest RMSE and ECE. These results demonstrate the
effectiveness of the tVAMP prior in capturing uncertainty
and enhancing forecasting accuracy in time series models.

0.0

0.2

0.4

0.6

0.8

1.0

R
M

SE

1e 1 Burgers

0

1

2

3

4 1e 1 KS

0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e 1 KdV

0 200
Unrolling step

5

4

3

2

1

0

N
LL

0 200
Unrolling step

4

2

0

2

0 200
Unrolling step

6

4

2

0

2

BARNN ARD Dropout Perturb Refiner

Figure 3: RMSE and NLL for different Neural Solvers
predicting solutions to different PDEs.

4.2. PDE Modelling

PDE modelling consists of finding solutions to partial dif-
ferential equations, generalising to unseen equations within
a given family. We test BARNN on three famous PDEs,
namely Burgers, Kuramoto-Sivashinsky (KS) and Korteweg
de Vries (KdV) (Evans, 2022; Brandstetter et al., 2022a),
and compare its performance against multiple UQ tech-
niques for Neural PDE Solvers: Monte Carlo Dropout
(Dropout) (Gal & Ghahramani, 2016), Variational Dropout
with Empirical Bayes (ARD) (Kharitonov et al., 2018),
which is a variation of Variational Dropout, and the recently
proposed Input Perturbation (Lam et al., 2022) (Perturb),
PDE Refiner (Lippe et al., 2024) (Refiner). A more detailed
explanation of dataset generation, metrics, neural operator
architectures, baselines and hyperparameters can be found
in Appendix B, along with additional results.

6

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

Table 1: Ablation for different BARNN priors for the sinusoidal time-series forecasting dataset. The results report RMSE,
NLL, and ECE statistics. Static method reports the RMSE obtained if the initial state is not propagated, while MLP is the
base (non-Bayesian) architecture. BARNN uses the same MLP architecture, and it is ablated on different priors.

Model Prior MSE (↓) NLL (↓) ECE (↓)

Static - 0.490±0.000 - -
MLP - 0.081±0.011 - -

Dropout (p=0.5) - 0.072±0.004 0.593±0.461 0.084±0.010

Dropout (p=0.2) - 0.048±0.004 −0.075±0.004 0.068±0.009

BARNN log-uniform 0.045±0.003 −0.092±0.064 0.050±0.016

BARNN tVAMP 0.043±0.001 −0.166±0.019 0.049±0.008

Table 2: NLL and ECE for Burgers, KS and KdV PDEs for
different Neural Solvers. The mean and std are computed for
four different random weights initialization seeds. Solvers
are unrolled for 320 steps, break is reported when the solver
metric diverged.

Model NLL (↓)
Burgers KS KdV

BARNN −2.51±0.29 −0.87±0.52 −0.94±1.23

ARD 5.00±7.11 10.7±11.6 break
Dropout 0.06±4.59 −0.48±0.65 0.40±4.57

Perturb −2.01±0.08 −0.65±1.07 −0.37±1.32

Refiner break break break

Model ECE (↓)
Burgers KS KdV

BARNN 0.05±0.03 0.04±0.03 0.10±0.01

ARD 0.26±0.10 0.17±0.01 0.19±0.05

Dropout 0.17±0.15 0.10±0.01 0.14±0.07

Perturb 0.16±0.01 0.05±0.02 0.11±0.06

Refiner 0.30±0.08 0.23±0.02 0.34±0.09

BARNN solves PDEs with calibrated uncertainties We
unroll the trained Neural Solvers for 320 steps and com-
pute the negative log-likelihood (NLL) and the expected
calibration error (ECE) of the predictions. NLL measures a
balance between the accuracy of model prediction and the
sharpness of the model’s standard deviation, while the ECE
measures how well the estimated probabilities match the
observed probabilities. Table 2 reports the results, show-
ing that BARNN can accurately solve PDEs with lower
NLL and ECE compared to all existing methods. We found
that, despite the models exhibiting similar root mean square
errors (RMSE) , their negative log-likelihood varied sig-
nificantly (Figure 3), driven by underestimated ensemble
variance, which in turn caused a sharp increase in the NLL
(as seen in models like Refiner and ARD). This finding

20 40 60 80 100

0.0140

0.0150

0.0160

0.0170

R
M

SE

Burgers
MAP estimate

20 40 60 80 100

0.2500

0.2600

R
M

SE

KS
MAP estimate

20 40 60 80 100
number of ensemble memebers

0.0575

0.0580

0.0585

R
M

SE

KdV
MAP estimate

Figure 4: Variation of RMSE for increasing ensemble mem-
bers in BARNN.

highlights that point-wise RMSE alone is insufficient for
evaluating Neural PDE Solvers, especially in UQ scenarios,
as low RMSE values can still mask incorrect uncertainty
estimates from the solver.

Confidence interval adaptability Figure 2 illustrates the
BARNN predictions alongside the 99.7% confidence in-
tervals across different regions of the domain. Notably,
BARNN dynamically adjusts the width of these confidence
intervals based on the uncertainty present in each region.
For example, in areas of high uncertainty, such as with the
KS equation, the model appropriately broadens the intervals,
reflecting its lower confidence in those predictions. Con-
versely, in regions where the model closely aligns with the
true solution, as in the case of the KdV equation, the con-
fidence intervals narrow considerably. This demonstrates
BARNN’s ability to flexibly adapt to varying levels of uncer-
tainty, offering robust and reliable uncertainty quantification
that aligns with the behaviour of the underlying PDEs.

Test number of ensemble members in BARNN A de-
sirable property of ensemble methods is that for a suffi-

7

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

Misc. Branching Valence Rings Total
Error type

0.0

0.5

1.0

1.5

2.0

N
um

be
r

of
 E

rr
or

s

1e3

BARNN
SMILES LSTM
LSTM

(a) Source of error for invalid generated SMILES.

1 2 3 4 5 6 7
SMILES Numerical Markers Count

101

102

103

104

N
um

be
r

of
 M

ol
ec

ul
es

(b) Analysis of the impact of multiple rings in a SMILES
string. Shaded colours indicate number of total SMILES (valid
+ invalid), while solid colours indicate only valid ones.

Figure 5: Error analysis for SMILES, mean and std shown
for four different random weight initialization seeds.

ciently high number of ensemble members, the statistical
moments (e.g. mean, std) converge. Figure 4 shows that
with only ≃ 30 ensemble members BARNN provides con-
vergent RMSE, emphasizing that accurate moments esti-
mates can be obtained with just a few additional stochastic
forward passes. In Appendix B.3 we also report ECE and
NLL, which follow similar trends. Interestingly, if uncer-
tainties are not required for a specific application, using
the maximum a-posteriori estimate (MAP) for the network
weights only requires a single forward pass to achieve a
convergent RMSE, as depicted in Figure 4 . This makes the
approach as fast as standard non-ensemble methods, which
can be advantageous in practical applications.

4.3. Molecule Generation

Molecular generation involves creating new molecules with
desired properties, which is difficult due to the vast chemical

space needed to be explored, and long-range dependencies
within molecular structures. We evaluate BARNN on the
molecule generation task, by representing a molecule with
the SMILES syntax and pre-train a recurrent neural network
(LSTM gate-mechanism) (Schmidhuber et al., 1997) on the
ChEMBL dataset from (Özçelik et al., 2024), which con-
tains approximately 1.9 M SMILES. We test the BARNN
LSTM model against standard LSTM (Schmidhuber et al.,
1997), and the SMILES LSTM (Segler et al., 2018) which
differ from the standard by applying Dropout to the LSTM
input and hidden variables. Additional details on the dataset,
metrics, hyperparameters, and baselines can be found in
Appendix C.

BARNN correctly learn the SMILES syntax BARNN
perfectly learns the SMILES syntax generating molecules
with high validity, diversity, novelty and uniqueness com-
pared to the baselines (Table 3). For validity, diversity
and uniqueness BARNN archives 1% higher values than
SMILES LSTM, and 2% than LSTM, while diversity is
only slightly improved (0.1%) compared to the baselines.

Long range dependencies in SMILES We sampled 50K
SMILES from the language models and for the invalid
molecules examined the source of errors (Figure 5a). In-
terestingly, most of the errors language models commit
are due to ring assignment, e.g. opening but not closing
the ring. For ring assignments, BARNN outperforms the
baselines, improving by 30% over SMILES LSTM and
50% over LSTM. In SMILES notation, ring closure bonds
are represented by assigning matching digits to connected
atoms, indicating where the ring opens and closes. A good
language model must identify when the ring opens and
remember to close it (with the same digit), a long-range
dependency. This is analyzed by counting the numerical
markers in each SMILES string and assessing validity (Fig-
ure 5b). As expected, SMILES strings with up to 4 rings
show no errors, but validity decreases as the number of
rings increases. BARNN outperforms baselines, generat-
ing more valid molecules, particularly for molecules with
many rings, demonstrating superior handling of long-range
dependencies.

BARNN perfectly learns molecular properties We test
the ability of BARNN to learn the molecular properties of
the training data by computing the Wasserstein distance
W2 between model-predicted properties and training prop-
erties. Following (Segler et al., 2018), we compute Molecu-
lar weight (MW), H-bond donors (HBDs), H-bond accep-
tors (HBAs), Rotable Bonds, LogP, and TPSA. Overall, the
BARNN approach obtains the lowest Wasserstein distance
for all molecular properties (Table 4), demonstrating an ex-
cellent ability to match the training data distribution. In
particular, for molecular weight, which is the hardest prop-

8

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

Table 3: Designing drug-like molecules de novo with BARNN, mean and std shown for four different random weight
initialization seeds.

Model Validity (↑) Diversity (↑) Novelty (↑) Uniqueness (↑)

BARNN 95.09±0.34 88.63±0.01 95.41±0.24 95.06±0.34

SMILES LSTM 94.60±0.27 88.57±0.09 94.25±0.15 94.58±0.28

LSTM 93.02±0.33 88.57±0.02 92.81±0.34 92.14±0.15

Table 4: Wasserstein distance between models’ and training dataset’s molecular properties distribution, mean and std shown
for four different random weight initialization seeds.

Model W2 (↓)
MW HBDs HBAs Rotable Bonds LogP TPSA

BARNN 2.53±1.03 0.02±0.01 0.05±0.03 0.13±0.03 0.06±0.01 0.90±0.38

SMILES LSTM 10.4±3.71 0.03±0.02 0.15±0.06 0.14±0.05 0.11±0.05 1.81±0.97

LSTM 12.3±2.91 0.03±0.01 0.20±0.07 0.13±0.07 0.12±0.03 1.84±1.04

erty to predict, BARNN obtains a substantial decrease in W2

compared to the baselines. The results on molecular prop-
erties in Table 4, along with those on statistical properties
in Table 3, demonstrate that BARNN not only more accu-
rately reflects the dataset properties but also generates, on
average, more statistically plausible molecules, significantly
advancing the quality of molecular generation.

5. Conclusions
We have introduced BARNN, a scalable, calibrated and ac-
curate methodology to turn any autoregressive or recurrent
model to its Bayesian version, bridging the gap between
autoregressive/ recurrent methods and Bayesian inference.
BARNN creates a joint probabilistic model by evolving
network weights along with states. We propose a novel vari-
ational lower bound for efficient training, extending Varia-
tional Dropout to compute dynamic network weights based
on previous states, and introduce a temporal VAMP-prior
to enhance calibration. We demonstrate BARNN’s applica-
tion in Autoregressive Neural PDE Solvers and molecule
generation using RNNs. Experiments demonstrated that
BARNN surpasses existing Neural PDE Solvers in accu-
racy and provides calibrated uncertainties. BARNN is also
sharp, requiring only a few ensemble estimates and, if un-
certainties are not needed, only one forward pass using the
weights maximum a-posteriori. For molecules, BARNN
generated molecules with higher validity, diversity, novelty
and uniqueness compared to its non-Bayesian counterparts,
and it also excels in learning long-range and molecular prop-
erties. BARNN is a very general and flexible framework
that can be easily applied to other domains of DL, such as
text, audio or time series. Several promising extensions for
BARNN could also be explored. For example, developing

more effective priors that incorporate prior knowledge could
improve the model’s performance. Another potential area
of research is investigating local pruning at each autoregres-
sive step, particularly for large over-parameterised networks
such as LLMs. Finally, a deeper examination of the roles of
epistemic and aleatory uncertainty over time represents an
important direction for further study.

Acknowledgments
D. Coscia, N. Demo and G. Rozza acknowledge the sup-
port provided by PRIN "FaReX - Full and Reduced or-
der modeling of coupled systems: focus on non-matching
methods and automatic learning" project, the European Re-
search Council Executive Agency by the Consolidator Grant
project AROMA-CFD "Advanced Reduced Order Meth-
ods with Applications in Computational Fluid Dynamics"
- GA 681447, H2020-ERC CoG 2015 AROMA-CFD, PI
G. Rozza, and the CINECA award under the ISCRA ini-
tiative, for high-performance computing resources and sup-
port availability. N. Demo and G. Rozza conducted this
work within the research activities of the consortium iN-
EST (Interconnected North-East Innovation Ecosystem),
Piano Nazionale di Ripresa e Resilienza (PNRR) – Mis-
sione 4 Componente 2, Investimento 1.5 – D.D. 1058
23/06/2022, ECS00000043, supported by the European
Union’s NextGenerationEU program.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

9

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

References
Aichberger, L., Schweighofer, K., and Hochreiter, S. Re-

thinking uncertainty estimation in natural language gen-
eration. arXiv preprint arXiv:2412.15176, 2024.

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P.
Learning Data-Driven Discretizations for Partial Differ-
ential Equations. National Academy of Sciences, 116(31):
15344–15349, 2019.

Bayes, T. An Essay towards solving a Problem in the
Doctrine of Chances. By the late Rev. Mr. Bayes, FRS
communicated by Mr. Price, in a letter to John Canton,
A.M.F.R.S. Philosophical transactions of the Royal Soci-
ety of London, 1763.

Bengio, Y., Ducharme, R., and Vincent, P. A Neural Proba-
bilistic Language Model. Advances in neural information
processing systems, 2000.

Bhattacharya, K., Hosseini, B., Kovachki, N. B., and Stu-
art, A. M. Model Reduction and Neural Networks for
Parametric PDEs. The SMAI journal of computational
mathematics, 7:121–157, 2021.

Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Brand-
stetter, J., Garvan, P., Riechert, M., Weyn, J., Dong, H.,
Vaughan, A., et al. Aurora: A Foundation Model of the
Atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Brandstetter, J., Welling, M., and Worrall, D. E. Lie
Point Symmetry Data Augmentation for Neural PDE
Solvers. In International Conference on Machine Learn-
ing, 2022a.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
Passing Neural PDE Solvers. In International Conference
on Learning Representations, 2022b.

Coscia, D., Ivagnes, A., Demo, N., and Rozza, G. Physics-
informed neural networks for advanced modeling. Jour-
nal of Open Source Software, 8(87):5352, 2023.

Coscia, D., Demo, N., and Rozza, G. Generative Adversarial
Reduced Order Modelling. Scientific Reports, 2024.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F.,
and Udluft, S. Decomposition of Uncertainty in Bayesian
Deep Learning for Efficient and Risk-Sensitive Learning.
In International Conference on Machine Learning, 2018.

Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K., et al.
Wavenet: A Generative Model for Raw Audio. arXiv
preprint arXiv:1609.03499, 2016.

Eijkelboom, F., Bartosh, G., Naesseth, C. A., Welling, M.,
and van de Meent, J.-W. Variational Flow Matching
for Graph Generation. arXiv preprint arXiv:2406.04843,
2024.

Evans, L. C. Partial Differential Equations. In American
Mathematical Society, 2022.

Falcon, W. and The PyTorch Lightning team. PyTorch
Lightning. PyTorch Lightning, March 2019. doi:
10.5281/zenodo.3828935. URL https://github.
com/Lightning-AI/lightning.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian Ap-
proximation: Representing Model Uncertainty in Deep
Learning. In International Conference on Machine Learn-
ing, 2016.

Graves, A. Practical Variational Inference for Neural Net-
works. Advances in Neural Information Processing Sys-
tems, 24, 2011.

Hinton, G. E. and Van Camp, D. Keeping the Neural Net-
works Simple by Minimizing the Description Length of
the Weights. In Conference on Computational Learning
Theory, 1993.

Ho, J., Jain, A., and Abbeel, P. Denoising Diffusion Proba-
bilistic Models. Advances in Neural Information Process-
ing Systems, 2020.

Jiang, Z., Araki, J., Ding, H., and Neubig, G. How Can
We Know When Language Models Know? On the Cal-
ibration of Language Models for Question Answering.
Transactions of the Association for Computational Lin-
guistics, 2021.

Kharitonov, V., Molchanov, D., and Vetrov, D. Varia-
tional Dropout via Empirical Bayes. In arXiv preprint
arXiv:1811.00596, 2018.

Kingma, D. P. and Ba, J. L. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations, 2014.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Kingma, D. P., Salimans, T., and Welling, M. Variational
Dropout and the Local Reparameterization Trick. In Ad-
vances in Neural Information Processing Systems, 2015.

Kohl, G., Chen, L., and Thuerey, N. Benchmarking Regres-
sive Conditional Diffusion Models for Turbulent Flow
Simulation. In ICML 2024 AI for Science Workshop,
2024.

10

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

Korattikara, A., Rathod, V., Murphy, K., and Welling, M.
Bayesian Dark Knowledge. In International Conference
on Neural Information Processing Systems, 2015.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., et al. GraphCast: Learning Skill-
ful Medium-Range Global Weather Forecasting. arXiv
preprint arXiv:2212.12794, 2022.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., et al. Learning Skillful Medium-Range
Global Weather Forecasting. In American Association
for the Advancement of Science, 2023.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning Deep Generative Models of Graphs. arXiv
preprint arXiv:1803.03324, 2018.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Bhattacharya,
K., Stuart, A., Anandkumar, A., et al. Fourier Neural
Operator for Parametric Partial Differential Equations. In
International Conference on Learning Representations,
2020.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
Informed Neural Operator for Learning Partial Differ-
ential Equations. ACM/JMS Journal of Data Science,
2024.

Lippe, P., Veeling, B., Perdikaris, P., Turner, R., and Brand-
stetter, J. PDE-Refiner: Achieving Accurate Long Roll-
outs with Neural PDE Solvers. In Advances in Neural
Information Processing Systems, 2024.

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt,
A. Constrained Graph Variational Autoencoders for
Molecule Design. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

Louizos, C. and Welling, M. Multiplicative Normalizing
Flows for Variational Bayesian Neural Networks. In
International Conference on Machine Learning, 2017.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
Dropout Sparsifies Deep Neural Networks. In Interna-
tional Conference on Machine Learning, 2017.

Özçelik, R., de Ruiter, S., Criscuolo, E., and Grisoni,
F. Chemical Language Modeling with Structured State
Space Sequence Models. Nature Communications, 15(1):
6176, 2024.

Papamarkou, T., Skoularidou, M., Palla, K., Aitchison, L.,
Arbel, J., Dunson, D., Filippone, M., Fortuin, V., Hennig,
P., Hernández-Lobato, J. M., et al. Position: Bayesian

Deep Learning is Needed in the Age of Large-Scale AI.
In International Conference on Machine Learning, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In International Conference on Learning Rep-
resentations, 2021.

Pichi, F., Moya, B., and Hesthaven, J. S. A Graph Convo-
lutional Autoencoder Approach to Model Order Reduc-
tion for Parametrized PDEs. Journal of Computational
Physics, pp. 112762, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language Models are Unsupervised
Multitask Learners. OpenAI blog, 2019.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning. The MIT Press, 2005.

Rozza, G., Stabile, G., and Ballarin, F. Advanced Reduced
Order Methods and Applications in Computational Fluid
Dynamics. SIAM, 2022.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to Simulate
Complex Physics with Graph Networks. In International
Conference on Machine Learning, 2020.

Schmidhuber, J., Hochreiter, S., et al. Long Short-term
Memory. Neural Comput, 9(8):1735–1780, 1997.

Schmidinger, N., Schneckenreiter, L., Seidl, P., Schimunek,
J., Hoedt, P.-J., Brandstetter, J., Mayr, A., Luukkonen,
S., Hochreiter, S., and Klambauer, G. Bio-xlstm: Gen-
erative modeling, representation and in-context learning
of biological and chemical sequences. arXiv preprint
arXiv:2411.04165, 2024.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P. Gen-
erating Focused Molecule Libraries for Drug Discovery
with Recurrent Neural Networks. ACS Central Science,
2018.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang, J.
GraphAF: a Flow-based Autoregressive Model for Molec-
ular Graph Generation. In International Conference on
Learning Representations, 2020.

Simm, G., Pinsler, R., and Hernández-Lobato, J. M. Re-
inforcement Learning for Molecular Design Guided by
Quantum Mechanics. In International Conference on
Machine Learning, 2020.

11

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. In The Journal of
Machine Learning Research, 2014.

Tomczak, J. and Welling, M. VAE with a VampPrior. In
International Conference on Artificial Intelligence and
Statistics, 2018.

Uria, B., Côté, M.-A., Gregor, K., Murray, I., and
Larochelle, H. Neural Autoregressive Distribution Esti-
mation. Journal of Machine Learning Research, 2016.

Van Baalen, M., Louizos, C., Nagel, M., Amjad, R. A.,
Wang, Y., Blankevoort, T., and Welling, M. Bayesian
Bits: Unifying Quantization and Pruning. Advances in
neural information processing systems, 2020.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Vaswani, A. Attention Is All You Need. Advances in Neural
Information Processing Systems, 2017.

Xiao, Y., Liang, P. P., Bhatt, U., Neiswanger, W., Salakhut-
dinov, R., and Morency, L.-P. Uncertainty Quantifica-
tion with Pre-trained Language Models: A Large-Scale
Empirical Analysis. In Findings of the Association for
Computational Linguistics: EMNLP 2022, 2022.

Yang, A. X., Robeyns, M., Wang, X., and Aitchison, L.
Bayesian Low-rank Adaptation for Large Language Mod-
els. In International Conference on Learning Representa-
tions, 2022.

Zdrazil, B., Felix, E., Hunter, F., Manners, E. J., Blackshaw,
J., Corbett, S., de Veij, M., Ioannidis, H., Lopez, D. M.,
Mosquera, J. F., et al. The ChEMBL Database in 2023: a
Drug Discovery Platform Spanning Multiple Bioactivity
Data Types and Time Periods. Nucleic Acids Research,
52:D1180–D1192, 2024.

12

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

SUPPLEMENTARY MATERIALS
BARNN: BAYESIAN AUTOREGRESSIVE AND RECURRENT NEURAL NETWORK

TABLE OF CONTENTS

A Proofs and Derivations 14

A.1 Variational Lower Bound proof . 14

A.2 Variational Mixture of Posterior in Time proof . 14

A.3 KL-divergence proof . 16

A.4 Predictive Distribution and Uncertainty Estimates . 16

A.5 Connection to not Bayesian Autoregressive and Recurrent Networks . 17

B BARNN PDEs Application 18

B.1 Data Generation and Metrics . 18

B.2 Model Architectures, Hyperparameters, and Computational Costs . 19

B.3 Additional Results . 20

C BARNN Molecules Application 23

C.1 Data Generation and Metrics . 23

C.2 Model Architectures, Hyperparameters, and Computational Costs . 23

C.3 Additional Results . 24

D Algorithms and Software 25

D.1 Pseudocodes . 26

D.2 Software . 26

13

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

A. Proofs and Derivations
This Appendix Section is devoted to the formal proofs introduced in the main text. In A.1 we prove the variational lower
bound, while the t-VAMP proof is found in A.2. Finally, A.3 contains the derivation of KL-divergence between prior and
posterior presented in 3.3.

A.1. Variational Lower Bound proof

We aim to optimize the log-likelihood for the model:

p(y0:T ,ω1:T) =

T∏
t=1

p(yt | y0:t−1,ωt)p(ωt). (15)

By defining the variational posterior:

qϕ(ω1:T | y0:T) =
T∏

t=1

qϕ(ωt | y0:t−1), (16)

we obtain the following evidence lower bound:

log p(y0:T) = log

∫
p(y0:T ,ω1:T) dω1:T

= log

∫
p(y0:T ,ω1:T)

qϕ(ω1:T | y0:T)
qϕ(ω1:T | y0:T)

dω1:T

≥ Eω1:T∼qϕ(ω1:T |y0:T)

[
log

p(y0:T ,ω1:T)

qϕ(ω1:T | y0:T)

]
= Eω1:T

[
log

T∏
t=1

p(yt | y0:t−1,ωt)p(ωt)

qϕ(ωt | y0:t−1)

]

=

T∑
t=1

Eωt∼qϕ(ωt|y0:t−1)

[
log

p(yt | y0:t−1,ωt)p(ωt)

qϕ(ωt | y0:t−1)

]

=

T∑
t=1

{
Eωt∼qϕ(ωt|y0:t−1) [log p(yt | y0:t−1,ωt)]−DKL [qϕ(ωt | y0:t−1)∥p(ωt)]

}
=

T∑
t=1

Lcumulative(ϕ, t)

(17)

Interestingly, by being Bayesian, we ended up having a sum of evidence lower bounds, which tells us that to maximise
the model likelihood we need to maximise the cumulative evidence lower bound. For performing scalable training we
approximate the found evidence lower bound as usually done in causal language modelling or next token prediction by:

L(ϕ) ≈ Et∼U [1,T] [Lcumulative(ϕ, t)] . (18)

A.2. Variational Mixture of Posterior in Time proof

We want to find the best prior that maximises the evidence lower bound:

L(ϕ) = Eω1:T∼qϕ(ω1:T |y0:T)

[
log

p(y0:T ,ω1:T)

qϕ(ω1:T | y0:T)

]
14

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

then:

p∗(ω1:T) = argmaxp(ω1:T)

∫
L(ϕ)p(y0:T) dy0:T

= argmaxp(ω1:T)

∫
p(y0:T)q(ω1:T | y0:T) log p(ω1:T) dy0:T dω1:T

= argmaxp(ω1:T)

∫ [∫
p(y0:T)q(ω1:T | y0:T) dy0:T

]
log p(ω1:T)dω1:T

= argmaxp(ω1:T) −H

[∫
p(y0:T)q(ω1:T | y0:T) dy0:T | p(ω1:T)

]
=

∫
p(y0:T)q(ω1:T | y0:T) dy0:T

(19)

where H is the cross entropy and has a maximum when the two distributions match. In particular, for each time t:

p∗(ωt) =

∫
p∗(ω1:T) dω̸=t =

∫
p(y0:T)q(ω1:T | y0:T) dy0:T dω ̸=t =

∫
p(y0:t−1)q(ωt | y0:t−1) dy0:t−1.

This result is very similar to the one obtained in (Tomczak & Welling, 2018) but with a few differences: (i) (Tomczak &
Welling, 2018) is a prior on the latent variables, here it is a prior on the Bayesian Network weights; (ii) the presented prior is
time-dependent, i.e. for each time t the best prior is given by the aggregated posterior, while in (Tomczak & Welling, 2018)
time dependency was not considered.

We approximate the aggregated distribution assuming it factorizes similarly to the variational posterior:

p∗(ωt) ≈
L∏

l=1

∏
iljl

∫
p(y0:t−1)N (αl

tΩ
l
iljl

, (αl
tΩ

l
iljl

)2)dy0:t−1 =

L∏
l=1

∏
iljl

N (βl
tΩ

l
iljl

, (γl
tΩ

l
iljl

)2), (20)

where, we can compute βl
t, and γt

l as functions of αt
l :

βl
tΩ

l
iljl

= Eωl
iljl

[ωl
iljl

]

=

∫
p(y0:t−1)

[∫
ωl
iljl
N (αl

tΩ
l
iljl

, (αl
tΩ

l
iljl

)2)dωl
iljl

]
dy0:t−1

= Ωl
iljl

∫
αl
t(y0:t−1)p(y0:t−1)dy0:t−1 ≈ Ωl

iljl

1

N

N∑
k=1

αl
t(y

k
0:t−1)

(21)

and,

(γl
tΩ

l
iljl

)2 = Varωl
iljl

[ωl
iljl

]

=

∫
p(y0:t−1)

[∫
(ωl

iljl
− αl

tΩ
l
iljl

)2N (αl
tΩ

l
iljl

, (αl
tΩ

l
iljl

)2)dωl
iljl

]
dy0:t−1

= (Ωl
iljl

)2
∫
(αl

t(y0:t−1))
2p(y0:t−1)dy0:t−1 ≈ (Ωl

iljl
)2

1

N

N∑
k=1

(αl
t(y

k
0:t−1))

2.

(22)

In summary,

βl
t =

1

N

N∑
k=1

αl
t(y

k
t−1, t), γl

t =

√√√√ 1

N

N∑
k=1

(αl
t(y

k
t−1, t))

2 ∀l, t. (23)

15

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

A.3. KL-divergence proof

We want to compute DKL [qϕ(ωt | y0:t−1)∥p(ωt)]. Due to factorization on the layers, the KL divergence reads:

DKL [qϕ(ωt | y0:t−1)∥p(ωt)] =

L∑
l=1

Eωl
t∼qϕ(ωl

t|y0:t−1)

[
log

(
qϕ(ω

l
t | y0:t−1)

p(ωl
t)

)]

=

L∑
l=1

DKL

[
qϕ(ω

l
t | y0:t−1)∥p(ωl

t)
]
.

(24)

We now expand the KL divergence DKL

[
qϕ(ω

l
t | y0:t−1)∥p(ωl

t)
]

for each layer l. Let ωl
ij;t representing the matrix entries

of ωl
t, then:

DKL

[
qϕ(ω

l
t | y0:t−1)∥p(ωl

t)
]
=
∑
il,jl

Eωl
ij;t∼qϕ(ωl

ij;t|y0:t−1)

[
log

(
qϕ(ω

l
ij;t | y0:t−1)

p(ωl
ij;t)

)]
. (25)

We model qϕ(ωl
ij;t | y0:t−1) = N (αl

tΩ
l
ij , (α

l
tΩ

l
ij)

2), and p(ωl
ij;t) = N (βl

tΩ
l
ij , (γ

l
tΩ

l
ij)

2), where αl
t, β

l
t, γ

l
t are the dropout

rates (see in the main text). Then eq. (25) becomes:

DKL

[
qϕ(ω

l
t | y0:t−1)∥p(ωl

t)
]
=
∑
il,jl

1

2

[
(αl

tΩ
l
ij − βl

tΩ
l
ij)

2

(γlΩl
ij)

2
+

(
(αl

tΩ
l
ij)

2

(γl
tΩ

l
ij)

2

)
− 1− ln

(
(αl

tΩ
l
ij)

2

(γl
tΩ

l
ij)

2

)]

=
∑
il,jl

1

2

[(
αl
t − βl

t

γl
t

)2

+

(
αl
t

γl
t

)2

− 1− 2 ln

(
αl
t

γl
t

)]
.

(26)

In the last step, we used the fact that the dropout rates are positive. Combining eq. (26) with eq. (24) concludes the proof.
Notice that this KL divergence is independent on Ωl

ij ∀i, j, l.

A.4. Predictive Distribution and Uncertainty Estimates

This subsection shows how to use BARNN for inference, and uncertainty quantification. In the inference case, we are
interested in sampling from previous states y0, . . . ,yt−1 the causally consecutive one yt, while in UQ we aim to model
epistemic (model weight uncertainty) and/or aleatory uncertainty (data’s inherent randomness).

Predictive Distribution The model predictive distribution p(yt | yt−1, . . . ,y0) is obtained by marginalizing over the
weights ωt sampled from the posterior distribution:

p(yt | yt−1, . . . ,y0) = Eωt∼qϕ [p(yt | y0:t−1,ωt)qϕ(ωt | y0:t−1)] . (27)

In practical terms, this involves executing multiple stochastic forward passes through the neural networks and then averaging
the resulting outputs (Gal & Ghahramani, 2016; Louizos & Welling, 2017).

Uncertainty Estimates The predictive distribution allows for a clear variance decomposition using the law of total
variance (Depeweg et al., 2018):

σ2
t = σ2

ωt
(E[yt | y0:t−1,ωt])︸ ︷︷ ︸
epistemic uncertainty

+Eωt
[σ2(yt | y0:t−1,ωt)]︸ ︷︷ ︸

aleatoric uncertainty

, (28)

with ωt ∼ qϕ(ωt | y0:t−1), and E[yt | y0:t−1,ωt],σ
2(yt | y0:t−1,ωt) the mean and variance of the distribution

p(yt | yt−1, . . . ,y0,ωt) respectively.

Monte Carlo Estimates Samples from eq. (27), and uncertainties from eq. (28) can be computed by Monte Carlo
estimates. Assume, for a fixed initial state y0, to unroll an autoregressive or recurrent network for a full trajectory i-times,

16

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

with i = (1, . . . , D), each time sampling different ωt. Let µt;i,σ
2
t;i the mean and variance of p(yt | y0:t−1,ωt) for the

i-sample of ωt. Then, the following unbiased Monte Carlo estimates can be used:

µt =
1

D

D∑
i=1

µt;i , σ2
t =

1

D

D∑
i=1

µ2
t;i − µ2

t︸ ︷︷ ︸
epistemic uncertainty

+
1

D

D∑
i=1

σ2
t;i︸ ︷︷ ︸

aleatoric uncertainty

. (29)

A.5. Connection to not Bayesian Autoregressive and Recurrent Networks

In this subsection we want to derive a connection between the variational lower bound in eq. (4), and the standard
log-likelihood commonly used for training autoregressive networks. We start by rewriting eq. (4):

L(ϕ) = Et∼U [1,T]

[
Eωt∼qϕ(ωt|y0:t−1) [log p(yt | y0:t−1,ωt)]−DKL [qϕ(ωt | y0:t−1)∥p(ωt)]

]
. (30)

Now we make the following assumptions:

(a.1) ωt = ω ∀t = (1, 2, . . .),

(a.2) q(ω | y0:t−1) = p(ω) = δ(ω −Ω) ∀t = (1, 2, . . .)

Assumption (a.1) ensures that weights do not change over time (static weights). Assumption (a.2) fixes the weights to a
single value Ω (deterministic weights).

Under assumption (a.2) the KL-divergence is zero, and with assumption (a.1) the expectation reduces to a single value; thus
we are left with the following:

L = Et∼U [1,T] [log p(yt | y0:t−1,Ω)] (31)

which is the standard log-likelihood optimized in autoregressive networks.

17

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

B. BARNN PDEs Application
This section shows how BARNN can be used to build Bayesian Neural PDE Solvers, provides all the details for reproducing
the experiments, and shows additional results.

B.1. Data Generation and Metrics

Data Generation: We focus on PDEs modelling evolution equations, although our method can be applied to a vast
range of time-dependent differential equations. Specifically we consider three famous types of PDEs, commonly used as
benchmark for Neural PDE Solvers (Brandstetter et al., 2022a;b; Bar-Sinai et al., 2019):

Burgers ∂tu+ u∂xu− ν∂xxu = 0

Kuramoto Sivashinsky ∂tu+ u∂xu+ ∂xxu+ ∂xxxxu = 0

Korteweg de Vries ∂tu+ u∂xu+ ∂xxxu = 0

(32)

where ν > 0 is the viscosity coefficient. We follow the data generation setup of (Brandstetter et al., 2022a), applying
periodic boundary conditions, and sampling the initial conditions u0 from a distribution over truncated Fourier series
u0(x) =

∑10
k=1 Ak sin(2πlk

x
L + ηk), where {Ak, ηk, lk}k are random coefficients as in (Brandstetter et al., 2022a) The

space-time discretization parameters are reported in Table 5.

Table 5: PDE parameters setup. The discretization in time and space is indicated by nt and nx respectively, tmax represents
the simulation physical time, and L is the domain length.

PDE nt nx tmax L

Train
Burgers 0.1 0.25 14 2π

KS 0.1 0.25 14 64
KdV 0.1 0.25 14 64

Test
Burgers 0.1 0.25 32 2π

KS 0.1 0.25 32 64
KdV 0.1 0.25 32 64

Metrics: To evaluate the performance of the probabilistic solvers, we focus on different metrics:

1. Root Mean Square Error (RMSE) (Brandstetter et al., 2022b): measures the match of the ensemble prediction means
and true values

2. Negative Log-Likelihood (NLL): represents the trade-off between low standard deviations and error terms, where the
latter are between ensemble prediction means and true values

3. Expected Calibration Error (ECE): measures how well the estimated probabilities match the observed probabilities

Let µt, σt the ensemble mean and variance predicted by the probabilistic Neural Solver for different times t, Q the Gaussian
quantile function of p, then:

RMSE =

√
1

nxnt

∑
x,t

[yt(x)− µt(x)]
2

NLL =
1

2nxnt

∑
x,t

[
log(2πσ2

t (x)) +
[ut(x)− µt(x)]

2

σ2
t (x)

]

ECE = Ep∼U(0,1) [|p− pobs|] , pobs =
1

nxnt

∑
x,t

I
{
yt(x) ≤ Qp[µt(x), σ

2
t (x)]

}
(33)

18

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

B.2. Model Architectures, Hyperparameters, and Computational Costs

All models were trained for 7000 epochs using Adam with 5 · 10−4 of learning rate and 10−8 of weight decay for
regularization. Computations were performed on a single Quadro RTX 4000 GPU with 8-GB of memory and requires
approximately one day to train all models. Unless otherwise stated, the mean and std of the predictions are computed using
100 ensemble members for all models, and models are unrolled for 320 steps in inference.

We perform all experiments with a Fourier Neural Operator (Li et al., 2020) which is a standard baseline for Neural
PDE Solvers. The Neural Operator is composed of 8 layers of size 64 with 32 modes and swish activation (Li et al.,
2020; Brandstetter et al., 2022a) for a total of approximately 1 million trainable parameters. We found that using batch
normalization worsens all the uncertainty estimates. We used one linear layer to lift the input and one to project the output.
For dropout models (Dropout and ARD Dropout), we found that applying dropout only on the linear layer of the Fourier
layer and on the projection layer gave the best uncertainties, we used this also for BARNN for a fair comparison. In the
following, we report the specific hyperparameters for each model.

Dropout We used a dropout rate of 0.2, applying it only to the Fourier linear layers. We also tested other dropout rates
0.5, 0.8, but they worsened the uncertainty. In Table 6 we report an ablation study for different dropout rates, due to the
computational burden we run the study only for one seed.

Table 6: Results for different PDEs and Dropout rates on the validation set for 140 steps unrolling. Results report RMSE,
NLL, and ECE statistics.

PDE Dropout Rate RMSE (↓) NLL (↓) ECE (↓)

Burgers
0.2 0.014 -3.070 0.022
0.5 0.030 -1.779 0.077
0.8 0.055 -1.562 0.030

KS
0.2 0.044 -0.416 0.120
0.5 0.066 -1.247 0.065
0.8 0.183 0.911 0.127

KdV
0.2 0.017 -3.350 0.135
0.5 0.040 -2.280 0.078
0.8 0.080 -1.310 0.097

Input Perturbation We employed the standard FNO discussed above and perturbed the input with Gaussian noise during
training (Lam et al., 2023), uperturb

t = ut + δmax |ut|ϵ, with ϵ ∼ N(0, I) and δ = 0.01. In Table 7 we report an ablation
study for different perturbation scales, due to the computational burden we run the study only for one seed.

PDE Refiner We implemented our version of PDE Refiner, following the pseudocode provided in the paper (Lippe
et al., 2024). We found the model to be very sensitive to the choice of the refinement steps R and minimum variance
σmin hyperparameters, in accordance with previous studies (Kohl et al., 2024). For the PDE experiments we used
R = 2, σmin = 2 · 10−6. In Table 8 we report an ablation study for different perturbation scales, due to the computational
burden we run the study only for one seed.

ARD-Dropout The model does not have hyperparameters, we follow (Kharitonov et al., 2018) for the implementation.
We used a global dropout rate to have a fair comparison with standard Dropout, and we applied ARD-Dropout only to the
Fourier layers.

BARNN Similarly to Dropout and ARD-Dropout, we applied the dropout mask only on the Fourier fully connected layers.
The dropout coefficients αt are given by a specific encoder Eψ. In our implementation, the encoder takes as input the
state yt and the time variable t. We map the state channel to a fixed dimension of 16 using one linear layer. Consequently,
we map the time variable using a sinusoidal positional encoding with period T = 1000 to scale and shift the state. The
resulting state embedding is mapped to the output shape (number of variational layers) with four other linear layers of

19

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

Table 7: Results for different PDEs and Input Perturbations scales δ on the validation set for 140 steps unrolling. Results
report RMSE, NLL, and ECE statistics.

PDE Perturbation RMSE (↓) NLL (↓) ECE (↓)

Burgers
0.001 0.017 1.583 0.366
0.01 0.014 -2.085 0.181
0.1 0.093 0.218 0.193

KS
0.001 0.015 -1.048 0.188
0.01 0.041 -1.942 0.110
0.1 0.404 0.413 0.078

KdV
0.001 0.014 -0.641 0.231
0.01 0.027 -2.032 0.111
0.1 0.155 0.115 0.189

Table 8: Results for different PDEs and Refiner Hyperparameters on the validation set for 140 steps unrolling. Results report
RMSE, NLL, and ECE statistics.

PDE σmin R RMSE (↓) NLL (↓) ECE (↓)

Burgers

2 · 10−6 2 0.019 44.18 0.216
2 · 10−6 3 0.106 184.4 0.547
2 · 10−6 4 0.021 16.64 0.196
2 · 10−7 2 0.014 86.24 0.248
2 · 10−7 3 0.026 240.4 0.239
2 · 10−7 4 0.023 100.3 0.367

KS

2 · 10−6 2 0.027 6.089 0.167
2 · 10−6 3 0.081 76.76 0.232
2 · 10−6 4 0.041 8.456 0.179
2 · 10−7 2 0.024 9.330 0.189
2 · 10−7 3 0.025 6.977 0.183
2 · 10−7 4 0.037 6.250 0.175

KdV

2 · 10−6 2 0.011 10.17 0.402
2 · 10−6 3 0.031 72.10 0.343
2 · 10−6 4 0.022 39.90 0.285
2 · 10−7 2 0.043 86.74 0.356
2 · 10−7 3 0.042 192.5 0.456
2 · 10−7 4 0.042 92.33 0.321

size 16 interleaved with swish activation and a final sigmoid activation to return the dropout probabilities pt. The dropout
rates can be obtained by computing pt/(1− pt). The built encoder contains less than 50K parameters, thus a tiny network
compared to modern Neural Solver networks, not significantly affecting the training time.

B.3. Additional Results

Comparison of Model Accuracies Table 9 presents the RMSE results for the analysed PDEs across various models. The
dropout-based methods (BARNN, ARD, and Dropout) consistently show the best performance, indicating that Bayesian
approaches can be advantageous not only for uncertainty quantification but also for pointwise accuracy. The differences
in RMSE are relatively small among the top-performing models, suggesting that they generally perform at a similar

20

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

20 40 60 80 100
number of ensemble memebers

2

1

0

1
N

LL

20 40 60 80 100
number of ensemble memebers

0.04

0.06

0.08

0.10

0.12

E
C

E

Burgers KS KdV

Figure 6: Caption

Table 9: RMSE for Burgers, KS and KdV PDEs for different Neural Solvers. The mean and std are computed for four
different random weights initialization seeds. Solvers are unrolled for 320 steps.

Model RMSE (↓)
Burgers KS KdV

BARNN 0.019±0.004 0.217±0.047 0.061±0.026

ARD 0.020±0.009 0.161±0.052 0.063±0.030

Dropout 0.019±0.008 0.172±0.026 0.053±0.022

Perturb 0.022±0.005 0.222±0.067 0.090±0.036

Refiner 0.042±0.024 0.407±0.402 0.775±1.581

level. However, as discussed in Section 4.2, RMSE alone is insufficient for evaluating neural PDE solvers, particularly in
uncertainty quantification scenarios, as low RMSE values can obscure inaccurate uncertainty estimates from the solver (see
Figure 3).

Test number of ensemble members in BARNN We extend the analysis presented in Section 4.2 by examining the
convergence behaviour with varying numbers of ensemble members. Figure 6 illustrates how the negative log-likelihood
(NLL) and expected calibration error (ECE) evolve as the ensemble size increases. Similar to the trend observed in RMSE
(refer to Figure 4), the NLL and ECE metrics stabilize after approximately 30 ensemble members. This indicates that,
beyond this point, adding more members yields diminishing returns in terms of performance improvement. These results
highlight that BARNN is capable of generating precise and well-calibrated predictions, offering sharp uncertainty estimates
without requiring a large ensemble. The saturation of these statistics reinforces the efficiency of BARNN, making it a robust
method for uncertainty quantification with minimal computational overhead.

Solution rollouts Figures 7, 8, and 9 showcase examples of 1-dimensional rollouts over 320 steps, generated using
100 ensemble members with BARNN. As anticipated, the error accumulates over time, which is a characteristic of the
autoregressive nature of the PDE solver. However, the model’s variance also increases in tandem, highlighting its ability
to identify regions with higher errors and demonstrating impressive adaptability. Despite the growing errors, the overall
solution remains closely aligned with the predictive mean, reflecting strong pointwise accuracy. Meanwhile, the variance
effectively captures the rise in errors, providing a reliable indication of uncertainty and reinforcing the model’s adaptability
in challenging regions of the solution space. This dual capability of maintaining accuracy while adapting to uncertainty
underscores the robustness of the BARNN approach.

21

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

0.00

6.40

12.9

19.3

25.7
t

Ground Truth y Mean

0.00 0.90 1.80 2.70 3.60 4.50 5.40
x

0.00

6.40

12.9

19.3

25.7

t

Variance 2

0.00 0.90 1.80 2.70 3.60 4.50 5.40
x

Error |y |2

3

2

1

0

1

2

0.000

0.002

0.004

0.006

0.008

Figure 7: Exemplary of 1-dimensional Burgers rollout.

0.00

6.40

12.8

19.2

25.7

t

Ground Truth y Mean

0.00 9.00 18.2 27.2 36.5 45.5 54.8
x

0.00

6.40

12.8

19.2

25.7

t

Variance 2

0.00 9.00 18.2 27.2 36.5 45.5 54.8
x

Error |y |2
3

2

1

0

1

2

0

2

4

6

8

10

Figure 8: Exemplary of 1-dimensional Kuramoto-Sivashinsky rollout.

22

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

0.00

6.40

12.9

19.3

25.7
t

Ground Truth y Mean

0.00 9.00 18.2 27.2 36.5 45.5 54.8
x

0.00

6.40

12.9

19.3

25.7

t

Variance 2

0.00 9.00 18.2 27.2 36.5 45.5 54.8
x

Error |y |2

0

1

2

3

0.0

0.2

0.4

0.6

Figure 9: Exemplary of 1-dimensional Korteweg de Vries rollout.

C. BARNN Molecules Application
This section shows how BARNN can be used to build Bayesian Recurrent Neural Networks, provides all the details for
reproducing the experiments, and shows additional results.

C.1. Data Generation and Metrics

Data Generation: The experiments focus on unconditional molecule generation using the SMILES syntax, a notation
used to represent the structure of a molecule as a line of text. We use the data set provided in (Özçelik et al., 2024), which
contains a collection of 1.9 M SMILES extracted from the ChEMBL data set (Zdrazil et al., 2024). Before training, the
SMILES strings were tokenized using a regular expression, containing all elements and special SMILES characters, e.g.,
numbers, brackets, and more. Therefore, each atom, or special SMILES character, is represented by a single token.

Metrics: To evaluate the performance of the language models, we focus on different metrics:

1. Validity: the percentage of generated SMILES corresponding to chemically valid molecules

2. Diversity: the percentage of unique Murcko scaffolds among generated molecules.

3. Novelty: the percentage of generated molecules absent from the training dataset

4. Uniqueness: the percentage of structurally-unique molecules among the generated designs

Moreover, we compute the Wasserstein distance between the molecular properties distribution for the language model and
the ChEMBL dataset to ensure molecular properties are matched. Similarly to (Segler et al., 2018) we analyse the molecular
weight, H-bond donors and acceptors, rotatable bonds, LogP, and TPSA.

C.2. Model Architectures, Hyperparameters, and Computational Costs

All models were trained for 12 epochs using Adam with 2 ·10−4 of learning rate and 10−8 of weight decay for regularization.
The training was distributed across four Tesla P100 GPUs with 16-GB of memory each, and we used a batch size of 256 for
memory requirements. Approximately 8 hours are needed to train one model.

23

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

100 75 50 25 0 25 50 75

60

40

20

0

20

40

BARNN
ChEMBL

Figure 10: t-SNE representation of different molecular prop-
erty descriptors for BARNN and chEMBL molecules. The
distributions of both sets overlap.

0 500 1000 1500
Molecular weight

0.000

0.001

0.002

0.003

0.004

D
en

si
ty

0 5 10 15
H-bond donors

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20
H-bond acceptors

0.0

0.1

0.2

0.3

0 20 40
Rotable Bonds

0.00

0.05

0.10

0.15

D
en

si
ty

0 10
LogP

0.00

0.05

0.10

0.15

0.20

0.25

0 200 400
TPSA

0.000

0.002

0.004

0.006

0.008

0.010

0.012

BARNN
ChEMBL

Figure 11: Distribution density for each molecular property
descriptor for BARNN and chEMBL molecules. The distri-
butions for different descriptors overlap significantly.

We perform all experiments with an LSTM gate mechanism (Schmidhuber et al., 1997) for recurrent networks. The tokens
were mapped to a one-hot encoding of the size of the vocabulary, processed by the language model, and mapped back to
the vocabulary size by a linear layer. We used three LSTM-type layers with the hidden dimension of 1024 accounting for
25 M parameters model overall. For the dropout LSTM we used 0.2 as dropout coefficient, following indications from
previous works (Segler et al., 2018). For BARNN the encoder is composed of two fully connected (linear) layers of size 128
interleaved by LeakyReLU activation which we found to be the best, and a final sigmoid activation to return the dropout
probabilities pt. The dropout rates can be obtained by computing αt = pt/(1 − pt) elementwise. Once models were
trained, 50K molecules were sampled to compute the statistics reported in the experiment section.

C.3. Additional Results

In this section, we provide additional results for molecule generation using BARNN.

Molecular properties predictions We compute six molecular property descriptors—namely Molecular Weight (MW),
H-bond donors (HBDs), H-bond acceptors (HBAs), Rotable Bonds, LogP, and Topological Polar Surface Area (TPSA)—for
both BARNN-generated molecules and the chEMBL dataset. To evaluate whether the molecular properties of the BARNN-
generated molecules align with those of the chEMBL data, we employ t-SNE (t-Distributed Stochastic Neighbor Embedding)
(Van der Maaten & Hinton, 2008), a dimensionality reduction technique, to visualize the two-dimensional latent space
(Figure 10). The t-SNE plot reveals that the distributions of the two sets significantly overlap, suggesting that BARNN
effectively captures the underlying molecular properties. For a more detailed analysis, we perform Kernel Density Estimation
(KDE) for each molecular property descriptor and present the resulting distributions for both BARNN and chEMBL in
Figure 11. The KDEs from both datasets almost perfectly overlap, even for distributions with multiple peaks (e.g., H-bond
donors and acceptors), indicating that BARNN not only captures the overall distribution but also the single characteristics of
the molecular properties with high fidelity.

Robustness to temperature change Temperature is a crucial hyperparameter in recurrent neural networks that influences
the randomness of predictions by scaling the logits before applying the softmax function. As T → 0, the model tends to
select the most likely element according to the Conditional Language Model (CLM) prediction, leading to more deterministic
outputs. Conversely, as the temperature increases, the selection becomes more random, as higher temperatures flatten
the logits. In our analysis, we evaluate the robustness of BARNN to temperature variations during the sampling process,
specifically examining the validity and uniqueness of the generated sequences, as shown in Figure 13. Across all models, we
observe a general trend: both validity and uniqueness decline as the temperature increases. At lower temperatures, BARNN
outperforms the baseline models, maintaining higher validity and uniqueness. However, at very high temperatures, BARNN
and the base LSTM show comparable performance, with both models achieving similar levels of validity and uniqueness.

24

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

1.0 1.2 1.4 1.6
Temperature

0.6

0.7

0.8

0.9

Va
lid

ity

BARNN
SMILES LSTM
LSTM

Figure 12: t-SNE representation of different molecular prop-
erty descriptors for BARNN and chEMBL molecules. The
distributions of both sets overlap.

1.0 1.2 1.4 1.6
Temperature

0.6

0.7

0.8

0.9

U
ni

qu
en

es

BARNN
SMILES LSTM
LSTM

Figure 13: Distribution density for each molecular property
descriptor for BARNN and chEMBL molecules. The distri-
butions for different descriptors overlap significantly.

Figure 14: Samples of generated molecules with BARNN.

D. Algorithms and Software
This section reports the pseudocode algorithms for training and performing inference using a BARNN model and the
software used.

25

BARNN: A Bayesian Autoregressive and Recurrent Neural Network

D.1. Pseudocodes

Algorithm 1 Local reparametrization trick: Given H minibatch of activations for layer l = 1, . . . , L use the local
reparametrization trick to compute the linear layer output. It requires the dropout rate coefficient αl for layer l, and the
Neural Operator static weights Ωl for layer l. For the first layer, activation corresponds to the state input.

M ← αlHΩl {Compute the mean}
V ← (αlH)2 Ω2

l {Compute the variance, power is taken elementwise}
E ∼ N (0, I){Sample a Gaussian state}
return M +

√
V ⊙E

Algorithm 2 Training Bayesian Neural PDE Solvers: For a given batched input data trajectory, Neural Solver and
variational posterior encoder, we draw a random timepoint t, get our input data trajectory, compute the dropout rates with
the posterior encoder, perform a forward pass using the local-reparametrization trick, and finally, perform the supervised
learning task with the according labels plus the KL regularization. {yk

0 , . . . ,y
k
T }Nk=1 are the data trajectories, NO is the

neural operator architecture with Ω static weights, and Eψ is the variational posterior encoder.

while not converged do
t← U [1, T] {Draw uniformly a random ending point}
αt ← Eψ(y

k
t−1) {Compute dropout rates for each NO layer}

ŷt
k ← NO(yk

t−1;Ω,αt) {Apply local reparametrization trick to linear layers}
L(Ω,ψ)← ∥ŷtk − yt∥2 −DKL(αt) {Compute the loss using DKL from eq. (9)}
Optimize Ω,ψ by descending the gradient of L

end while

Algorithm 3 Training Bayesian Recurrent Neural Networks: For a given batched input and output data taken from the
sequence we compute the dropout rates with the posterior encoder, perform a forward pass using the local-reparametrization
trick, and finally, perform the supervised learning task with the according labels plus the KL regularization. {yk

0 , . . . ,y
k
T }Nk=1

are the sequences tokenized, RNN is the recurrent architecture with Ω static weights, ot is the RNN probability output at
step t, and Eψ is the variational posterior encoder.

while not converged do
h ← 0 {Initialize to zero hidden state}
for t ∈ [0, . . . , T − 1] do
αy

t ← Eψ(yt) {Compute dropout rates for each RNN layer}
αh

t ← Eψ(h) {Compute dropout rates for each RNN layer}
ot+1,h ← RNN(yt,h;Ω,αy

t ,α
h
t) {Apply RNN forward with local reparametrization trick}

end for
L(Ω,ψ)← CrossEntropyLoss(o1:T ,y1:T)−DKL(αt) {Compute the loss}
Optimize Ω,ψ by descending the gradient of L

end while

D.2. Software

We perform the PDEs experiment using PINA (Coscia et al., 2023) software, which is a Python library based on PyTorch
(Paszke et al., 2019) and PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) used for Scientific Machine
Learning and includes Neural PDE Solvers, Physics Informed Networks and more. For the Molecules experiments we used
PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) and RDKit for postprocessing analysis of the molecules.

26

	Introduction
	Background and Related Work
	Autoregressive and Recurrent Networks
	Bayesian Modelling and Uncertainty Quantification
	Neural PDE Solvers
	RNN for Molecule Generation

	Methods
	The State-Weight Model
	The Temporal Variational Lower Bound
	Variational Dropout Approximation
	Bayesian Neural PDE Solvers
	Bayesian Recurrent Neural Networks

	Experiments
	Time Series
	PDE Modelling
	Molecule Generation

	Conclusions
	Proofs and Derivations
	Variational Lower Bound proof
	Variational Mixture of Posterior in Time proof
	KL-divergence proof
	Predictive Distribution and Uncertainty Estimates
	Connection to not Bayesian Autoregressive and Recurrent Networks

	BARNN PDEs Application
	Data Generation and Metrics
	Model Architectures, Hyperparameters, and Computational Costs
	Additional Results

	BARNN Molecules Application
	Data Generation and Metrics
	Model Architectures, Hyperparameters, and Computational Costs
	Additional Results

	Algorithms and Software
	Pseudocodes
	Software

