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Abstract: Robots operating in human-centric environments require the integra-
tion of visual grounding and grasping capabilities to effectively manipulate objects
based on user instructions. This work focuses on the task of referring grasp syn-
thesis, which predicts a grasp pose for an object referred through natural language
in cluttered scenes. Existing approaches often employ multi-stage pipelines that
first segment the referred object and then propose a suitable grasp, and are evalu-
ated in simple datasets or simulators that do not capture the complexity of natural
indoor scenes. To address these limitations, we develop a challenging benchmark
based on cluttered indoor scenes from OCID dataset, for which we generate refer-
ring expressions and connect them with 4-DoF grasp poses. Further, we propose
a novel end-to-end model (CROG) that leverages the visual grounding capabili-
ties of CLIP to learn grasp synthesis directly from image-text pairs. Our results
show that vanilla integration of CLIP with pretrained models transfers poorly in
our challenging benchmark, while CROG achieves significant improvements both
in terms of grounding and grasping. Extensive robot experiments in both simu-
lation and hardware demonstrate the effectiveness of our approach in challenging
interactive object grasping scenarios that include clutter.

Keywords: Language-Guided Robot Grasping, Referring Grasp Synthesis, Visual
Grounding

1 Introduction
Pass the white box in

front of the Coke

Figure 1: 4-DoF referring grasp syn-
thesis in clutter.

Recent advancements in deep learning have paved the way
for substantial breakthroughs in data-driven robotic grasp-
ing. Several works have proposed to synthesize grasps from
purely visual inputs [1, 2, 3, 4]. In parallel, there is emerg-
ing work attempting to ground robotic perception [5, 6, 7]
and action [8, 9] in natural language, aiming to enhance the
ability of robots to interact with non-expert human users. In
this work, we propose to bridge these two avenues via the
task of referring grasp synthesis, where the robot is able to
grasp a targeted object of interest that is indicated verbally
by a human user (see Fig. 1). We focus on investigating this
task in natural indoor scenes which include ambiguity and
clutter, and are more realistic.

Most existing approaches study interactive grasping scenarios via multi-stage pipelines [10, 11, 12,
13, 14], where first the target object is localized from a linguistic referring expression (i.e. visual
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grounding) and another module predicts a suitable grasp pose in a second step. The visual grounding
models are trained either in benchmarks such as RefCOCO [15, 16, 17], which contain mostly
outdoor scenes with few graspable objects, or custom datasets which limit the applicability of the
learned model to fixed lab setups. Other robotics-related datasets collect language-annotated indoor
scenes [5, 6, 7], but are not directed towards grasping, or contain grasp annotations but lack language
[18, 19]. Additionally, related datasets that study clutter do not explicitly study ambiguous objects
in the scene [7, 20], i.e., objects of the same category appearing multiple times, and hence annotate
only for such a category and a few attributes. They also mostly consider only pair-wise spatial
relations between objects, which is not the case in free-form language (e.g. ”leftmost bowl” is more
natural than ”bowl left from other bowls”).

Alternatively, a recent trend in language-based robot systems [21, 22] is to combine language mod-
els [23] with pretrained vision-language foundation models such as CLIP [24] for zero-shot ground-
ing, and CLIP-based end-to-end grasping policies trained via imitation learning [25, 26]. Such ap-
proaches achieve impressive results but evaluate mostly in simulators which are fairly distant from
natural realistic scenes, making the sim-to-real transfer more challenging.

To tackle the above limitations, we establish a new challenging dataset, OCID-VLG, that studies end-
to-end vision-language-grasping in natural cluttered scenes. The dataset connects grasp annotations
from the OCID-Grasp dataset [19] with referring expressions that include rich attribute vocabulary,
model a broad range of relations, and explicitly consider ambiguity. Further, we propose an end-to-
end model (CLIP-based Referring Object Grasping - CROG), that extends CLIP’s visual grounding
with both pixel-level segmentation, as in [27], and grasp synthesis tasks, via a novel multi-task
objective. Experimental evaluations show that the proposed model is robust to referring expression
complexity, and outperforms previous baselines that rely on vanilla integration of CLIP with the
multi-stage approach. Extensive robot experiments demonstrate the effectiveness of the proposed
model in challenging interactive grasping scenarios, in both simulation and real-world settings.

In summary, the main contributions of this work are: a) a new challenging dataset for visual ground-
ing and referring grasp synthesis in cluttered scenes, comprising approximately 90 000 language-
mask-grasp annotations, b) an end-to-end vision-language-grasping model, CROG, which efficiently
learns a grasp policy by leveraging the powerful image-language alignment of CLIP, and demon-
strate its performance merits compared to multi-stage baselines that utilize pretrained models, and,
c) applying our proposed model in challenging interactive table cleaning scenarios through both
simulation and real robot experiments.

2 Related Works

Referring Expression Datasets Referring expressions are natural language descriptions that
uniquely identify a target region in a paired image, often by referring to object attributes and spatial
relations. Several datasets [28] have been proposed in the past, with expressions and target bounding
boxes / masks annotated manually [29, 30] or via a two-player game [31]. Most popular benchmarks
include Flickr30k-Entities [17] and the RefCOCO(/+,/g) suite [15, 32], containing annotations for
MSCOCO [33] scenes, collected via the refer-it game strategy [31]. Alternatively, automatic re-
ferring expression generation is pursued via the usage of symbolic scene graph annotations and
synthetic language templates [34, 35, 36, 16]. Above benchmarks concern referring expressions for
RGB images with generic content and are mostly for outdoor scenes. Recent works propose datasets
with referring expressions for objects in indoor environments and RGB-D / 3D visual data [7, 5, 6],
but do not consider clutter and are not connected with robot grasping. In our work, we adopt the
automatic generation method of CLEVR-Ref [36] to generate expressions for extracted scene graphs
from OCID-Grasp dataset [19]. To the best of our knowledge, OCID-VLG is the first dataset that
brings together referring expressions and grasp synthesis for cluttered indoor scenes.

Visual Grounding Visual grounding is formulated in literature through the tasks of referring ex-
pression comprehension and referring image segmentation, depending on the type of localization
required (box and mask respectively). Methods usually employ a two-stage detect-then-rank ap-
proach [37, 38, 39, 40], first generating object proposals and then ranking them according to their
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correspondence to the expression. Single-stage methods [41, 42] alleviate the object proposal step by
directly fusing vision-text features in a joint space. Recently, the Transformer architecture has been
employed for both task variants separately [3, 43, 44], or jointly [45, 46], showcasing strong cross-
modal alignment capabilities compared to previous CNN-LSTM fusion techniques. The grounding
task has been recently adapted for 3D data [5], with similar two-stage methods fusing text features
with point clouds [47, 48] or RGB-D views [49, 6]. Finally, transferring from large-scale vision-
language pretraining [50, 51, 52, 24] is a common practice for usage in zero-shot [21, 22], or as
an initialization for finetuning [25]. Similarly, in our work, we finetune the CLIP vision-language
model [24] to further learn 4-DoF grasp synthesis in RGB.

Grasp Synthesis Grasp synthesis enables robots to determine the optimal way to grasp objects by
considering visual information. Current grasp synthesis methods can be roughly categorized into 4-
DoF and 6-DoF [53], according to the degrees of freedom (DoF) of the grasp configurations. 4-DoF
grasp synthesis [54, 19, 55] defines grasps by a 3D position and a top-down hand orientation (yaw),
which is also commonly referred as a “top-down grasp”. 6-DoF grasp synthesis [18, 56, 57] defines
grasp poses by 6D positions and orientations. Early works [1, 2] formulate 4-DoF grasp detection
via decoding a set of grasp masks from the input RGB-D images and use camera calibration to
transform the planar grasp into a gripper pose. Det-Seg [19] proposed a two-branch framework
that generates semantic segmentation masks and uses them to refine the predicted grasps. SSG [58]
introduced an instance-wise 4-DoF grasp synthesis framework and showed its effectiveness and
robustness in cluttered scenarios. In this work, we build on the idea of using the segmentation mask
as an extra signal for learning grasp synthesis, by making the masks object-specific via grounding
them from referring expressions.

3 OCID-VLG Dataset

Visual grounding and grasp synthesis are mostly studied separately, and hence associated grounding
datasets rarely involve cluttered indoor scenes [15, 17, 16] and lack grasp annotations [5, 6, 7],
while grasp synthesis datasets lack language-grounding [55, 54, 18, 19]. Our proposed dataset,
OCID-VLG (Vision-Language-Grasping), aims to cover this gap, by providing a joint dataset for
both grounding and grasp synthesis in scenes from OCID dataset [59]. The dataset consists of 1 763
indoor tabletop RGB-D scenes with high clutter, including 31 object categories from a total of 58
unique instances. The OCID object catalog includes several object instances of the same category
that vary in fine-grained details, granting it a desirable domain for integration with language. We
manually annotate the catalog with a rich variety of object-related concepts, as well as pair-wise and
absolute spatial relations. For each scene, we provide 2D segmentation masks and bounding boxes
(at both category and instance level), as well as a complete parse of the scene, providing all 2D/3D
locations, category, attribute and relation information for each object in a symbolic scene graph. We
leverage the previous 75k hand-annotated 4-DoF grasp rectangles of OCID-Grasp [19] and connect
each object in our scene graph with a set of grasp annotations. The grasp-annotated scene graphs
are used to generate referring expressions with a custom variant of the CLEVR data engine [35]. We
end up with 89, 639 unique scene-text-mask/box-grasp tuples, aimed to supervise both grounding
and grasp synthesis tasks in an end-to-end fashion.

3.1 Referring Expression Generation

We first annotate a catalog of attribute and relation concepts that are used to refer to ambiguous
objects in OCID-VLG scenes. For attributes, each object is annotated for its color, as well as with an
instance-level description that refers to some object’s property (e.g. brand, flavor, variety, maturity,
function, texture, or shape). We note that not all objects are annotated for all mentioned concepts, but
only for those that discriminate them from other objects of the same category. For spatial relations,
we include both relative (e.g. ”bowl left from mug”) as well as absolute location (e.g. ”leftmost
bowl”) concepts. We adapt the relation resolution heuristics of [44] and use the relation set {“right”,
“rear right”, “behind”, “rear left”, “left”, “front left”, “front”, “front right”, “on”}, but augment
it with the absolute location set {“leftmost”, “rightmost”, ”furthest”, ”closest”}.
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Dataset Clutter Vision Ref.Expr. Grasp Num.Obj. Num. Num. ParsesData Annot. Annot. Categories Scenes Expr.

RefCOCO [15] % RGB box,mask % 80 19.9k 142.2k %

Flickr30k-Entities [17] % RGB box % 44.5k 31.7k 158.9k %

CLEVR-Ref+ [36] % RGB box,mask % - 60k 600k "

Cops-ref [16] % RGB box,mask % 508 703 148.7k "

ScanRefer [5] % 3D box % 250 800 51.5k %

ReferIt-RGBD [6] % RGB-D box % - 7.6k 38.4k %

Sun-Spot [7] " RGB-D box % 38 1.9k 7.9k %

OCID-Ref [20] " RGB,3D box % 58 2.3k 305.6k %

Cornell [55] % RGB-D % 4-DoF 240 1k - %

Jacquard [54] % RGB-D % 4-DoF - 54k - %

GraspNet [18] " 3D % 6-DoF 88 190 - %

OCID-Grasp [19] " RGB-D % 4-DoF 31 1.7k - %

OCID-VLG (ours) " RGB-D,3D box,mask 4-DoF 31 1.7k 89.6k "

Table 1: Comparison of main features and statistics between existing 2D / 3D visual grounding and grasp
synthesis datasets with our OCID-VLG.

The complete list of the concept vocabulary and related statistics are provided in Appendix A.

After parsing scenes into scene graphs, we sample object and relation concepts to generate referring
expressions using the CLEVR data engine [35] and custom templates, that follow the structure:

[prefix] ([LOC1] [ATT1]) [OBJ1] ((that is) [REL] the ([LOC2] [ATT2]) [OBJ2])

where [OBJ], [ATT], [REL], [LOC] denote an object concept (category or instance-level), an
attribute (color), a pair-wire relation and an absolute location respectively. The [prefix] is sampled
from a set of general robot directives, e.g. ”Pick the”. We construct template variations for 5
families, namely: a) name, (e.g. ”chocolate corn flakes”), b) attribute, (e.g. ”brown cereal box
package”), c) relation, (e.g. ”corn flakes behind the bowl”), d) location, (e.g. ”closest cereal
box”) and e) mixed, (e.g. ”cereal box to the rear left of the right apple”), for a total of 56 distinct
sub-templates. Note that templates (b)-(e) are constrained to only sample target objects that are
ambiguous in the scene, hence attribute or relation information are needed to uniquely ground them.

3.2 Comparisons with Existing Datasets

OCID-VLG differs from existing datasets in several aspects and statistics, summarized in Table 1.
Popular visual grounding datasets [15, 32, 17, 16] usually include few indoor scenes with cluttered
content and provide only RGB data, limiting their applicability in the robotics domain. Robotics-
related grounding datasets usually contain referring expressions for objects in room layouts [5, 6]
(e.g. furniture), which are not directed towards grasping and do not consider clutter. Sun-Spot [7]
contains tabletop cluttered scenes, but doesn’t annotate segmentations and grasps and lacks absolute
location annotations. Similarly, OCID-Ref [20] only provides boxes without segmentation and grasp
annotations. We highlight that even though OCID-Ref could be used as a source of referring expres-
sions for OCID-VLG, we chose to develop our own, as OCID-Ref expressions lack rich object and
relation vocabulary, lack absolute relations and inherit corrupted labels from OCID dataset. Grasp
synthesis datasets are either in object-level and not consider clutter [55, 54], or include cluttered
scenes but do not annotate referring expressions [18, 19]. Additionally, most mentioned datasets do
not explicitly consider ambiguities in the scene. In OCID-VLG, we use attributes and relations to
refer to objects only in cases of ambiguity, aiming to prevent overfitting in superficial object-relation
correspondences that exist in the training data. Finally, as we use the CLEVR [35] engine to generate
expressions, our dataset is further equipped with symbolic parses of both the visual and the language
modalities, which could be potentially utilized for training models with additional supervision.

4 Method

This section discusses the proposed task, the implemented baselines and the details of our end-to-end
model, CROG.
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Problem Formulation. Referring grasp synthesis considers the problems of referring image
segmentation and grasp synthesis in tandem. Given an RGB image I ∈ RH×W×3, a depth image
D ∈ RH×W and a natural language expression T that refers to a unique object in the scene, the goal
is to predict both a pixel-wise segmentation mask of the referred object M ∈ {0, 1}H×W , as well as
a grasp configuration G = (x∗, y∗, θ∗, l∗), where: (W,H) the image resolution, (x∗, y∗) the center
of the optimal grasp in pixel coordinates, θ∗ the gripper’s rotation in camera reference frame and l∗

the gripper width in pixel coordinates. As in [1, 2, 19, 58], G is recovered from three masks: a grasp
scalar quality mask Q ∈ {0, 1}H×W , such that: (x∗, y∗) = argmax(x,y) Q(x, y), an angle mask
Θ ∈ {−π

x ,
π
2 }

H×W and a width mask L ∈ {0, 1}H×W , such that: θ∗ = Θ(x∗, y∗), l∗ = L(x∗, y∗).

4.1 Multi-Stage Baselines

We design multi-stage baselines which integrate existing large-scale vision-language models with
pretrained grasp synthesis models. To that end, we decompose the overall task into two stages,
namely: a) a grounding function f(I, T ) = M that segments the referred object from the RGB
image, and b) a grasp synthesis function g(I,D,M) = G that isolates the object in the RGB-D
inputs I,D using the segmentation mask M to produce a grasp G.

Two-stage grounding with CLIP. The grounding function can be further decomposed into two
steps, first using an off-the-shell detector [60] for object proposal generation fsegm(I) = {Mn}Nn=1,
and then ranking the N segmented object proposals according to their similarity with the language
description frank(Mn, T ) = argmaxnS(Mn, T ), where S(·) denotes a similarity metric between a
segmented RGB object image Mn and the language input T . In practise, we implement S via CLIP’s
[24] pretraining objective, i.e. computing cosine similarity between visual features from passing Mn

to CLIP’s visual encoder and a sentence-wide embedding of T from CLIP’s text encoder.

Mask-conditioned grasp synthesis. The grasp synthesis function is implemented via a pretrained
network [1, 2] which receives the input pair I,D and generates grasp G via decoding the masks
Q,Θ, L. To isolate the desired object, given in mask M , we experimentally find that the best practise
is to element-wise multiply the mask with the RGB-D inputs before passing to the network.

4.1.1 Zero-shot baselines

First, existing powerful pretrained models are experimented to assess their zero-shot performance
in our challenging setup, including two multi-stage variants that use GR-ConvNet [1] pretrained on
the Jacquard [54] dataset as grasp synthesis network, but differ in grounding as follows:

SAM+CLIP. In this setup, we use the Segment Anything (SAM) [60] model for instance seg-
mentation and CLIP [24] for ranking as explained above. Similar to [61], we find that passing
both a cropped box and the mask of the object to CLIP’s feature extractor and ensembling the final
similarities boosts performance.

GLIP+SAM. For this variant, we use a large pretrained visual grounding model, GLIP [62], for pre-
dicting a bounding box around the relevant object of interest given the natural language command,
and prompt the SAM [60] model to get a tight segmentation mask for the object of interest.

4.1.2 Supervised baselines with vanilla CLIP integration

Second, we implemented a vanilla integration of CLIP in grasp synthesis models pretrained in
OCID-Grasp [19], which aims to explore whether a model using segmentation and grasping trained
on OCID scenes can be extended to our setup without any language conditioning. Similar to the
SAM+CLIP setup, CLIP is used as a ranker and the supervised model as both a segmenter and
grasper. We experiment with the two state-of-the-art models in OCID-Grasp, Det-Seg [19] and SSG
[58], which can both provide both segmentation and grasp predictions for an input RGB-D scene.

4.2 CROG

We propose a model for estimating both the segmentation mask M and the grasp masks Q,Θ, L in
an end-to-end fashion (see the overview in Fig. 2). Our architecture is an extension of CRIS [27],
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a model originally proposed for adapting CLIP to do pixel-level segmentation. CRIS achieves this
with four main components: a) unimodal encoders for image and text, b) a multi-modal FPN neck,
c) a cross-attention vision-language decoder, and d) projectors for text-to-pixel contrastive loss.

Image Image
Encoder

Text
Encoder

"Pick the food box in
front of the ball"

Multi-Modal
FPN

Cross-
Attention
Decoder

Image-Text
Projector

Text-Pixel Contrastive Loss

Smooth L1 Loss

Quality Mask Angle Mask Width Mask

Grasp
Projectors

Grasp
Projectors

Grasp
Projectors

Target Mask

Pixel-wise multi-modal features
Image

Text

Figure 2: An overview of CROG.

The unimodal encoders are initialized from
CLIP’s visual and text encoders [24], but uti-
lize visual feature maps from 2th-4th stages
of CLIP’s ResNet-50 visual encoder Fv2 ∈
RH

8 ×W
8 ×C2 , Fv3 ∈ RH

16×
W
16×C3 , Fv4 ∈

RH
32×

W
32×C4 , and considers both the sentence-

level Fs ∈ RC′
and the token embeddings

Ft ∈ RK×C , where C and C ′ are the feature di-
mensions and K the language sentence length.
Visual feature maps Fv2, Fv3, Fv4 and the sentence embedding Fs are fused in feature pyramid
style [63] via the multi-modal neck, in order to generate pixel-wise multi-modal representations
Fm ∈ RN×C of the image-text pair, where N = H

16 · W
16 .

The vision-language decoder uses a standard Transformer decoder [64] to let the multi-modal fea-
tures Fm cross-attend with all token embeddings Ft and produce embeddings Fc ∈ RN×C . This
process adaptively propagates semantic information from text to visual features. Finally, Fc and Fs

are projected into the same space, where contrastive alignment is performed via computing a binary
cross entropy loss over the dot-product of the projected embeddings, pushing them together in the
regions of the ground truth segmentation mask.

To obtain a mask prediction, the projected features F̂c, F̂s are dot-producted with sigmoid activation,
reshaped to N = H

4 · W4 and upsampled to original image size. To adapt for grasp synthesis task, we
propose to further add three projectors for generating grasp masks Q,Θ, L and supervise them with
smooth L1-loss from the ground truth grasps, in parallel to the contrastive alignment loss of CRIS.

5 Experimental Results

This section evaluates our dataset using multi-stage baselines and compares them to our CROG
model. Also, we conducted ablation studies to analyze the performance improvements and present
the results of our robot experiments.

Implementation We initialize the vision and text encoders with the ResNet-50 and BERT weights
from CLIP [24]. Input images are resized to 416× 416, and texts are BPE-tokenized [64, 65]. The
maximum length of input texts is set to 20. We train in multiple GPUs using the Adam optimizer
with an initial learning rate 1e−4, that decays to 0.1 over 35 epochs.

Evaluation metrics For grounding, we report referring image segmentation (RIS) [27, 66] metrics
IoU and Precision@X. IoU calculates averaged intersection over union for the predicted segmenta-
tion and ground truth masks, while Precision@X measures the percentage of predictions with IoU
higher than a threshold X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. For referring grasp synthesis (RGS), Jacquard
index J@N [54, 19, 58] is presented, measuring the percentage of top-N grasp predictions that have
an angle difference within 30◦ and higher than 0.25 IoU with the ground truth grasp rectangle.

5.1 OCID-VLG Results

The grounding and grasp synthesis results are reported on the test split of OCID-VLG, containing
17.7k samples from held-out scenes of OCID. The test set contains seen objects but in novel scene
configurations, resulting in unseen referring expressions. Results for zero-shot and supervised base-
lines and our CROG are in Table 2. Results show that baselines based on GR-ConvNet [1] pretrained
on Jacquard [54], transfer poorly in OCID-VLG, even with ground truth grounding (28.7% J@1).

We find that the GR-ConvNet-based grasper tends to prefer edges, due to the top-down perspective
of Jacquard images, which is not the case in OCID-VLG.
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Method RIS RGS
IoU Pr@50 Pr@60 Pr@70 Pr@80 Pr@90 J@1 J@Any

GT-Grounding † - - - - - - 28.7 70.2
GT-Masks + CLIP † 35.0 35.0 35.0 35.0 35.0 35.0 11.9 26.8

SAM + CLIP † 25.7 29.3 28.5 27.4 22.7 9.1 7.2 12.7
GLIP + SAM † 30.3 34.7 34.1 33.5 28.6 11.7 10.7 21.8

Det-Seg + CLIP 29.0 27.2 20.9 17.5 17.2 16.0 28.1 39.2
SSG + CLIP 33.6 35.6 35.6 35.5 35.5 32.8 33.5 34.7

CROG (ours) 81.1 96.9 94.8 87.2 64.1 16.4 77.2 87.7

Table 2: Comparison results in OCID-VLG test split. Baselines with †

use GR-ConvNet [1] pretrained on Jacquard [54]. GT denotes the use
of ground truth data for providing an upper bound of performance
given perfect segmentation masks or grounding.

Zero-shot baselines score
below 30% in both tasks,
as due to the CLIP-based
ranking methodology, false
positives in grounding lead
to incorrect grasping, re-
gardless if the predicted
grasp is correct for the mis-
segmented object. Replac-
ing large zero-shot mod-
els with supervised meth-
ods trained in OCID-Grasp
(Det-Seg, SSG), offers a
marginal improvement in grounding (+3.6% in IoU), but significant in grasping (+23.2% in J@1),
while still low overall (39.2% J@Any). This indicates that even in presence of an OCID-specific
grasper, the ranking methodology of vanilla CLIP integration significantly limits the grounding per-
formance.

The proposed CROG overcomes such limitations by fine-tuning grounding and grasp synthesis to-
gether on top of CLIP, and surpasses previous methods with a large margin (+47.5% in IoU and
+43.7% in J@1), offering a much more competitive baseline for the proposed OCID-VLG dataset.

5.2 Ablation Studies

Figure 3: Grasp synthesis ablations
according to the type of input refer-
ring expression.

Ablation studies are conducted to explore: a) the distribution
of error according to referring expression type, and b) perfor-
mance improvements of each main CROG component.

Referring Expression Type We first decompose the per-
formance according to the type of the input expression and
compare the analytical results of our model with the best-
performing baseline, SSG+CLIP (see Fig. 3). We observe that
the CLIP baseline struggles with grounding spatial concepts
such as relations and locations (less than 30% J@1), due to
the loss of spatial information introduced by the segment-then-
rank pipeline. On the contrary, CROG is trained with dense
pixel-text token alignment via the cross-attention decoder, and
is capable of spatial grounding and robust across all types.

Method RIS-IoU RGS-J@1

CROG 81.1 77.2
- w/o CLIP init 73.9 71.0
- w/o contrastive - 73.4
- w/o grasp loss 79.3 -
- w/o decoder 78.2 72.3

Table 3: CROG ablation study.

Effect of CROG components We ablate the three main char-
acteristics of CROG: a) initializing from CLIP, b) combining
contrastive with grasp mask decoding tasks in a single objec-
tive, and c) dense text-pixel alignment with a decoder. Results
are summarized in Table 3. All components are contributing
to CROG’s performance, where CLIP initialization is the most
vital. Crucially, the removal of the contrastive or grasp loss
results in a decrease in CROG’s grasping or grounding capability. This highlights the knowledge
transfer between the two tasks that justifies our selection of a multi-task training objective.

5.3 Robot Experiments

We conducted experiments with a simulated and a real robot, where we want to evaluate the per-
formance of our model in the context of an interactive table cleaning task. Our setup consists of a
dual-arm robot with two UR5e manipulators with parallel jaw grippers and a Kinect sensor.

During each experiment, we randomly place 5-12 objects on a tabletop and provide language in-
struction to the robot to pick a target object and place it in a predefined container position.
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Setup Fruit Food Box Food Can Mug Marker Cereal Flashlight Overall
Isolated (#Trials) 10 10 8 4 6 10 2 50
Isolated - Ground.Acc. 10 (100%) 8 (80%) 5 (63%) 2 (50%) 5 (83%) 6 (60%) 2 (100%) 38 (76%)
Isolated - Succ.Rate 10 (100%) 5 (50%) 4 (50%) 1 (25%) 5 (83%) 4 (40%) 2 (100%) 31 (62%)
Cluttered (#Trials) 10 10 8 4 6 10 2 50
Cluttered - Ground.Acc. 8 (80%) 5 (50%) 3 (38%) 1 (25%) 5 (83%) 6 (60%) 2 (100%) 30 (60%)
Cluttered - Succ.Rate 5 (50%) 4 (40%) 3 (38%) 1 (25%) 3 (50%) 5 (50%) 0 (0%) 21 (42%)

Table 4: Results of robot experiments Gazebo, where Ground.Acc de-
notes the number of trials where the target object is segmented cor-
rectly and Succ.Rate the number of successfully completed trials.

We place objects in two
scenarios, namely: a)
isolated, where objects
are scattered across the
workspace, and b) clut-
tered, where we closely
pack objects together. We
note that in each scene we
include distractor objects
of the same category as the queried object. Our setup and example trials are shown in Fig. 4, while
more qualitative results are provided in Appendix B.

Pick the closest spongeGet the green marker

Grasp the food can in front of the black flashlightPass the leftmost marker

Figure 4: Interactive table cleaning trials in Gazebo
(top) and real robot (bottom), in isolated (left column)
and cluttered (right column) scenes.

We conducted 50 trials per scenario in
the Gazebo simulator [67], using object
models from 7 categories of OCID-VLG,
some as exact instances and others with
different attributes. Object list, metrics,
and recorded results are shown in Ta-
ble 4. The robot achieves grounding ac-
curacy of 76% (38/50) and success rate of
62% (31/50) in isolated and 60% (30/50),
42% (21/50) in cluttered scenes respec-
tively, with grounding failures mostly for
objects that are not similar in appear-
ance to OCID-VLG categories. For real
robot experiments, we initialize six unique
scenes, three for isolated and three for
cluttered scenarios, and provide grasping
instructions for a total of 34 trials. We
highlight that this test is more challenging,
as the object set used for experiments has
no overlap with OCID-VLG instances. In isolated scenes, the grounding accuracy is 65% and the
success rate 23.9%, while in cluttered it is 60% and 20.0% respectively. In both experiments, the
model is able to ground attribute concepts for unseen instances (e.g. “white and blue box”) and
disambiguate objects based on spatial relations. Grounding failures are usually due to highly oc-
cluded objects in the scene, especially if multiple distractor objects are present. Several failure cases
in cluttered scenes are due to collisions during motion execution, nevertheless, the 4-DoF grasp is
correctly predicted. Detailed experiments are shown in the supplementary video.

6 Conclusion, Limitations and Future Work

This paper presents OCID-VLG, a new dataset for language-guided 4-DoF grasp synthesis in clutter,
offering the first benchmark that connects language instructions with grasping in an end-to-end
fashion. Further, we propose CROG, a CLIP-based end-to-end model as a solution. Extensive
experimental comparisons and ablation studies validated the effectiveness of CROG over previous
methods, and set a competitive baseline for our dataset. Overall, this research offers valuable insights
into language-guided grasp synthesis and lays the foundation for future advancements in this field.

However, we found that CROG is limited when grounding concepts that lie outside the training
distribution. We attribute this to the pretraining-finetuning strategy, which trades off the zero-shot
capacity of CLIP pretraining in favor of the dense finetuning tasks. Future work will explore methods
to efficiently learn the dense decoding tasks while maintaining better zero-shot grounding capability
of CLIP. Finally, since CROG only considers RGB information, we would like to investigate whether
further fusing depth data alongside RGB aids in grasp synthesis.
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A OCID-VLG Vocabulary

We visualize a word cloud of the concept vocabulary of OCID-VLG in Fig. 5, while the full attribute
concept catalog is given if Fig. 6. Besides common sub-phrases such ”box”, ”food”, ”product”,
the wordcloud demonstrates that the most frequent concepts used to disambiguate objects are spa-
tial predicates, both as pair-wise relations (”front”, ”right”, etc.) and as absolute location (e.g.
”leftmost”, ”closest”). Certain object names (e.g. ”kleenex”, ”tissues”, ”cereal”) appear more
frequently, as those are the objects that are most commonly ambiguous in OCID scenes, hence they
spawn a lot of expressions referring to them. Finally, colors and brand names appear also frequently,
as they are the most common discriminating attribute between objects of the same category.

Figure 5: Wordcloud of OCID-VLG Vocabulary

The number of unique concepts per concept type, as well as the total number including paraphrases
are presented in Table 5. Paraphrases include synonyms (e.g. ”Coca-Cola”, ”Coke”) as well as
different phrasings of relations (e.g. ”left of”, ”to the left side of”).

Concept Num.Unique Num.Total

Category 30 55
Color 27 27

Instance 31 93
Relation 9 24
Location 4 8

Table 5: Number of concepts in OCID-VLG

Referring expressions might use instance-level names, attributes, relations, locations or combina-
tions of all the above to disambiguate objects. We study the frequency of referring expressions on
the OCID-VLG data splits in Table 6. Most frequent type is name (which includes a lot of variety

Type Train Validation Test

Name 20678 3014 5809
Attribute 2739 348 781
Relation 20501 2792 5769
Location 9306 1285 2672
Mixed 9997 1230 2718

Table 6: Number of referring expressions in OCID-VLG organized by type

in concepts such as brand, flavor etc.) with pair-wise relations following closely. Spatial relations
can always refer to the target uniquely by querying for a relation to a neighbouring object. Location
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ID class label color material special

0 1 apple apple_1 red organic NaN

1 2 apple apple_2 green organic NaN

2 3 ball ball_1 blue plastic NaN

3 4 ball ball_2 yellow plastic rugby ball

4 5 ball ball_3
red and
white

plastic
polka ball,ball with
spots,ball with dots

5 6 banana banana_1 yellow organic NaN

6 7 bell_pepper bell_pepper_1 red organic NaN

7 8 binder binder_1 green plastic NaN

8 9 bowl bowl_1 blue ceramic NaN

9 10 cereal_box cereal_box_1 red paper
Topas box,Topas cereal
box,Topas corn
flakes,Topas cereal

10 11 cereal_box cereal_box_3
white and
blue

paper

Mega Pack box,Mega
Pack cereal box,Mega
Pack cereal,Mega Pack
corn flakes

11 12 cereal_box cereal_box_4 brown paper

Choco Krispies
box,Choco Krispies
cereal box,Choco
Krispies box,Choco
Krispies corn flakes

12 13 cereal_box cereal_box_5
green and
red

paper
Chocos box,Chocos
cereal box,Chocos
box,Chocos corn flakes

13 14 coffee_mug coffee_mug_1 black ceramic mug with evolution logo

14 15 coffee_mug coffee_mug_2 white ceramic plain mug

15 16 flashlight flashlight_1 black metal NaN

16 17 food_bag food_bag_2 transparent plastic lentil bag,bag with lentils

17 18 food_bag food_bag_3
red and
white

plastic

pasta bag,penne
bag,spaghetti
bag,spaghetti penne
bag,bag with pasta

18 19 food_bag food_bag_4 white plastic
rice bag,Langkorn rice
bag,clever rice bag,bag
with rice

19 20 food_box food_box_1 dark blue paper
Barilla
box,tagliatelle,spaghetti
box

20 21 food_box food_box_2
yellow and
green

paper

chocolate banana
box,choco-
bananas,chocolate
banana box,box with
choco-banana

Figure 6: Full attribute catalog of OCID-VLG

and mixed follow at about half frequency, while color is last, as several objects in OCID share color
between different instances of the same category.

B Qualitative Results

We visualize predicted masks and grasp poses from the implemented baselines and the proposed
CROG model in Fig. 7. We include two examples per referring expression type for test scenes
of OCID-VLG dataset. Zero-shot baselines based on pretrained GR-ConvNet provide poor grasp
proposals, while supervised baselines + CLIP (Det-Seg, SSG) are constrained by the ranking errors
of CLIP. Due to segment-then-rank pipeline, spatial information about other objects is lost when
considering only the mask of a single object. As a result, CLIP-based baselines struggles with
grounding spatial relations. CROG is robust across referring expression types.

In Fig. 8, we visualize outputs of the CROG model during real robot experiments. The plots include
predicted mask and grasp proposal, as well as the three decoded masks from CROG’s grasp projec-
tors (quality, angle and width masks). It should be noted that the corresponding input command is
shown atop each image.
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Text command: Grab the food can product

SSG+CLIP DetSeg+CLIP CROG (Ours)Input image

Text command: Pass the ball with spots

SAM+GLIPGT SAM+GLIP

(a) Results in referring expressions by name.

Text command: Grasp the blue ball

SSG+CLIP DetSeg+CLIP CROG (Ours)Input image

Text command: Grab the red soda drink

SAM+GLIPGT SAM+GLIP

(b) Results in referring expressions by attribute.

Text command: Pick the cereal box package that is to the rear right of the food box

SSG+CLIP DetSeg+CLIP CROG (Ours)Input image

Text command: Pass the cereal box package that is right of the plain mug

SAM+GLIPGT SAM+GLIP

(c) Results in referring expressions by relation.

Text command: Grasp the nearest shampoo product

SSG+CLIP DetSeg+CLIP CROG (Ours)Input image

Text command: Grasp the left marker

SAM+GLIPGT SAM+GLIP

(d) Results in referring expressions by location.

Text command: Grasp the keyboard that is to the right of the brown kleenex box 

SSG+CLIP DetSeg+CLIP CROG (Ours)Input image

Text command: Pick the noodles on the rear left of the white and green marker

SAM+GLIPGT SAM+GLIP

(e) Results in referring expressions by a mix of concepts.

Figure 7: Qualitative results in OCID-VLG test scenes.
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Figure 8: Qualitative results in real robot experiments.
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